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Abstract

This thesis investigates the use of vehicle model-based filtering for spacecraft at-
titude determination. Whereas traditional navigation filters typically rely only
on the kinematic relations between body rate and attitude in their filter de-
signs, the state estimator presented here expands the plant model to include
rigid body effects and disturbance torques. When rate sensing gyroscope mea-
surement error components are large, as is anticipated in the new generation of
micromechanical inertial sensors, the model-based approach provides superior
performance to the standard kinematic designs. The estimation performance
gains, which include enhanced attitude tracking of several tenths of a degree
and closed-loop control stabilization, are most apparent when external attitude
data becomes sparse. Even if the gyroscope measurement quality were to im-
prove, for some satellite missions the possibility of an external measurement
outage still necessitates vehicle dynamic modeling for greater gyro bias observ-
ability. The thesis also gives insight into robustness measures to compensate
for model uncertainty, disturbance torque estimation, and GPS multipath error
mitigation.
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Chapter 1

Introduction

Estimator design for vehicle navigation is rarely straightforward. Although only

one truth process exists, many navigation filters may be implemented to wring

information from sensor measurements. The variety of designs is made possible

by the curious aspects of real physical and engineering systems: nonlinearities,

unmodeled dynamics, unaccountable errors, high order effects, and others.

This thesis is concerned with extended Kalman filter design for small satel-

lite attitude determination. Competing filter design models are proposed and

compared. The fundamental goal is to suggest estimation strategies useful for

mitigating the ill effects of low grade inertial instruments. Although the non-

linear nature of vehicle attitude dynamics forbids an implementable optimal

solution, we can study the effectiveness of realistic suboptimal filters.

Towards this end, Chapter 1 begins by introducing the system of inter-

est. Chapter 2 gives qualitative and quantitative models of the truth plant

and environment. Chapter 3 continues by describing the competing estimator

designs. Chapter 4 provides specfic test examples and Chapter 5 draws conclu-

sions and illuminates further points of interest. The Appendices are included to

give meaningful tutorials on special topics without interrupting the flow of the

main document. Appendix A treats first order statistical models and gyroscopic

error model terminology. Appendix B discusses the dominant attitude repre-

sentations and their interrelationships. Finally, Appendix C gives the Kalman



filter and extended Kalman filter algorithms and some of their properties.

Within this first chapter, Section 1.1 discusses two competing approaches to

navigation estimator design. Sections 1.2 and 1.3 introduce the sensors employed

to observe satellite motion. The control system actuators are considered in

Section 1.4 and Section 1.5 concludes by outlining the research objectives.

1.1 Navigation with the Kinematic and Dy-

namic Approaches

The problem of Kalman filtering for aerospace navigation is well founded. It is

often a matter of combining relevant information from a variety of sources. In-

ertial sensors give rate or acceleration data; altimeters, radars, and star trackers

measure position-like quantities; Doppler mechanisms and position differenc-

ing techniques give velocity updates. Given the relatively simple first order

differential relations between position and velocity and between velocity and

acceleration, the Kalman filter (KF) is well suited to syngerize any and all of

these sensor readings while providing a straightforward way to mitigate the ef-

fects of measurement errors. Since linear filters rely on spectral content to infer

state behavior from measurement sequences, the KF traditionally has been used

to correct the low-frequency biases of inertial navigation systems (see Section

1.2 below) with periodic high-frequency error content data from other instru-

ments. The marriage of sensor measurements, Kalman filtering, and navigation

requirements has indeed been a successful one.

One of the greatest strengths of Kalman filtering for navigation is the flex-

ibility it provides. Although there may be only one truth system, comprised

of vehicle, environment, and sensors, there are multiple KF designs possible for

any situation. For example, in his chapter on filter design and performance,

Maybeck discusses competing methodologies and introduces terminology such

as total or error state formulation, and error feedback vs. feedforward design (Ch.



6, [30]). To fully outline these differences here would be a redundant attempt

to convey what Maybeck and many others have eloquently expressed before [9],

[17], [28], [31], [43].

Instead, we focus in this thesis on a single distinction in filter designs and in

a single setting. Specifically, we consider the problem of satellite navigation with

gyroscope and GPS sensors. Our distinction is over dynamic model inclusion.

Most traditional attitude filters rely exclusively on kinematic and instrument

error models for their filter design. We choose to compare this philosophy to

one that includes not only these sources, but a dynamic realization of satellite

motion as well. A simple toy example will illustrate.

f(t)

m
+x

Figure 1-1: Particle Motion on a 1-D Path

Consider a single particle moving along a one-dimensional path as shown

in Figure 1-1. It has mass m and responds under the action of a stochastic

force history f(t). In order to track the particle's motion, we have available

a continuous velocity sensor measurement vmeas(t) and a continuous position

measurement zXme,(t). Unfortunately, each is perturbed from a true reading by

continuous time white noise so that

Vmeas(t) = v(t) + el(t) (1.1)

mes,,,,(t) = (t) + e2 (t),

where v(t) and x(t) are the true velocity and position and the ei(t)'s are the

stochastic stocmeasurement errors. The traditional "kinematics plus errors

equals filter" approach, which is hereafter referred to as the "nonmodel" ap-



proach would look at the truth system as merely

i(t) = v(t) (1.2)

so the natural Kalman filter truth model is

i(t) = Ax(t) + Bvmeas(t) + Gel(t) (1.3)

y(t) = Cx(t) + De2(t).

where

A = 0, B = 1, G = -1,C = 1, D = 1. (1.4)

The estimation then proceeds according to Equations (C.16) and (C.17) after

the covariances of processes el (t) and e2(t) have been defined.

Alternatively, the dynamically aware filter, hereafter called the "model"

filter, considers relations (1.1), (1.2), and the underlying Newtonian dynamics

vi(t) = a(t) (1.5)

a(t) = f(t)/m

to arrive at the larger Kalman filter truth model:

= A (t) + Gf (t) (1.6)

y(t) = C (t) + D e(t) (1.7)
v(t) e2(t)

with

A = ,G = C = D = I2x2 (1.8)

Now to proceed with operations (C.16) and (C.17), we must define an additional

process covariance for the driving term f(t).



Overall, we see that the model filter considers more elements of the true

system than the nonmodel filter. While the latter must directly integrate the

velocity measurement (including errors) as a truth input in (1.3), the model filter

appropriately treats it as a plant output, comparing it to the inertial limitations

of the system captured in the 1 term.

The strength of the model filter is the additional information it brings to

the table. If the instrument error sources are large, particularly for the ve-

locity sensor, the nonmodel filter's uncertainty in the position state x(t) will

grow rapidly. If position measurements are infrequent or noisy themselves, then

knowledge of the true x(t) may become unacceptable. However, by considering

the F = ma of the situation, the model filter has an edge in tracking position,

since it can compare velocity measurements with the physical limitations, i.e.

inertia, of the system. In situations when Xm,,a, is unavailable, the model filter

should experience a slower error growth rate in the uncertainty of x(t). Intu-

itively, the model filter should possess superior performance since is supercedes

the nonmodel filter by including additional inertial information.

However, the model filter is not without liabilities. By adding in additional

dynamic relations to the filter design, we are claiming to know more about the

real system. Hopefully this confidence is well founded; but if we add erroneous

mass data, then we could potentially create a misguided filter that will under-

value the information present in the measurements. Further, in real situations

f(t) is partially or fully composed of stochastic process which, like the coefficient

, must be well modeled in order for the additional dynamics to be effective.

These caveats highlight a fundamental difference between the two estimation

methodologies. Specifically, the nonmodel filter is essentially autonomous of its

constituent vehicle, which in this case is the unit mass m. It does not have to be

specially tuned to consider the real plant dynamics. In contrast, the model-based

filter requires additional design effort to include inertial effects and stochastic

environmental disturbance models. However, if the instruments have poor error

behavior, then this effort may be rewarded with vastly superior performance.



Chapter 4 is concerned with examining this tradeoff in specific test cases.

Historically, navigation and attitude filters have operated only in the kine-

matic, or nonmodel mode for a number of reasons. The inclusion of dynamic

equations of motion entails a larger state space model and thus a greater com-

putational burden. In fact, even obtaining useful equations of motion might

involve unjustifiable time and expense. Also, the potentially deleterious effects

of model uncertainty were likely deemed an unnecessary risk to take. In most

cases, the vehicle's instruments, especially the gyros, were of sufficiently high

quality to marginalize the model's contribution.

However, dynamic model inclusion is not without precedent. Typically, a

filter designer adds it in when he feels that the measurement quality is low or

when a condition of insufficient measurement quantity exists. In such cases, one

requires an additional source of information about vehicle motion. The model's

use derives from the its ability to provide a more realistic propagation of system

states em between measurement updates.

Koifman and Merhav have used aerodynamic vehicle models in conjuction

with angular rate, heading, velocity, and altitude measurements to estimate

a whole suite of navigation states [25]. They included the model to enhance

vehicle autonomy by limiting the reliance on outside navigation aids. Azor,

Bar-Itzhack, and Harman have included satellite dynamic information to obtain

body rate insight from vector attitude measurements [4]. Here, rate gyros were

totally unavailable so an additional information source was necessary to extract

useful state estimates between the vector sensor updates. Their scheme clev-

erly performed nonlinear tracking via linear approximations. In another study,

Crassidis and Markley employed dynamic modeling for spacecraft attitude es-

timation in the complete absence of rate gyros [14]. Without the necessity of

tracking gyro biases, they were able to estimate disturbance torques and obtain

significant dynamic information. Once again, a limited sensor suite motivated

the model's inclusion in the filter. In their investigations of INS/GPS integra-

tion, Purl and Giustino used satellite inertia properties to mitigate large rate



gyro error components [36], [18].

This thesis continues the collective study of model-based filtering by com-

paring the effects of dynamic model inclusion and exclusion in several settings.

Here, we consider satellite orbital attitude dynamics in the presence of a poor

quality gyro and/or the absence of external measurement aiding. If gyro quality

was sufficiently high, then one could very easily design a nonmodel estimator to

achieve reliable attitude estimates. However, if the gyro is poor, that is, if the

gyro output contains significant error components, then the satellite dynamic

model should intuitively improve estimation performance.

The next two sections introduce the measurement systems at our disposal.

The first describes generic gyro operating principles and defines more precisely

what is meant by a "high" or "low" quality gyroscope. The second discusses

GPS interferometry, in which position readings are converted to useful attitude

information.

1.2 Gyroscopes for Inertial Rate Sensing

An essential component of many flight vehicles' guidance and navigation suites is

the inertial navigtion system, or INS. This term typically denotes a collection of

accelerometers and gyroscopes arranged with a known orientation to the vehicle

body.

An accelerometer is an instrument which monitors specific force along a

particular axis, typically using some elastic effect, and reports the corresponding

linear acceleration. To obtain linear velocity from an accelerometer, the output

is integrated once. The position follows from an additional integration of velocity

[31], [34].

A gyroscope monitors angular velocity about a particular input axis. This

instrument typically functions by measuring the effects of angular rate on a

mass already moving or spinning in some known fashion. Examples include

tuning fork gyroscopes that track the motion of vibrating beams and fiber optic



gyroscopes that check phase shifts of counterrotating light beams. Regardless

of the particular phenomena that governs their operation, all gyroscopes output

an angular rate or accumulated angle signal [12], [31], [34].

As spatial bodies typically possess at least six degrees of freedom, a minimal

INS contains three orthogonally mounted accelerometers and three orthogonally

mounted gyroscopes (or "gyros" for short). A reliable flight system would likely

contain even more instruments for redundancy and additional motion observ-

ability [15]. Although accelerometers are often employed in satellites for orbit

tracking, we focus here on gyros and rotational kinematics since translational

and attitude dynamics can often be decoupled in astrodynamical settings. Our

interest is filtering for satellite attitude, which is crudely expressed as the first

integral of angular rate.

It is important to keep in mind that, as the name implies, gyroscopic inertial

instuments measure angular velocity with respect to an inertial frame. There-

fore if we desire angular information in some other reference frame, we must

introduce coordinate transformations. For example, we often wish to define

motion relative to an accelerating/noninertial frame like the Earth, since this

frame often has the most practical meaning in engineering settings. The need

to relate the inertial frame to other frames leads to the additional coordinate

definitions and mathematics, as seen in Chapters 2 and 3.

The distinction between reference frames has also spawned different ap-

proaches to constructing gyros themselves. One family of designs endeavors

to keep the gyro input axes, i.e. the axes about which angular rate is to be

measured, constantly aligned with an arbitrary inertial frame. Naturally, no

flight vehicle maintains this inertial alignment at all times and hence, the gyros

must be mounted on a moving gimballed platform. Figure 1-2 shows a simplified

schematic of a gimballed gyro.

As the vehicle rotates, inertial rate measurements come in from the gyros.

These rates are integrated into angles and the vehicle motion with respect to

inertial space is tracked. Acting to oppose the gyro-reported body rates, actua-
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Figure 1-2: Gimballed Gyroscope

tors simultaneously rotate the gimbals to keep the gyro platform in its original

inertially-fixed alignment. The orientation between the vehicle and its onboard

gyro platform changes as long as the the former undergoes angular motion.

The alternative design methodology prefers to keep the gyros rigidly

mounted to the vehicle body frame. (The body frame is defined precisely in

Section 2.1). No hardware or control logic exists to maintain the original in-

strument orienation. Instead, the instruments are rigidly attached to the vehicle

body so that the inertial input axes are constantly changing. The computational

effort now goes to tracking what the input axes are. They are constant with

respect to the body, but are time varying with regards to any external environ-

ment. Because these systems essentially piggyback the vehicle, they are termed

strapdown inertial systems.

Even within these two broad classes of gyros, there are still numerous phys-

ical bases for computing angular rate. Hence gyros come in many forms. Exam-

ples include spinning mass gyros, ring laser gyros, fiber optic gyros, and tuning

fork gyros. Reference [31] is one of several sources on the subject.

If gyros operated continuously, gave perfect high-bandwidth measurements,



Gyro Quality
Sensor Parameter High Medium Low
Gyro Bias < 0.01 deg/hr 0.1 to 1.0 deg/hr > 10 deg/hr
Gyro ARW < 0.0018 deg/rt-hr 0.06 deg/rt-hr > 0.06 deg/rt-hr

Table 1.1: Classification of Gyro Quality by Error Parameters

and were not prohibitively expensive or bulky, then the vehicle navigation prob-

lem would be permanently solved. One could simply start with a sufficiently

accurate initial condition and numerically integrate the gyro output to maintain

a complete vehicle attitude history. However, inertial instruments are known for

introducing many different errors into their outputs [9], [30], [31]. Some of these

effects have zero mean and are not time-correlated. Others, start small, but

generally grow in time until their impact on the measurement becomes unig-

norable. Examples include biases, nonorthogonality effects g-sensitive terms,

g-squared-sensitive terms, and quantization distortion.

For ease of modeling, gyro errors are typically divided into two coarse cat-

egories: bias (or bias drift) and white noise. Their terminology and basic math

models are saved for Appendix A to prevent the discussion here from becoming

too long. However it sufficies to say for now that gyro quality is often classified

by the rate at which the bias term drifts and the intensity, or magnitude, of

the white errors. Reference [9] presents the gyro classification chart in Table

1.1. The units of angle random walk (ARW) have been converted from their

original form and their meaning should be evident from the Appendix discus-

sion. The bias statistics refer the standard deviation of the bias drift over a

one hour period. A "high" quality gyro is very self-sufficient and can provide

reliable rate data for long periods. For example, a commercial airliner on a ten

hour trans-Atlantic flight would only accumulate a 0.31 degree net error (1-r)

while integrating a gyro's ARW error at the level indicated in the Table. During

that same period the gyro bias would drift only 0.1 deg/hr (1-U). In contrast,

a "low" quality gyro requires frequent external aiding to prevent unacceptable



error buildup. Continuing the example, if the airliner employed a low quality

gyro for the same flight, the angle random walk buildup would be on the order

of 10 degrees and the bias would typically wander 100 deg/hr or more.

At present, the Charles Stark Draper Laboratory is developing a microme-

chanical gyroscopic instrument for aerospace and defense applications. Infor-

mation on its operating principles, design, and performance are available in

reference [26]. One of this research effort's intentions is to create a small size,

low cost, low power consumption strapdown inertial instrument appropriate

for small, low budget spacecraft missions. Since micromechanical sensors his-

torically entail significant error characteristics, this thesis research performs a

preliminary investigation of attitude determination filter design for INS error

mitigation.

1.3 Global Positioning System for Attitude

Sensing

Seeking a reliable method for determining location at any point on earth, the

U.S. Department of Defense, in cooperation with academic and commercial

organizations, developed the Global Postioning System, or GPS [21]. Its heart

is a constellation of twenty-four high orbit satellites with time-correlated output

signals. Receivers on earth, whether held by individual persons or vehicles, take

in specially coded transmissions from the satellites, determine the time they

took to travel from space to the surface, convert this time to a distance, and

then "triangulate" the earth-bound position.

Although originally intended for military use, the extraordinary success of

GPS technology is now available for commercial and civilian benefit. Private

corporations and ordinary citizens are exploring GPS positioning for applica-

tions as diverse as airline navigation and outdoor recreation.

One of the useful applications of GPS is satellite tracking and attitude de-



termination. Here, tracking refers to orbital position (translational motion),

the computation of which is similar to earth-bound postitioning. For attitude

determination, interferometric techniques are employed. The basic principle is

to place several GPS receivers in a rigid array mounted to the satellite body.

As each reciever is capable of producing a position output, relative position

information is available to compute spacecraft orientation, or attitude. Fig-

ure 1-3 gives a two-dimensional illustration of this technique, known as GPS

"interferometry".

GPS Signals

Signal Front
From GPS

Satellites

Time

Delay

Att. Angle

Antennea

Antenna Array On Satellite Body

Figure 1-3: GPS Interferometry for Attitude

The National Aeronautic and Space Administration (NASA) has performed

on-orbit GPS interferometry proof-of-concept experiments [11]. Further earth-

bound experimentation and extensive simulation is ongoing at several research

institutions, including Stanford University [33], the University of Colorado at

Boulder [5], [6], and the Charles Stark Draper Laboratory [18], [36].

For the purposes of this research, GPS interferometry provides the simu-

lated on-orbit attitude sensor. Of course, like any real engineering sensor, GPS

attitude is not an error-free measurement. First of all, the measurement might

be totally unavailable at times. During satellite tumbling or installation, the



algorithms that convert individual antenae position information to attitude may

be still be preprocessing as it can take many iterations to resolve the number

of integer wavelengths that make up the time delay in Figure 1-3. Puri and

Giustino treat this wavelength computation issue under the heading of "inte-

ger ambiguity" [18], [36]. Further, during high orbit periods, a receiver-bearing

satellite may not observe enough GPS satellites to compute a meanful attitude.

Even when a sufficient number of GPS satellites are in view and attitude

solutions are available, there are still unignorable errors. As with virtually all

sensors, present will be a time-uncorrelated white noise which perturbs every

measurement from truth. This white noise exists at every update epoch; knowl-

edge of the previous white noise value is useless in predicting the next. Another

perturbation may also be present, this one low-frequency and time-correlated. It

arises from a mulitude of sources such as antenea line biases, phase center vari-

ation, antenae array flexibility, and the reflected signal phenomenon known as

GPS multipath [36], [41]. Models for both white and time-correlated errors are

provided in Section 2.3. Their magnitudes as well as the GPS update interval

depends on the particular test.

1.4 Satellite Control

Virtually all orbiting spacecraft have mission objectives which require some sort

of attitude and motion control mechanisms. Sometimes we desire a satellite to

point constantly at a fixed spot on the earth for communication or surveillance.

Later on, we might wish to slowly sweep a given geographic area rather than hold

a stationary posture. Still other times the desired state might be an inertially

constant attitude as employed in astronomical studies.

Whatever the control objective, the satellite must contain some method of

actuation that a control law can utilize. Without going into unnecessary details,

it suffices to say that many alternatives exist. Examples include reaction wheels,

control moment gyros, magnetic coils, gravity gradient stabilization, spin stabi-



lization, and gas thrusters [10], [43]. The choice of the best actuation method

depends fundamentally on the mission objective and operating constraints. In

this study we choose to employ thrusters for simulated attitude control. The

reasoning is this: thrusters provide a mathematically simple way to obtain full

three-axis spacecraft attitude control. An elementary gas thruster system for

each body axis allows a series of three independent, clean control signals with-

out the additional dynamic modeling seen in rotating mass controllers. For

the purposes of mathematical simulation, thrusters do not require environment

interaction modeling or de-spin maneuvering. Further, many satellite control

algorithms are written with generic three-axis control in mind and thrusters

provide a simple method of realizing such laws. Of course, gas thrusting nat-

urally does entail certain practical challenges such as fuel and weight budget

satisfaction but those aspects will be brushed over here as secondary to our

attitude estimation objective. If specific engineering designs require alterna-

tive actuators, then the filtering techniques presented in later chapters can be

appropriately modified. References [10], [27], and [43] should provide further

insight.

Simple linear momentum conservation is the fundamental operating princi-

ple for spacecraft gas thrusters. Gas molecules ejected at high velocity from a

satellite orifice will produce a reaction force in the opposite direction. Commer-

cial jets come in hot gas and cold gas varieties. The former gets its energy from

an exothermic chemical reaction and typically produces larger reaction forces (5

N or greater). The cold jets are powered instead by thermodynamic processes,

such as matter phase change or compression/expansion phenomena. These ac-

tuators produce smaller thrusts (approx. 1 N or less) and are best employed

for fine control. In subsequent simulations, we will not worry about the spe-

cific jet type but instead monitor the control torque magnitudes and make sure

they stay at or below 2.5 N-m. Larger torques might be unreasonable for small

spacecraft that necessarily have small thruster moment arms. If we assume a

moment arm length of half a meter (0.5 m), then the thrust magnitude should



remain below 5 newtons, which is reasonable based on the above discussion.

Of course, given a capable actuator, the choice of control law is an important

matter. Alternative control laws are presented in Section 2.2.1 and their relative

merits given. Actuator dynamics that govern behavior between command input

and thruster steady-state are neglected to prevent overcomplication of the truth

and filter models.

1.5 Thesis Objective

The objective of this thesis is to explore the usefulness of dynamic modeling

in satellite attitude determination. Inclusion of the vehicle model is motivated

by the advent of small, inexpensive, inertial sensors with possibly significant

error components. Whereas a purely kinematic, or nonmodel approach was

once sufficient for mission requirements, gyros with high bias drift rates and

large noise intensities may require additional aiding in the form of dynamic

modeling. This model information should prove especially useful when external

attitude sensors, such as GPS, are unavailable.

Sections 1.1 and 1.2 outlined in greater detail the specific differences between

the model and nonmodel filter designs. The former section also gave a summary

of research into the benefits of vehicle model inclusion. Whereas some previous

studies have included inertia information in satellite attitude filters, this thesis

designs both a model and nonmodel filter specifically in the context of poor

quality inertial sensing. As such, we bring forth new quantitative knowledge

about the strengths and weaknesses of the competing filter designs in various

test settings.

The contributions of this research include the demonstation of dynamic

modeling's effect on attitude performance, the development of a high-fidelity

simulation applicable to this and future research, the explicit discussion of com-

peting filter designs, and a series of Appendix of tutorials on related topics, the

first of which gives the clearest explanation of Gauss-Markov based gyro error



model vocabulary and term dimensions seen yet by this author.

Chapter 2 continues by discussing the truth system in greater detail. Here,

the equations of motion are stated, the sensor and actuator models are com-

pleted, and the disturbance environment is described. Chapter 3 gives the exact

model and nonmodel filters in the context of satellite attitude determination.

Chapter 4 demonstrates filter performance in a variety of sections and Chapter

5 draws conclusions and points the way for further investigation.

The Appendices are included to allow a thorough introduction to relevant

side topics. Appendix A discusses the related items of Gauss-Markov process

statistics, a technique for simulating white disturbances numerically, and ter-

minology of gyro error modeling in the context of Gauss-Markov processes.

Appendix B outlines the three dominant attitude representations, their relative

merits, and their interrelationships. Appendix C finishes by giving the Kalman

and extended Kalman filter algorithms and some of their properties.



Chapter 2

Truth Dynamics, Environment,

and Measurements

In any sort of filtering or estimation study, it is necessary to have a "truth"

system where the "real" dynamics take place and "real" measurements are gen-

erated. As the filter processes the available data, the state estimates are com-

pared to the simulated truth counterparts to gauge the actual performance of

the filter.

There are advantages and disadvantages of using a real, physical system

as a truth model in the filter design study. The obvious benefits include the

opportunity to fairly test the estimator, the satisfaction of seeing an abstract

algorithm work in actual hardware, and the peace of mind that one is not relying

on a naive or overly simplified model of the real world. The disadantages are

the large effort and cost involved in performing experiments and the slow turn-

around time for studying the effects of parameter variation. With the advent of

what some call the "third paradigm" [20] of science (anaylsis and experimenta-

tion being the first two), engineers can employ computer simulation to emulate

a real system with a desktop workstation. Not only does simulation avoid the

time and financial burdens of full blown experimentation, it also provides easy

access to the truth states so that filter performance can be accurately computed.

For the problem of satellite attitude determination, computer simulation



allows large scale investigation that would be absolutely infeasible with real

hardware. This chapter lays out the mathematical assumptions used to simulate

the dynamics and measurement processes for a real satellite. This truth model

is then coupled with competing filter designs to assess their relative merits.

In some cases there will be close agreement between truth model and filter

design; in others, we will introduce deliberate errors. Specific numerical values

for truth parameters will be given in subsequent chapters as needed; only the

generic mathematical formulae are given here.

Section 2.1 begins by defining the necessary reference frames and giving

the dynamics equations for satellite rigid body motion. Appendix B provides

further discussion of the kinematic relations. Here, it is important to note that

although the fixed inertial frame is critical to define both the dynamics and

gyro measurement processes, we never need to compute its specific orientation

relative to the satellite.

Section 2.2 continues by describing the control and environmental torques

that excite the truth system. Since most of them are hard to characterize math-

ematically and are stochastic in nature, there will be considerable assumption

underlying their corresponding filter models.

Section 2.3 describes the truth measurement processes. Just as with the

truth dynamics, these models are convenient and tractable concepts of the "real

world". The measured quantities and their typical error sources are described.

Finally, Section 2.4 summarizes the chapter.

2.1 Rigid Body Dynamics and Reference

Frames

In this thesis, we assume that a satellite can be represented accurately by a rigid

body in circular orbit. Of course, real satellites are in fact complex interconnec-

tions of numerous engineering subsystems and are not true rigid bodies. Solar



arrays and flexible panels can certainly introduce oscillatory modes invisible in

a simple lumped parameter model. However, the rigid body assumption is a

convenient starting point for analysis and captures significant features of orbital

motion, such as gravity field interaction and Euler coupling.

To mathematically study rigid body motion, we traditionally begin with two

frames of reference. They are the inertial reference frame and the rigid body

frame. The former is an abstract entity that never accelerates and provides an

environment in which to express the usual laws of motion. Knowledge of its

specific orientation is not always necessary for analysis; it is sufficient to assume

that it exists and that we could define it more specifically should the need arise.

Alternatively, the body frame is permanently attached to the satellite center of

mass with fixed body orientation and accelerates with it under the action of

applied forces and torques. It is often important to know its exact orientation

with respect to the surrounding environment to compute such disturbance val-

ues. Figure 2-1 illustrates these two frames, showing an arbitrary orientation

between the two.

z Y y
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Inertial frame
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z Body frame

Figure 2-1: Inertial and Satellite Body Frames

With the inertial and body frames defined, we can give the general Newto-

nian equation of rigid body rotation as

d (H) = ET. (2.1)



The variable H is the total rigid body momentum and ET is the sum of applied

torques, both resolved in the inertial frame.

By finding analytical expressions for the momentum of a rigid body in terms

of its mass distribution and angular velocity and by carefully computing the

time derivatives of quantities relative to moving reference frames, it is possible

to derive the following general equation for rigid body rotation: [13], [32]

d(Iwb) + wbixIbi = T. (2.2)

This fundamental relation is known as Euler's equation of motion and is the

starting point of vitually all rigid body dynamics [13]. Unlike Equation (2.1),

the quantities here, including the applied torque T, are all resolved in the body

frame. The matrix I is the moment of inertia tensor and wbi is the angular

velocity of the body frame with respect to the inertial frame. That is, the

subscript bi should be read "body with respect to inertial". The (.)x(.) denotes

the usual vector cross product operator.

To study satellite orbital motion, we will need to introduce an additional

reference frame. Although the inertial and body frames are sufficient to describe

rigid body rotation (Equation (2.2)), they do not capture the fact that in orbit,

some of the applied torques are actually attitude dependent. By "attitude",

we mean the orientation of the satellite body with respect to its environment.

In the orbital setting, gravity must always act towards the center of the earth

and its effect on the satellite will vary, depending on its attitude with respect

to the gravity field. Therefore, we define an intermediate frame whose origin

corresponds exactly with the body frame origin. We choose it with the z axis

trained on the nadir (earth pointing) direction, the x axis pointing in the orbital

velocity direction, and the y axis pointing normal to the orbital plane, consis-

tent with a right-handed system. Figure 2-2 illustrates this intermediate "local

vertical-local horizontal" frame and its relationship to the inertial and body

frames. We typically shorten the expression "local vertical-local horizontal" to
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Figure 2-2: Orbital Configuration with Inertial, Local, and Body Frames

local, LVLH, or abbreviate with the symbol 1. Alternate names exist in orbital

mechanics literature; examples include "orbital", "earth-referenced", and "nav-

igation" frame [36]. Since this frame is always aligned with its z axis pointing

parallel to gravity, knowing the body frame's attitude with respect to LVLH

is equivalent to knowing the satellite's orientation with respect to the earth.

Therefore, the LVLH frame is necessary and useful for two reasons. First, it

allows us to compute analytically the affect of gravity on satellite motion. Sec-

ondly, it gives us a convenient and physically meaningful frame with which to

define satellite attitude.

It is important to distinguish between the local frame and the classic earth-

centered inertial frame used in so many dynamics studies. The local frame, as

we have defined it here, is a rotating and therefore noninertial frame. The earth

frame, whose origin lies at the planet's center, may be considered as stationary

for the scope of this research and is therefore a candidate for an inertial frame.



However, since we do not need to declare a specific inertial frame for the purposes

of computation, the earth-centered frame will not be introduced formally.

Since the local frame x and z axes must track the velocity vector and nadir

directions, respectively, the local frame actually rotates with respect to the

inertial frame as orbit progresses. Making reference to Figure 2-2, we see that

the x and z axes always remain in the orbit plane, i.e. the plane of the paper.

During orbit, the y axis remains invariant, always pointing into the paper. Not

coincidentally, this is the exact rotation axis for x and z. Therefore, we can

give the angular velocity of the local frame with respect to the inertial frame

expressed in the local frame as

Wo = -Worb (2.3)

The li subscript should be read "local with respect to inertial". The I superscript

indicates that the vector is expressed in the local frame. Here, Worb is the orbit

rate. The negative sign comports with the right hand rule; the y axis is directed

into the paper in Figure 2-2 while the other axes rotate counterclockwise about

it. In the remainder of this thesis, rate quantities appearing without superscripts

are automatically expressed in the body frame.

Since we choose to study the alignment relationship between the body and

local frames, we will work primarily with the quantities qbl and wbl. The former,

qbl, is the quaternion that describes the instantaneous attitude transformation

from the local frame to the body frame. (See Appendix B for a detailed discus-

sion of quaternions and attitude fundamentals). The vector wbl is the angular

velocity of body frame relative to local expressed in the body frame. By analogy

to nonrotational dynamics, qbl plays the role of position while wbl is essentially

a velocity. As seen in Appendix B, the differential relationship between the



quaternion and the angular velocity is

qbl = (Wbl ) qbl. (2.4)

where Q(wbl) is defined by Equation (B.18).

So far, we have defined three different angular velocities: wbi, which ap-

peared in Equation (2.2); wi, which described the motion of the orbital frame;

and wbl which relates the body and local frames. These three vectors are of

course related according to

wbi = Wbl + Wli (2.5)

= bl + Tb(qbl)lw

Here Tbl is a direction cosine matrix that transforms vectors in the local frame

to their body frame representation. Its information content is identical to that

of qbl.

By differentiating Equation (2.5) with respect to time while accounting for

the motion of noninertial unit vectors and then substituting the result into

Equation (2.2), we can obtain the following relation

ubl = I-1(T - wblxlwbl) + WbIXWli. (2.6)

This effort merely substitutes WbI for wbi since the "bl" quantities are of more

interest to us than the "bi" quantities. Note that the inertia matrix I is assumed

constant in Equation (2.6).

Equations (2.4) and (2.6) govern the truth dynamics. The next section gives

further insight into components of the torque term T.



2.2 Torques

The T appearing on the right hand side of Equation (2.6) includes any and all

torques that might act on the the satellite during orbit. We will generally split

this term into two components, torques due to control inputs and torques due

to disturbances:

T = Tcont + Tdist. (2.7)

The control torque represents all deliberate efforts to dictate satellite motion.

Typically, feedback control is employed: relevant quantities portraying satellite

motion are measured or inferred and then fed to a controller that decides how to

reconcile the current state of the system with the desired objectives. Controller

design is obviously a major field unto itself and the engineering community has

produced volumes on satellite control alone [10], [27], [43]. Section 2.2.1 below

gives three elementary laws for attitude control.

The disturbance torque term Tdit represents basically every torque other

than control torque. It has many possible components but we choose to treat

only four of them in our truth model. They are gravity gradient torque, solar

radiation pressure torque, magnetic dipole torque, and atmospheric drag torque.

These components act independently in general and can thus be combined ad-

ditively:

Tdist = Tgg + Tsolar + Tmag + Taero. (2.8)

Subsequent subsections describe each disturbance component in greater detail.

References [27] and [43] are good starting points for further investigation of these

and other disturbance phenomena, such as third body effects and unintentional

forces and torques arising from satellite internal motion.

2.2.1 Control Torques

On any given satellite or spacecraft, there can be many different possible con-

trollers. Some transfer orbits or provide periodic reboosting. Others govern



the experimental apparatus or deploy and position solar arrays. The controllers

considered here focus on attitude. Their objectives are to point the satellite in

a commanded direction. Three-axis thrusters provide actuation.

Naturally, feedback controllers are limited by the quality of information

available. If the objective is to point in a given direction, then the satellite

needs to know how the current attitude compares to the commanded one. In

the case of perfect measurements of all system states, the controller acts on

"truth" and knows the exact relation between the current state and the goal

state. However, since perfect measurements do not exist and sensors rarely

observe all the desired quantities we must drive the controller with estimates

instead of truth quantities. In this configuration, the system operates in a true

feedback loop: the controller drives the satellite, whose motion is measured. The

measurements are input to the estimator, or filter, to obtain state estimates. The

controller acts on these estimates and the loop is closed. Figure 2-3 illustrates

one possible closed-loop system configuration.

Three different controllers are described briefly below. They differ in their

inputs, methods of actuation, and dynamic models.

Statc Estimacs Estmator Mcasurmenl

Figure 2-3: Control Loop Including Dynamics and Filter

Proportional Angle and Rate Feedback Control

When satellite motion is sufficiently slow and the control torques are strong

compared to the disturbances, it is possible to assume that the Euler dynamics

are approximately decoupled about the three rigid body principal axes [10], [13].



In such cases, one can operate independent controllers about each principal axis

and ignore spillover effects. We think of the overall control torque vector being

composed of three principal axis components:

TC, = T, . (2.9)

TZ

A specific control law is now declared for each axis. If both attitude and

rate information are available and thrusters actuate, Bryson [10] suggests the

following simple proportional feedback law for each axis:

T = -D, - Ki(O; - Oic) i = x,y,z. (2.10)

Here, the Di and Ki are control design parameters. If both are positive, then the

motion is stable. The angle 8i represents the estimated Euler angle component

about principal axis i when rotating from the local to body frame. Naturally,

9i is the time rate of change of this angle. The commanded value of the Euler

angle is 8ic.

Since the 8i are Euler angles and depend on hard nonlinear trigonometric

computations (see Appendix B), this control law works best when the actual

and commanded attitudes are "near" each other. That is, this linear law is

better suited for local regulation and should not be used to execute large-angle

motion, when nonlinear effects are significant.

If these caveats are heeded and the satellite motion is indeed slow and

decoupled, then each principal axis obeys Newton's second law in angular form:

Ij9j = Ti. Combining this fundamental relation with Equation (2.10) gives the

following closed-loop expression:

l9; + DBO; + K9O1 = KOic. (2.11)



As a final comment, Bryson warns that such proportional feedback laws are

often unrealistic for thruster control. The explanation is that thrusters often

clog or fail when asked to provide a continuous range of output values; it is

more realistic to request a fixed discrete thrust value. The section on bang-bang

control is meant to provide more realistic control alternative. However, since

computer simulations are ideally suited for continuous outputs, this proportional

controller and the following quaternion-based scheme can be useful for analysis

purposes.

Quaternion Feedback Control

Extending the above Euler angle feedback law to quaternions, Wie, Weiss, and

Arapostathis [44] provide the following control law:

Tcont = -wxIw - Dw - Kq,. (2.12)

Here, Tont is the full dimension control vector, expressed in the body frame,

I is the estimated satellite inertia, and w is the estimated angular rate. The

parameters D and K are now full 3x3 matrices. The attitude error is now

expressed by q,, which is the three component partition of the error quaterion

q, between the current attitude estimate q and the commanded attitude q:

qe = q 0 qc-1. (2.13)

Appendix B explains the relationship between Euler angles and the first three

quaternion elements.

Unlike the previous feedback control expression, this law is ideally suited

for large angle attitude maneuvers since the -wxIw term counteracts Euler

coupling effects and thus eliminates the principal axis restriction.

Wie, et.al. give several stability, performance, and robustness results for

control law (2.12) with proper selection of the parameter matrices D and K.



When used For example, if we choose the parameters as scaled inertia matrices:

D = dl K = kI, (2.14)

with d > 0 and k > 0, then the control law becomes

Toont = -wxlw - dIw - kIqe. (2.15)

This choice generally revolves the satellite about its eigenaxis for large-angle

maneuvers. The eigenaxis is the shortest possible angular path between two

given orientations.

If the body rates and error angles are both small, expression (2.15) reduces

cleanly to the angle-based law (2.10).

Bang-Bang Control

From a control point of view, the above angle and quaternion feedback laws have

two liabilities. The first was already mentioned; continuous-valued action is not

always feasible for thrusters. Secondly, control law tuning requires knowledge

of the satellite inertia properties, knowledge which may actually be in error. Of

course, feedback is a natural robustness measure but at times we may desire a

completely model-ignorant controller. Bryson [10] provides a bang-bang control

law:

Ti = -Tisgn(Oi - 0, + TiO4) i = X, y, z. (2.16)

The quantities Ti, Oi, Oic, and Oi have been previously defined. Bang-bang control

allows only a single magnitude of thrust; the only decision is when to fire and

in which direction. Here, the thrust magnitude is given by T*, sgn is the sign

function, and Ti is a design parameter. If rate is more tolerable than pointing

error, we choose r to be small. Similarly, 7 should be chosen large if motion is

more harmful than attitude deviation.

With bang-bang controllers, it is often desireable, if not critical, to build



in a "deadband". A deadband is a region where, should the decision variable

magnitude, in this case 19i - Oic + T7 il, fall below a certain value, the thrusters

stay mute. Otherwise, the actuators will operate continuously, wasting fuel,

fighting each other, and possibly disrupting the spacecraft mission. In subse-

quent simulations we will specify a deadband limit ai, typically between 0.1 and

2 degrees.

The thrust magnitude Ti* depends on the specific satellite equipment. We

typically assume cold gas jets with output of less than one newton.

Note that like the angle feedback controller, this bang-bang algorithm acts

on each body axis independently. Therefore, it is advisable to keep the same

restrictions: use the law only for smaller angle corrections and in near-principal

axis mass distributions.

2.2.2 Gravity Gradient Torque

The first disturbance component is the gravity gradient torque, Tgg. It is unique

among the four components considered here in that it is wholly deterministic.

That is, assuming that both the satellite altitude and attitude are known, this

vector disturbance torque is given exactly by a closed-form analytical expres-

sion. The other three torque components are stochastic, depending on many

independent and unpredictable phenomina and can not be computed analyti-

cally.

Gravity gradient torque arises, as the name implies, from the dropoff in

gravitational field strength with increasing altitude. That is, the difference in

pull on satellite elements that are at unequal distances from the earth's center

can actually create enough moment about the center of mass to induce rotation.

Although not a relevant consideration in atmospheric flight, this torque's mag-

nitude is significant compared to other torques in the relatively benign space

environment. In fact, with careful design, the engineer can use gravity gradient

torque as an effective control mechanism.



For an orbiting rigid body, one can give a mathematical formula for this

torque, expressed in the body frame. Discussions and derivations are available

in [10], [27], and [43] so we give the final result here. Essentially, the torque can

be computed by integrating a force times moment arm expression across the

entire rigid body. A compact expression for this body integral is given by

Tgg = Tgg(altitude, qbl)

= 3wrb(rzenithXIrzenith) (2.17)

= 3wrb(Tb,(qblz)ixITb(qb)z).

We see the dependence on altitude in the orbit rate term Worb and the attitude

dependence in the local to body transformation Tb(qbl). The satellite mass dis-

tribution is captured in the inertia matrix I. Here, rzenith is the zenith-pointing

unit vector resolved in the body frame. It can be computed by premultiplying

its local frame resolution, i. = [0,0, -1]T, by the local to body transformation

matrix Tbl(qbl). The exact functional relationship Tbl(qbl) is given by Equation

(B.26).

Equation (2.17) is the formula used to compute the gravity gradient torque

in all subsequent numerical simulations.

2.2.3 Solar Radiation Pressure Torque

Unfortunately, the remaining three disturbances are stochastic and cannot be

predicted with compact analytical expressions, as was the case with gravity gra-

dient torque. Solar radiation pressure occurs as electromagnetic waves impact

the satellite body. The response to radiation of the specific spacecraft materials

greatly influence the torque magnitudes. For a multi-material, complex geom-

etry body, it is very difficult to predict the response to a given radiation field,

especially if the attitude is uncertain. Further, the local radiation environment

will be constantly varying since it depends on factors such as orbit position

and solar flare activity. Therefore, in order to simplify analysis, Larson and



Wertz [27] give the following formula to compute the worst case solar radiation

pressure torque magnitude:

ITs<oar I ITsolar max = F3 A,(1 + q)(cos(On,,))(cp, - cg) (2.18)
c

where

F, = solar constant = 1358 W/m 2

c = speed of light = 3(10)s m/s

A, = satellite surface area in m 2

q = reflectance factor 2 0.6

Oi,c = solar incidence angle, assumed 0 degrees

c, - c, = distance from center of solar pressure to center of gravity in m

With the quantities in the specfied units, the magnitude upper bound is in

Newton-meters. Since the bound is in fact a magnitude bound while we

need to drive the truth simulation with three-component disturbance vectors,

the simulation generates vector components each with a three-sigma value of

(1/V) |Tsolr I max

In order to reasonably approximate the orbit rate frequency content of true

solar radiation pressure torque, white noise inputs are processed through a sixth-

order bandpass filter (third-order rolloff at low and high frequencies) centered

around the satellite orbital frequency. Each torque component is generated

independently.

2.2.4 Magnetic Dipole Torque

Another relevant disturbance in satellite attitude dynamics is magnetic dipole

torquing. Everything in a satellite from instruments to payload to electrical

wiring can create electromagnetic fields, which in turn must interact with the



Earth's own magnetic field. Naturally, such interactions can produce significant

forces compared to the satellite inertia, resulting in net disturbance torques.

Because of its strength, one may consider the magnetic dipole torque as either

a significant disturbance or a useful control mechanism. Focusing on the former

consideration, Larson and Wertz give the following formula to estimate the worst

case disturbance torque magnitude [27]:

2DM
|Tmagl < ITmag max = DB = 2DM (2.19)

where

D = vehicle residual dipole, typically 1 A-m 2

B = Earth magnetic field in Tesla

M = Earth magnetic moment = 7.96x10 15 Tesla-m3

R = orbit radius in m 2

Again, the dimensions of the torque upper bound are Newton-meters.

Just as with the solar radiation pressure torque, we expect the magnetic

torque to vary at approximately orbit rate since the satellite will revisit the

same local magnetic environment roughly every period. Therefore, we apply

the same bandpass filter used to shape the solar torque and tune each torque

component to have a three-sigma value of (1/ ) ITmaglmax.

2.2.5 Atmospheric Drag Torque

The final disturbance component we consider is aerodynamic drag due to inter-

actions between the satellite and Earth's atmosphere. Detailed computations

of this torque would natually require extensive fluid dynamics considerations

and knowledge of prevailing atmospheric conditions. Since this kind of effort is

beyond the scope of this thesis, we again make use of a Larson and Wertz [27]



worst case approximation. The torque magnitude upper bound is

ITaerol I Taerolmax = ~pCdAV'(cpa - cg) (2.20)

where

p = atmospheric density in kg/m 3

Cd = drag coefficient, taken as 2

A = satellite surface area normal to velocity in m2

V = satellite velocity magnitude in m/s

c - c, = distance from center of aerodynamic pressure to center of gravity in m

As with the other formulae, the torque magnitude is computed in Newton-

meters.

Note that there are two parameters, p and V, in Equation (2.20) that depend

on orbit altitude. Not surprisingly, it turns out that of the three stochastic

torques just considered, atmospheric drag torque is the most sensitive to orbit

radius. At lower altitudes, say around 300 km, it has the dominant magnitude,

while at altitudes of around 800 km, it has fallen off and is comparable to the

other two.

Since the drag torque does not depend on orbit position as much as satellite

bandwidth, we obtain simulation disturbances by low pass filtering white noise

through a fourth order filter that cuts off around orbit frequency. Again, the

component magnitudes are scaled by 1/vf.

2.3 Measurements

With the truth dynamics described, we can now discuss how the sensors observe

truth quantities. Each outputs a reading of the truth quantity corrupted by one

or more error signals.



2.3.1 Gyroscopes

Strapdown gyroscopes are body mounted inertial sensors and as such, measure

body relative to inertial frame angular velocity. However, as real engineering

instruments, gyros introduce measurement errors. Typically, there is a time-

correlated low frequency component bg called a "gyro bias". Time variation

in this error signal is termed "gyro drift". There is an additional white, or

time-uncorrelated, noise component vg. In continuous time models, this term

is known as "angle random walk". See Section A.3 for a detailed discussion of

these error terms with a numerical example. In equation form, we express the

gyro measurement as

wgyro = bi +bg + Vg (2.21)

=Wb +TblWli + bg + Vg.

The second relation merely restates Equation (2.5) and will be highly relevant

to the dynamic filter design covered in the next chapter.

Although gyro bias behavior is very mysterious and without exact truth

models, the navigation community often considers the truth bias to generally

follow a Gauss-Markov stochastic process

bg = Agbg + Ggwg. (2.22)

Again, consult Section A.3 for a discussion of the terms and units in Equation

(2.22).

2.3.2 GPS Attitude

For the purposes of this research, we assume the attitude (GPS) measurement

is of the spacecraft orientation with respect to the local frame. That is, GPS

measures qbj, not qbi. Of course, GPS has its own error sources which prevent us

from taking the GPS receiver output as truth. Conceptually, the attitude error



consists of two components, just as in the gyro case. There is a time correlated

error and an independent white error which we envision as combining in an

additive fashion to form a total error EGPS:

EGPS = Ecorrelated + Ewhite. (2.23)

The correlated error can derive from antennae line biases, antannae array flex-

ure, phase center variation, and signal transmission reflection effects [36]. This

latter phenomenon is labeled "GPS multipath error" and like the other error

sources, is a subject of ongoing research.

The combined correlated and white errors perturb a perfect measurement

of qbl by an error quaternion q,rr, which is conceptually representative of the

combined error in Equation (2.23):

EGPS - qerr. (2.24)

In this setting it is inappropriate to think of the error as entering the quaternion

measurement in as strict additive sense, as in (2.21) for gyros, since the GPS

receiver output must be a feasible attitude. Therefore, the measurement is an

attitude perturbation of the true attitude qbl:

qGPS = qerr 0 qbl. (2.25)

(See Appendix B for a discussion of attitude fundamentals, including quaterion

composition). Mathematically, we generate simulated attitude errors by creating

correlated and white Euler angle sequences which perturb the measurement

from truth. These angle sequences are then combined into an error quaternion

according to Equation (B.19) and then combined with qbl as in Equation (2.25)

to form a "truth" GPS measurement.

Just as with the gyro bias, the GPS time correlated error may follows a



Gauss-Markov stochastic process for approximation purposes

bGPS = AGPSbGPs + GGPSWGPS, (2.26)

where bGPs is the time correlated error, and (AGPs, GGPS) is a linear system

that shapes a white noise input wGPS.

2.4 Summary

This chapter has laid out the concepts, terminology, and relations necessary

to generate a reasonable truth model of satellite motion. When generating

truth data in numerical simulation form, the core attention goes to integrating

the kinematic and dynamics equations of motion, Equations (2.4) and (2.6),

respectively. Other than arbitrary initial conditions, the only other input to

these relations is the torque term T. Depending on the desired scenario, T can

have two components as expressed in Equation (2.7). If a controller is active,

then Tt must be computed in real time according one of the laws described

in Section 2.2.1. If the disturbance term Tdit is to be used, then Sections 2.2.2

through 2.2.5 give the appropriate methods. It is important to note that of

the four disturbance torque components, only gravity gradient torque must be

computed in real time; the other three and be precomputed and stored for later

use.

The only remaining task is to form the truth measurements, which will serve

as filter inputs. If rate gyro outputs are available to the filter, then we employ

Equation (2.21). This shows the corruption of the true body-to-inertial rate by

a time-correlated bias term, given in (2.22), and a white angle random walk

term. Appendix B gives a more complete gyro background. The alternative

measurement is a GPS attitude reading. Like the gyro output, the truth quan-

tity is corrupted, according to relation (2.25), with a time-correlated component

and a white component. The former is typically described by Equation (2.26).



Dynamics
tbl = -Q(wbl)qblb Eqn. (2.4)

jbl = I-(T _ wblIWbl) + wblxwli Eqn. (2.6)
T = Tot + Tdist Eqn. (2.7)

Tont from control law Eqn. (2.10), (2.12), or (2.16)
Tdist = Tgg + Tsolar + Tmag + Taero Eqn. (2.8)
Tgg = 3wo.b(Tb(qbl)izxITbbl(bl)iz) Eqn. (2.17)

Tsolar from bandpass filter Magnitude from Eqn. (2.18)
T,ag from bandpass filter Magnitude from Eqn. (2.19)
Taero from lowpass filter Magnitude from Eqn. (2.20)

Measurements

Wgyro = Wbl + Tbl W i + bg + Vg Eqn. (2.21)
bg = Ab, + Gw, Eqn. (2.22)
qGPS = qerr 0 qbl Eqn. (2.25)

bGPS = AGPSbGPS + GGPSWGPS Eqn. (2.26)

Table 2.1: Key Truth Simulation Relations

Table 2.1 summarizes the key truth model relations.



Chapter 3

Filter Designs

We now lay out the specific estimator design differences previewed in Section

1.1. The filter algorithms are obtained by taking the priciples of that section, ex-

tending them to fit the truth dynamics as explained in Chapter 2, and applying

the extended Kalman filter methodology of Section C.2.

Throughout the estimation process, attitude is maintained in quaternion

form. Appendix B is included to give a complete introduction to the dominant

attitude representations, their relative merits, and their interrelations. The

quaternion is specifically chosen in this setting because of its low order compared

to direction cosine matrices and its singularity-free propagation (unlike Euler

angles). The consequence of this choice is a modified covariance scheme that

will apply to both model and nonmodel filters.

Throughout this chapter, references are made to Appendices B and C. Al-

though many authors choose to include this material in the body of their re-

search, they have been seperated here to maintain the flow of the material and

enable a more complete treatment of these topics. Also, many of the equations

presented here are excerpted directy from or inspired by Lefferts, Markley, and

Shuster's landmark paper on quaternions for attitude determination [28]. These

expressions will be impossible to verify without consulting this reference and/or

the Appendices.

Section 3.1 begins by giving the full state, covariance, and update relations



for the model filter. Recall that this estimator is centered around the vehicle

dynamic equations of motion and provides periodic gyro and GPS updating.

Section 3.2 continues by describing the competing nonmodel filter. Since this

approach does not employ the Euler equations or disturbance modeling, it must

rely solely on the system measurements to estimate attitude. Here, gyro outputs

will be taken as a truth-like system input with GPS offering a periodic update.

3.1 Model Filter Design

This section presents the relations describing the model filter algorithm. It

is obtained by merging the truth model of Chapter 2 with the generic filter

algorithm of Section C.2.

3.1.1 State and Covariance Propagation

With the satellite equations of motion presented in the previous chapter, we

review the model filter design first. Its state vector consists of the body relative

to local attitude, the body relative to local angular rate, and the time-correlated

measurement errors for the gyros and GPS:

qbl (t)

) (t) (3.1)
bb(t)

bGPS(t)

The nonlinear filter plant model equations are given by citing Equations (2.4),

(2.6), (2.17), 2.22), and (2.26), and take the generic form i(t) = f(x(t),t) +

g(t)w(t):

1
qbl = -(bl)qbl

bl = I(Tgg - wblXIWbl) + WblXWli + - 1Tot 1 Tdst (3.2)



bg = Agbg + Ggwg

bGPS = AGPsbGPs + GGPSWGPS.

Note that the general torque term T in Equation (3.2), has been expanded

according to T = Tgg + To,,t + Tdist and that we have distributed out the control

To,,t and stochastic disturbance Tdist to obviate the total system control input

Ton and disturbance input [TT  WT wTps]T. The analytical gravity gradient

disturbance term Tgg is not pulled out, as it contributes to the deterministic

system evolution.

The equations of (3.2) comprise the filter's truth model. Propagation be-

tween measurements is accomplished numerically integrating the noise-free dy-

namics:

qbl = Q(Ibl

b = I- 1(Tgg(bl) - blxIbl) + WblXWi + I- 1 Tcot (3.3)

bg = Agbg

bGPS = AGPSbGPS-

During state propagation the KF and EKF algorithms maintain an approxima-

tion of the state estimate error covariance matrix P(t),

P(t) E[ i(t)i(t)] (3.4)

(See Appendix C for a broader discussion of KF and EKF filter methodology).

Because of our choice of attitude state, we will need to modify the error covari-

ance definition. Recall that the attitude partition qbl of the state vector is a unit

norm quaternion. Errors in this quantity do not act as simple arithmetic addi-

tions and subtractions but as quaternion compositions. For instance, Equation

(2.25) shows measurement corruption of truth using quaternion composition,



not the traditional arithmetic addition of the form qGPS = qbl + qerr. Fur-

thermore, the authors of [28] show how the unit norm contraint on quaternion

objects induces singularities in what would otherwise be a positive definite ma-

trix P(t). Therefore, Lefferts, et. al. develop an EKF scheme which maintains

the state vector as in (3.1) for state propagation but modifies its definition for

error covariance calculation and measurement update. This redefinition effec-

tively reduces the dimension of P(t) by 1 while making its terms more physially

intuitive. Since the quaternion attitude is present in both the model and non-

model filters, the following filter covariance and update modifications will be

used in both estimator designs.

We begin by defining a hypothetical reduced order state vector t(t) as fol-

lows:

Sq(t)

L(t) (t) (3.5)
bg(t)

bGPS (t)

The departure from (3.1) is the replacement of qbl(t) with Sq(t). The latter

is a 3x1 vector the resides in the first three elements of the estimation error

quaternion qerr,

Sq
qerr = (3.6)

6 q4

The attitude estimation error qerr, like the usual arithmetic error, relates the

estimated attitude qbl and truth attitude qbl according to,

qbl = qerr 0 qb1. (3.7)

If the estimation error is small, say, on the order of a few degrees or less, then

Equation (B.19) can be used to show that Sq is basically proportional to the



error expressed as a small angle Euler sequence in radians:

Oerr
1

Sq , - 9 ,rr (3.8)

Oerr

If the filter covariance considers arithmetic errors in Sq instead of qbl, then its

interpretation as three small angles is more physically intuitive than quaternion

composition. Instead of calculating second moments for the dependent and

physically hard to interpret elements of qbl, we calculate them for the three

independent degrees of freedom, 4, 0, and 4, which are sufficient to describe

any attitude error. Thus, we define a reduced order covariance P(t) whose only

distinction from that in Equation (3.4) is that 2(t) supplants x(t). As such, the

reduced covariance's formal definition is

P(t) - E[(Z(t) - E[.(t)])(i(t) - E[.(t)])T]. (3.9)

Since the uppermost partition of t(t) is in fact an error, then E[Sq(t)] = 03x1 in

Equation (3.9) since we typically must assume an unbiased EKF. The authors of

[28] demonstate that the traditional and reduced order covariances are related

by the similarity transformation

P(t) = S T ( b(t))P(t)S(Ob(t)) (3.10)

P(t) = S(Abl(t))P(t)ST( b (t))

with the following two matrix definitions:

(bl(t)) 043 04x3 04x3

S(bl(t))3 3x3 033 03x (3.11)
0 3x3 0 3x3 13x3 0 3x3

0 33 0 3 0 3x3 13x3



and

q4 -q3 q2

q3 q4 -1
(q) - (3.12)

-q2 q1 q4

-ql -q2 -q3

Looking at the block structure of S(4b1 (t)), we see that the only action occurs in

the attitude partition (upper left corner). The invariance of the other states to

transformation is consistent with their invariance between definitions (3.1) and

(3.5).

Since covariance manipulation is an intimate part of filtering, the propaga-

tion and update relations must accomodate the reduced order covariance P(t).

Typically, we carry the covariance between measurements according to Equa-

tions (C.21), (C.25), and (C.26). Lefferts, et. al. show, using two independent

arguments, that P(t) evolves in a similar manner. Specifically,

P(t) = F(5(t),t)P(t)+ P(t)FT (X(t)t) + G(t)Q(t)GT (t). (3.13)

The Jacobian matrix PF((t), t) is obtained by differentiating x(t) with respect

to .(t) subject to (3.2). Note however, that the partial derivative evaluation

is made at i(t), instead of '(t), since (t) contains our best knowledge of the

current system state. That is,

F((t) , t) = (8 (t) (3.14)

It is critical to keep in mind that x(t) and (t) are the actual system state

and estimate, respectively. The variable t(t) is merely employed to define a

reduced order covariance. As such, the partials must be taken considering the

"dynamics" of 5(t). Computation of these derivatives is not a simple matter

and details are left to reference [28] or are omitted here.

Lefferts, et. al. computed the partial derivatives analytically, but only for



the case of a kinematic, or nonmodel filter. Puri, Giustino, and this author

extended the analysis to the model filter case to obtain

[Wb]X "13x3 033 033

M1( b(t)) M2(bl(t)) 03O3 03x3
F((t), t) = , (3.15)

0 33 0 3x3 Ag 033

03x3 0 3x3 033 AGPS

where the cross product matrix

0 V3  -v 2

[v]x = -v 3  0 V1 (3.16)

V2 -V 1  0

appears in the upper left block. The M1 and M2 matrices are defined as follows:

M (b) = 62rb( [Tbl( bl)iz]XI - [ITb( bl )iz]) [Tb(bl)iz]x, (3.17)

and

M2( bl)= I-1([I bi]X - [Zbi]XI) - [.l ]X, (3.18)

where the variables comprising M1 are defined as in Equation (2.17).

The blocks in the first row of (3.15) come from the kinematic relationship

between qbl and wbl as detailed in the first line of Equation (3.2). The matrix

M1 accounts for the dependence of rate evolution on attitude through grav-

ity gradient effects. The M2 matrix expresses rate dependence on rate. Two

factors contribute to this term: Euler coupling of rigid bodies (2.2), and body

rate frame transformations (2.5). The remaining Ag and AGPS blocks in (3.15)

are straightforward linearizations of the Gauss-Markov instrument bias error

models.

The matrix G(t) in Equation (3.13) plays the same roll as G(t) in the usual

covariance propagation equation; it indicates how white disturbances enter the



filter model dynamics. Since Tdist, wg, and wGPs all enter (3.2) in a linear

fashion, G(t) has the straightforward form

0 3x3 0 3x3 0 3x3

I-1 03x3 03x3
G(t) = (3.19)

0 3x3 Gg 0 3x3

03x3 0
3x3 GGPS

The all zero top row reflects the lack of white noise directly feeding attitude

integration in (3.2).

Finally, we need a driving disturbance intensity matrix and use the usual

definition as seen in Equation (C.21). For our system, we take the intensity of

the vector [TdTst, , Wps]T to obtain

Qdist 0 3x3 0 3x3

Q(t)= 03x3 Qg 03x3 . (3.20)

03 3 03x3 QGPS

3.1.2 Measurement Update

With state and covariance propagation covered, we turn next to the measure-

ment update relations. Considering the gain and covariance, we note that the

usual EKF algorithm employs the following relations when a measurement zk

becomes available at time tk,

Kk = P H[(Hk PH[ + k

P +  = (I - KkHk)Pk(I - KkHk)T + KkkK (3.21)

= (I-KkHk)Pk

Here, Kk is the filter gain, P is the error covariance estimate just prior to

measurement incorporation, Rk is the discrete white noise measurement covari-

ance matrix, and Hk, defined in Equation (C.28), results from differentiating the



nonlinear measurement equations with respect to the state vector. See Section

C.2 for additional details.

Since our filter operates with a full order state but a reduced order covari-

ance, Equations (3.21) must be modified accordingly. Lefferts, et. al. replace

P with Pk to stay notationally consistent with (3.13). A matrix Hk is obtain-

ing by differentiating the nonlinear measurement equations with respect to ;

and evaluating at i- or by differentiating with respect to x, evaluating at Xk,

and then performing the conversion

Hk = HkS(4q). (3.22)

The white noise covariance matrix Rk remains unaltered. The resulting modified

update equations mirror the standard update,

Kk = P,-'(Hk P Hk + Rk) -  (3.23)

k (I-_ k k)P;(I KkHk)T +KkRkKk *

The old and new gain, Kk and Kk, respectively, are related according to

Kk = S( )Kk. (3.24)

Before revealing the form of the actual state update, consider the sensors avail-

able to the filter. The first is the inertial frame-referenced body rate output of

the gyro. We take the gyro output as our measurement exactly. That is,

Wme,,s = Wgyro. (3.25)

Equation (2.21) in the preceeding section described this measured quantity in

terms of qbl and wbl. As part of the updating process, we need an a priori

estimate of the gyro measurement. Taking expectations on the right hand side



of (2.21) and noting that qbl and wf; are independent quantities, we have

Wmeas = bi + b (3.26)

=Lo +Tbl Wh b9 +

were the filter must include a parameter that estimates Worb as part of computing

w1. By differentiating (2.21) with respect to t, and evaluating at A-, it can be

shown that [36]

g]ro = [-2[']jx 13x3 Ix 03x3 (3.27)

The first block shows the effect of the current attitude in relating the body and

inertial frames. The identity matrices show the presense of the body relative to

local angular rate and the gyro bias.

For the white covariance matrix Rk, we use a discretized value of the con-

tinuous time gyro angle random walk (See Appendix A). This choice of Rk is

standard and is not a consequence of the reduced order covariance scheme.

The other measurement is attitude reported by a GPS receiver. Equation

(2.25) shows the relation between the true GPS measurement and the truth

quantity qbl. Rather than take qGPS as our literal measurement, however, we

premulitply it by the arbitrary matrix ET(q*(bGps) 0 j) to obtain the modified

measurement

qmeas = ET(q*(GPS) O qb)qGPs. (3.28)

Here, the quaternion q*(bGPs) is the small angle error quaternion estimate taken

by applying relation (B.19) to the GPS multipath estimate bGPS*

This technique is based on a combination of relations from [28] and [33].

To show the advantage of employing this pseudo-measurement, consider two

arbitrary quaternions, ql and q2, that are nearly aligned but differ by a small

error quaternion q,,,:

q1 = qerr 0 q2. (3.29)



Lefferts, et. al. show that the following holds:

Sq = T (q 2 )ql (3.30)

where Equation (3.6) still applies.

Now recalling Equation (3.8) and the earlier interpretation of quaternion

and GPS errors as small angle Euler sequences, we see that the multiplication in

(3.28) exposes the measurement difference between the a priori attitude estimate

and the actual GPS measurement. This difference in turn, helps to expose the

measurement error itself, much as the standard Kalman applies its gain to

the measurement innovations, defined as the difference between the actual and

expected sensor outputs. We are simply expressing the measurement innovation

in a quaternion error format.

Based on this discussion, we can form the necessary a priori estimate of the

modified measurement itself:

qmeas E (qomeas)

= T(q*(cps) 0 qb)E(qGPs) (3.31)

= T(q*(bp ) 0 q)[q*(b-ps) 0 q]

0 3x1

This expectation naturally turns out to be zero, since the expected GPS mea-

surement error is zero and the a priori GPS receiver output, E(qGPS)

q*(bGps) (0 q-, is "expected" to be accurate. Note that in (3.31) we have em-

ployed the easily verifiable identity ET(q)q = 03x1. The inclusion of the a priori

multipath error estimate bGps in predicting the receiver output is completely

analogous to including the a priori estimate of gyro bias in predicting the gyro

measurement, as seen in Equation (3.26).

If we differentiate the right hand side of (3.28) with respect to the state



vector considering (2.25) and (3.8), and evaluate at 4-, we obtain

HGPS = T(*(bGPs) 0 4) O 3 3  . (332)

The ET block comes from the arbitrary premultiplication matrix. The half

identity shows the presense of the time correlated GPS error bGps as a small

Euler angle sequence. To obtain the desired , matrix, we employ (3.22) to get

HGPs = HGPSS( I). (3.33)

If we think of the white GPS error as another small angle Euler sequence,

then we use the following discrete measurement noise covariance:

RGPS = ICoV(VGPs). (3.34)

The 1/4 coefficient comes from squaring the coefficient in (3.8). Here, vGPS is

the white component of GPS error.

Now that the measurment sensitivity calculations and gain and covariance

update relations are layed out for both measurement types, we turn finally to

the actual measurement update. The typical EKF update is

k = ~~ + Kk(zk - hk(~)), (3.35)

where zk is the measurement and hk(&k) is its a priori estimate. Since our filter

design uses a reduced order covariance based on the reduced state x(t), we first

update (t) itself, as shown here

k= k + kk(Zk - hk(i)) (3.36)

Note that we still use the full state 4 in predicting zk, however.



An alternative form of Equation (3.36) is

A Kk kz - hk(4^ -)) (3.37)

k= -
Axk Xk -Xk

where the a priori estimate &§ and the a posteriori estimate Ik have been

combined into one A term.

Recall that the only difference between X and x is the attitude error term in

the first partition. The a priori estimate of Sq is simply zero since the filter is

approximately unbiased and we have no better choice then to assume that ~bk

is accurate. Hence,

Sqk 031i - Lqk S qk". (3.38)

The other state partitions behave in the usual manner:

,k- bl,k Wbl,k

Abg,k bk - bg,k (3.39)

AbGPS,k = bGPS,k - bGPS,k.

Once + is obtained, every state save attitude updates according to Equation
^+

(3.39). Since 5qk is an estimate of the small angle estimation error, we augment

with unity to form a correction quaternion qcorr,k, recalling that small angle

quaternions have a fourth element close to 1,

qcorr,k = (3.40)
1

We then renormalize to form a proper, unit norm quaternion

qcorr,k - qorr,,k. (3.41)
Vqcrr,kqcorr,k



The update of the full attitude estimate is then straightforward:

qb,k = qcorr,k 0 qbl,k" (3.42)

and is consistent with Equation (3.7). This attitude update object qcorr,k is

perfectly analogous to the "A" states in Equation (3.39).

In the course of filter operation, we will encounter three possible update

scenarios: gyro measurements alone, GPS measurements alone, or simultaneous

gyro and GPS measurements:

Zk = Wmeas, qmeas, or qmeas (3.43)
SWmeas

For each case there are three corresponding a priori estimates:

hk(iC§) = Wmeas, 03xl, or ^ (3.44)
Wmeas

and three corresponding measurement sensitivity matrices:

Hk= gyro, GPS, Or (3.45)
Hgyro

However, the overall update relations, formed by the union of Equations (3.23),

(3.37), (3.39), and (3.42), are the same for any measurement scenario.

Disturbance Torque States

The preceeding sections laid out the model filter design to estimate attitude,

body rates, gyro biases, and GPS errors. However, the model-based approach

is not limited to these filter states only. At times, we may wish to estimate

the disturbance torque inputs to the plant dynamics. Unlike the nonmodel

approach, the model filter allows a convenient method for doing so.



Consider again the second line of Equation (3.2) which shows the body rate

derivative driven by two external torque terms. The first is T,,t, which repre-

sents the attitude controller's system inputs. This quantity is generally known

since control commands sent to the thruster actuators will also be available for

estimator use. The second input term Tdist accounts for "everything else" that

induces satellite motion and is generally unknown. As discussed in Chapter

2, we consider three stochastic disturbance torque components: solar radiation

pressure, magnetic dipole effects, and atmospheric drag (gravity gradient effects

are analytically modeled in the Tgg term).

These disturbance phenomena all represent a threat to the model-based

filtering approach. They cannot be exactly represented by low order linear

filters and therefore subtract from the dynamic model's ability to provide useful

information. Even worse, if the disturbance torques are significant, then these

unknown system inputs might lead the estimator away from truth and induce

filter divergence, an unacceptable result since the controller typically relies on

the attitude estimator for accurate knowledge of the truth plant. A divergent

filter jeopardizes the stability of the closed-loop control system.

Fortunately, we have a means of considering the unknown disturbance sig-

nals other than the angular rate filter covariance Qdist. That variable is a useful

design tool for limiting the estimator's faith in its prediction of the rate dynam-

ics. However, the assumption here is that any system disturbances are white,

that is, containing all frequencies. Further, no attempt is made to estimate the

exact disturbance values for vehicle propagation purposes.

Therefore, we can augment the filter state vector to include a disturbance

torque vector estimate:

qbl (t

Wb(t)

x(t) - bb(t) (3.46)

bGPS(t)

Td(t),



where the new Td partition enters the rate dynamics as follows,

Wb = I-1(Tgg - wbxIbl) + blXWl + I- 1Tcont + I-Td + I- 1Tdist. (3.47)

We still represent a conceptual white disturbance Tdist but it simply echoes the

continuing existence of the design variable Qdist. However, the new player is

Td. Equation (3.47), illustrates that if Td contained a reasonable estimate of the

system disturbances, then it should enhance the propagation of Wbl.

Typically, disturbance torques are low frequency, low magnitude phenom-

ena. As explained in Chapter 2, the truth simulation employs bandpass and

lowpass filtering to generate approximate disturbance signals. Therefore, it

makes sense to employ a traditional first order Gauss-Markov model for the

torque state:

Td = AdTd + GdWd. (3.48)

The matrices Ad and Gd are design parameters. Using the general relations of

Appendix A, we can tune these matrices to emulate suitable lowpass filters with

desired steady-state characteristics. For first cut purposes, this approximation

should be suitable since disturbance phenemena are typically bandlimited.

Since we are adding a system state which interacts with the rate dynam-

ics, we must modify the filter covaricance expressions appropriately. The state

equation Jacobian is now larger and has a new I-1 term to account for the Td

state feeding the rate and a Ad term to consider the stable torque model:

[wbl]X 'I3x3 0 3x3 0 3x3 0 3x3

Ml(b(t)) M2(qb,(t)) 03x3 03x3 I-1

F(A(t), t)= 03x3 03x3 Ag 03x3 03x3  (3.49)

0 3x3 0 3x3 0 3x3 AGPS 0 3x3

03x3 0 3x3 03x3 0 3x3 Ad

The G(t) and Q(t) terms from Equation (3.13) are now simple extensions of



their earlier versions:

0 3x3 0 3x3 0 3x3 0 3x3

I-1 033 0 3x3 0 33

G(t)= 033 Gg 033 03x3 , (3.50)

0 3x3 0 3x3 GGPS 0 3x3

0 3x3 0 3x3 0 3x3 Gd

and

Qdist 0 3x3 0 33 0
3x3

Q(t) = 033 g 03 O3 (3.51)
033 03x3 QGPs 0 3x3

0 33 0 3a3 0 33 Qd

Here, Qd is the estimator design covariance for the input process wd.

In addition to the covariace relations, the sensitivity partial derivative ma-

trices used for measurement update must now be augmented by a block matrix

to keep the update relations dimensionally homogenous. Since the torque parti-

tion enters the dynamics like a disturbance and does not affect the measurement

process, the sensitivities are buffered by a zero matrix 03x3- Specifically, for gyro

updating,

Hgyro = -2[j]X 13x3 13x3 03 O] , (3.52)

and for GPS updating,

HGPS = 13x3 03x3 033 3x3 033 . (3.53)

These relations conclude the technical aspects of adding a disturbance torque

estimator.

However, it is important to note that in some situations, asking the model-

based filter to estimate too many state simultaneously can lead to poor system

observability and even filter divergence. This "overloading" is particularly a

problem when all instrument errors are estimated but measurements come in



infrequently. Between updates, the filter must attempt to propagate its esti-

mates for all requested states; asking it to infer the behavior of many states

from too few measurements will be rewarded with totally divergent estimates

after a very short period.

In general, for nonlinear estimation via the EKF, the observability of a

system's filter model should be judged by computing the observability matrix

from the Jacobian and sensitivity matrices (F(t) and fHk), and by the outcomes

of Monte Carlo simulations.

Obviously, the addition of a disturbance torque state has the undesireable

effect of increasing the filter order and therefore incurring additional computa-

tional burdens. One should judge whether or not benefits of torque estimation

can be accomplished by a simple readjustment upwards of the filter design vari-

able Qdist in a case-by-case basis.

Finally, in certain settings, the ability to estimate disturbance torques could

potentially be employed for control system failure detection. If the disturbance

environment is sufficiently benign, a properly tuned torque estimator can regis-

ter the actual thrust level. This in turn, is compared to the commanded thrust.

If the difference between the two is significant, then a thruster failure may be

to blame. This general principle was studied in references [2] and [29] in the

context of robust estimation and failure detection and isolation (FDI).

3.1.3 Summary

This section and the preceeding chapter have given the origin, state equations,

covariance definition, and propagation and update relations for the model filter.

The only new concept aside from the truth discussion in Chapter 2 and filter

discussion in Appendix C is the reduced order covariance and update to accomo-

date quaternion attitude representation. Otherwise, the model filter essentially

copies the truth dynamics as closely as possible.



3.2 Nonmodel Filter Design

Since the model filter includes attitude kinematics as part of its total model,

the kinematic filter results from a careful truncation and rearrangement.

3.2.1 State and Covariance Propagation

Since the nonmodel filter excludes any dynamic, or "T = Is", information

about the truth process, we begin by excluding the second equation from (3.2).

That leaves only vehicle attitude and time correlated instrument errors in the

filter state vector,

qb (t)

S(t) - bb(t) (3.54)

bGPS(t)

Since Wbl is no longer a filter state, the gyro outputs cannot be treated as a

typical filter measurement as w,,,, is unformable from the remaining members

of x(t). Instead, we rearrange Equation (2.21), heeding (3.25) to get

Wbl = Wmeas - b - V9  (3.55)

= Wgyro - bg- .

If we substitute this expression for Wbl(t) into the first line of (3.2) and employ

the following identity provided by Lefferts, et. al.

OQ(a + b)q = )(a)q + E(q)b, (3.56)

we obtain the nonmodel filter state model

1 1
bl = Q(Wgyro - bg)qbl - -(Qbl)Vg2 2

b = Ab, + Gw, (3.57)

bGPs = AGPSbGPs + GGPSWGPS,



and propagate the state estimates according to

qbl = 2(Wgyro - bqg)bl

bg = Agbg (3.58)

bGps = AGPSbGPS.

Philosophically, this filter still accurately models the truth process. Only now

the gyro is the only source of rate information. Instead of appearing as measure-

ments to be filtered, the gyro output wayro is taken as a known process input.

The gyro white error vg now enters the filter as a process disturbance. Whereas

the dynamic filter treated To,t and [Tdst, wg, wTps]T as inputs, the kinematic

filter replaces them with wgyro and [v, w, wPS]T. Since the gyro bias bg re-

mains a filter state, the algorithm will subtract out its estimate from wgyro as

the filter propagates between measurements. Unfortunately, the matrix-vector

products in the first line of (3.57) are nonlinear and still necessitate an extended

Kalman filter.

The nonmodel filter's advantage over the dynamic method is autonomy

from the host vehicle. There is no need to know the satellite mass properties,

control torques, or disturbance torque characteristics. The liability however,

is that the kinematic approach relies entirely on the gyro for direct body rate

information. The model no longer provides an independent check on the gyro

and consequently, the gyro bias will become less observable. Of course, just

as with the dynamic design, GPS-provided attitude measurements will still be

available periodically.

Since we still use a quaternion to represent attitude, we again make use

of the reduced order covariance scheme. The following discussion essentially

mirrors that of the previous section and redundant details will be omitted.

For covariance purposes, we define a reduced state J(t) be replacing the



attitude state with the small attitude error vector Sq(t):

Sq(t)

x(t) = bg(t) (3.59)

bGPS(t)

The transformation matrix S appearing in Equation (3.10) is now one block-

dimension less in order,

Eqbl(t)) 04x3 04x3

S(bl(t)) = O3U3 3x3 033 (3.60)

0 33 0 3xa 13x3

Covariance propagation between GPS updates, during which gyro outputs are

injected into the filter model, follows the familiar evolution:

P(t) = F(i(t),t)P(t) + P(t)FT(&(t), t) + (t)Q(t)GT (t). (3.61)

Since our nonlinear filter model has changed, we must recompute the coefficient

matrices in (3.61). The system matrix F has a simpler form that omits any

dynamic influences:

[wbl]X - 3x3 0 3x3

F((t), t) = 03x3 Ag 033 , (3.62)

0
3x3 0 3x3 AGPS

Note the -. I that ties the gyro bias to the attitude state. This block was

previously zero in Equation (3.15) because the gyro errors were accounted for

during update, not filter propagation.

The G matrix is similarly altered to reflect the gyro white noise error term



vg now appearing in the attitude state derivative

2-~ 3x3 03x3 03x3

G(t) = 033 Gg 03 x3  . (3.63)

03x3 0 3x3 GGPS

Recall that previously, the first block row of G was all zero.

The driving disturbance intensity matrix similarly must include the contin-

uous time angle random walk covariance Rg,

Rg 03x3 03x3

Q(t) = 033 Qg 033 (3.64)

03x3 03x3 QGPS

3.2.2 Measurement Update

GPS measurement update for the nonmodel filter is essentially a special case

of the model filter update. The gain and covariance calculations naturally have

the identical form,

Kk = /PIT (HkkP,-kT + Rk) - 1  (3.65)

= (I - kk kHk) k+ kkKk.

However, this time there is only the GPS measurement available. We still

feed the filter the same modified measurement

qmeas = ET(q*(b-ps) 0 4i)qGPS. (3.66)

The measurement sensitivity matrix is a lower dimensioned version of (3.33)

that accounts for the redefinitions of x(t) and z(t),

HGPS = (q*(bGPs) T() Oa 33 I ] , (3.67)



with

FIGPS = HGPsS(4 ),

as before.

The discrete measurement covariance is exacty the same as before,

1
RGPS = -COV(VGps).

4

Again, the "gain times residuals" equation updates ;v instead of z,

AXk

zXAk

= k(zk - hk(X-))

SXk - Xk,

so the actual state updates axe performed just as in the dynamic case:

q4b,k = qcorr,k 0 qbl,k

for the attitude state, and

Abg,k

AbGPS,k

for the instrument error states.

(3.72)A + A~

b g,k - bg,k

GPS,k - bGPS,k

(3.68)

(3.69)

(3.70)

(3.71)



Chapter 4

Simulation Results

The preceeding chapter laid out the algorithmic differences between the non-

model and model-based filter designs. We now test their performance in a series

of attitude determination experiments. Our goal is to determine how much im-

provement the model-based methodology offers and in what situations its use is

most warranted.

Although on-orbit testing would be the best indicator of obtainable perfor-

mance under real operating conditions, a natural first step to evaluating filter

quality is computer simulation. This idealistic testbed produces preliminary re-

sults more rapidly than actual hardware testing. In addition, we incur minimal

expense while enabling ease of parameter variation.

In the following scenarios, we expect to see superior attitude determination

performance with the model-based filter, especially when the GPS update in-

terval is large. Since a lack of external attitude verification allows more time

for the gyro bias to drift unmonitored, the nonmodel filter becomes more likely

to produce wandering attitude solutions as the GPS measurement interval in-

creases. We will demonstrate that the inclusion of vehicle dynamics in estimator

designs allows more accurate tracking of the satellite attitude and body rate,

even when errors occur in representing the inertia matrix.

The chapter begins by defining four sample statistic measures for gauging

filter performance. Since the filter covariance P(t) only represents approximate



error behavior and as simulation plots can sometimes be difficult to interpret,

the sample measures are included to provide additional insight.

The remaining sections compare the rival estimators in four mission scenar-

ios. In the first, the satellite maintains a naturally stable LVLH-hold in a benign

disturbance environment. Here, the model filter establishes confidence in the at-

titude solution. Next, the satellite tumbles after a control system failure. When

the GPS update interval is large, the model filter produces superior tracking

performance, even in the presence of inertia term errors. Next, the controller

executes a series of attitude maneuvers; the metric of filter performance will be

the agreement between the commanded and actual attitude profiles. Finally, we

show that the vehicle dynamics model can prevent unstable closed-loop system

behavior in the complete absense of gyro measurements. The result applies even

in the case of modeling uncertainty.

4.1 Measures of Performance

In the following sections, several simulations are run for the purpose of demon-

strating filter performance capabilities. As part of its algorithm, the extended

Kalman filter (EKF) computes its own performance statistics, namely the es-

timated error covariance matrix P(t). If this matrix were known to be exactly

accurate, then we could rely heavily on it to gauge an estimator's quality. How-

ever, P(t) is an only an approximation of the true error covariance. As part of

the EKF algorithm derivation, first order Taylor series truncations of true state

dynamics were taken and the matrix P(t) defined from the resulting estimation

error expression. Further, if the truth and filter models do not agree, then actual

performance will likely deviate from the filter's perceived performance. There-

fore, it is useful to have additional performance metrics to better grasp what is

actually happening. As is common in EKF studies, we look to simulation sam-

ple statistics for additional insight. An intelligent performance analysis should

consider the satellite mission objectives, the filter covariance matrix P(t), and



the sample measures.

In this chapter, we employ four different sample statistics. The first two are

conventional; the second two are more ad hoc. In all four definitions we consider

statistics of a generic sample error process zk; k = 1, ..., N.

The first statistic is the process sample mean, typically denoted by 5. The

definition is
1N

= E k (4.1)

k=l

As might be expected, - is a measure of the average or typical value of the

error signal zk. Unfortunately, the EKF, unlike the standard KF, is a biased

estimator, even if there is exact truth-filter model agreement. Therefore, we

do not expect = 0, even if we could carry on infinite duration simulations.

However, the closer 5 is to zero, the better the performance, all other measures

equal.

The next metric quantity is the process sample standard deviation a. Ideally,

this is the also the value obtained by taking the square roots of the diagonal

elements of the filter covariance matrix P(t). If the error distribution were

perfectly normal, which is the case only for certain linear systems, then roughly

sixty-three percent of the data should fall within a la bound. To compute the

sample value of a, we rely on the traditional formula

k= l (4.2)
N-1

Note that whether we examine the filter or sample value of a, it is computed

about the error mean.

In order to get another handle on the overall error values without considering

their dispersion, we look at the sample mean error magnitude. This value is

computed as in Equation (4.1) but with sign dropped. In other contexts, this



metric might be termed the scaled "1-norm". We define it here as

1 1 N
I;1 I lZll1 = 1 N 1 1- (4.3)

k=1

It is intended to complement i and o by giving an indication of what the typical

error magnitude actually is. For purposes of control system design, we like to

know how far from truth the average estimated quantity lies.

Finally, we harken back to the idea that for normally distributed statistics,

62.8% of the error data should fall below a la magnitude. Therefore, we also

compute the sample value of that percentile. Mathematically, this quantity is

expressed as

062.8% = {o*: 62.8% of the sequence IzkI values fall below a*}. (4.4)

By examining this quantity, we can get an additional "over-under" feel for how

the error values are distributed.

4.2 LVLH-Aligned Performance

Intuitively, the benefits of including an accurate dynamics model in an attitude

filter should be greatest when such dynamics yield significant information. That

is, one might think that the model-based approach might not yield improved es-

timation performance when the truth dynamics are trivial, as when the satellite

revolves around the Earth with constant zero angular velocity relative to the

LVLH frame, i.e. Wbl(t) = 0, and constant trivial attitude, i.e. qu(t) = [0, 0, 0, 1].

In fact, the information provided by the second member of Equations (3.2)

indeed proves useful since knowledge of the motion history, albeit uninterest-

ing, allows the filter to predict with greater confidence how the satellite body

will be oriented at the next measurement. By comparison, the nonmodel filter

relies only on the kinematic information, gyro outputs and GPS position mea-

surements, to look forward. The model filter exploits the same information but



Inertia
Initial body rate

Initial attitude
Gyro update

Bias parameter
Bias parameter

Angle random walk
GPS update

GPS white error
Disturbance environment

Control
Orbit altitude

I = diag(40, 40, 10) kg * m'

Wbl(0) = 0 3xs
0(0) = 00, 0(0) = 00, 1 (0) = 00
Every second
Ag= -1 * 10-  sec- 1

Gg = 3.03 * 10- 6 rad/sec3/2

ARW = 0.5 deg/vir
First case: none., second case: every 100 sec.
0.3 deg 1-o per axis
Gravity gradient only
None
285 km

Table 4.1: Description for LVLH-Aligned Simulation

enriches it with an accurate dynamics model that helps counteract any erroneus

trends created by less-than-perfect measurement data.

To demonstrate this principle, performance simulations were run with the

parameters stipulated in Table 4.1. This table provides information for both the

truth simulation and estimator designs since no mismatches were introduced.

The inertia values correspond to a small cylindrical satellite and the gyro pa-

rameters are chosen to simulate an instrument with severe error characteristics.

By choosing a gyro instrument with significant errors and not allowing GPS

updates, we can illustrate the problematic long-term divergence of nonmodel

filters.

For this run, the model filter state included only the attitude quaternion,

body rates, and gyro biases. The nonmodel filter state is limited to only the

attitude and gyro biases. GPS multipath effects were not included here and

there was no need to estimate environmental disturbance torques.

The simulation was run for 2,000 seconds, roughly one-third of the 5,400

second orbit period. During this time, the attitude and body rate remained

constant at their initial values and the gyro biases grew according to a Gauss-

Markov process.

Figure 4-1 shows the attitude estimation error for the nonmodel filter. The



x-axis symmetric curves show the time-varying one-sigma bounds generated by

the filter covariance. The remaining bounded signal is the actual error value.

Without periodic corrections from GPS, the gyro biases and angle random

walk give rise to a constantly growing attitude uncertainty. The actual error

value can become quite large, on the order of several degrees, seen especially in

the second and third panels. As time goes on, the computed covariance becomes

less and less valid, grossly overestimating the true error value; the small error

assumption critical to EKF covariance propagation gradually becomes.

Attitude Estimation Error as an Euler Sequence
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Figure 4-1: Attitude Error, Nonmodel Filter, Trivial Motion, No GPS

Figure 4-2 shows the corresponding result for the model-based filter. The

lack of GPS updating still means growing uncertainty in the system states.

However, the additional equations of rigid body motion allow this filter a better

statistical guess of future attitudes. The consequence is a slower uncertainty

growth rate in the third panel and very much enhanced, in fact nondivergent,

performance the first two. Attitude estimation performance is clearly superior

to that seen in Figure 4-1.



Table 4.2 presents the sample statistics from these two estimation runs. As

the scaling is different between Figures 4-1 and 4-2, this data is useful as an

additional judge of error behavior. We see that in every statistical category,

the model filter improves the attitude tracking preformace by several factors.

Whereas the nonmodel filter allowed the attitude solution to diverge, reaching

levels in excess of several degrees, the model filter keeps the error within more

reasonable limits.

Attitude Estimation Error as an Euler Sequence
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Figure 4-2: Attitude Error, Model Filter, Trivial Motion, No GPS

For this run, the common states for the model and nonmodel filter were

attitude and gyro bias; the latter estimator cannot track body rate. Figures 4-3

and 4-4 show the gyro bias estimation performance for the competing filters.

(Note: figure scaling is different). The story is much the same as with attitude

itself; the nonmodel filter uncertainty grows continuously over time at a rate

roughly two to three times that for the model filter. The interconnection is that

by including the physical plant dynamics, the model-based EKF can better

distinquish between the true rate and bias in the gyro measurements and thus



Axis Mean (deg) Std. Dev. (deg) Mean Err. Mag. (deg) 68.2%-tile (deg)
Nonmodel Filter

1 0.30 0.54 0.49 0.6
2 -1.30 0.91 1.3 1.9
3 -2.56 1.63 2.6 3.7

Model Filter
1 0.09 0.22 0.2 0.22
2 0.06 0.14 0.1 0.09
3 -0.71 0.73 0.74 1.1

Table 4.2: Attitude Performance Statistics - No GPS Updating

better predict attitude.

In this performance example, the gyro-induced attitude errors grew steadily,

since no external navigation aids were available to observe gyro bias growth.

Thus, these runs may be considered as indicative of filter performance during

orbit periods when GPS satellite are unobservable or when the receiver is turned

off for cost savings. Since unintentional loss of external GPS or other attitude

measurements may occur due to instrument failure, jamming, or accident, it is

important that we have available navigation filters which minimize the ill effects

of gyro-only operation.

Figures 4-5 and 4-6 illustrate attitude performance of the two filters op-

erating under the exact same conditions, except this time with GPS updating

every 100 sec. The GPS signal contains a white error of 0.3 deg 1-o per axis.

Time-correlated multipath error effects are deferred to later simulation tests.

Table 4.3 reports the corresponding sample statistics for these runs. Note that

the figure axes are scaled differently.

Referring to the figures, there are several worthwhile observations. Although

the model filter takes slightly longer to reach the nonlinear equivalent of steady-

state (since it has more states to sort through), its final attitude covariances are

several factors less than those of the nonmodel filter. Specifically, its final values

are 0.14, 0.15, and 0.25 degress on axes 1, 2, and 3, respectively. The difference

between the third axis and first two can be explained by cylindrical inertial



Gyro Bias Estimation Error

200 400 600 800 1000 1200 1400 1600 1800 2000
Time (sec)

Figure 4-3: Gyro Bias Error, Nonmodel Filter, Trivial Motion, No GPS

x 10
Gyro Bias Estimation Error

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (sec)

Figure 4-4: Gyro Bias Error, Model Filter, Trivial Motion, No GPS

84



Attitude Estimation Error as an Euler Sequence

0.5

0

-0.5
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.5

0

-0.5
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.5

-1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (sec)

Figure 4-5: Attitude Error, Model Filter, Trivial Motion, With GPS

Attitude Estimation Error as an Euler Sequence

S0.5

-0.5

-1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 4-6: Attitude Error, Nonmodel Filter, Trivial Motion, With GPS0.5 -

-0.5 .

-if
0 200 400 600 800 1000 1200 1400 1600 1800 2000

, 0.5

-0.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (sec)

Figure 4-6: Attitude Error, Nonmodel Filter, Trivial Motion, With GPS



Axis Mean (deg) Std. Dev. (deg) Mean Err. Mag. (deg) 68.2%-tile (deg)
Nonmodel Filter

1 0.13 0.29 0.28 0.37
2 -0.02 0.26 0.22 0.30
3 -0.07 0.34 0.28 0.38

Model Filter
1 0.03 0.06 0.05 0.07
2 0.00 0.10 0.08 0.08
3 -0.07 0.11 0.09 0.08

Table 4.3: Attitude Performance Statistics - With GPS Updating

distribution and the fact the gravity gradient torque has the least action along

the yax axis, meaning that it is the most likely to drift away a nominal LVLH-

aligned orientation. The corresponding nonmodel steady-state covariances are

0.44 deg after GPS update and 0.65 just prior to GPS update, equal on all three

axes. Since there are no dynamic considerations in this estimator, it makes sense

for all axes to behave similarly. Futher, without the dynamics model for addi-

tional insight, this estimator quickly loses confidence in its attitude knowledge,

accounting for the "sawtooth" covariance growth between GPS updates. The

model filter has the benefit of near-constant error bounds, allowing less concern

about the transient nature of filter-reported statistics.

Excluding the mean data, Table 4.3 shows consistently, across all categories,

that the model-based approach offers attitude performance 2 or 3 times superior

to that of estimation based exclusively on kinematic relations. Of course, these

simulations perfectly match truth and filter parameters, so the model filter's

enhanced performance was vitually guaranteed.

However, even if this result was expected, we must note that traditionally,

dynamics models are not included in attitude filter designs. They are typically

excluded to reduce filter order and prevent the possible ill effects of mismodel-

ing. However, this simulation example and those that follow indicate the value

of including a sufficiently accurate vehicle dynamics model, especially when at-

tempting to add robustness to GPS outage.



Before proceeding, we compare Figures 4-2 and 4-6. Both show attitude

estimation performance for the nonmodel filter, but under different GPS cir-

cumstances. The obvious point is that periodic GPS updating was sufficient to

prevent divergence. A more subtle glance shows the gap between actual and

perceived performance (filter covariance) in Figure 4-2 is absent in Figure 4-6.

Whereas the filter greatly overestimated error previously, the latter figure re-

veals a much better impression of reality. The earlier gap can be attributed

to the general evils of filter divergence, especially for nonlinear systems. We

recall that the filter "covariance" is no covariance at all, merely an estimate of

it. When the real errors grow large, the linearization assumptions key to the

EKF algorithm (See Appendix C) degrade and little of its information can be

trusted.

Overall, this LVLH-aligned example has demonstrated the benefit of dy-

namic model inclusion. Even with stationary dynamics, the model filter signifi-

cantly slows the rate of filter divergence when GPS is unavailable. In situations

when external updating is possible, the model filter significantly estimation per-

formance by a factor of at least two and a half.

4.3 Tumbling Performance

We now consider the case of a satellite tumbling out of control. Where the

equations of rigid body motion were trivially satisfied in the previous LVLH-

aligned simulations, Euler coupling effects are now relevant and we expect the

model filter's dynamic information to enhance estimation performance. Further,

out of control motion represents a benchmark test case for model-based filters.

Although this mode of operation is an unlikely and highly undesireable state,

it is a condition in which rigid body dynamics play a dominant role in system

evolution. In previous studies of model-based attitude estimation, out of control

test cases have been frequently explored [25], [36].

The simulation specifications are given in Table 4.4. The satellite inertias



Inertia

Initial body rate

Initial attitude
Gyro update

Bias parameter
Bias parameter

Angle random walk
GPS update

Multipath parameter
Multipath parameter

GPS white error
Disturbance environment

Control
Orbit altitude

100 10 -5]
1= 10 200 40 kg m

-5 40 250

Wbl(O) = Worb 1
-1

0(0) = 200, 0(0) = 100, 0(0) = 300
Every second
Ag= -1 * 10-5 sec- 1

Gg = 8.23 * 10- 7 rad/sec3/2

ARW = 0.1 deg/Vh-
First case: 10 sec, second case: 1,000 sec.
Acps = -3.7 * 10- 4 sec- 1 (1st case only)
GGPS = 1.3 * 10- 4 rad/sec1/ 2 (1st case only)
0.3 deg 1-a per axis
Gravity gradient only
None
285 km

Table 4.4: Description for Satellite Tumble Simulation

are now increased and redistributed so that the body axes and principal axes no

longer coincide. The initial attitude is not LVLH-aligned and the initial body

rates are significant compared to orbit rate. These initial conditions are selected

to simulate a spacecraft experiencing a severe tumble after loss of the control

system. The gyro error parameters correspond exactly to the "low" quality gyro

of Table 1.1.

Figures 4-7 and 4-8 illustrate the truth body rate and attitude profiles as

the satellite slowly tumbles, subject only to gravity gradient torquing.

Two simulation test cases are presented. In the first, GPS updates come

in every 100 seconds. This measurement rate is indicative of nominal satellite

operation and the usefulness of dynamic modeling in estimator design will likely

be small. In the second, the attitude measurements come in at 1,000 second

intervals, roughly one-fifth of the 5,400 second orbit period. This large update

period simulates a period of GPS malfunction, deactivation for power savings,

or GPS satellite unobservability. In this setting, we expect the model filter's
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vehicle dynamics information to provide significant system insight and therefore

enhance attitude tracking. In addition, we briefly study the effect of inertia term

uncertainty on model filter design and performance.

In both runs, a GPS white measurement error is included. Since time-

correlated effects are more relevant with higher frequency updating, multipath

errors are included only in the first run. Both filters will attempt to estimate

this error source. The multipath parameters in Table 4.4 correspond to a 1-cr

value of 0.28 degrees per axis and a time constant of half an orbit period [7],

[36].

Tumbling with Frequent GPS Updating

Figure 4-9 shows attitude error for the nonmodel filter in the tumbling scenario

with a 100 second GPS update period. Figure 4-10 shows the corresponding

model filter error behavior and Table 4.5 gives the simulation sample statistics

for both runs. (Note that the vertical scaling may be different in the figures).

The nonmodel estimator is designed very simply; the generic algorithm of

Section 3.2 is chosen to fit the gyro and GPS error parameters of Table 4.4. In

contrast, the model filter requires some degree of tuning. If the body rate process

noise Qdist is set too low, the algorithm will become overconfident in its imperfect

state estimates and begin ignoring measurements. Filter divergence quickly

results since the Euler coupling dynamics are used excessively and relevant plant

information contained in the measurements is overlooked. Therefore, we tune

the model filter by adding fictitious body rate process noise. The variable Qdist

is set numerically to 2.5 * 10- 713 3. This measure suggests to the algorithm that

a moderate disturbance environment is present and that the vehicle dynamics

information should be slightly downweighted.

The attitude error signals in these two figures appear very similar, as are the

sample statistics. The nonmodel filter has excellent observability into the gyro

bias thanks to the frequent external GPS attitude measurements. Clearly, at

this frequency of GPS updating, vehicle modeling does not provide significant
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Axis Mean (deg) Std. Dev. (deg) Mean Err. Mag. (deg) 68.2%-tile(deg)
Nonmodel Filter

1 -0.16 0.26 0.25 0.32
2 0.16 0.22 0.22 0.28
3 -0.13 0.25 0.23 0.30

Model Filter - No Inertia Errors
1 -0.17 0.24 0.24 0.33
2 0.17 0.21 0.21 0.27
3 -0.09 0.23 0.21 0.27

Table 4.5: Attitude Performance - Tumbling With High Frequency GPS Updates

additional insight into the body rate dynamics.

To test the robustness of the model-based approach, we now perturb the

values of all inertia terms in the estimator design by 10% in arbitrary directions

as shown in Table 4.6. These errors are introduced to represent a significant

miscalculation or change in the satellite mass distribution. Since exact analytical

computation of the satellite inertia matrix is impossible, in addition to the

possibility of moving parts, thermal expansion, and extendable array flexibility

all affecting the true mass distribution, we must test the model filter's response

to plant uncertainty.

When uncertainty occurs in any filter design, we must robustify it to main-

tain satisfactory estimation performance. If the filter variable Qdist were kept

at the same value as when the model filter contained the correct inertia values,

the attitude solution would slowly diverge from truth. Therefore, we further re-

duce the filter's confidence in its rate estimates by hiking Qdist up to a numerical

value of 1 * 10- 6 3x3. Increases in Qdist have the gradual effect of invalidating the

filter rate estimates, thus making the model filter behave more and more like its

nonmodel counterpart. Figure 4-11 shows the resulting estimation performance.

Again, the error tracks are very similar to those of Figures 4-9 and 4-10.

Table 4.7, which gives the sample statistics for the robustified model run and

reiterates those of the nonmodel run, indicate when the GPS update rate is

high, there is no dropoff in filter performance, even with 10% modeling error.
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100 10 -15 90 11 -5.5
truth = 10 200 40 kg* m 2  Ifilt = 11 220 36 kg m 2

-5 40 250 -5.5 36 225

Ai,truth = 98.4, 180, 272 Aiilt = 88.5,188,259

0.99 -0.14 0.00 0.99 -0.12 0.02
Vi,truth = -0.12 , -0.87 , 0.49 vi,fit = -0.10 , -0.72 , 0.68

-0.07 0.48 0.87 -0.07 0.68 0.73

Table 4.6:
properties



Axis Mean (deg) Std. Dev. (deg) Mean Err. Mag. (deg) 68.2%-tile(deg)
Nonmodel Filter

1 -0.16 0.26 0.25 0.32
2 0.16 0.22 0.22 0.28
3 -0.13 0.25 0.23 0.30

Model Filter - 10% Inertia Errors
1 -0.15 0.26 0.24 0.32
2 0.17 0.20 0.21 0.29
3 -0.09 0.24 0.22 0.29

Table 4.7: Attitude Performance - Tumbling With High Frequency GPS Updates

As mentioned in the introduction to this section, multipath effects are an

important consideration when the GPS update interval is short. Because of

time correlation, multipath errors can persist over many measurement epochs,

making the white error assumption invalid. Therefore, in the previous three

runs, multipath errors were added to both the truth measurements and estimator

designs, following the model of Equation (2.26) and employing the parameters

of Table 4.4.

Figure 4-12 shows the success of the nonmodel filter in estimating the multi-

path signal. The model and robustified model filters produce very similar error

plots which are not given here. Performance statistics for all three are presented

in Table 4.8. As with the gyro bias, it is important to estimate this quantity

to minimize its corruption of the nominal measurement. Simply hiking up the

filter GPS white error covariance is ineffective in mitigating multipath and other

time-correlated errors.

Recall that the GPS multipath model was tuned with a steady-state variance

of 0.28 degrees per axis. Since all of the sample statistics in Table 4.8 lie well

below this value, we conclude that including this quantity as a filter state is an

effective means of reducing its deleterious effect on attitude performance.
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Tumbling with Infrequent GPS Updating

In Section 4.2 on LVLH-aligned operation, we found that the performance for

both model and nonmodel filters improved when the GPS rate increased. This

result is not surprising since additional measurement information should only

help a properly designed state estimator. We also found that the performance

difference between the competing filter designs narrowed with more frequent

GPS updates. Since the model-based filter employs the vehicle dynamics only

between measurement updates, its advantage is naturally diminished as a higher

GPS sample rate makes tracking the gyro bias for extended periods less impor-

tant.

Therefore, as we increase the GPS update period in the tumbling runs,
we expect both filters to degrade slightly in their quality of attitude tracking.

However, the dynamic model's usefulness should now be evident as a gap opens

up between nonmodel and model performance. Figures 4-13, 4-14, and 4-15 show

the attitude estimation performance of the nonmodel, model, and robustified

model filters, respectively, when the GPS update interval has expanded 1,000

seconds. The underlying truth rate and attitude profiles are still the same as in

Figures 4-7 and 4-8. The model filter is tuned for with Qdit = 1 * 10-s8133 and

Gg,filt = 4 Gg,truth. The slight decrease in the variable Qdist over the previous

subsection is allowable since the rate covariance-contracting effects of frequent

attitude updates are absent. The increase in the design variable Gg,fit was

found to produce improved performance over simply leaving Gg,filt = Gg,truth.

The "robustified" model filter run again features an actual 10% inertia term

error but with Qdist tuned to 1 * (10)-6 13,3 for compensation and Gg,filt left

identical to Gg,truth to prevent undervaluation of the gyro data.

Table 4.9 presents the accompanying sample statistics. Clearly the nominal

inertia model filter produces estimation performance several tenths of a degree

superior to the nonmodel filter on each body axis. The robustified filter with

inertia value errors beat the nonmodel on the second and third axes while the
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Figure 4-13: Nonmodel Filter Attitude Error During Tumbling - Low Frequency
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total performance over all three axes is superior as well. These results demon-

state that even in the event of GPS outage (or reduced data rate), a vehicle

dynamics filter with 10% errors can still provide plant information useful for

attitude tracking.

After the periodic GPS updates, all three filters' attitude error covariances

typically fall around 0.3 degrees per axis. Since each estimators' attitude un-

certainty grow significantly between external updates, the algoritms tend to

discount their a priori attitude estimates in favor of the comparatively small

error GPS data. However, during the ensuing gyro-only period of operation,

the attitude uncertainty in the nonmodel filter generally grows more rapidly.

Figures 4-16 and 4-17 show the core reason for the model-based filter's supe-

rior attitude performance. With knowledge of vehicle inertial dynamics comes

greater observability into the gyro bias, the primary driver of filter divergence

in navigation settings. Note that the nonmodel filter's bias estimate tends to
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Axis Mean (deg) Std. Dev. (deg) Mean Err. Mag. (deg) 68.2%-tile (deg)
Nonmodel Filter

1 0.15 0.90 0.69 0.95
2 -0.01 0.67 0.47 0.52
3 -0.24 0.84 0.69 0.97

Model Filter
1 0.15 0.55 0.39 0.43
2 -0.06 0.37 0.28 0.36
3 -0.19 0.64 0.55 0.72

Model Filter - 10% Inertia Errors
1 0.23 0.94 0.74 0.84
2 0.06 0.58 0.39 0.39
3 -0.20 0.72 0.55 0.76

Table 4.9: Attitude Performance Statistics - Tumbling with Infrequent GPS
Updating
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Figure 4-15: Robustified Model Filter Attitude Error During Tumbling - Low
Frequency GPS

be high compared to its own perceived error. In contrast, the model filter's bias

error typically lies within its slightly tighter 1-o covariance bound.

4.4 Maneuver Performance

The previous two simulation test cases considered naturally LVLH-aligned mo-

tion and out of control tumbling motion. Although these scenarios are certainly

possible during a given satellite mission, they do not take into account the full

range of environmental disturbance torques and the action of an attitude con-

troller. We now compare the model and nonmodel during the execution of a

controlled attitude maneuver sequence. Runs are made with mild and worst-

case disturbance environment torques. Also, we show the effect of gyro biases

on disturbance torque estimation.

The specifics of the test scenario are given in Table 4.10. The rigid body
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Inertia

Initial body rate
Initial attitude

Gyro update
Bias parameter
Bias parameter

Angle random walk
GPS update

Multipath parameter
Mulitpath parameter

GPS white error
Disturbance environment

Control I

Control parameter
Control parameter
Control parameter

Orbit altitude

300 10 -20
1= 10 500 40 kg m2

-20 40 400
Wb(0) = 03x1
0(0) = 00, 0(0) = 00, 0(0) = 00
Every second
Ag = -1 * 10- sec- 1

Gg = 8.23 * 10-7 rad/sec3/ 2

ARW = 0.1 deg/V
Every 1,000 seconds.
AGPS = -3.7 * 10-4 sec- 1

GGPS = 1.3 * 10- 4 rad/sec/ 2

0.3 deg 1-o per axis
Grav.-grad.; First case: stochastic disturbance
at 100% of worst-case magnitude.
Second case: stochastic disturbance at 20% of
worst-case magnitude.
Tsolar,rms,worstcase = 1.8 * 10- 6 N * m.

Tmagnetic,rms,worstcase = 9.0 * 10-6N * m.

Taero,rms,worstcase = 1.9 * 10-6N * m.

Quaternion feedback to maintain attitude of
Figure 4-18.
Wn = 0.1, = 1
D = 2wdnI
K = 2w I
610 km

Table 4.10: System Description for Controller Maneuver Simulation

inertia matrix has been significantly increased to emulate a larger satellite. This

change is made simply to demonstrate the model filter applicability to a range

of vehicles. The initial conditions indicate an LVLH-aligned body with zero

relative rate. Gyro measurements are available every second, with the usual

"low" quality error characteristics.

In these runs, the GPS update interval is set at 1,000 seconds. As shown

in the previous two sections, the performance difference between the model and

nonmodel filters significantly narrowed as the GPS update interval decreased. In

the present case of controlled satellite motion with stochastic disturbances, the
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model and nonmodel filters were found to perform almost identically with GPS

update intervals of less than 100 seconds. Since the model-based filter's benefits

are most felt when periods of gyro-only operation are long, we present here runs

with a 1,000 second update interval to continue highlighting the differences

between the two estimator designs.

GPS white and multipath effects are both present. The latter is less relevant

when the attitude measurements come in infrequently. However, we include this

time-correlated error to fully tax the attitude estimators.

We give results for two different cases. In both, the full array of disturbance

torques are included: deterministic gravity gradient and stochastic solar, mag-

netic, and aerodynamic effects. In the first pair of runs, the stochastic torques

are set to their worst case values at an orbit altitude of 610 km. The the second

pair, only twenty percent of the worst case values are used. Both are presented

since the performance gap between the two filters varies substantially with the

tenacity of the orbital environment. The lower the disturbance rms value, the

greater the benefits of dynamic modeling in filter design. In general, the actual

disturbance magnitude behavior depends significantly on the specific satellite

design.

During the run, the attitude controller acts to achieve the attitude profile

shown in Figure 4-18. Beginning at 500 seconds into the run and continuing

every 1,000 seconds thereafter, the satellite executes an maneuver to a new

LVLH-stationary orientation. Between the maneuvers, the controller acts as a

regulator, maintaining the given orientation and countering the effects of envi-

ronmental disturbances. This control profile allows a more interesting test case

than the preceeding sections and demonstrates the model filter's applicability

to both moving and stationary satellites.

To emulate a closed-loop system, the controller acts on estimates of truth

quantities. Since it is well suited for both large angle maneuvering and regula-

tion, the quaternion and rate feedback controller of Section 2.2.1 is employed.

The compensator gains are listed in Table 4.10. In this context, I refers to the
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Worst Case Disturbance Environment

We begin by examining estimation and closed-loop performance with the truth

environmental disturbance torques set at their worst case rms magnitudes. The

addition of control and environmental disturbance torques should not effect the

nonmodel filter design in any way. Since that filter model consists entirely of in-

strument error parameters, we will obtain best performance by simply matching

the truth and filter parameter values.

The attitude estimation error achieved with the nonmodel design is shown

in Figure 4-19. The filter covariances show the characteristic "sawtooth" behav-

ior associated with growing gyro bias uncertainty remedied by occasional GPS

updating. Note that the filter covariances generally give an accurate measure

the actual performance level.
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Figure 4-19: Nonmodel Filter - Attitude Estimation Error During Maneuver -

Worst Case Torque

In contrast, the model filter design is complicated by the fact that the true

environmental torques are generated from higher-order low and bandpass filters

as described in Sections 2.2.3, 2.2.4, 2.2.5. It is not feasible to bog down the es-

timator design with identically complex models for torque estimation. Not only

would we require the algorithm to track many fictitious and weakly observable

states, but the higher order covariance propagation and matrix inversions would

excessively load any available computing resources. Instead, we resort to the

first order Gauss-Markov (FOGM) state model described in Section 3.1.2 for

disturbance torque estimation. In this scheme, we add in an additional FOGM

bandlimited state on each body axis. The design is tuned with a torque cut-

off frequency ten percent above the orbital frequency and with a steady-state

magnitude fifty percent higher than the true disturbance rms value. Addition-

ally, the rate noise covariance Qdit is set to one-tenth the worst case value for

additional conservatism. Observability checks indicate that even with gyro bi-
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ases and multipath effects present, the disturbance torques are observable when

GPS updates are made. Alternatively, one may refrain from adding disturbance

torque filter states and simply adjust upward the filter body rate design covari-

ance Qdist. Both of these filter design techniques were implemented; the ensuing

performance difference appeared negligible.

Figure 4-20 shows attitude estimation performance achieved while employ-

ing the augmented torque state scheme to mitigate disturbance effects. Truth

control torques are directly fed to the filter since actuator signals are assumed

available for estimation purposes. Like the nonmodel filter covariances in Figure

4-19, the error uncertainty grows significantly between GPS updates since the

model filter cannot perfectly estimate the severe environmental disturbances.

The filter must inject the remaining torque uncertainty into the rate states to

account for any unanticipated vehicle movement. The enlarged rate covariances

feed the angle state, producing the sawtooth pattern seen in the figure.

Although difficult to eyeball off of Figures 4-19 and 4-20, which are scaled

differently, the model filter covariances grow more slowly between GPS updates.

Just prior to the attitude measurement, the model filter attitude uncertainties

are around 0.8 deg. while those for the kinematic nonmodel filter fall around

1.4 deg.

Table 4.11 gives quantitative insight into the attitude error behavior by

listing the simulation sample statistics. The model provides the most significant

gains on the first and second error axes. Not that although third axis numbers

are actually higher than the those of the nonmodel filter, the total combined

error across all three axes, whether computed with a 1- or 2-norm is generally

less with the model filter.

Another way to judge the attitude filters' relative performance is to compare

the operation of the overall closed-loop system. Since the objective of the at-

titude controller is to execute a predetermined set of rotational maneuvers and

holds, one should examine the degree to which the satellite follows the desired

attitude profile of Figure 4-18. If the controller is not given sufficiently accurate
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Axis Mean (deg) Std. Dev. (deg) Mean Err. Mag. (deg) 68.2%-tile (deg)
Nonmodel Filter

1 -0.03 0.96 0.72 0.96
2 -0.09 0.49 0.41 0.62
3 0.11 0.61 0.47 0.55

Model Filter
1 -0.07 0.55 0.46 0.59
2 -0.16 0.37 0.31 0.37
3 0.09 0.68 0.52 0.63

Table 4.11: Attitude Estimation Error During Maneuver - Worst Case Torque
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information, then it certainly cannot achieve the desired pointing objectives.

Figure 4-21 plots the total angular error between the commanded and actual

attitude trajectories when the closed-loop attitude control system included both

the nonmodel and model-based filters. The heavier 'x' line tracks the nonmodel

performance; the thinner solid line shows the model filter loop. The spikes mid-

way between the GPS updates reflect the suddenly changing control objectives

in Figure 4-18.

The nonmodel loop consistently drifts away from the commanded attitude

during the regulation intervals. Since the quaternion feedback controller of

Section 2.2.1 requires both an attitude and body rate input, it must rely on the

unfiltered gyro output for rate knowledge. Recall that the nonmodel approach

contains only attitude as a filter state, not body rate. Thus, as the gyro bias

adds fictitious rate signals to the gyro output, the nonmodel loop will steadily

rotate away from the desired orientation.

On the other hand, the model filter estimates both attitude and rate and

therefore provides the feedback controller a more accurate depiction of true sys-

tem behavior. As seen in Figure 4-21, the model filter loop, after undergoing

an initial transient period during which the state partitions of body rate, gyro

bias, and disturbance torque are sorted, behaves no worse than the nonmodel

filter loop. While the latter continues to drift away from the desired behavior,

the model filter occasionally provides pointing performance several degrees su-

perior, despite that fact that the estimator was designed with simplified torque

models.

Mild Disturbance Environment

The preceeding set of figures illustrated model and nonmodel performance when

the stochastic disturbances occured at their worst possible magnitudes for a

given satellite mass distribution and orbit altitude. Through careful vehicle

design and orbit selection, the disturbance torques can be significantly reduced

[27]. We consider now the same control scenario, but with disturbance torque
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Figure 4-21: Nonmodel & Model Filters - Attitude Control Error During Ma-
neuver - Worst Case Torque

magnitudes reduced to only twenty percent of their worst case rms values.

Table 4.12 shows the attitude estimation error sample statistics for both

estimator designs. Referring back to Table 4.11, which gave the analogous

results for the worst case environment, we see the nonmodel numbers have not

changed. Since the instrument array is the same and the true attitude profile is

similar, there is no reason to suspect a significant difference. Examining the first

and second axes we see that the gap between the two filters has grown slightly;

the model-based method provides improved performance when the exogenous

inputs are more benign. As the disturbance environment weakens, the vehicle

model should portray more accurately the true system dynamics. The third

axis shows a notable degradation in performance and is actually worse than the

nonmodel error.

However, Figure 4-22 shows that the performance slip on the third axis,

which is likely due to the unavoidable mismatch between real and design distur-
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Axis Mean (deg) Std. Dev. (deg) Mean Err. Mag. (deg) 68.2%-tile (deg)
Nonmodel Filter

1 -0.03 0.96 0.72 0.96
2 -0.09 0.49 0.41 0.62
3 0.11 0.61 0.47 0.55

Model Filter
1 -0.06 0.39 0.33 0.42
2 -0.22 0.26 0.25 0.26
3 0.08 0.77 0.61 0.73

Table 4.12: Attitude Estimation Error During Maneuver - Mild Torque

bance models, is compensated with significantly improved closed-loop system

behavior. Where the nonmodel loop continues to diverge from the commanded

attitude, the model-based loop maintains consistently improved pointing behav-

ior, after the initial transient period is passed. The model loop error remains

constant around 1 degree while the competing design experiences consistently

growing error. Compared to the runs featuring worst case environment behav-

ior, we see that the model filter approach has benefited significantly from the

more benign plant torquing.

Disturbance Torque Estimation

In the previous two sections on controlled performance, the model filter mit-

igated the ill effects of the stochastic environment torques by attempting to

estimate them. Since the torque itself does not feed directly into either the

attitude or rate measurements, its value must be inferred indirectly from the

behavior of other plant states. Section 3.1.2 gave a detailed discussion on how

to incorporate disturbance torque estimates into the model filter methodology.

Obviously, the quality of torque estimation depends significantly on the

presence of measurement errors. A large gyro bias would naturally tend to

obsure the observability of these exogenous system inputs. As the gyro bias level

diminishes, the quality of torque estimation should increase since its effect on the
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Figure 4-22: Nonmodel & Model Filters - Attitude Control Error During Ma-
neuver - Mild Torque

satellite body rate becomes more apparent. Here, we briefly give quantitative

data to support the notion that gyro biases tend to degrade our ability to track

external torques.

Figure 4-23 depicts a truth model stochastic environment disturbance torque

tuned to the worst case values of Table 4.10. The system measurements, which

consisted of gyro data every 1 second and GPS updates every 100 seconds, were

fed to a model-based filter. The controller was deactivated and the satellite was

allowed to slowly tumble.

Figure 4-24 shows the disturbance torque state estimates when the usual

strong bias typical of a low quality gyro was added to the rate measurments.

Because of the 100 second GPS updating, the model filter had observability into

all system states, included the body rates, gyro biases, and disturbance torques.

However, compared to the true torque signals, the estimates seem somewhat

erratic. The torque estimation error sample statistics are given in Table 4.13.
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Figure 4-25 displays the corresponding torque estimates in the case of zero

gyro bias. The estimated signals now follow the true torque much more closely,

achieving the significantly improved level of performance seen in Table 4.13.

Consistent with the intuition that cleaner rate measurements should allow

greater insight into the system inputs, the additional effort to implement the

algorithm of Section 3.1.2 is rewarded most when the gyro bias is small.

Estimated Disturbance Torques
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Figure 4-25: Disturbance Torque Estimates With Bias-Free Gyros, Model Filter

However, in the previous two sections on model vs. nonmodel performance

in the controlled maneuver case, we saw that even with the severe bias in place

and including the torques as a filter state, the model-based methodology still

provided superior steady-state performance. This example validates the tech-

niques of Section 3.1.2 and indicates under what conditions the disturbance

torques can be best estimated. Clearly, if one is attempting to use disturbance

torque estimation for actuator and vehicle health monitoring, then any decision

logic that uses torque levels to isolate system failures should consider the effects

to instrument biases on the quality of state tracking.
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Table 4.13: Disturbance Torque Estimation Error - All Units 10-7 N*m

4.5 Gyro-Free Operation

So far, the thrust of the filter simulations has been on examining the merits of

including vehicle dynamics models when gyro quality is low. The guiding princi-

ple is to enhance the state propagation between measurements by providing the

estimator with better insight into how the system naturally behaves. If the gyro

quality were to degrade further, a sufficiently accurate dynamics model would

become even more necessary to maintain acceptable attitude performance.

This section examines the role of vehicle modeling when gyro information is

totally unavailable. Gyro-free operation may occur under several circumstances.

The INS may be deactivated for power savings, the satellite may not even carry

inertial equipment, or the INS might fail on-orbit or degrade to the point where

rate measurements are no longer useful.

Previous research into gyro-free attitude filter design in the absense of rate

gyros has generally focused on dynamic model inclusion. Just as in the low

quality INS case, the vehicle model offers useful plant information not obtain-

able with mere kinematics-based filtering. Motivated by the possiblity of gyro

omission in system design or an undesireable on-orbit INS failure, Crassidis and

Markley devised a predictive model-based filtering scheme to propagate rate

and quaternion states between attitude measurements [14]. This method is

based on a nonlinear predictive method developed for control design in the pre-

113

Axis Mean Std. Dev. Mean Err. Mag. 68.2%-tile
Nonmodel Filter

1 1.86 71.6 59.4 92.6
2 -12.4 79.0 63.8 77.5
3 13.1 71.8 57.0 78.8

Model Filter
1 2.47 31.6 26.0 32.9
2 -5.20 51.7 43.2 50.3
3 9.96 41.0 33.7 44.1



sense of model uncertainty and/or complex dynamics. However, filter designs

are possible that do not consider satellite rate dynamics. Responding to a real

INS degradation on the Midcourse Space Experiment, Sharer, et. al. modified

their attitude determination filter to propagate attitude based only on the most

recent INS rate estimate [38].

Here, we examine the relative performance of the nonmodel and model filters

when GPS provides the only system measurement. In addition, the negative

consequences of taking the GPS attitude output as truth are also demonstrated.

We will find that even when inertia terms errors exist, the model filter provides

superior attitude tracking and maintains closed-loop stability while competing

attitude schemes induce undesireable controller behavior.

Truth System and Filter Redesign

The simulation description is given in Table 4.14. Note that although the satel-

lite begins the simulation in an LVLH-aligned orientation with zero relative body

rate, the stochastic disturbances (solar radiation, magnetic dipole, and atmo-

spheric drag) will push the system out of this initial alignment. To maintain an

arbitrary nadir-direction pointing mission requirement, a bang-bang controller

will exert a 0.5 milli-Newton meter-torque on any axis that exceeds 5 degree

attitude perturbation from nominal LVLH. In order to maintain control loop

stability, the attitude filter must provide sufficiently accurate state estimates. If

the attitude estimation error becomes excessively large, the thrusters may fire

unnecessarily a push the satellite away from its desired orientation.

The GPS multipath parameters in the table correspond to a 0.28 deg steady-

state error with a time constant of around half an orbit period.

When operating in a gyro-free mode, the nonmodel filter must maintain a

constant qbl estimate between GPS updates. As seen in Equation (3.58), propa-

gation of the quaternion state requires a gyro output. If the gyro is inoperative

or malfunctioning, then we must assume qbl = 04,, as no other data source

is available. Of course, the satellite still continues to move, even while qbl is

114



Inertia

Initial body rate
Initial attitude

Gyro update
GPS update

Multipath parameter
Mulitpath parameter

GPS white error
Disturbance environment

Control

Orbit altitude

40 1 -4
1 20 3 kg m 2

-4 3 30
Wbl(0) = 0 3x1

0(0) = 00, 0(0) = 0o, 0(0) = 00

None
First case: 10 sec; second case: 100 sec.
AGPS = -3.7 * 10- 4 sec- 1

GGPs = 1.3 * 10- 4 rad/secl/2

0.3 deg 1-or per axis
Grav.-grad. + envirn. dist. at 10% of
worst-case mag.
Totar,rms,worstcase = 1.8 * 10-6N * m.

Tmagnetic,rms,worstcase = 8.3 * 10 - 6 N * m.

Taero,rms,worstcase = 2.8 * 10-'N * m.
Bang-bang to maintain ±5 deg nadir
pointing per axis.
800 km

Table 4.14: System Description for Gyro-Free Simulation

held constant. To account for the attitude uncertainty accumulated during this

unobservable vehicle motion, the now-fictitious angle random walk term, Rg in

Equation (3.64), is increased in a manner consistent with the expected motion

of the system. During simulations, several values were used, all producing very

similar performance results. For the run in the next section, this parameter was

set to (50 deg/vf)2 * 13x3 indicating that satellite might move as much as 50

degrees on each axis over a one hour period. The method of estimating GPS

multipath errors is unchanged from the nominal nonmodel estimator design.

The model filter design is quite straightforward. The relations of Section

3.1 still apply exactly; we simply will not perform any gyro updating. However,

since only attitude measurements are available, we cannot estimate disturbance

torque. Because of system observability constraints, we are limited to estimating

the attitude, body rates, and multipath errors. Therefore, the filter rate white

noise design term Qdist is set to ten times the actual disturbance torque variance

to account for the unknown time-correlated environmental influences on satellite
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motion. In addition, we tune the GPS multipath steady-state variance to twice

its truth value to balance the high Qdist setting.

As an alternative to filtering entirely, one may take the GPS receiver output

as truth. This signal is merely the true attitude corrupted by time-correlated

multipath and white errors as described in Section 2.3. Between measurements,

we must hold the most recent output as our attitude estimate until the next

signal becomes available. Obviously, this method of state "estimation" works

well only when the GPS update rate is high and the corrupting errors are small.

Frequent GPS

When a GPS array-equipped satellite is near its nominal orientation and a

sufficient number of GPS emitter satellites are visible, attitude measurements

should be available fairly often. Here, we consider gyro-free operation with

GPS data available every 10 seconds. The attitude error for the nonmodel filter

during a 4,000 second run is shown in Figure 4-26. Every 10 seconds, the filter

combines its a priori esimate of qbl with the GPS output. The new estimate

is held constant for 10 seconds until another measurement is available. This

gyro-free operation produces a very jagged looking attitude error plot since the

the estimator is now at the mercy of a single noisy sensor.

As the real environmental disturbances push the satellite about, the control

system compares the estimated attitude with the ±5 degree per axis deadband

limits. As the thrusters fire, the vehicle accelerates in the opposite direction

until the limit is again exceeded. As seen by comparing Figure 4-26 with Fig-

ure 4-27, which shows the corresponding true vehicle attitude and the 5 degree

control limits for the same run, the attitude error accumulates as the true body

rates become greater and greater. Eventually, holding a single attitude esti-

mate over a 10 second interval is insufficient to grasp the true system behavior.

The error grows substantially and the controller acts on less and less accurate

data, eventually leading the true satellite attitude to diverge from the desired

orientation.
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Attitude Estimation Error as an Euler Sequence
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Figure 4-26: Nonmodel Filter - Attitude Error Without Gyros
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Figure 4-27: Nonmodel Filter - True Attitude Without Gyros
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In contrast, the model filter's vehicle rate dynamics considerations preclude

attitude solution divergence, as depicted in Figure 4-28. (Note that the axis

scaling is different from Figure 4-26). After an initial transient period, the

estimation error begins to reconverge to values sufficiently small to maintain

closed-loop system stability, indicated by the proper enforcement of the 5 degree

deadband in Figure 4-29.

Attiude Estimation Error as an Euler Sequence
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Figure 4-28: Model Filter - Attitude Error Without Gyros

Figure 4-30 strengthens the model-based result by showing that even in the

presence of inertia matrix modeling error, the filter and can still maintain an

attitude fix sufficient to maintain closed-loop stability for an extended period.

Here, the true and filter design inertia matrices were perturbed by an arbitrary

5 percent in every element as shown in Table 4.15. The design process noise

variable Qdist was increased by a factor of three to compensate. As the deadband

control objective is still satisfied in the figure, we see that a mildly perturbed

system model can still provide adequate rate information to propagate qbl effec-

tively.
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True Attitude as an Euler Sequence
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Figure 4-29: Model Filter - True Attitude Without Gyros

Table 4.15: Truth and Erroneus Filter Satellite Inertia Matrices and Their
Eigenproperties - Gyro-Free Scenario
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40 1 -4 38 1.05 -3.8
truth = 1 20 3 kg * m 2  it = 1.05 21.0 2.85 kg * m 2

-4 3 30 -3.8 2.85 31.5

Ai,truth = 19.0, 29.6, 41.4 Ai,filt = 20.1, 30, 6, 39.8

-0.10 0.32 -0.94 -0.11 0.41 -0.91
Vi,truth = 0.95 , 0.31 , 0.00 Vifilt = 0.95 , 0.30 1, 0.01

-0.29 0.90 0.33 -0.28 0.86 0.42
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True Attitude as an Euler Sequence
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Figure 4-30: Robustified Model Filter - Attitude Error Without Gyros

Seeking an easy alternative to attitude filtering in general, one might ask

the question, "How would closed-loop performance compare if we were to take

the GPS output as truth, and completely avoid the extended Kalman filter

algorithm?". Figure 4-31 indicates that the closed-loop system would behave

similarly to when the nonmodel filter was implemented. Very quickly, the time-

correlated multipath errors and disturbance torquing induce considerable error

in the attitude solution, accelerating the system into unstable closed-loop be-

havior. The estimation error grows rapidly as the 10 second data hold becomes

inadequate to discretize the true satellite motion.

Table 4.16 presents the simulation sample error statistics for the four pre-

ceeding runs. Note that the numbers can be misleading. The initial transient

errors in the model filter performance elevate the second and third axis numbers

above their nonmodel counterparts. However, an examination of the closed-loop

attitude behavior with regard to the deadband limits indicates that the model

and robustified model filters indeed provide superior performance.
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Attitude Estimation Error as an Euler Sequence
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Figure 4-31: GPS Receiver Solution - Attitude Error Without Gyros

Axis Mean (deg) Std. Dev. (deg) Mean Err. Mag. (deg) 68.2%-tile (deg)
Nonmodel Filter

1 -0.23 0.40 0.36 0.44
2 -0.02 0.45 0.35 0.43
3 -0.07 0.37 0.30 0.36

Model Filter
1 0.17 0.15 0.18 0.24
2 -0.16 0.53 0.46 0.55
3 -0.43 0.24 0.44 0.58

Robustified Model Filter With 5% Inertia Errors
1 -0.17 0.30 0.26 0.35
2 -0.30 0.22 0.32 0.46
3 0.08 0.24 0.20 0.26

GPS Receiver Output
1 0.06 0.39 0.32 0.39
2 0.12 0.62 0.48 0.57
3 0.07 0.44 0.34 0.41

Table 4.16: Attitude Error Performance - No Gyros and Frequent GPS

121



Sparse GPS

The previous discussion indicated that the model filter methodology was suf-

ficient to keep attitude estimation error small enough for stable closed-loop

performance when attitude updates were frequently available. But what if the

GPS interval was increased from 10 seconds to 100 seconds? Clearly, we must

rely more on the vehicle dynamic information during the more lengthy inter-

measurement propagation periods.

Figures 4-32 and 4-33, which plot the attitude estimation error and the

closed-loop system attitude, show that the model filter methodology, when given

an exact representation of the satellite inertia terms, still provides adequate

estimation quality for stable closed-loop control opertation. The true system is

still driven by stochastic, time-correlated environmental disturbances modeled

in the filter only as a white noise input on the rate states. As in the 10 second

update simulation, the filter model noise intensity is equal to 10 times the actual

combined disturbance root mean square value.

In the case of a 10 second update period, the attitude estimates obtained

through both nonmodel filtering and taking the GPS measurement as truth were

shown to quickly degrade as the system continued to move. The inadequacy of

this Ibl = 0 4.1 propagation is even more apparent when the GPS sample interval

grows to 100 seconds. Figure 4-34 shows that the unfiltered attitude solution

taken directly from the GPS receiver quickly diverges from truth. The nonmodel

filter was found to diverge similarly; recall that it could not maintain closed-loop

stability even at a higher GPS output rate. Clearly, this level of performance is

inadequate for control purposes and further justifies vehicle model inclusion in

the absence of rate gyros.

Table 4.17 summarizes the filter runs depicted in Figures 4-32 through 4-34.

For the model filter, the error standard deviation remains small, on the order

of 1 degree of less. For the GPS point-by-point solution, the statistics indicate

rapid estimate divergence.
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Attitude Estimation Error as an Euler Sequence
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Figure 4-32: Model Filter - Attitude Error Without Gyros
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Figure 4-33: Model Filter - True Attitude Without Gyros
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Attitude Estimation Error as an Euler Sequence
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Figure 4-34: GPS Receiver Solution - Attitude Error Without Gyros

Axis Mean (deg) Std. Dev. (deg) Mean Err. Mag. (deg) 68.2%-tile (deg)
Model Filter

1 0.13 0.29 0.24 0.30
2 -0.19 0.60 0.51 0.58
3 -0.52 0.32 0.55 0.70

GPS Receiver Output
1 -2.53 12.41 6.4 5.1
2 3.08 14.82 10 12.0
3 -1.96 9.55 5.5 5.6

Table 4.17: Attitude Error Performance - No Gyros and Infrequent GPS
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4.6 Summary

This chapter has given specific test cases supporting the hypothesis that model-

based filtering can provide superior attitude estimation performance when com-

pared to traditional kinematic, or nonmodel, filter designs. We have generally

found that the specific performance improvement depends on several factors

which include, but are not limited to, the specific satellite operation mode, the

frequency of external GPS updating, and the severity of environmental distur-

bances. An additional consideration is modeling error in the form of moment of

inertia perturbations.

The chapter began with the definition of four error sample measures. These

metrics are intended to provide additional insight beyond the attitude error vs.

time plots and the behavior of the closed-loop system. It went on to compare

performance for marginally stable LVLH-aligned motion, out of control tum-

bling, controlled attitude maneuvers, and bang-bang nadir-pointing regulation.

These examples progressed in complexity, gradually adding in GPS multipath

error considerations, additional disturbances, and two differing control imple-

mentations.
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Chapter 5

Conclusions

This thesis has examined the role of vehicle dynamics modeling for enhanced

satellite attitude determination. In contrast to the traditional philosophy of

including only kinematic relations in filter design, the estimator has been ex-

panded to include both kinematic and dynamic information, thus aiding the rate

gyro in propagating attitude estimates between external measurements. Since

the first order differential equations governing quaternion and body rate prop-

agation are both nonlinear, this thesis employed a modified extended Kalman

filter (EKF) algorithm for state filtering.

The advent of small, low cost inertial sensors, particularly strapdown gy-

roscopes which typically contain large output error components motivated this

investigation. Since it is reasonable to expect periods of satellite operation when

external global positioning system (GPS) or other attitude updates are unavail-

able, we must introduce additional plant dynamics information, in the form of

Euler coupling relations, to slow the divergence of filter attitude solutions. GPS

measurements could become unaccessible for a number of reasons. Out of con-

trol tumbling may require periods of wavelength integer ambiguity resolution.

Portions of the satellite orbit might actually lie above the reach of GPS satel-

lite communication. Further, the GPS attitude receiver may be deactivated for

power savings.

Chapter 1 began the thesis by discussing the differences between kinematic-
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("nonmodel") and dynamics-based ("model-based") filtering. Discussions of an

inertial navigation system (INS) - GPS instrument suite and methods of satellite

control were presented. The next chapter gave a detailed discussion of a satellite

truth model, comprised of rigid body dynamics, moving reference frame defi-

nitions, environmental disturbance effects, and measurement models. Chapter

3 continued by fully expounding both the nonmodel and model-based attitude

determination filters. Finally, Chapter 4 examined the performance of both esti-

mators in four simulation test cases. These simulation scenarios are intended to

capture a reasonable range of on-orbit operating conditions while highlighting

key differences between the two filter methodologies. In addition, two of the

simulations indicate that even in the presense of inertia term uncertainty, the

model filter can still provide enhanced estimation performance.

5.1 Conclusions

The fundamental conclusion of this thesis, obtained by comparing the simula-

tion results to the initial objectives, is that vehicle dynamic modeling can sig-

nificantly enhance satellite attitude determination. The strength of the model-

based approach lies in its more realistic method of propagating system states.

Since the EKF algorithm entails considerable coupling between state estimates,

covariance propagation, and measurement incorporation, the specific improve-

ment offered depends critically on the prevailing GPS measurement intervals,

disturbance environment intensity, and vehicle mass distribution. Naturally, the

results presented here apply to the case of low quality gyro error characteris-

tics. If the strapdown inertial sensors are of sufficiently high quality, then the

additional benefits of model inclusion are neglible.

The first, second, and fourth simulations, which featured local vertical-local

horizontal (LVLH) aligned motion, out of control tumbling, and gyro-free op-

eration, respectively, indicate that performance gains obtained through vehicle

modeling increase with GPS update interval. (Conceptually, the GPS sensor
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could be replaced with any external attitude measurement). When the attitude

measurement period is large, on the order of 1,000 seconds or more, the model

filter outperforms the nonmodel filter on the order of several tenths of degrees

per axis. Thus, the model enhances the vehicle's autonomy from external aid-

ing. However, in the complete absense of GPS signals, even the model filter

attitude solution will slowly diverge, although typically at a rate less than that

with nonmodel implementation. As the EKF covariance propagation is state

dependent, the specific divergence rate improvement depends on the current

mode of satellite motion (stable, tumbling, etc.).

The marginal gains in autonomy from external aiding can play a key role

in maintaining closed-loop control performance. In the simulations on attitude

maneuvering and bang-bang regulation, we saw that when GPS data is sparse,

model-based filtering improves pointing performance on the order of several

degrees when gyros are present and actually prevents closed-loop instability

gyro data becomes unavailable. The maneuvering test case indicated that rate

feedback for control usage is unadvisable when gyro quality is low, unless vehicle

model information is included. This particular simulation also showed that

disturbance torque estimation is difficult when gyro bias drift is large. In these

situations, it may be desireable to inflate the filter design covariances, rather

than add extra torque states and thereby increase the algorithm's computational

load.

The tumbling and gyro-free runs also indicate that even when the attitude

update interval is large, the model filter can tolerate moderate plant uncertainty

in the form of inertia term errors and still provide performance superior to

competing nonmodel designs. In these situations, the tracking performance is

on the order a few tenths of a degree across all three body axes. When GPS

information is frequently available, the error statistics are comparable for the

two designs.

Finally, we must note that while the kinematic, or nonmodel, approach is

filter design is essentially straightforward once the instrument error models are
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sufficiently understood, the model-based design can require considerable filter

"tuning". The set of design covariance variables the provides optimum attitude

tracking may be somewhat skewed from the actual truth conditions. As such, to

maintain estimation error stability and superior tracking, a model-based filter

may require differing sets of design parameters, depending on the current mode

of vehicle operation.

5.2 Directions for Continued Investigation and

Implementation

This thesis has focused on the design and performance differences between the

kinematic and dynamic approaches to attitude filtering. We have performed

several simulation examples that demonstrate the potential benefits of model-

based state estimation. However to take this methodology closer to on-orbit

implementation and to expand the formal research knowledge in this field, there

are several further steps which must be taken. Specifics include the following.

* This investigation isolated the satellite translational and rotational dy-

namics, focusing only on the latter. This separation was motivated our

interest in low cost micromechancial gyros which tend to introduce sig-

nificant error signals into rate measurements. Since a satellite mission

seeking to reduce weight and cost in its sensor suite would likely carry

micromechanical accelerometers in addition to gyros, a complete naviga-

tion filtering study should be performed. Here, the truth and and filter

state vectors would expand to include quantities such as position, velocity,

altitude, and the various orbit elements. An assessment of the navigation

quality possible through micromechanical sensors would be one of the pri-

mary research objectives.

* The simulations in the previous chapter show that the performance im-

provement possible through model-based filtering depends on the mission
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scenario (tumbling, maneuvering, etc.), the availability of data from other

sensors (like GPS), and on the satellite inertial distribution. The filter

design variables that allowed the gains in attitude estimation quality were

generally different case to case. Therefore, if one is to get the most re-

alisitic feel for the benefits of model-based filtering in a specific setting,

simulations emulating the expected situation should be run repeatedly and

analyzed.

* The dominant motivation for bothering to include vehicle dynamics mod-

els in the attitude filter was the fear of large gyro error components in-

ducing estimator divergence. As such, we employed "typical" low quality

gyro bias and white noise parameters from [9]. These numerical values

were not only useful as they gave a starting point for investigation with

historically meaningful data, but they also made up for the fact that spe-

cific micromechanical gyro performance behavior are unavailable. The

state of the technology is constanty improving and a study performed

with today's error parameters may be made obsolete by the technology

advances of the next few months. Therefore, when planning a satellite

mission with specific instrumentation in mind, the preceeding simulations

should be run with the most recent gyro error specifications.

* To demonstrate the robustness of the model-based approach to inertia

term errors, we generally cranked up the design variables Qdist and Gg
to limit the filter's confidence in its plant knowledge. Further, to miti-

gate the effects of complexly behaved environmental disturbance torques

we similarly tuned Qdist and added a disturbance state partition to the

estimator design. Since much of a satellite's operation occurs in benign

settings where meaningful linearization of the system dynamics is possi-

ble, we should be able to take advantage of the voluminous research on

robust state estimation, including sources [3] and [29]. These works detail

formal methodologies for minimax and W7-. disturbance rejection, which
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could prove particularly useful in warding off the ill effects of GPS multi-

path errors and disturbance torques. In addition, several previous works

have already demonstrated the success of model-based filtering in the face

of plant uncertainty [2], [22], [31]. These studies employed both con-

ventional and formal robust estimation methodologies. Typically, these

works enable robustness to plant modeling error through consideration

of structured uncertainty and state weighting matrices. These measures

could provide additional performance improvements far beyond the simple

minded Qdist-hiking employed here.

* As an additional avenue to curtailing the effects of plant uncertainty, tech-

niques of system identification should be applied to refine the satellite

dynamic model on-line. With the availability of control actuators and suf-

ficient measurement data comes the opportunity to determine on-orbit the

vehicle mass distribution, flexible modes, and other dynamic effects. The

system information thus obtained could augment experimental and ana-

lytic estimates of plant parameters and allow the filter greater confidence

in its propagation model.

* Satellite dynamics are often more complex than simple rigid body Euler

coupling models. There are typically appendages and arrays that induce

flexibility. As a strapdown gyro collects rate data, it will naturally be

reading a combination of rigid body and modal effects. If one is interested

distinguishing between these two behaviors, then additional oscillatory fil-

ter states should be introduced, or a prefilter capable of identifying modal

signal components should be placed between the sensors and the attitude

filter. Investigation of the best ways to implement these algorithms will

likely be a rewarding area of research.
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Appendix A

First Order Gauss-Markov

Stochastic Processes

In the satellite attitude determination problem, there are many appearances of

the white noise-driven system i = Fx + Gw. Its form occurs in everything from

truth models of environmental disturbance torques to truth and filter models of

gyro and GPS measurement errors. Its usefulness derives from several factors.

By changing the numerical values of f and/or g one can capture processes

with vastly different frequency content and steady-state behavior. It has also

been shown to reasonably approximate higher order, more complex stochastic

processes. This property makes it especially useful in estimation, where true

process dynamics may be difficult or impossible to model. Of course, the first

order form also makes it very easy to deal with analytically. This Appendix

derives some useful relations for the scalar, time-invariant form of this process.

It then continues with a discussion of numercial simulation issues. The final

section relates & = Fx + Gw to the two most basic gyroscope error sources:

angle random walk and time-varying biases.

132



A.1 Continuous Scalar Processes

Many error processes are described by a single state continuous time (CT) linear

time-invariant (LTI) white noise-driven system:

i(t) = fx(t) + gw(t), (A.1)

where x(t) is the continuous error process, w(t) is continuous time white noise,

and f and g are constant parameters. Various names describe process (A.1);

"exponentially-correlated random variable" (ECRV) and "first order Gauss-

Markov process" (FOGM) are frequently used. The latter label is appropriate

when the the process w(t) has a Gaussian, or normal, distribution at every

instant in time. An important special case of (A.1) occurs when f = 0:

i(t) = gw(t). (A.2)

This process has its own accompaning vocabulary: (A.2) is known as a "Weiner

process" and x(t) is said to experience "Brownian motion" or "random walk"

(RW) behavior [40].

In Equations (A.1) and (A.2), w(t) represents a continuous time white noise

process. This random excitation drives the system and has its own associated

statistics. Specifically, w(t) has zero mean:

E(w(t)) = 0 (A.3)

and infinite variance with intensity q. The infinite variance and intensity of w(t)

are expressed simultaneously in the autocorrelation function:

E(w(t)w(r)) = qS(t - r). (A.4)

Strictly speaking, as a consequence being driven by the CT white noise

term w(t), the dynamic variable x(t) is continuous everywhere but differentiable
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nowhere. As such, Equation (A.1) is an abuse of notation since it gives a

differential expression involving x(t). To properly express the time behavior of

x, one should employ stochastic differentials and Ito calculus. Equation (A.1)

is more accurately expressed as

dx = fxdt + gdw. (A.5)

Note that dw is present, not wdt. This term accounts for the differential action

of the driving white noise and is proportional to the square root of the inde-

pendent variable, which is time in this setting [1], [35]. In the remainder of this

section we will continue the aforementioned abuse of notation, as it does not

hinder the development of useful analytical expressions. However, this differen-

tial distinction will become relevant in Section A.3, when we discuss gyro error

model terminology.

Now given (A.1) or (A.5), the mean and variance of x(t) naturally are of

interest. The mean ±(t) _ E(x(t)) can be found by taking expectations on both

sides of (A.1):

E(i(t)) = E(fx(t) + gw(t))

E(x(t)) = fE(x(t)) + gE(w(t))

E(x(t)) = fE(x(t)),

so

2(t) = E(x(t)) = 2(0)e f t  (A.6)

describes the state mean as a function of time. Note that expectation and

differentiation switched order, thanks to the interchageability of integration and

differentiation, and that E(w(t)) = 0 led to a nice simplification. However, in

most situations, we consider the initial error to have zero mean so that 2(0) = 0

and consequently

X(t) = 0 Vt. (A.7)
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Going back to (A.6) and considering the pure random walk case (f = 0), we

have

t(t) = X(0) (A.8)

which is again equal to zero for all time if 2(0) = 0.

The variance can be shown to obey its own first order relation:

P(t) = 2fP(t) + g2 q, (A.9)

where

P(t) - Var(x(t)) - E(x(t)x(t))

and the zero mean assumption is implicit. Note that Equation (A.9) is a special

case of the matrix Riccati equation P = AP + PAT + GQGT. In the first order

Gauss-Markov case (f = 0), Equation (A.9) has the closed-form solution

P(t) = P(O)e2ft + g2 q(e2ft - 1) (A.10)

whereas in the pure random walk case (f = 0) the solution is

P(t) = P(O) + g2qt. (A.11)

If the state x(t) had zero initial variance, then P(0) = 0 and the simplifications

to Equations (A.10) and (A.11) are immediate.

If we are fortunate enough to have zero mean errors, then the variance is

identical to the "mean square" value of the process. This terminology follows

from the stochastic identity

Var(x) = E((x - E(x))2) = E(x') - (E(x))2 .

In such cases, one usually speaks of the process "rms" value, which is simply

P-(t). The square root of the variance is also known as the "one sigma" or
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"one standard deviation" value.

So if 2(t) = 0 and P(O) = 0 (the typical assumtions) then Equations (A.10)

and (A.11) simplify, respectively, to:

a(t) = P(t) = l-q(e 2f t - 1) (A.12)
2f

and

o(t) = P()= I|l/ (A.13)

Equation (A.12) shows that if f < 0, then a(t) reaches a steady-state value

equal to

r = g - (A.14)

with a ninety percent settling time of about -0.83/f. Actually, looking back to

Equation (A.10), we see that the same steady-state value is reached regardless of

the initial variance. In contrast, the random walk rms value, given in Equation

(A.13), grows unboundedly as the square root of time and does not reach a

steady-state value.

We see in Equations (A.12) and (A.13) that g and q always appear together

as g2q to some power; they never appear separately. Therefore, multiplicative

changes in q could be accomplished just as easily by equivalent rescalings of

g and vice versa. Hence, we fix q = 1, making w(t) a unit intensity white

noise process and use g exclusively to scale the combined g2q term. Again, the

simplifications to (A.12) through (A.14) are immediate.

After fixing q = 1, the first order Gauss-Markov process is completely char-

acterized by two parameters, f and g, and the random walk process is charac-

terized by the single parameter g. Many engineers prefer to express the FOGM

signal by two equivalent parameters: the time constant r and the steady-state

rms value a. This latter parameter is identical to the quantity in Equation

(A.14). The time constant is simply the negative inverse of f: r = -1/f.
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Rearranging (A.14) and substituting -1/r for f gives

g= r . (A.15)

With these new parameters in place, the rms history of the Gauss-Markov pro-

cess can be expressed alternatively as:

o(t) = 1 - e- 2t/r. (A.16)

If x(t) had a nonzero initial variance, then this expression expands to:

a(t) = P(O)e-2tl + (1 - e-2t/). (A.17)

Thus when working with first order Gauss-Markov processes, one can describe

the stochastic signal using f and g, r and ao, f and r,, etc. All are equivalent

and can be related with the above equations.

Changes in the values of these parameters shape the behavior of the process

z(t) that is molded out of the input w(t). For example, consider the 7, c,

parameterization of the first order system. If the steady-state standard deviation

o, is held fixed, then changes in the free parameter 7 can be interpreted in

several ways. As 7 increases, f = -1/r dereases and the linear system becomes

less stable. The process takes longer to reach steady state as seen in Equation

(A.16). If we define the autocorrelation function as

-E(x(t)x(t + S)),

then for the 7, a,, parameterization,

Hence, for fixed , as increases the process values become more and more/

Hence, for fixed a., as 7 increases the process values become more and more
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correlated over a fixed interval S. There are frequency domain interpretations

as well. If the process power spectral density is defined according to

/+o0
q(W) = f j q$,(7)e3  dr

J-oo

then for the r, ao parameterization,

2cr2T

1 + w272'

meaning that with increasing 7, x(t) contains greater low frequency content and

rolls off earlier.

A.2 Simulation Considerations

When simulating either a first order Gauss-Markov or random walk stochastic

signal, extra caution must be taken in generating the driving CT white noise

signal. Our first instinct might be to use the following Matlab statements:

t = O:deltat:tfinal;

u = randn(size(t));

[y,x,timevec] = 1sim(f,g,1,0,u,t,x0);

But the elements of the u vector, which represent values of the driving CT white

noise process, must be scaled according to the time step "deltat". Recall that

CT white noise had infinite variance so we expect the scaling of the u vector to

become large as At becomes small. The key to finding the proper scaling is to

look again at Equation (A.1):

i(t) = fx(t) + gw(t)

During simulation, the process is integrated over a series of time steps of length

At:
t+At ft+At

x(t + At) = x(t) + fx(t)dt + gw(t)dt (A.18)
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The f fxdt term is handled by the simulation subroutine using a state transition

matrix of the form q = ef at . The f gwdt term is problematic since the process

values of w(t) are available only at times t and t + At, not throughout the

interval (t, t + At). Hence, the simulation assumes a zero-order hold and takes

w(-r) = const V- e (, t + At)

However, note that the f gwdt term represents pure integrated white noise and

is therefore a random variable governed by random walk. Since we can't drive

the simulation with continuous white noise, we instead drive it with a discrete

sequence that represents many random walks of duration At. With the zero-

order hold assumption, the simulation subroutine will actually propagate x(t)

as follows:

x(t + At) = x(t) + 4z(t) + gutAt, (A.19)

where ut is the appropriate member of the discrete driving disturbance. Of

course, gutAt has variance g2At Var(ut). From Equation (A.13) the f gwdt

term should have variance g2At so we need Var(ut) = 1/At. This is accom-

plished by with the following Matlab statements:

t = O:deltat:tfinal;

u = inv(sqrt(deltat))*randn(size(t));

[y,x,timevec] = lsim(f,g,1,0,u,t,x0);

Now each term in the discrete white noise input has a coefficient of 1/V/@ and

its variance is 1/At, as desired. Note that as At becomes small, the discrete

input sequence is more dense in time and each member has a greater variance.

As At -- 0, 1/x/t -+ co so the input sequence looks more and more like pure

CT white noise as the integration step size gets smaller and smaller.

139



A.3 Classical Gyro Error Modeling

Now that the generic mathematical description of first order Gauss-Markov and

random walk processes is in place, we can apply the expressions in Section A.1

to gyro error modeling. The classic gyro error model is:

Wm(t) = wt(t) + b(t) + gvvi(t) (A.20)

b(t) = abb(t) + gbv2(t). (A.21)

Equation (A.20) says that the measured angular rate wm (t) is given by the

true angular rate wt(t) plus a time varying "bias" error b(t) plus a continuous

time white noise error gvvi(t). (In the following, we assume that the bias and

measurement processes are all in continuous time). Equation (A.21) describes

the dynamics of the time varying bias. It is simply a first order Gauss-Markov

model after (A.1). Alternatively, the bias dynamics may be given by a simpler

random walk model:

b(t) = gbv 2 (t) (A.22)

The variables wn, wt, and b naturally have the units of angular rate, say degrees

per hour (deg/hr). Since it is equal to the inverse time constant, ab has units

1 over hour (1/hr). The units of g and v are a little more subtle. The key lies

in the stochastic differentials described by Ito calculus [1], [35]. The wm term

on the left hand side of Equation (A.20) is an angle derivative with respect to

time so (A.20) is in fact a stochastic differential equation:

dO
Wm(t) = d = w(t) + b(t) + gvl(t) (A.23)

In differential form, it becomes:

dO = wotdt + bdt + gvdvl. (A.24)

Ito calculus dictates the use of the differential white noise term dvl instead of

vldt and indicates that dv1 is proportional to X/t. In Equation (A.24), all terms
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must have units of angle, including the gdvl term. Since dvl has units of the

square root of time, g, must have units of angle per root time. Typically, go is

given the units degree per root hour (deg/root-hr). If fact, g, has the special

name "gyro angle random walk" since the form of Equation (A.23) shows that

the gvl(t) white noise integrates into random walk in the computed angle.

As shown in Equation (A.13) this angle random walk is responsible for an

uncertainty in the computed angle whose rms value grows as the square root

of time. Note that if the process intensity q on the white noise term vl is

considered dimensionless, then the angle/root-time dimensions of g, comport

with Equation (A.13).

In a similar manner, Equation (A.21) can be placed in differential form:

db = abbdt + gbdv2. (A.25)

Since bias has dimension angle/time, so must every term here. Again, dv2 has

dimension root-time forcing gb to have units angle/time 3/ 2. These units are

consistent with earlier expressions such as (A.15). This discussion does not

change if the bias model were given by (A.22) instead of (A.21); the abb(t) term

has no effect on the units of the white noise term.

The following numerical example demonstrates the use of Section A.1 equa-

tions in the context of Section A.3 terminology. Suppose one is given the fol-

lowing fictitious gyro error specifications:

Angle random walk: 0.01 deg/root-hr

Bias steady-state value: 10 deg/hr

Bias standard deviation at 1 hour: 5 deg/hr.

with the task of correctly tuning the relevant coefficients in the error model

of Equations (A.20) and (A.21) to a radians-seconds system. In this example

we assume unit intensity white noises vi(t) and v2(t) and zero initial process

variance (o(0) = 0). Basically, there are three numerical values to compute: g,,

ab, and gb. The easiest calculation is for the angle random walk coefficient g,.
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All we need to do is convert the given 0.01 deg/root-hr to rad/root-sec:

deg 7r radians /1 hour rad
g = 0.01 ( )2.seconds 9(10-6)V'ir 180 deg 3600 seconds( /s)ec

To compute the bias model parameters ab and gb, we employ Equations (A.15)

and (A.16). Rearranging the latter reveals ab:

-1 1 ((t)
ab = - -In(1 - ( )2)

7 2too

or with the current example's specifications:

1 5 deg/hr
2(1 hour) 10 deg/hr

ab 2-- -0.14 hr- 1 _ -4.0(10- 5) sec- .

Now Equation (A.15) gives gb:

gb= - - 2 abo

so with actual numbers:

r 1 rad
gb = (-2)(-4.0(10-5) sec-1)(10( i)( 1 d)2

gb180 3600 sec

rad
gb -- 4.3(10-7) sec/2

Now with the numerical values of g,, ab, and gb, we can obtain realizations of the

stochastic error process, model the process in an observer, or covert the param-

eters to their discrete time equivalents. Although the discrete equivalents are

commonly used in simulations on digital computers, the continuous error pro-

cess values are somewhat easier to compute and lend themselves to convenient

steady-state analysis.
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Appendix B

Attitude Representations

This thesis is concerned with the problem of satellite attitude determination.

Since attitude is synonymous with orientation, or rotation, of a rigid body, it

is important to mention three important devices for characterizing a rigid body

rotation mathematically. Of course, when mentioning a "rigid body rotation",

we equivalently mean a rotation of rigid orthogonal axes fixed to the body.

As the rotations are unconstrained, there are up to three degrees of freedom

available. Euler angles, direction cosine matrices (DCM's), and quaternions are

discussed briefly below. Our goal here is to describe each attitude representation

and give the main relations for their integration and interconversion. Detailed

derivations and discussions are available in the literature.

B.1 A Generic Rotation

Suppose there is a set of rigid right-handed orthogonal axes X, Y, and Z with

origin O that define a coordinate frame A. While keeping the origin fixed in

space, the axes are allowed to rotate freely about 0 to some new orientation.

During this rotation, the axes must remain orthogonal. At the new orientation,

we rename the axes x, y, and z and call the resulting coordinate frame B. Figure

B-1 shows the frames A and B.

The attitude representations covered in this appendix describe the relative
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Frame A: XYZ
Frame B: xyz

z

Y

X
x

Figure B-1: Generic Frame Transformation from A to B

orientation of these frames without regard to the specific rotation that took place.

That is, in themselves, Euler angles, DCM's, and quaternions do not capture any

details of coordinate frame motion; they describe only relative position. If we

wish to detail precisely how B moves relative to A (we consider B to be free while

A is fixed in space), then an angular velocity vector w is necessary. Possibly

time-varying, w gives the angular motion of B relative to A. Unless otherwise

specified, w is assumed to be instantaneously expressed in the coordinates of

frame B. That is, w = (wX, wy,, wz)T-

B.2 Euler Angles

Euler angles are an intuitively simple series of three rotations that take frame

A to frame B's orientation. Each rotation in the series corresponds to motion

about a specific axis in the frame A. For example, an Euler angle sequence

might described verbally as "first rotate about the A frame Z axis; now rotate

about the new location of the X axis; finally revolve around the new Y axis;

the net effect is the current orientation of the x, y, and z axes in the B frame"

However, since the direction of rotation and choice of axis sequence is somewhat
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arbitrary, one must carefully define the physical meaning of an Euler sequence.

In this document, we name the X/x axis the "roll" axis, the Y/y axis the "pitch"

axis, and the Z/z axis the "yaw" axis. Our Euler sequence is a roll-pitch-yaw

sequence as follows:

1. Rotate in a right-handed fashion about the roll axis an amount q, then

2. Rotate in a right-handed fashion about the new pitch axis an amount 0,

then

3. Rotate in a right-handed fashion about the new yaw axis an amount b.

With this angle sequence (4, b, ¢), we can start at A and achieve any possible

attitude for B. Note that this characterization is not without ambiguity since

sequences (0 = 0, 9 = 7r, = 0) (units in radians) and (4 = r, 0 = 0, b = 7r)

achieve the same net rotation although the sequence elements are different. (It

is important to think of Euler angles as a physical sequence, or process, not as

elements of some vector quantity).

In addition to possible sequence ambiguity, Euler angles are difficult to com-

pose. That is, given a rotation sequence from frame A to B, (qBA, 8BA, OBA), and

a subsequent rotation Euler sequence (¢cB, 9 cB, ICB) from frame B to a third

frame C, it is difficult to find the overall rotation sequence (OcA, 8CA, l/CA).

Certainly, the total rotation is not given by the arithmetic sum of the sequence

elements: (OCB + OBA, OCB + OBA, OCB + OBA). The reader should fashion ex-

amples to illustrate this non-additive property.

However, if we know the initial orientation of B relative to A and the angular

velocity vector (w(t), wy(t), wz(t))T that describes subsequent motion of B with

respect to A, then we can continuously calculate the time evolution of the "A

to B" Euler sequence. The propagation equations are

cos o -sino 0 we

coso
cos -cosin cos cosin 0co w •

-sin~cosb sinesin/ cos9 wz
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Note that a cosO = 0 condition upsets the Euler angle propagation. This sin-

gularity corresponds to mathematical coincidence of the roll and yaw axes.

When the axes overlay in this manner, roll rotations become instantaneously

indistinguishable from yaw rotations and mathematical ambiguity results. Un-

fortunately, this "gimbal lock" phenomenon appears in every Euler sequence

propagation equation, regardless of the sequence definition. Unavoidable singu-

larities like this one limit the usefulness of the Euler angle attitude representaion

scheme.

B.3 Direction Cosine Matrices

The direction cosine matrix (DCM) attitude representation overcomes several

flaws of the Euler angle scheme. There is no need to explicitly define a sequence

of rotations. The time propagation equations are singularity free, and where

Euler angles were difficult to compose, DCM composition is straightforward. A

disadvantage of the DCM is the requirement of nine parameters where Euler

angles sufficed with only three.

At its root, the DCM attitude representation is about projections. Consider

Figure B-2 which shows the two coordinate frames A and B and a common vector

V.

Although there is only one vector, its components can be resolved into either

frame A or B. That is, there is a frame A representation: vA = (vx, vy, vz)T,

and a frame B representation: VB = (Vx, Vy, Vz)T. The superscripts indicate

which frame is used in the resolution. A DCM TBA is simply a 3x3 matrix that

transforms the A frame resolution of v to the B frame resolution:

vB = TBAVA. (B.2)

Note that that unlike Euler angles, the DCM does not give any information

on how to actually rotate frame A into frame B; it is just a transformation tool
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Figure B-2: Vector v Expressible In Two Frames

based on the relative orientation. The first subscript of T gives the destination

frame; the second subscript gives the origin frame. With this notation in mind,

we can express the inverse transformation with

VA = TABV B (B.3)

It can be shown that the "forward" DCM, TBA, and the "reverse" DCM,

TAB, are related through inversion. Further, since the columns of any DCM can

be shown to be orthonormal, the matrix inversion is accomplished by a simple

matrix transposition:

TAB = TB = TBTA (B.4)

Where rotation composition was difficult with Euler angles, DCM composi-

tion is as easy as matrix multiplication. If TBA captures the first rotation from

A to B and TcB captures the second rotation from B to C, then

TCA =TCBTBA. (B.5)

This composition rule follows trivially from repeated application of Equation
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(B.2).

Just as Euler angles can be propagated in time if w(t) = wB(t) is known, one

can also propagate the DCM given the same rate information. The following

differential expression is given in [28]

T = [w(t)]xT, (B.6)

where [w(t)]x is the "cross-product matrix"

0 we -WY

[w(t)]x = -wz 0 w, . (B.7)

Wy -W 2  0

Equation (B.6) is perfectly analogous to Equation (B.1).

Of course, there are times when given a roll, pitch, yaw sequence (4,, 4')
one needs to find the corresponding DCM. By treating each of the yaw, pitch,

and roll motions separately and then applying Equation (B.5) to the individual

rotations, one can derive the following Euler angle to DCM conversion formula

cOcO sOsecO + c4Os -csecc + sOsO

T = -cos -sbs9s4' + coco css4 + soc4 , (B.8)

so -s4c8 c4cO

where

sa _ sina

ca - cosa.

The inverse problem problem is somewhat harder. Given a DCM, what is

the corresponding roll, pitch, yaw sequence? Reference [39] gives the following

conversion expressions. All angles are expressed in radians.

9 = sin-'(T31)
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cosO = tan21(-T 3 2, T 3 3 )

= tan 1 (-T 2 1, T11)

cos9 = 0 = tan2'(T2 3, T22)

=0.

(B.9)

The first argument to tan' 1 is a y-axis component; the second argument is an

x-axis component. That is, use tan2'(y, x). In the above, Tij is the (i,j) element

of the matrix T.

B.4 Quaternions

A third alternative to Euler angles and DCM's exists. It is the four-element

quaternion. It captures the essence of Euler's Theorem which states that any

rigid rotation (such as that in Section B.1) can be achieved by a single rotation

about a single axis. Such an axis is referred to as an "Euler axis" or "eigenaxis".

Figure B-3 illustrates the axis and rotation angle idea.

Euler axis of rotation

Rotation sense

Y

Figure B-3: Euler Axis Rotation From XYZ to xyz

From the theorem, if one knows the Euler axis and the magnitude of the

rotation, then there is enough information to characterize the transformation.
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Quaternions, developed in the 1860's by Hamilton [19], are simply four element

vectors that describe the eigenaxis and rotation angle. Three of the elements

are grouped into a single three component vector v and called the "vector part".

The remaining fourth single element is termed the "scalar part". Unfortunately,

there is not universal agreement about whether the vector or scalar part should

be listed first in the quaternion. In this document, the vector portion occu-

pies the upper three elements of the quaternion; the scalar part is the bottom

element. Equation (B.10) illustrates this vector-scalar block structure.

q = where v = q2 (B.10)

q3

The vector-scalar subdivision is related to Euler's theorem. The vector portion

v is simply the product of the unit vector i pointing along the rotation axis and

the sine of half the rotation angle. Here, the rotation angle sign is related to i

by the right-handed convention. The remaining scalar element of the quaternion

is the cosine of half the rotation angle. Equation (B.11) summarizes.

q 2) v =in ;- ; q4 = co - (B.11)
cos( ) 2 2

Thanks to the unit length of fi and trigonometic identities, every quaternion

has a unit norm property:

II q 112 = Tq = 1. (B.12)

To invert a single axis rotation, one would naturally just use the same

axis but pivot in the opposite direction. Mathematically, this corresponds to

replacing 0 with -0 in Equation (B.11). Since the sine function is odd and the

cosine function even, the consequence is a sign reversal for the vector portion of
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the quaternion. Equation (B.13) expresses quaternion inversion.

-1 -VBABABqAB = qBA =

q4

(B.13)

Just as with DCM composition, quaternion composition is very straightfor-

ward. However, since the mathematics of the composition does not involve the

two arguments as quaternions but instead as a matrix and a vector, we define

a special operator 0. When written out, as in Equation (B.14), the second

sequential rotation appears as the first "factor" and the first rotation appears

as the second "factor". This the same order the objects appeared in Equation

(B.5).

qCA = QCB 0 qBA. (B.14)

Equations (B.15) and (B.16) give two different but completely equivalent expres-

sions for quaternion composition [28]. Obviously, these matrix-vector products

should themselves be quaternions satisfying the unit norm property.

qA D qB =

q4

-q 3

q2

-ql

q3

q4

-ql

-q2

(B.15)

-q2

ql
Q1

q4

-q3
A B

q4 -q3

q3 q4
qA E qB =

-q2 q1

-q 1 -q2

Equations (B.1) and (B.6) showed

q2 q1 \

--q q2 q2

q4 q3 q3

-q3 q4 B \ q4

the propagation of

(B.16)

A

Euler angles and

DCM's given the angular rate vector of the B frame relative to the A frame
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expressed in the B frame. The analogous expression for quaternions is

1
q = 2)(w)q, (B.17)

where

0 wz -w, w,

S(Wz 0 W (B.18)

Wy -Wx, 0 w

-ox - oWy -Cz 0

Of course, we wish to be able to convert between the three forms of atti-

tude representation reviewed here: Euler angles, direction cosine matrices, and

quaternions. The relations connecting Euler angles and DCM's were given in

Equations (B.8) and (B.9). Given a roll, pitch, yaw sequence, construction

of the corresponding quaternion is simple. Recalling Euler's theorem and the

meaning of it and 0 in Equation (B.11), then one can treat the Euler sequence

(, 9, 4) as three independent rotations and employ quaternion composition:

0 0 in(!)

0 sin(!) 0
q= 0 0 (B.19)

cos( ) cos(2) COS(±)

Extraction of a roll, pitch, yaw sequence from a quaternion is less straightforward

and we rely on [39] for an expression:

0 = sin-1(2(q4q2  q3q1))

= tan 2(q 1 + q3, q4 + q2 ) +

tan2 (q - q3 , q4 - q2)
cos9 # 0 == (B.20)

= tan2(q1 + q3, q4 + q2) -

tan2 (ql - q3, q4 - q2)
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= ta

cos9=O = -+ = ta

{ = o.

n -(ql + q3, q4 + q2) if 0 = 

n'(ql - q3, q4 - q2) if 0 = -
22

Reference also [39] gives a procedure to extract a quaternion from a DCM.

Equations (B.21) through (B.25) comprise the algorithm.

following four quantities:

First compute the

al = 1 + T1 + T22 +T33

a2 = 1 1 - T22 -T33 (B.21)

a3 = 1 - T1 + T22 -T33

04 = 1-T1 - T22 +T33

Now compute the four quaternion elements based on which of the ai was great-

est:

al = maxz(a), then

1

1
q2 (T31- T 13 )

4q4

1
q3 = 1(T2 - T21)

4q4

a2 = max(ai), then

qi = + 1 + T11 - T22 - T33

1
q2 -(T12 T21)

q3 = 4
q3 1 (T13 + T31)

4q,
1

q4 23 T32
4q,

(B.22)

(B.23)
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If a 3 = max(a), then

q2 2 =-1- T 11 + T22 - T33

1
S= (T21 + T12) (B.24)

4q2
1

q3 = (T2 3 +T 32)

q4 = (T31 - T 1 3 )
4q2

If a 4 = max(ai), then

1
q1 = (T31 + T13) (B.25)

4q3
1

q2 (T32 + T23)4q3
1

q4 12 T21-
4q3

After any computation that produces a quaternion, it is a good idea to renor-

malize the four element vector to have unity norm. All of the above equations

should produce unit norm outputs but numerical issues could cause slight devi-

ations.

Fortunately, the computation of a DCM from a quaternion is much easier

than the reverse. The quaternion to DCM transformation is expressed com-

pactly as [28]

T = (q4 - IvI 2)13x3 + 2vvT + 2q4[v]x, (B.26)

where the cross product matrix of Equation (B.7) is employed again.

For additional discussion of the above three attitude representation schemes

and others, consult references [8], [39], and [43].
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Appendix C

Kalman and Extended Kalman

Filtering

This thesis is essentially an application of the extended Kalman filtering algo-

rithm to a satellite navigation problem. The extended Kalman filter (EKF) is a

suboptimal but implementable method of addressing nonlinear estimation prob-

lems. As its name suggests, the EKF contains the standard linear Kalman filter

as a special case. This appendix presents the basic EKF algorithm, the main

engine of this research, and the Kalman filter, the most widely used technique

in modern estimation work. The latter is presented first since it is the histor-

ically older algorithm and contains the seed of virtually all current estimation

practice.

C.1 The Kalman Filter

The Kalman filter (KF) is a well understood and widely used method of tracking

stochastic dynamic systems. Developed in the early 1960's, the KF algorithm is

the gift of Rudolph Kalman and Richard Bucy. Those seeking original writing

on the filter are refered to [24]. Additional derivation and discussion is available

in [9], [17], and [23]. This section presents the basic KF algorithm for continuous

systems with discrete measurements and mentions some of its properties.
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Consider a vector-valued process x(t) driven by the linear stochastic dy-

namic system

i(t) = A(t)z(t)+ G(t)w(t). (C.1)

The system has a certain, possibly unknown, initial condition

x(0) = zo (C.2)

and w(t) is a driving continuous time white noise signal with zero mean and

intensity Q(t) which we express by

E[w(t)] = 0 E[w(t)wT(r)] = Q(t)6(t - 7). (C.3)

At times tk, discrete linear noisy measurements Yk are available of the current

state vector x(tk)

Yk = Ckx(tk) + Vk. (C.4)

Here, vk is a discrete white noise vector with zero mean and covariance Rk. It is

also assumed that the process noise w(t) is uncorrelated with the measurement

noise. These three conditions are expressed by

E[vk] = 0 E[vkv] = RkSki E[w(t)v'] = 0. (C.5)

The Kalman filter's job is to provide a continuously available estimate 5(t) of

the state vector. The KF is the solution of an optimization problem whose

objective criterion depends on the estimation error ;(t), defined as

i(t) - X(t)- ^(t). (C.6)

Since both terms of Equation (C.6) are stochastic processes, the estimation error

i(t) is itself a random variable. Hence, its covariance P(t) is given as follows
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(assuming E[i(t)] = 0):

P(t) - E[i(t)iT()]. (C.7)

Now, with the estimation error and its covariance defined, we ask the Kalman

filter to provide estimates which minimize the trace of the error covariance

matrix. That is,

^(t) = arg min trace(P(t)). (C.8)
i(t)

Put another way, the KF provides estimates that minimize the sum of the error

variances for all the system states. This objective is apparent by considering

the meaning of P(t)'s diagonal elements or through the identity

trace(P(t)) = E[ T(t)2(t)].

The filter that solves this optimization problem turns out to be another

continuous-discrete dynamic system. Its derivation is omitted here but can

be found in virtually any text concerning optimal and applied estimation.

To execute the filter, one first begins with an initial estimate x0 and initial

error covariance matrix Po:

^(0) = 0o P(0) = Po. (C.9)

Then the state is propagated assuming noise-free system dynamics. The error

covariance matrix is computed considering the system model and the amount

of uncertainly w(t) injects into the system. These propagations take the form

of first order multidimensional ODE's that continuously maintain the criterion

specified in (C.8):

I(t) = A(t) -(t) (C.10)

P(t) = A(t)P(t) + P(t)AT (t) + G(t)Q(t)G(t).

For any random variable, dynamic or not, the minimum error covariance esti-
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mate is identical to the conditional mean. That is,

x (t) = arg min trace(P(t)) = E[x(t) available information]. (C.11)i(t)

Between measurements, the state estimate evolves according to Equation (C.10)

so

x(t) = E[z(t) all prior measurments].

The filter computes x(t) in this manner until time tk when measurment Yk be-

comes available. Before we actually incorporate yk, our estimate is the best

possible accounting for previous measurements. We give this estimate the sym-

bol Xk, term it the a priori estimate, and represent it mathematically as

4X = E[x(tk)lyo,... , yk-1]. (C.12)

The filter then combines ik with Yk to produce an a posteriori estimate f̂

whose probabalistic description is

A+ = E[z(tk)lI 0,., Yk] ( .13)

In the filter derivation, the combination of ik and yk is assumed to be lin-

ear. By enforcing condition (C.8) on the linear combination, we arrive at the

measurement update relations for the state estimate and error covariance. The

covariance must be adjusted at this time since our confidence in the state esti-

mate depends on the metric of measurement quality, Rk. The update relations

are:

4 = 4+Kk yk-C k )

= (I- Kkk)± + Kkyk (C.14)

Pk = (I - Kkck)Pk(I - KkCk)T + kRkK[,T
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where Kk is the Kalman gain matrix given by

Kk = PCT((CkPkC T + Rk) - 1, (C.15)

assuming the parenthetical expression in invertible. Like the corresponding state

estimates ^- and ^ , Pk~ and P+ denote the error covariance matrices before

and after measurement update, respectively.

Thanks to the derivation of the Kalman filter, the estimation error has zero

mean both before and after measurement update. That is, Equations (C.12)

and (C.13) illustrate that the a priori and a posteriori estimates have the true

states as their expectations. In this sense, the KF is said to be an "unbiased"

estimator.

It should be noted that we assumed nothing about the statistical distri-

bution of the process and sensor noises (Eqns. (C.3) and (C.5)), only that

they have certain means and variances. For all the filter knows, the probability

density functions of these disturbances good be uniform, ramp shaped, or al-

most anything. It turns out that the Kalman filter is endowed with additional

properties if the disturbances are gaussian distributed. For example, since the

system states are necessarily gaussian as are the state estimates, the estimation

error, defined in Equation (C.6), is also gaussian distributed. Hence, the zero

error mean and covariance matrix P(t) give a complete descipition of the error

statistics, since a mean and variance are necessary and sufficient to specify a

complete normal density. Further, in the gaussian disturbance case, the Kalman

filter becomes the minimum error variance estimator of any kind. In contrast, if

the error is not normally distributed, then the KF is merely the linear minimum

variance estimator. Although this distinction seems academic, the implication

is that in the normal disturbance case, the linear form of the Kalman filter does

not have to be assumed a priori. See reference [29] for further discussion.

Note also that if the truth system is stabilizable from the process noise and

detectable through the outputs, then the error dynamics are guaranteed stable.
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For completeness, the continuous dynamics-continuous measurement

Kalman filter equations are also given. Here, the filter operation is much cleaner

since the measurements feed directly into the estimate propagation equation.

The continuous measurements eliminate the need to define a priori and a pos-

teriori estimates.

Assume the plant and measurement equations are given by

i(t) = A(t)x(t) + G(t)w(t) (C.16)

y(t) = C(t)x(t)+ v(t).

Then the filter, consisting of state estimate, error covariance, and gain, is given

by

(t) = A(t)^(t)+ K(t)(y(t)- C(t)^(t))

= (A(t) - K(t)C(t))^(t) + K(t)y(t) (C.17)

P(t) = A(t)P(t) + P(t)AT (t) + G(t)Q(t)GT (t) - P(t)CT (t)R-l(t)C(t)P(t)

K(t) = P(t)CT (t)R-'(t).

Conditions (C.2) and (C.3) still hold but (C.5) is replaced with

E[v(t)] = 0

E[v(t)vT(-)] = R(t)S(t - r) (C.18)

E[w(t)vT (7)] = 0.

C.2 The Extended Kalman Filter

We now change the problem statement a little. Instead of a linear truth system

as in (C.1), we consider the following nonlinear state dynamics,

i(t) = f(x(t), t) + w(t). (C.19)
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Note the the process noise is still assumed to enter in a linear fashion. Gelb

discusses how nonlinear process inputs can be approximated with this represen-

tation [17]. As before, the system must have an initial state

x(0) = zo (C.20)

and quantifiable process noise statistics:

E[w(t)] = 0 E[w(t)wT(r)] = Q(t)S(t - r). (C.21)

Further, the state measurements may now take the more general nonlinear form

Yk = hk(X(tk)) + Vk (C.22)

instead of that seen in Equation (C.4). The additive measurement error Vk is

a discrete white sequence with familiar statistics and is uncorrelated with the

continuous process disturbance w(t):

E[vk] = 0 E[vk T] = Rkkj E[w(t)v] = 0. (C.23)

Although the previous section omitted the details of the Kalman filter deriva-

tion, it was critical to obtain expressions for the state expectation and covariance

as a function of time, especially for the period between measurement updates.

Since linear systems driven by stochastic inputs are well understood, these mean

and covariance formulae were obtainable and given in Equation (C.10). How-

ever, for nonlinear systems, the propagation expressions for any statistical mo-

ment are much more complex and descend from the recursive, partial-differential

expression known as the Fokker-Planck equation [16]. On-line use of the Fokker-

Planck equation is analytically and computationally prohibitive; thus, we make

use of approximate expressions to propagate the state vector mean and covari-

ance.
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For the mean, we simply discard the process noise in (C.19) and perform a

nonlinear state integration:

X(t) = f(^(t),t). (C.24)

For the covariance, we propagate based on a Taylor series expansion and trun-

cation of all second order terms and higher. The result is a matrix differential

equation similar in spirit to (C.10):

P(t) = F(5(t), t)P(t) + P(t)FT ((t),t) + Q(t) (C.25)

where A(t) is replaced by the state dynamics jacobian matrix,

Ff((X(t),t) (C.26)F( (t),t)= )Iax(t) x(t)=i(t)

There are already several departures from the standard linear Kalman filter

of the previous section. First, since we are now computing the state estimate

according to the approximate expression (C.24), the estimation error no longer

has zero mean. That is, the error is now biased. We also see that whereas

the state and covariance propagations were independent in Equations (C.10),

they are now coupled since the Jacobian in (C.26) is a linearization of the

state dynamics about the current estimate. This coupling prevents us from

precomputing and storing the covariances as was possible with the standard KF

algorithm, where the independence of the moments allowed significant savings

in on-line computation.

Of course, the P(t) matrix in (C.25) is actually not a covariance at all,

but an estimate of it. This expression arose as the Taylor series truncation

neglected important higher order terms. Therefore, filter covariance statistics

can no longer be taken as absolute truth, even if there is no plant-filter model

mismatch. Filter performance should now be judged by considering both this

pseudo-covariance and the error sample statistics from Monte-Carlo runs.
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It is also worth mentioning that the approximations present in (C.24) and

(C.25) are valid only if the true state and state estimates are sufficiently close for

the Taylor series truncations to remain valid. For this reason, filter divergence

is a greater hazard for the EKF than for standard linear Kalman filter.

With these caveats in mind, we proceed to the measurement update. As in

the previous section, the definitions of a priori and a posteriori quantities still

apply. In fact, the form of the update exactly echoes that in Equations (C.14)

and (C.15):

+  = iX + Kk(k - hk(k))

= (I - Kkhk(k)) + Kkyk (C.27)

Pk = (I - KkHk( ))P(I - KkHk( )) T + KkRkKl T

Kk P; Hk(T )(Hk( A -)P[ T( ^-
Xgk ( xk )+ Rk)

- 1

with the following definition of Hk,

Hk()= k((tk)) (C.28)9X(tk) x(tk)=k

Note that like F(i(t), t), Hk is an estimate-dependent Jacobian matrix.

The extended Kalman filtering algorithm of Equations (C.24), (C.25), and

(C.27) is one of several possible approaches to the nonlinear esimation problem

posed by (C.19) and (C.22). It does have the virtue of being similar in nature to

the standard Kalman filter. As might be expected, the EKF reduces identically

to the KF if the filter model happens to be linear.

However, we must be careful in making too great an association between

these two algorithms. The Kalman filter is the optimal, linear minimum vari-

ance esimator for linear plants. The extended Kalman filter is not necessarily

the optimal, nonlinear minimum variance estimator for nonlinear plants. An

optimal filter would make full use of all the true statistical moments; the EKF

only approximates two of them. It is not the true covariance whose trace is
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minimized; it is the approximate error covariance P(t) that is treated.

Complete derivations and discussions of the EKF and nonlinear estimation

are available in [9], [16], [17], and [29].

Again, for completeness, we give the fully continuous version of the algo-

rithm. As with the continuous KF, the continuous EKF is spared the "-" and

"+" notation since there are no discrete "hiccups" for state and error covariance

updating. The following equations and notation are borrowed from [17].

Assume nonlinear continuous plant and measurement equations as follows:

z(t) = f(z(t),t) + w(t) (C.29)

y(t) = h(x(t),t) + v(t).

Naturally, the plant has a certain initial condition x(O) = xo. The process and

measurement noises possess the usual properties:

E[w(t)] = 0

E[w(t)wT (7)] = Q(t)6(t - 7)

E[v(t)] = 0 (C.30)

E[v(t)v()] = R(t)S(t - r)

E[w(t)v ' ] = 0.

The filter state estimate, error covariance, and gain equations exactly mirror

those of the Kalman filter, as seen in Equations (C.17):

x(t) = f(^(t),t) + I((t)(y(t) - h(^(t),t))

= (f((t),t)- K(t)h(i(t), t)) + K(t)y(t)

P(t) = F(-(t), t)P(t) + P(t)FT ((t), t) + Q(t) (C.31)

-P(t)HT((t), t)R-1(t)H((t), t)P(t)

K(t) = P(t)HT( (t), t)R-1(t).
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The estimate dependent matrices F(5(t), t) and H( (t), t) are the Jacobians of

the nonlinear state functions f(x(t), t) and h(x(t), t):

F((t), ) = (t(C32)a O (t) X(t)=.(t)

oh(x(tl, t)
H((t), t)x (t)=(t)
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