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Abstract

The moving-baseline localization (MBL) problem arises when a group of nodes moves
through an environment in which no external coordinate reference is available. When
group members cannot see or hear one another directly, each node must employ local
sensing and inter-device communication to infer the spatial relationship and motion
of all other nodes with respect to itself.

We consider a setting in which nodes move with piecewise-linear velocities in the
plane, and any node can exchange noisy range estimates with certain sufficiently
nearby nodes. We develop a distributed solution to the MBL problem in the plane,
in which each node performs robust hyperbola fitting, trilateration with velocity con-
straints, and subgraph alignment to arrive at a globally consistent view of the network
expressed in its own "rest frame." Changes in any node's motion cause deviations
between observed and predicted ranges at nearby nodes, triggering revision of the
trajectory estimates computed by all nodes.

We implement and analyze our algorithm in a simulation informed by the char-
acteristics of a commercially available ultra-wideband (UWB) radio, and show that
recovering node trajectories, rather than just locations, requires substantially less
computation at each node. Finally, we quantify the minimum ranging rate and local
network density required for the method's successful operation.

Thesis Supervisor: Seth Teller
Title: Professor of Computer Science and Engineering
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Chapter 1

Introduction

1.1 Introduction

Location determination is a fundamental problem, attracting human attention since

antiquity. Today, GPS (Global Positioning System [27]) infrastructure enables in-

expensive hand-held receivers to determine earth-relative position to within a few

meters, in outdoor environments with sufficient sky visibility. However, location de-

termination remains an incompletely solved problem in "GPS-denied" environments,

where GPS service is unavailable or of low quality: indoors; underground (e.g. in

tunnel, bunker, or cave networks); underwater; and in sky-obstructed outdoor envi-

ronments (e.g. valleys, forests, and urban canyons). Effective location and motion

estimation in such environments is the focus of the present thesis.

A central goal of localization research and development is to realize a user-borne

device capable of reporting the user's location and orientation accurately during ex-

cursions of arbitrary length and duration within GPS-denied environments. One

strategy is to use inertial sensing to perform dead-reckoning. However even devices

incorporating heavy, expensive inertial sensors can incur unbounded position errors

of 0.1 percent of the total distance traveled; more typical errors are between one and

ten percent [63]. Relative position errors between many nodes, each performing dead-

reckoning, would diverge even faster. Some GPS-denied localization methods depend

upon previously or concurrently deployed infrastructure, such as passive or active



fiducial markers or beacons, imposing a deployment burden that is unacceptable or

impractical in many application domains.

This thesis addresses the problem of determining positions and velocities for a

group of devices (or nodes) moving within a GPS-denied environment. Like others,

we take inspiration from real devices that can measure their range to, and communi-

cate with, some subset of other nodes, and we propose a distributed algorithm that

reconstructs a globally consistent view of the network derived solely from local ob-

servations. However, we depart from previous work in this area by supposing that

all nodes are in motion, while also assuming no external coordinate reference and

no previously deployed infrastructure. This scenario arises from real-world settings

in which, for example, a group of people or robots moves cooperatively through a

GPS-denied environment to perform some task (e.g., emergency response). We re-

fer to localization methods operating in the absence of a fixed reference frame as

moving-baselzne localization (MBL) methods.

1.1.1 Algorithmic Setting

We consider an instance of MBL in which each moving node can repeatedly gen-

erate a time-stamped measurement of the range, or separation distance, between it

and certain other sufficiently nearby nodes, and can discover the unique identifier

(i.e., integer ID) of, and exchange information with, any node to which it can range.

This choice of setting is motivated by existing devices with these capabilities, such as

Crickets [50] and UWB (ultra-wideband) radios [37].

The problem we face is then to combine a collection of local measurements (time-

series range data, with node identifiers) into a single, global estimate of all node

motions (Figure 1-1). Our method estimates a trajectory for each node that is con-

sistent with recent range measurements involving that node.

In this thesis, we develop a distributed algorithm for MBL in the plane. We

start by analyzing the mathematical abstraction in which each node moves with a

fixed velocity, then generalize to piecewise-linear trajectories. We assume that range

data is inherently noisy, and model ranging noise as a distribution determined by
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Figure 1-1: MBL as a local-to-global estimation problem. Available data (a) consists
of a time series of range measurements at each node. Problem solution (b) consists
of an estimate of all nodes' motions in each node's rest frame (solution for node 1
shown).

experiments with real UWB devices. We show that MBL can be solved in this setting

through robust hyperbola fitting, trilateration, subgraph alignment, and change point

detection. We implement and analyze the algorithm in simulation, and discuss its

extension to less restricted settings.

1.1.2 Contributions and Organization of the Thesis

The main contributions of our work is as follows:

* We develop a distributed algorithm for mobile wireless sensor networks which

estimates node trajectories rather than static position estimates.

* We quantify the benefits of trajectory estimation over static position estimation

by comparing the MBL method with a static localization algorithm.

* We characterize a current-generation UWB radio to develop a faithful range

error model.

* We evaluate the effects of various factors in mobile networks on the MBL algo-

rithm through extensive simulation.
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* We study existing localization algorithms and identify their limitation for mobile

anchor-free networks

The remainder of this thesis is structured as follows. Chapter 2 reviews the current

localization algorithms for wireless sensor networks and identifies the thrust of this

work. Chapter 3 presents the MBL algorithm. In Chapter 4, we develop a range error

model for UWB radios. Chapter 5 describes our experimental framework, evaluation

metrics, and experimental results. We also discuss the method's behavior and future

work. Finally, Chapter 6 concludes.



Chapter 2

Localization Algorithms for

Wireless Sensor Networks

As research in wireless sensor networks proliferates both in scope and depth in recent

years, the localization problem, an essential capability enabling other applications, has

received a considerable amount of attention over the past decade. In this chapter,

we study existing localization algorithms for wireless sensor networks and mobile

network, and explain in what aspect our work is different from previous work. In

Section 2.1, important properties of localization algorithms are identified. In Section

2.2, we review previous work on the localization problem. In Section 2.3, we describe

the thrust of this thesis.

2.1 Properties of Localization Algorithms

Localization algorithms for wireless sensor networks can be classified according to

a number of properties that each algorithm has. These properties often define the

overall structure of a localization algorithm, and also impose limitations on it as well.

In this section, we identify several properties related to the localization algorithms

and explain their implication on the sensor network localization problem.

Anchor-Based versus Anchor-Free Many localization methods require beacons

or anchor nodes that know their position on some absolute coordinate system



with very high or absolute certainty'. These methods are called anchor-based

methods. In anchor-based methods, the localization problem can be formulated

as finding a consistent set of locations of nodes in the network, given the infor-

mation obtained from anchor-node relations as well as node-node relations. The

anchors can be a form of dedicated devices emitting signals periodically [50],

or a different type of sensor nodes that can acquire precise location of them-

selves from the outside of the network, for example, GPS. Since anchor-based

methods require pre-deployed infrastructure, they may be impractical in certain

application domains where anchors cannot be placed.

On the other hand, anchor-free methods refer to the localization methods that

do not require specialized anchor nodes. Since no information from outside

of the network is used, an anchor-free method itself does not have a mean to

localize the network on the absolute reference frame. Instead, it recovers relative

locations of nodes on a relative coordinate system centered on an arbitrary

origin. If a sufficient number of anchor positions are given (at least three anchors

in two-dimensional space), the output of an anchor-free method can be easily

transformed to node locations in an absolute reference frame.

Centralized versus Distributed For centralized algorithms, computation occurs

at one specific node or at a computer outside the network, whereas for dis-

tributed algorithms, computation load is distributed among nodes in the net-

work. This classification is directly related to how the localization problem is

formulated. If a problem is formulated as a global optimization such as con-

vex optimization in [17], the computation must be performed in a centralized

way. Because a computing node must have all the necessary information in

centralized algorithms, the information required for computation, such as inter-

node distances, must be relayed to the computing node. Therefore, centralized

algorithms may suffer from many collisions and contention during wireless com-

munication around the computing node [67]. This difficulty in communication

1Throughout the remaining chapter, we will simply call a beacon or an anchor node as an anchor,
and a non-anchor node as a node.



may prevent the centralized algorithms from being scalable over the size of the

network.

For this reason, distributed localization algorithms are more popular in wireless

sensor networks. In distributed algorithms, each node splits up a computation

job in some way; for example, each node is responsible only for finding its own

coordinates [54], or every node computes node locations only in its vicinity and

shares its solution with other nodes [42].

Proximity, Distance, Angle-of-Arrival. Localization algorithms use various types

of information or measurements to infer locations of nodes in the network.

While other types of information can be used (e.g., correlation between sensor

data [46]), three major types of measurements will be described here - prox-

imity, distance, and angle-of-arrival. Proximity is one of the simplest forms

of information that a sensor node can obtain about its neighborhood. While

proximity information only provides coarse location estimate, some localization

methods such as [25] can estimate node positions with high granularity using

multiple proximity measurements and a priori information about the proximity

measurements, such as maximum detection range.

Another type of information used for localization is distance. Distance be-

tween sensor node is obtained in various forms, such as, received signal strength

(RSS), time-of-arrival (ToA), or time-difference-of-arrival (TDoA) [32]. Esti-

mating distance from RSS is based on the relation between RSS and distance

whose relationship can be modeled as a path-loss equation:

Pt
Pr = c

where the path-loss exponent ac is typically assumed to lie in the range from 2 to

5 [67]. Distance measurement through ToA uses the relationship between dis-

tance and signal propagation time when the signal's propagation speed through

the transmission medium is known. If the transmitter and the receiver are



synchronized, inter-node distance can be calculated directly from a timestamp

included in the ranging packet. TDoA uses two or more different sets of trans-

mission pairs to eliminate the need of time synchronization in ToA. For example,

the Cricket location support system [50] uses a combination of RF and ultra-

sound signal.

The last type of measurement is angle-of-arrival (AoA). AoA information can be

acquired from directional antennae or an antennae array. Because of the need for

multiple antennae, AoA information is less suitable for sensor networks in which

the size and complexity of each node is restricted. However, it is possible to

estimate sensor locations from only AoA information. The most basic technique

to do it, triangulation, and its extensions have been studied in the context of

wireless sensor network localization (e.g. [2]).

Static Network versus Mobile Network. Most of the existing localization algo-

rithms for sensor networks do not consider node mobility explicitly, assuming

that the network is static. While many sensor platforms are not likely to move

actively like robots, there are certainly situations that sensors exhibit mobility,

thus rendering the network mobile. For example, human-equipped sensors that

move passively with people can be such an example. Mobile networks show

different characteristics from static networks, such as changing topology, vary-

ing connectivity, and latency problem. Therefore, localization algorithms for

mobile networks must be designed considering these different (and challenging)

characteristics.

2.2 Previous Work

In this section, we review some of existing work on the localization problem in wireless

sensor networks and mobile computing. Localization methods proposed by researchers

are classified according to their main characteristics.



2.2.1 Proximity-based Approaches

Many simple yet effective localization algorithms are based on the proximity informa-

tion. Proximity-based approaches often assume existence of large number of anchors

in the region so that each node can approximate its location from single-hop prox-

imity information. Bulusu et al. [8] assume an idealized radio model in which radio

propagation is isotropic and identical for all radios. Based on this assumption, each

radio can localize itself on the centroid of "reference points" (anchors) to which it is

connected. Those reference points are densely and regularly placed throughout the

region. They reported that the idealized radio model was valid in outdoor environ-

ments, but inappropriate for indoor environments.

The bounding box algorithm [57] and its variants, e.g. [14, 25], exploit knowl-

edge on the communication range further and approximate location of a node as an

intersection of feasible regions. The bounding box algorithm [57] uses rectangles cen-

tered at anchor positions. Another algorithm maintains the intersections of convex

polygons to estimate node locations [14]. This algorithm can be adapted to mobile

networks by "dilating" the convex polygons outward by the known maximum node

speed.

The APIT (Approximate Point-In-Triangulation) method [25] is also based on

proximity to anchors. It assumes a weak assumption on radio signal strength: signal

strength decreases monotonically as range increases. A node first chooses three audi-

ble anchors, and determines if it is inside the triangle defined by the three anchors.

It does so by observing if there is a neighbor whose signal strengths to anchors are

all stronger or all weaker than its own signal strength. If then, the node is considered

to be located outside of the triangle, because at least one of its neighbor nodes is

consistently farther from or closer to the three anchors. Given a sufficient number of

anchors, each node can estimate its position by computing the intersection of these

triangles. Performance of APIT method is comparable to other range-free algorithms

such as the DV-hop [44] or centroid method [8], but it requires: 1) that anchors are

either placed densely or equipped with a high-powered transmitter; and 2) that nodes



are regularly placed. Otherwise, it can make an incorrect decision as to whether a

node is inside a triangle or not.

Proximity-based approaches are simple and cost-effective because they do not

require accurate ranging capability, and thus can operate on simple low-cost devices.

However, the localization error is relatively large so they are most suitable to coarse-

grained localization. Also, they often require high anchor density. For example, all

the methods described in this section except [14] require multiple anchors to exist

within communication range of each node, and [14] requires anchor density of at least

0.4 to obtain localization accuracy better than the communication range.

2.2.2 Lateration-based Approaches

Lateration refers to a class of geometric methods to locate an object given distance

measurements from multiple reference positions [26]. In two-dimensions, a node posi-

tion can be uniquely determined from three noncollinear node positions and distances.

This technique is called trilateration. If more known nodes are available [54], deter-

mining a node position is equivalent to solving a set of quadratic equations, which

is called multilateration2 . If every node can hear from three or more anchors all the

time, position determination becomes an easy problem of simple application of tri-

lateration. However, if only a fraction of nodes are anchor nodes, or there are no

anchors at all, more sophisticated localization methods are required.

One solution for the limited anchor availability is to perform lateration with ap-

proximate distances if direct distances to anchors are unknown. Particularly, the

Hop-TERRAIN method [52] and the DV-hop method [44] share a similar idea to

approximate distances to anchor nodes. First, anchor nodes initiate broadcast with

their positions. Then, nodes can update hop counts to anchor nodes with these

broadcast packets and estimate distances to anchors using the hop counts and the

average distance per hop. The average distance per hop can be calibrated when an

2In a different usage, multilateration refers to a position estimation technique based on TDoA of
signals from different reference locations. In this thesis, we refer to multilateration as defined above,
following [54].



anchor receives a broadcast packet from another anchor with its position and hop

count. A major drawback of these methods is, as indicated in [44], that they work

well only with isotropic networks, because distance estimation by hop count is a poor

approximation if the network topology is anisotropic.

Another approach is to build a network localization graph incrementally. The

Ad-Hoc Localization System (AHLoS) [54] uses iterative lateration. Since lateration

requires at least three anchors to locate a node, in AHLoS, nodes with sufficient

connectivity to anchors (for unique determination of their own positions) first localize

themselves and become anchor nodes to help localization of remaining nodes. While

this iterative lateration makes it possible to localize sensor nodes given only a fraction

of anchors as opposed to the dense anchor placement assumed in [8], it comes with

cost - error accumulates as non-anchor nodes become anchor nodes. To combat this

error propagation, recent iterative lateration algorithms employ error management

schemes that selectively use reliable measurements [39, 66].

If there exists no anchor nodes in the network, incremental approaches can be used

to recover relative coordinates of the nodes. Trilateration is often used as a subroutine

in this case. For example, Capkun et al. [9] proposes a relative localization method, in

which every node builds a local coordinate system and those local coordinate systems

are aligned with each other. First, each node becomes the center of a local coordinate

system, then determines positions of its one-hop neighbors by trilateration. After

nodes build local coordinate systems, correction angles between them are computed,

considering possible reflection. Then, the position of one node can be represented in

any coordinate system defined by another node, by iteratively applying corresponding

coordinate transformations. This idea of generating global solution from small local

clusters, sometimes called "patch-and-stitch" [64], is common in many distributed

localization algorithms [9, 42, 55]. Patch-and-stitch methods make it possible to lo-

calize multi-hop networks in an anchor-free setting, but introduce error compounding

during "stitch" processes [64].

When making local clusters using trilateration, an algorithm may find an incorrect

realization with a flip configuration if ranging is noisy. For instance, when node D is



trilaterated from known node positions A, B, C, a small measurement error in distance

CD can induce an incorrect flip in the position of D along edge AB, producing a large

error in the position computed for D. To avoid this flip configuration, one distributed

localization method [42] uses "robust quadrilaterals", well-shaped 4-cliques in the

network graph, as its elementary building block.

The algorithms described above share a common viewpoint to the network local-

ization problem. That is, the problem is formulated as finding a weighted graph

embedding whose edge weights match the distance measurements. A theoretical

foundation for this problem is elucidated in terms of graph rigidity theory [18, 3].

Particularly, in [3], it is proven that unit disk graph reconstruction is NP-hard. This

fact makes trilateration graphs, which are realizable in polynomial time, useful for

localization. However, the trilateration-based approaches typically suffer from low

node recovery at low node density [64, 24]. To alleviate this problem, Goldenberg et

al. propose use of bilateration in which a set of possible positions are determined from

two known positions rather than three or more. The resulting sweeps algorithm elim-

inates conflicting combinations of node positions as it proceeds. A different approach

is to use a successive positions of a moving node virtual reference points [22, 49]. The

moving node can provide sufficient measurements for localization when the informa-

tion among static nodes is insufficient for unique determination of node positions.

2.2.3 Optimization or Learning-based Approaches

A different class of approach to the network localization problem is to formulate it

as a global optimization problem. Doherty et al. [17] formulate the position estima-

tion problem as a convex optimization problem given the known anchor coordinates,

specifically second-order cone programming. Proximity, distance, or angular con-

straints are formed as convex constraints so that their intersection is still convex.

Similarly, Biswas et al. [6] present a semi-definite programming based method, and

Moses et al. [43] derive the maximum likelihood estimator for node positions under a

Gaussian error model. Although this global optimization formulation is mathemat-

ically elegant, it has two major problems - it is unavoidably centralized and may



become computationally intractable as the size of the networks grows.

On the other hand, seeing the localization problem as a point estimation problem

on node positions offers an insightful perspective on the localization error behavior.

To this end, researchers have used the Crame'r-Rao bound, a statistical lower bound on

the covariance of an unbiased estimator, to characterize the error behavior [43, 53, 36].

In particular, Savvides et al. [53] analyze how network setup factors such as anchor

placement, node density, or beacon density affect localization accuracy.

Optimization-based methods can also be used for anchor-free scenarios. Anchor-

free localization (AFL) [48] seeks, by mass-spring relaxation, for an graph embedding

whose edge lengths are consistent with inter-node distances. To prevent the opti-

mization from falling into local minima, AFL algorithm employs a heuristic to make

an initial "fold-free" assignment of node coordinates.

The localization problem has also been formulated as an instance of learning

methods. Shang et al. [56] applied multidimensional scaling (MDS) to the localiza-

tion problem. MDS is a set of techniques used for dimensionality reduction or vi-

sualization of high-dimensional data, finding a low-dimensional embedding in which

"distances" between data points are preserved [58]. In general applications of MDS,

the "distance" or dissimilarity between two data points is to be defined. However,

the MDS-MAP method [56] utilizes the idea that, if each data point represents a

node, range measurements between nodes directly give the very dissimilarity metric.

Distances between non-neighbor nodes are approximated by shortest-path distances.

Then, the resulting embedding found by MDS becomes an approximation of node

positions on two- or three-dimensional space. The MDS-MAP has several advan-

tages. It does not require anchor nodes and constructs a relative map. Also, it is

a closed-form method (which does not require iterative computation). However, be-

cause it requires all-to-all distance information between nodes, it is centralized and

does not work well with anisotropic networks in which the shortest-path distance

may not be a close approximation to the real Euclidean distance. To overcome this

problem, researchers attempt to develop distributed versions of MDS: by applying

"patch-and-stitch" scheme [55], or by minimizing multiple local cost functions [13].



In addition, self-organizing maps [23], a neural network technique, and a variety of

manifold learning algorithms (e.g. [46]) have been applied to the localization problem.

2.2.4 Bayesian Probabilistic Approaches

Most of the localization methods described so far solve for a single position estimate

for each node. Accordingly, they cannot provide a measure of uncertainty in the

solution arising from uncertainty in measurements or the method itself. Although

bounding-box-like methods may provide a crude uncertainty metric, the area or vol-

ume of a bounding box, it does not tell which exact point in the box is "most likely"

based on the current measurements.

In contrast, Bayesian inference offers a variety of estimation methods to infer

posterior probability (also called belief) after evidences or measurements are taken

into account. The posterior distribution can provide a single position estimate if

needed, as well as characterize uncertainty in the estimate.

Ihler et al. [30] model sensor networks as graphical models (specifically Markov

random fields) and applied nonparametric belief propagation which is a sample-based

variant of well-known belief propagation [47]. In this work, each node is modeled as

a variable in a graphical model. Since the belief propagation estimates a probability

of interest by passing messages between the variable, this method is naturally suited

to the distributed nature of sensor networks.

For mobile networks, sequential estimation methods have been applied. Sequen-

tial techniques for localization, such as extended Kalman filters or particle filters,

have been widely used for robotics [20, 59]. However, sequential estimation for sensor

networks must be treated differently from that for robots. Specifically, typical sensor

platforms are expected to have limited or no knowledge over mobility, have limited

sensing capability devoted to localization purpose, and have constrained computation

capability [29]. Probabilistic localization techniques were adapted for sensor networks

with considering these limitations. Particularly, particle filters (also known as Se-

quential Monte-Carlo localization when applied to localization problems) are popular

techniques for sensor networks, because their computational load is adjustable and



implementation is easy while they can represent an arbitrary distribution. In partic-

ular, Hu and Evans [29] adapt the particle filters for mobile networks in range-free

setting. Baggio and Langendoen [4] improve the method by Hu and Evans in the way

the filter uses proximity information. Dil et al. [15] use both proximity and range in-

formation. Klingbeil and Wark [34] present a particle-filter-based indoor localization

system that uses various sensing modalities including proximity, inertial sensors, and

magnetic compasses.

One major property of sequential localization techniques is that they require a

priori information about the environment (i.e. map). If such information is provided,

i.e., beacons (any reference points such as anchor nodes) are placed widespread on the

operation region, the sequential localization techniques are well-suited for a mobile

sensor network localization task. However, if there are no anchors available in the

network, such techniques cannot incorporate sensor measurements into the filter. In

this sense, they are not suitable for relative localization.

2.2.5 Approaches in Other Areas

A variety of algorithms to provide location information have been developed in other

areas than wireless sensor network research. In particular, localization problem has

been extensively studied in robotics. Popular localization algorithms in robotics in-

clude extended Kalman filters [38], hidden-Markov model [20], and particle filters [19].

However, these estimation algorithms have several limitations: 1) they estimate self-

location only, hence it requires another layer of protocol in order for one robot to

have knowledge about others' locations; 2) they require knowledge about the map,

or it must be obtained by exploration, which poses a problem as a difficult simulta-

neous localization and mapping (SLAM) problem; 3) they usually use a combination

of multiple sensing modalities such as LIDAR, vision, and acoustic sensor. As stated

in the previous section, unique characteristics of wireless sensor networks make it im-

practical to apply robotics techniques directly to general sensor networks localization

problems.

Localization research in collaborative autonomous attempts to solve some of these



limitations. One method developed to support collaborative autonomous robotics

proceeds in rounds, in each round designating some nodes as nonmoving "portable

landmarks" while allowing other nodes to move [35]. This framework does not support

independent or spontaneous motion, for example by human individuals operating as a

team, and introduces communications latency as nodes coordinate their movements.

Another method enables all nodes to move simultaneously, but requires that each node

be able to observe range and bearing to all other nodes [51]; no known long-range

sensor can provide such measurements in the presence of complex occlusion.

Several localization methods have been proposed to support autonomous under-

water vehicle (AUV) operations. One method integrates acoustic communication and

ranging to achieve localization, but requires deployment of three fixed, surveyed bea-

cons to serve as position references [21]. Other researchers equip a subset of AUVs

with relatively expensive, high-quality proprioceptive sensors (e.g., inertial measure-

ment units), which transmit their dead-reckoning navigation estimates to cheaper,

less-capable vehicles [60]. All vehicles are thus subject to position errors that grow

without bound [63].

2.3 Thrust of MBL

In the previous section, we reviewed various localization protocols for wireless sensor

networks. The major body of the current localization research concentrates on the

static network problem. Localization protocols for mobile networks is still a largely

unexplored area of research. Although several methods are designed to work for mo-

bile networks, they typically assume the existence of anchor nodes. This assumption

is often unrealistic in unexplored or hostile environments.

The thrust of the present thesis differs from the work described above in three

significant ways.

First, our primary goal is not to recover a motion estimate for all nodes in an

absolute frame, but rather, for each node, motion estimates for all other nodes ex-

pressed in the frame in which that node is at rest. This goal arises from our desire to



provide situational awareness for a person moving, with others, within a GPS-denied

space.

Second, we make no use of external coordinates or preferred anchor nodes, nor do

we require any infrastructure deployment or configuration prior to localization.

Third, we treat the case in which all nodes are moving, rather than treating each

time instant as a separate static localization problem to be solved in isolation, or

designating some nodes as fixed and some as moving. We model all nodes as mov-

ing along piecewise-linear trajectories, and recover descriptive parameters for those

trajectories. In principle, one can apply a localization algorithm designed for static

networks to a mobile network, by repeating computation at each time instance. How-

ever, such an algorithm designed without explicit consideration of node mobility will

not work as expected, suffering from latency and computational cost. In contrary, our

goal is to estimate node positions and velocities together, reducing such difficulties.
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Chapter 3

Moving-Baseline Localization

This chapter presents the Moving-Baseline Localization (MBL) method, a distributed

algorithm to recover relative trajectory of each node rather than a single position

at a fixed time. Section 3.1 describes the basic idea and gives an overview of the

method. Sections 3.2-3.5 describe how each node constructs its own global view of

the network from local range measurements. Section 3.6 explains the maintenance

step of the MBL method in which each node detects motion change of other nodes

and refines its view of the network. Section 3.7 studies the computational complexity

of the MBL algorithm.

3.1 Overview

We assume that each node: has a unique integer identifier; can discover, range to,

and communicate with nearby nodes, but has no prior information about its position;

and maintains the time t, either locally or through a network synchronization method

(e.g. [40]). These pairwise interactions induce a dynamic network in which two nodes

i and j share an edge ij when and only when they can exchange information. Finally

we assume that when ij exists, a discrete sequence of range measurements r, (t) is

available at node i, describing the measured range from node i to node j at time t,

as observed at node i (Figure 3-1).

We start with the simplest instance of MBL: planar motion, with each node mov-
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Figure 3-1: Time-series range data rij (t).

ing along a straight-line path at constant speed. We can then cast the problem of

recovering node trajectories as a low-dimensional optimization (Figure 3-2). Specif-

ically, we must recover four DOFs (degrees of freedom) per node: the quantities fA

and 'i in the expression

Li(t) = Vi + t. vi (3.1)

where A and v' represent the (2-DOF) origin and (2-DOF) velocity vector of the

ith node's motion, and Li(t) is the location of that node at time t. Our goal is to

construct, from local range measurements, a global motion solution in which relative

trajectory of each node is represented by Equation 3.1 up to a global isometry (i.e.,

an arbitrary rigid translation, rotation, reflection and inertial or constant-velocity

coordinate transformation).

To this end, we utilize the fact that the distance between two points moving with

constant velocities forms a hyperbola (Figure 3-3). From the viewpoint of node i,

the observed ranges rji(t) between two nodes L (t) and Lj (t) then lie on a hyperbola

defined by:

ri(t)2 = S(t ti)2  (3.2)

where tji denotes the time at which nodes i and j make their closest approach,

mji denotes the node separation distance at this time, and sji denotes the relative

speed |Igj - i| (Figure 3-3). We define Hij = (sij, tc, mij) as the motion hyperbola

parameters for nodes i and j. We assume that the range observation is symmet-

........ .1 ................. -. .... .. .. . .... .... ... .. ............... : - ........... ...
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Figure 3-2: MBL recovers four DOFs per node.

ric, rji(t) = rij(t), hence the motion hyperbola parameters are also symmetric, i.e.

Hij = Hji. It should be noted that rji at any specific time can be computed from

Equation 3.2. The motion hyperbola parameters serve as a mathematical abstraction

of a relative trajectory, and can be estimated from a series of range observations. The

MBL method constructs a global motion solution from all available motion hyperbola

parameters. The subsequent sections explain how to accomplish this.

If the node motion is further generalized to a piecewise linear trajectory, the re-

covered motion solution would hold only for a finite duration before the node changes

speed and heading. In this case, it is required to recompute a motion solution, and

it is essential to detect these changes as soon as possible to minimize solution error.

The detection is accomplished by use of a sliding observation window and a change

point detection algorithm.

We chose to recover node trajectories, rather than estimating all node locations

independently (i.e., solving the static problem in isolation) at each time-step, for three

reasons. First, our approach requires recovery of fewer parameters (4N versus 2M

for N nodes, M range measurements, and M > N). Second, we can use the motion

model for both interpolation and prediction, using fewer computational resources and

compensating for communication and computation latency at each receiver (and at

each user display). Third, we can use the recovered velocities for high-level reasoning,

rejecting physically nonsensical motions.

-. - ;...... ........... .
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Figure 3-3: The distance between two points Li(t) and Lj(t) moving with constant
velocities traces a hyperbola with respect to time t.

3.1.1 MBL Algorithm at Each Node

Each node estimates motion path geometry in its own inertial coordinate system.

We define a cluster to be any connected set of nodes, and a local cluster as a cluster

containing a node and its one-hop neighbors. We defined above the motion hyperbola

parameters for node j as observed from node i given three or more range samples rji(t).

Once these parameters have been estimated (Section 3.2), each node estimates the

relative motion of each of its neighbors (Section 3.3), then constructs a local cluster

by aligning computed positions and velocities (Section 3.4). Each node broadcasts

its local cluster solution, enabling every other node to construct its own global view

of the network (Section 3.5).

Ranging noise corrupts low-level motion estimation, causing error in the computed

localization solution. Each node monitors error by comparing predicted and observed

ranges, and reinitiates localization (thus revising its estimates of all other nodes'

trajectories) whenever it detects change in the observed error using a change point

detection algorithm (Section 3.6).

As noted above, in the absence of an external coordinate reference, the most we

can hope to recover is some set of motion paths that are consistent with all range



measurements, but ambiguous up to an isometry. The isometry's translation, rotation

and reflection components can be resolved only with additional information, such as

GPS or anchor coordinates at three or more nodes. The inertial ambiguity is not an

issue in our setting, because each node's MBL solution is expressed within its own

inertial frame. Also, there are many applications in which relative motion itself is

useful, such as group maintenance or geometric routing [33, 41].

3.2 Hyperbola Estimation

In this section, we address the problem of estimating the motion hyperbola parameters

between node i and j, Haj = (s, to, m,,), from time-stamped range measurements.

We start by rewriting Equation (3.2) into a general quadratic form:

2 23 +S2 t _ t)2S- 
(3.3)

= -2t2 - 2S2 t t + t 2
2 + M2

Now, suppose there are T range measurements in the most recent observation

window. Given a sequence of T discrete range measurements between node i and j,

(rn, tn), n = 1, ... , T, we consider the following quadratic model:

Yn := r 2 -a -3 - + I n +_ - (3.4)

where ~, is the error term. The problem of estimating motion hyperbola parameters in

Equation (3.2) has been reformulated into a quadratic regression problem, in which y,

is a linear combination of parameters a, 0, and y. Once the estimates of regression

coefficients are obtained from at least three measurements (T > 3), we can easily

calculate the motion hyperbola parameters by comparing Equation 3.3 and 3.4 to



yield:

to 3 (3.6)

S327n: a- (3.7)

where x denotes an estimate of x. It is to be noted that the relative speed sj, and

the distance at the closest approach m,, must be physically nonnegative.

Parametric regression methods such as ordinary least-squares estimation are often

used to estimate regression coefficients - 6, 3, and ' in this case. However, the

ordinary least-squares method is sensitive to the presence of outliers with significant

leverage, because it minimizes the sum of squared residuals. This restricts usefulness

of the ordinary least-squares method in our particular setting because of two reasons:

1. Range measurement data contain a nonnegligible amount of outliers (See Chap-

ter 4);

2. The dependent variable y of the regression problem (3.4) is r 2, not r. If the

ranging error were a Gaussian random variable with zero mean, the error term

e would not be Gaussian and would have a nonzero mean. Moreover, the effect

of outliers in the error term E is more magnified than that in the ranging error.

To guard the fitting result against harmful effect of outliers as well as to obtain

more accurate estimates, we apply a nonparametric robust quadratic fitting method

presented in [10] for estimation of the regression coefficients a, 3, and y. Assuming

a quadratic model, the method takes the median value over all point estimators as

the final estimator for each parameter. Because a small number of outliers have only

marginal effect on the median value, the method performs well under the presence

of outliers. That is, it naturally discards outliers when their fraction is not very

significant. Moreover, the method is simple and non-iterative, thus more adequate

for mobile sensor platforms than other robust regression methods or complicated



outlier rejection algorithms. In Appendix A, an analysis of the robust fitting method

is presented with several examples.

The procedure of estimation for hyperbola motion parameters sj,, t',, and m3,

is shown in Algorithm 1. After calculating the motion hyperbola parameters, each

node communicates them to its 1-hop neighbors so that they can make use of them

in estimating their own local clusters.

It is to be noted that this procedure may return failure when the resulting

parameters are physically impossible. For example, a parabola y with negative cur-

vature y < 0 will result in a complex-valued relative speed si, which is physically

invalid. In general, the recovered parameters s, tc , and m define the slope of the

hyperbola's asymptote, the x coordinate, and the y coordinate of the hyperbola's

vertex (Figure 3-3) respectively. Estimation accuracy increases in general for more

samples and for samples closer to the hyperbola vertex (i.e., the time of the nodes'

closest approach). Therefore, when failure occurs, a node must obtain additional

range measurements to learn the true shape of the motion hyperbola.



Algorithm 1 Estimation of motion hyperbola parameters using nonparametric ro-
bust quadratic fitting method [10]. Note that a subscript i, j, or k points to an index
in range measurements, not a node ID here.

1: 2 = r 1 < i < T.

2:

3: for all (T ) triplets of range observations, (y2, t,), (yj, t3 ), (yk, tk) do
31 Y3

4: '3kj - (tk-t ) tk -t, t t

5: end for
6: ' = median{jk}
7:

8: for all (T) pairs of range observations, (y,, tj), (yU, t,) do
9: /3 = - I(t] + tz)

10: end for
11: 3 = median, }

for all T range obs
S= Yi - /tz - t

end for
& = median{&

if > 0 and& -

icm=
4=

return g, tc , rn
else

return failure
end if

ervations (y,, t,) do
2

> 0 then



3.3 Path Estimation Geometry

The parameters estimated in the previous section capture the relative position and

motion of a pair of nodes. With three relations among three nodes i, j, and k, we

can infer the relative motion of the node triangle, which we define as a set of linear

trajectories of three connected nodes. A node triangle can be represented as a triangle

of node positions at any time t with velocity vectors attached as in Figure 3-4(g).

Our approach, for each node i, amounts to fixing i at its own origin and deter-

mining the motions of j and k in i's frame. First, we exploit the fact that, when two

nodes i and j move linearly, at the time of closest approach t' the velocity of j with

respect to i with magnitude s,, must be tangent to a circle of radius m,, centered at

node i (Figure 3-4(a)). Therefore, in node i's frame at any time t, node j has position

(m,, 3 -. (t - tc,)) and velocity (0, s3i).

Likewise, the relative motion between nodes i and k can be established in i's frame

(Figure 3-4(b)) up to an unknown reflection.

Now, we apply the remaining distance constraint rk3, which can be calculated

from Equation 3.2 when Hk3 is known, to solve for the position of node k in the frame

defined by nodes i and j. This step yields two possible positions for node k, and

two possible relative velocities for nodes i and k, giving a total of four possibilities

(Figure 3-4(d)).

Figure 3-4(e) depicts relative velocities of all four cases in Figure 3-4(d) with

respect to the node j. This ambiguity can be resolved by considering the relationship

between nodes j and k, i.e. the Hk3 (Figure 3-4(c)). By comparing the motions v~k

to jk, 1 = 1, 2, 3, 4, with k's velocity, v'k3 , to jk in Figure 3-4(c), one can identify the

correct solution.

We do so by decomposing each vector v in Figure 3-4(e) into its vector projection

on jk and its (nonnegative) orthogonal component, and calculate the magnitude of the

corresponding difference vector from the decomposed V'k, in the jk frame (Figure 3-

4(f)). The vector associated with the smallest difference is chosen as the final solution.

This disambiguation determines the position and velocity of node k in the frame
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Figure 3-4: Recovering positions and velocities for nodes i,j,k in the relative coor-
dinates of node i: (a) the relative motion of node j with respect to node i; (b) the
relative motion of node k with respect to node i; (c) the relative motion of node k
with respect to node j; (d) four possibilities for position and velocity of node k in the
coordinates defined by (a).
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Figure 3-4: Recovering positions and velocities for nodes i,j,k in the relative coordi-
nates of node i (contd.): (e) four possible relative velocities of node k with respect to
j in (d); (f) the relative velocities of k to j compared to the known velocity vj; (g)
the final triangle consisting of node i, j, and k.

defined by i and j (Figure 3-4(g)).

If the motion hyperbola parameters were exact, this procedure would always select

the correct motion. In practice, however, estimation error corrupts the recovered

positions and velocities of nodes j and k, making the disambiguation step imperfect.

We employ the following heuristic to suppress erroneous estimates:

v-i-jk = min v4k - kj | <v
1=1,2,3,4

vj3)
Vkj

Vkj

(2)

-...~~~~..... ............ ~...i ... . ~ .

(3.8)



where v* is a selection threshold. Any triangle that does not meet this criterion is not

used for local cluster construction. Because v and Vk are both estimated values for

which parametric distributions are generally unknown, we selected the 81St-percentile

value v = 0.5 m/s empirically from a Monte Carlo simulation (for 81 percent of the

triangle construction steps in the simulation, one of matches V'k3 within 0.5 m/s).

3.4 Local Cluster Localization

The algorithm in Section 3.3 shows how each node constructs node triangles from

motion hyperbola parameters in its own frame. In the local cluster localization step,

each node computes a local cluster at the specific time t from those node triangles.

Each node becomes the origin of its local coordinates and estimates of relative loca-

tions and velocities of its neighbors using a process analogous to chained trilateration.

In this step, we consider only node triangles that contains the self node i 1.

We first define a trilateration dependency graph g = (V, 8, C) where the vertex

set V is a set of triangles constructed from node i and its one-hop neighbors at the

specific time t, as in Section 3.3, and the edge eab E S between vertex (node triangle)

A a and Ab, Aa, Ab E V, is defined if:

1. triangle Aa and Ab share an edge; and

2. the unshared node in Aa is connected to that in Ab.

That is, two vertices in the trilateration dependency graph are connected if one of the

corresponding triangles can be localized by trilateration based on the other triangle

in the underlying local cluster. In addition, we assign v;*--k in Equation 3.8, which

indicates how consistent velocity estimates are, as an accuracy heuristic Ca E C for

each node triangle Aa E V. Lower Ca indicates that the velocity estimates in tri-

angle Aa are more consistent, giving a high possibility that Aa is more accurately

constructed than others.
1There might exist other node triangles that do not contain the self node i. However, because all

the triangles under consideration are constructed from one-hop neighbors, the number of those tri-
angles is usually small and all one-hop neighbors can be localized using only the triangles containing
node i
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Figure 3-5: Aligning a local cluster and a new triangle sharing two nodes i and j by (a)
translation, (b) rotation, (c) possible reflection, and (d) an inertial frame (velocity)
shift.

For local cluster localization, each node repeatedly aligns triangles along a span-

ning tree in g, adding a new node to the underlying local cluster at each step. We

perform a greedy traversal on g, based on the accuracy heuristic C. Starting from

the triangle with the lowest c, the local cluster localization algorithm visits a new

triangle with the greedy strategy. If the new triangle contains a new node that is not

localized yet, it is merged to a local cluster solution with the process described below.

The local cluster localization step is described in Algorithm 2.

Now, let us consider adding a triangle Aijk to a local cluster solution, given

common nodes i and j (Figure 3-5). The procedure is as follows:

1. Translate the triangle in order to

(Figure 3-5(a)).

2. Rotate the triangle, with velocity

alignment (Figure 3-5(b)).

3. Determine whether triangle must

the other nodes connected to k in

bring the positions of node i into alignment

vectors, to bring the position of node j into

be flipped or not, using distances from k to

the local cluster (Figure 3-5(c)).

k j I k

E gi ei

(a) Translation (b) Rotation
to align i to align j

....................... . ...



4. Apply a velocity vector offset to equalize two views of V, and ', (Figure 3-5(d)).

5. Add the new node k to the local cluster.

Finally, it is to be noted that a trilateration dependency graph may be discon-

nected. This implies that if a node belongs only to a certain distinct connected

subgraph g' C 9, it can be localized via trilateration only if the local cluster local-

ization algorithm starts from a triangle in g'. Algorithm 2 does not guarantee that

a local cluster found is maximal in terms of the number of recovered nodes, but can

be tailored easily to yield the maximal one by repeatedly applying the algorithm on

any remaining subgraph in g and replace the known "best" solution if the new local

cluster solution is larger than the known one. In our implementation, however, this

is not implemented because, for random deployment, the first solution was experi-

mentally almost always identical to the best solution as the algorithm is most likely

to start from a triangle in the maximal component of 9, yielding the maximal local

cluster.



Algorithm 2 Local cluster localization.
1: Node i: The node self.
2: Neighbors: {N neighbors to be localized.}
3: Unlocahzed: {A set of triangles that are not localized yet.}
4: TriangleQueue: {A priority queue of triangles.}
5: OUTPUT LocalCluster: {A set of (ID, position, velocity) tuples of localized nodes

at time t.}

// Generate all triangles including node i
for all node j E Neighbors do

for all node k C Neighbors\{j} do
Generate a triangle A,- -k at time t.
if Az-jk V Unlocalized and 1v*-3-kl|

Add A_3_k to Unlocalized.
end if

end for
end for
if Unlocalized = 0 then

Return failure.
end if

and its neighbors.

{Section 3.3}
< v* then

20: Make a dependency graph g = (V, 8)
21:

22: // Greedy traversal on 9
23: // 1: Initialization
24: From Unlocalized, pop A 0 with the minimum | v* .
25: Initialize LocalCluster with A 0.
26: Update TriangleQueue with neighbor vertices of A 0 on g.
27: // 2: Loop
28: while TriangleQueue f 0 do
29: From TriangleQueue, pop A' =< i, j, k > with the minimum I|v*ll.
30: Update TriangleQueue with neighbor vertices of A' on g.
31: if A' contains a new node k LocalCluster {i and j are common} then
32: Merge A' into LocalCluster along i-j, adding k to LocalCluster.
33: end if
34: end while



3.5 Global View Construction

This section describes how each node constructs a global motion solution of the

network from the local clusters computed at each node as in Section 3.4. If a node

receives a broadcast packet including local coordinates from another node, it saves

the packet in a local cluster cache. The global view of the network is constructed

these cached local clusters. Before performing global view construction, a node may

check if each of the cached local clusters is outdated past a predefined "time-to-live"

value and decide whether it is used for the global view construction or not.

To construct a consistent view of the network, we repeatedly find the best align-

ment for each pair of local clusters that share three or more noncollinear nodes along

an arbitrary spanning tree, each time adding a local cluster to the MBL solution.

The alignment operation requires extrapolating the cluster to be added to a common

time, then finding the translation, rotation, reflection, and velocity offset that trans-

form positions and velocities within one cluster to those within another. An efficient

method for solving this "absolute orientation" problem is known [28].

We consider the absolute orientation problem of aligning a cluster (denoted 2) to

another cluster (denoted 1). We denote node i's position and velocity in cluster 1

and 2 as (p ), v(1)) and (p(2), v(2)) respectively. As in local cluster localization, we

solve for the Euclidean transformation (translation, rotation, and reflection) and ve-

locity offset separately. We recover the Euclidean transformation from p(2) to p(l) by

minimizing the sum of squared residuals

(R'. T') = argmin () - R(p2)) - T , (3.9)
R,T

where R is a rotation (and possible reflection) and T is a translation. Equation 3.9

can be solved efficiently with linear complexity of the number of common nodes. The

procedure is described below briefly. Refer to [28] for complete derivation.

Let N denote the number of common nodes, P(1) and p(2) denote the centroid of

cluster 1 and 2 respectively. Then, the translation T' is simply the difference between



the centroid of 1 and the rotated centroid of 2:

T' = P(1) - R'(p(2)). (3.10)

This translation is computed after we obtain R'. To find R', we first calculate the

following matrix M:

M Sx Sxy (3.11)
SYV SVV

where

N N N N

Sxx = x( 1 ) x ( 2 ) ; Sx, ( ' ) y ( 2 ) ; Syx = y( 1) )( 2 ) ; Syy : y(1)y(2). (3.12)

Now, the rotation matrix R' is computed as follows:

R' = M(MTM)-1 2  (3.13)

in which the matrix square root is computed via eigen-decomposition.

After solving for (R', T'), we solve

v' argmin ) - R'(v(2)) - v

to yield the velocity offset V' that best shifts velocities in cluster 2 to align with those

of cluster 1.

3.6 Adaptive Updates

Section 3.2 3.5 explain how each node computes a global view of the network under

constant linear motion assumption. While the procedure described above can estimate

relative positions of moving nodes more efficiently, by recovering velocities, than static

localization methods, it should be able to deal with two types of changes in the



network: change in network topology and change in node motion. The first type of

change, change in network topology, occurs when a node comes into or goes out of

communication range of another. It also occurs when a node wakes up, goes into sleep

mode, or is turned off. The second type of change, change in node motion, occurs

when a node changes its moving direction, speed, or both.

The MBL method deals with these types of changes by recomputing its own local

cluster estimate and propagating it to the network. Other nodes in the network can

recompute or modify its global view estimate with the new local cluster estimate to

learn about changes beyond their local neighborhood.

Each node employs a set of update rules to determine when it triggers a relocal-

ization procedure against changes in the network. Table 3.1 summarizes the update

rules. The first rule is to detect if a new node comes into the neighborhood. To

prevent unnecessarily frequent relocalizations, we set a threshold of 3 node - sec, i.e.,

when one node persists for three successive seconds or three nodes persist for one

second. The second rule, which detects a motion change, is explained in the following

subsection. Finally, the third rule is used to learn changes in the network beyond

one's sensing range. For the first and second event, a node relocalizes its local cluster

as well as global solution of the network. For the third event, a node updates its

global solution only.

In the following subsection, we describe how each node can detect motion changes

in its local neighborhood in on-line fashion using a sequential change point detection

algorithm.

Update rule Description of a change

The counter tracking the number of new New nodes come into the neighborhood.
nodes exceeds 3 node - sec.

Detected a change (or prediction error) This node detected a change in motion

in motion via CUSUM algorithm. in the neighborhood.

Received a new local cluster packet. Another node in the network detected
change.

Table 3.1: Summary of update rules.



3.6.1 On-line Change Detection via CUSUM algorithm

Using the position and velocity estimates at a certain time, each node can compute

relative location of other nodes in the network using Equation 3.1. The prediction

error of any node's view, however, will grow over time because of two reasons. First,

if other nodes change their motion to move in a different direction with a different

speed, location predicted using Equation 3.1 is not valid any more. Second, even

though node motions have not been changed, as uncertain trajectory estimates are

extrapolated in time, error in the position estimate will grow linearly to the direction

of velocity error.

We employ a change detection algorithm to deal with these situations. The basic

idea is as follows. Suppose that a particular node, node A, has computed a local

view. After that, node A will continue to measure distances between neighbors and

itself. When measuring a distance to a neighbor node B, if A's estimate is still valid,

prediction error of the distance measurements must be small and follow a prori

ranging error distribution. If, otherwise, the prediction error is high and can be

thought as not following the known ranging error distribution, node A determines

change in node motion and triggers recomputation of its local view.

More specifically, the on-line change detection problem is formulated as follows [5].

Let Tk denote the measured distance and Tk denote the predicted distance to node B

from node A. We consider a sequence of prediction errors (ek), k = 1, 2, ..., where ek =

rk - Tk. Let us assume that, before the unknown change time to, ek has a probability

density function (pdf) pe(e; Oo), and after to, pe(e; 01) with different parameters 00o

and 01.

To detect a change in prediction error, we use the two-sided cumulative sum (two-

sided CUSUM) algorithm [5]. We first describe the single-sided CUSUM algorithm

to test between two hypotheses regarding the parameter of pdf:

H o : = 00 (3.14)

H 1 : = 1.



The CUSUM algorithm can be interpreted as a repeated application of the se-

quential probability ratio test (SPRT) [61]. After each measurement, the decision can

be indecisive, in favor of Ho, or in favor of H 1 which indicates a change. If the de-

cision is indecisive, the node takes the next measurement and the test continues. If

the decision is to accept the null hypothesis Ho, the test restarts2 . If the decision is

made in favor of H 1, node A detects a change and triggers recomputation.

The decision is made based on the log-likelihood ratio:

Sk - n 0 1 )  (3.15)Pe (ek; 0o)

which represents the ratio of the likelihood that ek is drawn with the parameter 01

over the likelihood with 00. The decision rule of CUSUM algorithm uses the following

metric gk, which can be written recursively as:

gk = sup(O, gk-1 + Sk). (3.16)

Finally, the alarm time, at which the decision is made in favor of H 1 , is defined

as:

ta = min{k : gk > h}. (3.17)

To apply Equation 3.16 and 3.17 to our change detection problem, probability

density function of e, p, (e) must be known. In Chapter 4, a ranging error model of our

target device, ultra-wideband radio, is developed and the resulting model is a mixture

of small Gaussian error and large uniform error that models outliers. Because the

Gaussian error is dominant in the ranging model and makes the CUSUM algorithm

much simpler, we assume here that the pdf of e is Gaussian and the parameter of

which change is to be detected is its mean. That is:

Pe(e; 0) = JA(e; 0, o) (3.18)

2In Equation 3.16, having a value gk-1 + Sk below zero is interpreted as accepting Ho. Replacing
the negative gk with zero means "restart".



where 0o = po, and 01 = p1 = po + v, where 0o and pi are means before and after

the change at to. It is further assumed that ipo = 0, i.e. the pdf before change is

zero-mean Gaussian.

The CUSUM algorithm above can be used if there is a single alternative hypoth-

esis. In our setting, the ranging error can be either positive or negative. Therefore,

we are interested in both positive and negative changes in the mean value. In this

case, the solution is to use two CUSUM algorithms together [45]. If the mean value

after change is either t0o + v or po - v, the resulting two-sided CUSUM algorithm

with Gaussian pdf assumption (Equation 3.18) is given by [5]:

k= sup(0,g- 1 + ek - /o - ) (3.19)

g = sup(0, gk- - ek+ 0 - ) (3.20)

ta = min{k : g' > horg- > h}. (3.21)

The two-sided CUSUM algorithm above works well with the Gaussian ranging er-

ror assumption. However, if there are outliers in observations, the CUSUM algorithm

will trigger false positive relocalization events. To combat this possibility, range er-

rors are winsorized with a pre-defined threshold w [16]. That is, if the deviation of

a range error from Po is bigger than w, the error is replaced with Po ± w. This win-

sorization technique makes false positive relocalization events occur less frequently.

The resulting motion change detection algorithm is shown in Algorithm 3.

3.7 Complexity Analysis

In this section, we analyze the computational complexity of the MBL algorithm.

Although the general problem of finding a graph embedding as well as unit-disk

reconstruction problem are known to be NP-hard [3], it is also shown that trilateration

graph realization can be done in polynomial time [18]. Our algorithm, which is based

on trilateration, can be performed in polynomial time as well.

More specifically, Algorithm 1 examines (') triplets at maximum. Median-finding



Algorithm 3 Motion change detection algorithm using two-sided CUSUM algorithm.

1: g = 0, g- = 0
2:

3: loop {for every new range measurement r to each node at time t}
4: Compute range prediction i at time t from the local view estimate.
5: e = -r.
6:
7: // Winsorization
8: if e > w then
9: e = w

10: else if e < -w then
11: e = -w

12: end if
13: // CUSUM
14: g+ sup(0, g + ek - o- )
15: g- = sup(0, g - ek + P0 - 2
16: if g+ > h or g- > h then
17: g = 0, g- = 0
18: Trigger relocalization.
19: end if
20: end loop

is implemented using the randomized "quickselect" algorithm [12]. Although the

worst-case complexity of the quickselect algorithm is 0(12) where 1 is the number of

elements, its expected runtime is 0(). Therefore the expected runtime of Algorithm 1

is O(T3 ). This is comparable to the least squares method in which pseudoinverse

computation has complexity of O(T2.80 7) [12]. If the length of an observation window

is fixed, the fitting takes only a constant time.

For Algorithm 2, generating all node triangles take O(m2 ) where m is the max-

imum node degree. The complexity of spanning tree traversal grows linearly with

the numbmer of triangles, and each merging step takes 0(1). Therefore, the overall

complexity is O(m2 ). This is achievable because only triangles including the self node

are considered in this step.

For the global view construction step, there are n local clusters at maximum

and any two clusters can have m shared nodes between them. Because the absolute

orientation algorithm [28] has linear complexity in the number of common nodes (in

Equation 3.11), the total complexity of this step is O(mn).



Chapter 4

UWB Radio Node

Characterization

Starting in January 2007, we characterized a current-generation UWB radio, the Time

Domain Corporation (TDC) PulsOn 210. We collected ranging measurements from

the off-the-shelf UWB devices in indoor environments around MIT campus. The aim

of the range data acquisition campaign was to gather range data from UWB radios

in real indoor environments to develop a ranging error model that faithfully describes

ranging behavior of the device in such environments. In Section 4.1, the overall

characteristics of PulsOn 210 radio are described. In Section 4.2, we describe the

setup for range measurement campaigns. In Section 4.3, we analyze the range data

gathered from the campaigns and develop a ranging model of the UWB radio.

4.1 UWB Radio Characteristics

Time Domain Corporation PulsOn 210 radio is an ultra-wideband transceiver which

operates at a center frequency of 4.7 GHz and a bandwidth of 3.2 GHz. The device

has a small form-factor of 16.5 cm x 10.2 cm x 5.1 cm excluding antenna, which

is suitable for a localization system. The TDC devices can range more than about

30 meters around obstacles in indoor environment. Range between a pair of radios

is acquired via a two-way half-duplex ranging scheme, in which one radio sends a



Figure 4-1: Time Domain Corporation PulsOn 210 radio

ranging request and the other responds to the ranging request packet. The requester

node measures a round-trip time-of-flight to calculate distance between the responder

and itself. The radio compensates the round-trip time with electrical delays - the

amount of time spent in internal logic - and leading-edge correction - the offset

between where the signal preamble is acquired and the true leading edge of the signal

- to make distance estimate more accurate. Ranging packets include a space for

data payload; the estimated inter-device distance is piggybacked in the data packet

so that the responder can also obtain the distance measurement. The data payload

space can also be used for data communication.

The devices use a time-division scheme to schedule ranging requests, with the

ranging protocol requiring about a few tens of milliseconds, yielding a maximum

achievable ranging rate in any vicinity of approximately 30 Hz'. Our simulation in

Chapter 5 uses a ranging frequency of 5 Hz to roughly capture the constraint that

nearby nodes cannot range simultaneously.

4.2 Campaign Setup

A series of range data acquisition campaigns were performed in two different indoor

locations of the Stata building, namely, the basement and the 3rd floor of the Stata

'Ranging rate is adjustable to obtain better ranging performance or larger maximum ranging
distance.

............... .... .. ..... .. . .. ....................... ........... .......................



Location Line-of-sight condition Distance (m) Granularity (m)

Stata basement hallway LOS 1 - 30 1
CSAIL 3rd-floor LOS 1.5 - 13.5 0.25
CSAIL 3rd-floor Non-LOS 1.5 - 13.5 0.25

Table 4.1: Experiment conditions for range data acquisition campaign

building. Range measurements were taken between two UWB radios by varying sepa-

ration distance, fixing the receiver at one location and moving the transmitter so that

the distance between the radios matches the ground-truth distance at each location.

For each location, 1000 successful range measurements were collected. The radios

were placed at the height of 89 centimeters from the ground. Table 4.1 summarizes

environmental conditions for our data acquisition campaign.

Figure 4-2 shows locations where range measurement campaigns were conducted.

The first campaign was conducted at a long and wide corridor in the basement of

the Stata building, as marked in Figure 4-2(a). Since TDC PulsOn 210 radios can

exchange ranging packets reliably up to approximately 30 meters without increasing

transmission power beyond FCC regulation, we collected range data up to 30 meters

with granularity of 1 meter. A data set acquired from this campaign constituted a

basis for the ranging error model.

However, as shown in the next section (Section 4.3), range measurements gathered

from the Stata basement campaign did not fully capture the ranging characteristics of

UWB radios in indoor environments, because the wide corridor was considerably more

open place than typical indoor spaces where walls, doors, and clutters exist nearby. In

the latter types of environments, we can expect that reflection and loss of signal due

to nearby objects adversely affect ranging performance of the devices. Therefore, we

also conducted measurement campaigns at a narrow corridor on the third floor of the

Stata building (Figure 4-2(b)). Along the experiment baseline, there were two doors

with which we could evaluate the effect of non-line-of-sight (non-LOS) condition.

Although we were able to collect range data only up to 13.5 meters in the third floor

environment because of space limitation, these sets of measurement campaigns were

also used for developing a reasonable ranging error model for simulation studies.



(a) Stata basement

(b) CSAIL 3rd-floor

Figure 4-2: Range measurement campaign locations.
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4.3 Range Error Model

In this section, we develop a ranging error model for TDC PulsOn 210 UWB radios.

We first define range error to be = rm -r, where rm is measured separation distance,

and r is the ground-truth separation distance between radios.

Figure 4-3, 4-4, and 4-5 show histograms of range error E at r = 7.5 m in each

environment in Table 4.1. From histograms over all data sets, we observed that that

the data set of range measurements collected in Stata basement has few outliers,

while that collected in CSAIL 3rd-floor either with LOS or non-LOS condition has

a considerable number of outliers, whose associated range error extends up to ±10

meters. While UWB time-of-flight ranging is generally accurate and resilient to mul-

tipath fading [65], large distance errors can occur when line-of-sight between radios

is blocked [37], or when the amplitude of an impulse received along a directed path

drops below the device's detection threshold [1]. On the other hand, if outliers are

excluded, we could model range measurements as a Gaussian distribution in all three

data sets. These observations lead to the following range error model (following [1]):

rm = r + E = r + ES + El (4.1)

where Es is the small error with a Gaussian distribution and El is the large error

associated with outliers.

To model c, and eq separately, we partitioned observed range errors into small

and large errors. For each data set, range measurements within ±0.1 m from the

median value were taken as the small errors, or inliers, and those outside this range

were regarded as the large errors, or outliers. Figure 4-6, 4-7, and 4-8 show error bar

plots with error bias and standard deviation, and fraction of outliers over all range

measurement data at each distance. For the rest of this section, we will describe

range error models for cs and eq in detail, then determine model parameters for each

model with the measurement data.

First, we modeled the small error as a Gaussian random variable with a mean

dependent on the true distance and standard deviation which is independent of the
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Figure 4-3: Histograms of range measurement error, E = rm - r, in Stata basement
data at r = 7.5 m, at different x-axis scales: (a) [-10 m, 10 m]; (b) [-0.2 m, 0.2 m].
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Figure 4-4: Histograms of range measurement error, E = rm - r, in CSAIL 3rd-
floor LOS data at r = 7.5 m, at different x-axis scales: (a) [-10 m, 10 m]; (b)
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Figure 4-5: Histograms of range measurement error, E = rm - r, in CSAIL 3rd-
floor non-LOS data at r = 7.5 m, at different x-axis scales: (a) [-10 m, 10 m]; (b)
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true distance as observed in Figure 4-6(a), 4-7(a), and 4-8(a). Therefore, the small

error was modeled as:

E, - Af(b(r), o) (4.2)

with b(r) represented as

b(r) = vo In(1 + r) + vi (4.3)

where r is the true distance, vo and vi are bias model coefficients to be determined

experimentally from range measurement data.

On the other hand, we observed that large errors occurred with low probability

and did not follow any characteristic parametric distribution. Thus we modeled the

large error simply as a uniform random variable o, over [-10, 10] meters and assigned

its probability of occurrence as a binary random variable r:

El = r Co (4.4)

where r7 has probability mass function

pr() =W PoL if x = 1,

1 - POL if x = 0.

Here POL represents the probability of occurrence of large error and is determined

from the measurement data. That is, we model an outlier that it occurs with the

probability of POL and has additive large error ranging in [-10, 10] meters.

From the data sets, we determined one set of parameters vo, V1, aE, and POL,

which described a representative range error model for simulation. To this end, we

Data set Bias (m) Std. dev. a, (m) Outlier prob. POL (%)

Vo VI Avg. Max. Avg. Max.

Stata basement LOS 0.0323 -0.0786 0.0107 0.0149 0.08 1.5
3rd-floor LOS 0.0204 -0.0321 0.0107 0.0205 7.29 19.2
3rd-floor Non-LOS 0.0538 -0.0815 0.0112 0.0193 6.54 19.9

Table 4.2: Range error parameters from different data sets.
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Figure 4-6: Range error characteristics for Stata basement LOS data set: (a) Bias
and standard deviation of small errors; (b) Fraction of outliers (large errors) in the
entire range data.

64

0.1

0.08

0.06

0.04

0.02

-0.02-

-0.04-

-0.06-

-0.08-

-0.1

1.8

1.6

1.4-

-; ----~ -- ~ ~--; ~ I ----- 1;~~;; ~ -- --- ~- ~ - - ~~ ~---~ ---

I

-- ---



0.1

0.08

0.06

0.04

0.02

-0.02-

-0.04-

-0.06-

-0.08-

-0.1
0 2 4 6 8

Distance (m)

X

XX X X

X Xx x

U
0 2 4 6 8

Distance (m)

10 12 14

X X

10 12 14
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range data.
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first examined the parameters for each data, which is summarized in Table 4.2. These

parameters are combined to yield a representative range model. For the error bias,

we used bias model coefficients vo and vi from Stata basement LOS data, because

it was obtained from the entire working range of a UWB radio as well as it fitted

reasonably on the other range data. Standard deviation of small errors a, and outlier

probability PFo was chosen conservatively as 0.03 m and 7 %, respectively, to reflect

the effect of cluttered indoor environments.

Finally, we summarize our range error model for TDC PulsOn 210 UWB radios

below:

rm = r + E = r + Es + El (4.5)

where

Es N(b(r), 0.032)

b(r) = 0.0323 In(1 + r) - 0.0786

and

El = 7 jo

Co U /1(-10, 10)

p(X) 0.07 if x = 1,

0.93 if x = 0.

This model was used throughout the simulation studies in the next chapter.
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Chapter 5

Experimental Results

In this chapter, we evaluate the MBL method under a variety of simulation environ-

ments to measure its effectiveness for mobile wireless sensor networks. Section 5.1

describes how the simulation was performed. In Section 5.2, we study the tempo-

ral characteristics of the algorithm. Section 5.3 presents statistics that represent the

overall behavior under varying conditions. Section 5.4 compares our method to MDS-

MAP, a well-known relative localization technique. In Section 5.5, the effect of our

update scheme is considered with a grid mobility model. Finally, in Section 5.6, the

performance of the algorithm as well as its possible extensions are discussed.

5.1 Simulation Environment

5.1.1 MBL Simulator

We evaluated the proposed MBL method on a discrete-event simulator developed

using Python and C (Figure 5-1). The MBL simulator was developed so as to accom-

modate various needs for validation and evaluation of the MBL method; it facilitated

our understanding of the behavior of the MBL method through visualization of each

part, and provided easy set-up of the simulation parameters for evaluation of the

method. In addition, the use of both Python and C offered high level of flexibility in

development as well as fast computation of numerical subroutines.
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Figure 5-1: MBL simulator.

In the simulator, every node runs the same code and does not have any shared

memory among nodes. All the communications between nodes are handled via the

"arbiter" module, which determines if ranging and communication between any pair

of nodes is feasible at a certain time based on locations of those nodes. The arbiter

module also puts range error in every ranging packet according to the range error

model explained in Chapter 4. The combination of discrete-event simulator and the

use of arbiter module enabled us to capture temporal characteristics of the proposed

algorithm, which is difficult to capture in a batch simulation.

5.1.2 Simulation Setup

In simulation, we adopted unit-disk graphs [11] to model the topology of networks. In

the unit-disk graph model, two vertices (sensor nodes) are connected if two unit circles

centered on each vertex intersect with each other. Although the unit-disk graph is

a highly idealized model as omnidirectionality of signal propagation is assumed, it

provides a convenient topology model for our simulation. It should be noted that
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our method does not mandate such an omnidirectionality in communication - it is

assumed only for simulation.

We considered two kinds of mobility models, random waypoint mobility model

and grid mobility model for simulation. The random waypoint mobility model [31]

is a commonly used mobility model for mobile wireless network research [7, 29]. In

this model, each node moves from a waypoint to another waypoint with a randomly

drawn velocity. After reaching the waypoint, the node randomly chooses the next

waypoint in the area and proceeds to it with a new velocity. The grid mobility model

is what we developed to depict a simplified mobility pattern of humans in indoor

environment. In this model, nodes are constrained to move only on grid edges and

can change direction or speed at corner points. The corner points have a pre-defined

transition probability from which each node determines the next moving direction,

such as north, east, west, and south. For both mobility models, we considered an

average speed range from 0.5 m/s (slow walking) to 2.5 m/s (jogging).

The output of the MBL algorithm executed at a certain node is a relative posi-

tion and velocity of other nodes in the network with respect to its own self-centered

frame of reference. For comparison, position and velocity estimates are aligned to the

ground-truth in least-squares sense. For the matching, we used the same routine that

is used for the inter-cluster alignment (Section 3.5). After matching, evaluation met-

rics such as position error, velocity error, and percentage of recovery are computed

every 0.1 second.

5.2 Network Example

This section illustrates the temporal characteristics of the MBL algorithm with an

example (Figure 5-2). In this example, 50 nodes were simulated for 30 seconds in a

100 m x 100 m region, yielding an average node degree of 15. Nodes moved with

a random waypoint mobility model. Initially, at t = 5 sec, upper nodes were not

localized in the global view solution of node 1 because of spatial gap between upper

nodes and lower nodes. Despite the average node degree was 15, which is enough
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for localization in trilateration-based algorithms, a moving node in a mobile network

may have occasionally had insufficient node degree due to its mobility. At t = 15 sec,

nodes around the lower right corner were disappeared from the view because they

became separated from node 1. At that time, local cluster information around the

lower right region had been outdated in the local cluster cache of node 1. However,

as nodes came closer, estimates of almost all nodes became available at t = 25 sec.

Figure 5-3 shows position, velocity, and percentage of recovery over time. Trajec-

tory estimation was triggered according to prediction error as described in Section 3.6.

Figure 5-4 shows cumulative distribution function of position error and velocity error

at t = 25 sec respectively. More than 90% of nodes are localized within position error

of - 1 m and velocity error of - 0.3 m.
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5.3 Accuracy, Precision, Availability, and Efficiency

We assessed the performance of our MBL method using four quantitative performance

metrics. The Accuracy metric characterizes the median error in trajectory estima-

tion with respect to ground truth. The Precision metric characterizes the standard

deviation in recovered trajectory parameters. The Availability metric characterizes

the fraction of nodes for which trajectories are successfully recovered. The Efficiency

metric is represented as the average inter-computation time between relocalization

events.

We simulated 50 nodes moving for 50 seconds with a random waypoint mobility

model (with speed chosen uniformly in 0.5-1.5 m/s) in a degree-15 network (size 100 m

x 100 m) while ranging at 5 Hz. Each node gathers range measurements for about

3 seconds whenever it needs to relocalize. We evaluated the Accuracy and Precision

metrics for position and velocity over a variety of ranging sample frequencies, average

node speeds, and average node degrees. Both metrics are shown as box plots, in

which the box center represents Accuracy and the box height represents Precision.

Availability and Efficiency are shown in separate plots. Each box is computed from

100 simulation runs. Because the MBL algorithm revises its trajectory estimates over

time, we computed each metric using time-averages.

Our MBL algorithm recovers trajectories with position and velocity error within

2 m and 0.3 m/s respectively for for ranging frequencies above 1 Hz (Figure 5-5(a)

and 5-5(b)). As ranging becomes faster, localization result becomes more accurate.

However, the effect of increasing ranging rate diminishes after 5 Hz because of the

fixed size of the range observation window. The algorithm estimates trajectories

for more than 80% of nodes when ranging occurs faster than 1 Hz (Figure 5-5(c)).

For lower ranging frequencies, most nodes were unable to localize, collecting too few

range samples within any observation window. Also, the algorithm relocalizes every

5 seconds on average except 1 Hz (Figure 5-5(d)). This does not mean that the

motion change detection algorithm becomes more efficient at low ranging frequency.

It is simply because, in 1 Hz ranging, the motion change detection algorithm requires
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Figure 5-5: Time-averaged trajectory error, node availability, and computation effi-
ciency as ranging rate increases.

longer time to make a decision as range observations arrive only once a second.

We also evaluated the growth and variation in recovered trajectory error as node

speed increases (Figure 5-6). In general, faster node motions have both beneficial

and harmful effect on the algorithm's position and velocity estimates. On one side,

faster speed makes the slope of motion hyperbolae steeper, making the hyperbola

fitting learn the overall shape of hyperbolae better. On the other side, it degrades the

performance of the algorithm since fewer ranging observations can be gathered while

any given node is within communication range. Additionally, at high speeds, we need

to take account of faster divergence of true node motion after motion change from

the predicted motion. We also observe decreasing efficiency at higher node speed in

Figure 5-6(d), because motion change occurs more frequently.

Finally, we evaluated growth and variation in recovered trajectory error as the
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Figure 5-6: Time-averaged trajectory error, node availability, and computation effi-
ciency as node speed increases.

node degree increases (Figure 5-7), from five (sparse) to twenty-five (dense). The

availability transitions rapidly from low to high at approximately degree ten. Because

our algorithm employs a thresholding heuristic when generating triangles, low-degree

networks tend to produce insufficiently many shared triangles for propagation of lo-

calization information. In other words, the algorithm prefers to achieve high-quality

localization, even if only part of the network can be localized, than to localize the

entire network with lower accuracy. This behavior is similar to that observed with

earlier "robust quadrilateral" criteria [42], with an availability transition similar to

that observed in other settings [64]. In addition, it should be noted that at low densi-

ties such as degree of 5, any trilateration-based localization technique cannot achieve

100% availability. We confirmed through simulation that only 80% of randomly de-

ployed network of degree 5 is a trilateration graph (a graph in which a trilateration
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ordering exists).

5.4 Comparison with MDS-MAP

In developing the MBL algorithm, one of the primary design considerations was the

efficiency of the algorithm. The MBL algorithm started from an idea that recovering

trajectories instead of location points would reduce the computational burden in

mobile networks than repeating a static algorithm. In this section, we evaluate the

efficiency of the MBL algorithm against the MDS-MAP [56] method, a well-known

relative localization technique for static networks.

Both MBL and MDS-MAP method used the same base configuration of Sec-

tion 5.3. Because the MBL method relocalized every 5 seconds on average under
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Figure 5-8: Comparison of MBL and MDS-MAP: (a) position error (b) node avail-
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that configuration, MDS-MAP was set to run at the approximately same rate of 5

seconds. That is, we equalized efficiency of both methods and measured localiza-

tion performance for each algorithm. Once MDS-MAP computed position estimates,

they remained as a valid solution for the next 5 seconds. Note that MDS-MAP is a

centralized algorithm and inadequate for practical mobile network locationing due to

communication latency involved.

Figure 5-8 shows a comparison result. The MBL method localized the network

with the median position error of 1.3 m, whereas MDS-MAP method obtained position

error of 4.1 m, showing three times difference in accuracy. Node availability was

similar. This inferior performance of MDS-MAP can be explained in two ways. First,

MDS-MAP uses shortest-paths to approximate inter-node distances between non-

neighbor nodes. This approximation induces a fair amount of error in the final location

solution. Second, more importantly, a position estimate at a certain time is not valid

at a different time for mobile nodes. Therefore, location estimates diverge much

faster than in MBL which recovers node velocity together. Of course, it is possible

to enhance accuracy by increasing the repeating rate in static methods , however, it

will significantly increase computational and communication burden on the network.
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5.5 Frequent Updates

Finally, we considered the effect of our adaptive update rule that triggers localization

only when observed ranges deviate significantly from prediction (Section 3.6). While

this rule saves computation time, it might sacrifice about few meters of positioning

accuracy before relocalization. Thus we compared MBL with adaptive update rules

to that with periodic updates forced at 2 Hz.

We simulated a network of 40 nodes moving for 100 seconds within a square

one hundred meters on a side (Figure 5-9(a)). For this example, we employed the

grid mobility model described in Section 5.1.2. Each node repeatedly generates path

segments by randomly selecting an axis-aligned velocity and distance (Figure 5-9(b)).

We adjusted the velocity distributions to force motion transitions to occur in closely-

spaced bursts separated by about 30 seconds (Figure 5-10(a)), 10 seconds (Figure 5-

10(b)), and 3 seconds (Figure 5-10(c)) of transition-free motion.

Likewise, we ran the large-network experiment with periodic updates forced at

2 Hz. Figures 5-11(a), 5-11(b), and 5-11(c) show the corresponding plots of errorover

time.

Table 5.1 summarizes the algorithm's performance for two different update schemes

in each of the three regimes. In the table, velocity error is decomposed into speed

and heading error. The computation cost grew roughly six-fold (58,221 vs. 10,071

triangles considered), but the errors are significantly smaller and the peaks caused

by motion changes are clearer. For 90% of the estimates, positions are within 1.4 m,

speeds are within 0.3 m/s, and headings are within 25' of ground truth.
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Figure 5-9: (a) True node positions at t = 75 seconds (dots), and ranging radius
(circle). (b) True (black, solid line) and estimated (colored, dots) trajectories for four
of 40 nodes.

Adaptive updates 2 Hz updates

30 sec. 10 sec. 3 sec. 30 sec. 10 sec. 3 sec.

Position Median 1.30 1.21 1.33 0.158 0.304 0.518
error Std. dev. 0.950 2.66 1.56 1.32 0.643 0.944

(m) Maximum 9.12 17.197 21.7 12.1 7.92 6.46

Speed Median 0.136 0.137 0.174 0.111 0.120 0.173
error Std. dev. 0.124 0.139 0.179 0.107 0.085 0.129
(m/s) Maximum 0.771 1.05 1.36 0.645 0.732 1.57

Heading Median 10.0 8.94 13.9 5.69 8.59 13.5
error Std. dev. 17.2 12.3 10.6 37.0 8.29 11.3
(deg) Maximum 103 76.0 84.6 161 81.6 64.9

Table 5.1: Performance of MBL in two different update schemes.
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5.6 Discussion and Future Work

The proposed method in this thesis recovers motion trajectories well over a range

of simulated operating conditions, but fails when ranging is too slow, when nodes

move too quickly, when relative motions are too small, or when the network is sparse

(i.e. when too few nodes lie within ranging radius). We identified the effects of ranging

frequency, node speed, and network density on the algorithm in Section 5.3.

At the heart of our solution is a hyperbola fitting method for estimating the

relative motion between two nodes. The fitting method that we use removes outliers,

but is still vulnerable to noise in the remaining data under the situations above, which

we believe reduces the quality of predictions based on the fit. Further smoothing

may reduce the system's noise sensitivity, yielding better predictions and ultimately

improved end-to-end localization. Another weakness of the fitting method becomes

evident when the relative motion of two nodes is small, making the computed time of

closest approach ambiguous and sensitive to noise. It may improve matters to detect

and handle this scenario explicitly. For example, when range observations between

two nodes remain constant (excluding outliers) for a significant duration of time, we

can infer that the relative motion of one node is very small with respect to the other.

In r vs. t plot, the constant relative motion is represented as a line instead of a

hyperbola. Therefore, from the point of view of hyperbola fitting, this is a singular

point, that is infeasible to recover. Instead, we can fix the trajectory of one node in

the other's relative frame as a static point, by setting s = 0, t = 0, and m = r, where

r is the observed constant range. This idea is not considered in this thesis to keep

simplicity of the method, but is possibly a feasible idea to handle such situations.

Even when the ranging rate and network density are adequate, two real-world

factors prevent our algorithm from achieving perfect instantaneous estimates of all

node trajectories. The first is measurement noise. Even small ranging errors of

a few centimeters degrade recovered motion and alignment parameters, producing

trajectory estimates that lose accuracy over time. The second factor is latency of

communication and computation; it takes time for any change in a node's motion to be



sensed by other nodes and incorporated into their computations, and for the results to

propagate throughout the network. We envision adopting a "best effort" methodology

(as in [42]) in which each node frequently broadcasts its latest information to its

neighbors, by piggybacking alignment information onto ranging pulses (which would

be exchanged frequently in any case). In this way, updated motion solutions will

propagate rapidly through the network, and every node will have not perfect, but at

least reasonably timely, estimates of the motion of all other nodes within its connected

component.

Above all, the major challenge in mobile localization algorithms is the mobility

itself. By comparing with a static localization algorithm, we confirmed that our

moving-baseline approach is considerably more efficient than repeating static algo-

rithms. However, the mobility still poses challenges to the localization problem.

As shown in 5.3, varying node speed affects the performance in both beneficial and

harmful way. Moreover, we are required to employ a change point detection scheme

to detect topology change of the network, but there can be no single "one-for-all"

set of parameters for the change point detection over a variety of speed ranges. One

parameter set that fits to a certain speed range may result in many false positives or

false negatives in change point detection under a different speed range.

Although any motion can be approximated as piecewise-linear motion to some

degree, future algorithms must be able to handle more general motions. When devices

move along complex motion paths, we can introduce higher-order parametric terms,

e.g., time-dependent acceleration terms, and estimate them using additional range

measurements. Also, a combinatorial algorithm could determine where best to split

motion paths into lower-dimensional segments.

We also envision integration of inertial sensing to handle transient loss of range

measurements, due to channel contention, intervening material and attenuation, or

excessive distance to neighbors. Transient errors in trajectory estimation, when node

velocities change over short time scales, can also be smoothed using filtering [62].

Inertial data could also be used to stabilize, for each user, the coordinate frame in

which that user's MBL solution is displayed.



The network itself can provide predictive feedback to help ensure some minimum

quality of service. For example, leaders could receive guidance to slow down, laggards

to speed up, so as to keep the network sufficiently dense for operation in the regime

required by MBL.

We believe that the fundamental parameters determining the method's perfor-

mance in any real-world setting include ranging rate, ranging radius, ranging noise,

maximum node speed and acceleration, expected network density, inter-node commu-

nications latency, and the computational resources available at each node. We hope to

discover the quantitative relationship among these parameters and use it predictively,

for example to determine what user motions are recoverable using a given UWB de-

vice with a specified behavior, or conversely to select among some set of available

UWB devices given some characterization of the group's motion.
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Chapter 6

Conclusion

This thesis described a method for localizing a network of moving, range-capable

nodes. The method is the first to our knowledge to estimate persistent node trajec-

tories, rather than instantaneous node positions. This choice enables the method to

make good use of time-windowed range data, although at a cost of increased latency

in system response to changes in the motions of individual nodes.

The proposed method combines three computations to achieve localization: hy-

perbola fitting; a form of trilateration; and subgraph alignment. We implemented

each component within a simulation model informed by the ranging characteristics

of a commercially available UWB radio. When nearby node pairs can achieve sus-

tained ranging frequencies of 5 Hz over distances up to about 30 m with standard

deviation of a few centimeters, our method localizes nodes moving at typical walk-

ing speeds to within 0.2-2 m of their correct position (depending on the frequency

of motion changes and recomputation) and within 0.3 m/s of their correct velocity.

The method fails when ranging is too slow, the network is too sparse, or when node

motions are too fast or too correlated.

We also demonstrated that node mobility is an important factor for the perfor-

mance of localization algorithms. The varying topology of mobile networks was han-

dled by proper use of adaptive update rules and change point detection algorithms.

By comparing to a static localization scheme, we showed that estimating node tra-

jectories made our proposed method far more efficient than estimating instantaneous



positions. Finally, as future work, we envision that future moving-basline algorithms

will be able to handle more general motion and velocity profiles.



Appendix A

Analysis of Hyperbola Fitting

In this appendix, we study the behavior of hyperbola fitting, the basic ingredient of

the MBL algorithm.

First, we compare the robust quadratic fitting method [10] with ordinary least

squares method (Figure A-1). Due to the extreme outliers, least squares performed

poorly, while robust quadratic fitting recovered an accurate hyperbola. Table A.1

compares the recovered motion hyperbola parameters to ground truth. In general,

the robust quadratic method is superior to ordinary least squares if the underlying

probability distribution is long-tailed such as the UWB ranging model developed in

Chapter 4.

However, the robust quadratic fitting does not always find the correct motion

hyperbola parameters. Figure A-2 exemplifies such a situation. Due to the large

range error in the second sample, the fitted hyperbola is concave, which is physically

impossible. In fact, any fitting method cannot find the correct parameters in that

situation, because three samples uniquely define a quadratic equation. However, the

True Robust fitting Least squares

s 1.869 1.874 0.7382
tc -0.4492 -0.4381 -0.02734
m 3.890 3.924 2.274

Table A.1: Hyperbola estimation with least squares and robust quadratic fitting.
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Figure A-1: Hyperbola fitting to noisy range data (x marks) with least squares
(dashed) and robust quadratic fitting (solid).

fitting works well under certain situations. As a rule of thumb, it tends to recover

the correct set of parameters if: 1) longer samples are available; 2) more samples are

available; 3) samples are closer to the hyperbola vertex; 4) node speed is fast that

range samples cover longer baseline within a fixed time interval. In other words, fitting

becomes accurate if we can infer the entire shape of the hyperbola to be recovered

better.

It is possible to formulate the hyperbola fitting in a Kalman filter form. We

compare the performance of the robust hyperbola fitting with the Kalman filter form

below. The quadratic equation we consider is:

r2 = m 2 + (t _ tc) 2s2 = t2 + t + a (A.1)

Now, define the state vector x = [-y P a]T. Then the problem is an estimation of

unknown deterministic state vector x. The corresponding state space model is:

Xn+1 = X, (A.2)

Zn = r n [e2 tn 1 x, + v (A.3)

. ............... --- ------- . ... .. .....
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Figure A-2: Hyperbola fitting does not always find the true hyperbola.

where v is white measurement noise sequence with a priori variance A,,. Suppose

rm = r + E where rm is the measured range and r is the true range. For this analysis,

assume that measurement error c is zero-mean Gaussian with standard deviation of

0.03 m. Then the error v in terms of z is:

v - 2  2rm + 62 . (A.4)

Here c2 follows a chi-squared distribution of degree 1 and its variance is var(E2)

0 4 - 2k = 1.62 x 10- 6. The expected value is also very small, making the 62 term is

negligible.

Therefore, for simplicity, assume that error of y is 2rc, which is a Gaussian. Its

variance depends on r, so we take the expected value of variance.

rMAX

E[var(2rE)] = E[E[var(2r) r]] = 4r 2var(E)pr (r)dr (A.5)

= 4 - 0.032 . 1 TMAXr 2 dr
rMAX 0

= 1.08

with p,(r) being uniformly distributed and rMAX = 30. We use this value (1.08) as

..; ..... .... 



We applied the standard Kalman filter on the formulation above, and compared

its result with true motion hyperbola parameters as well as estimates from the robust

quad fitting and least squares method. Specifically, we compared least squares with

3-second observation window, robust quadratic fit with 3- or 5-second observation

window, and the Kalman filter. A result for estimate of tc , the closest time of ap-

proach, is shown in Figure A-3. Although the Kalman filter converges to the true

state, it takes 12 seconds for the convergence. On the other hand, the robust quadratic

fit finds an estimate that is very close to the true state with only 3-second observa-

tion window. This is because the Kalman filter is not the optimal filter in general

unless error distribution is Gaussian. We observed that our range error model itself

is not Gaussian (containing outliers), and also the error term of our fitting problem

is rm - r 2 , not rm - r.
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ad 3 sec
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Figure A-3: Comparison of Kalman filter, robust quadratic fit, and least squares fit.
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