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EXPONENTIAL SMOOTHING — AN EXTENSION

Christopher R. Sprague

I . Introduct ion

Exponential smoothing in its various forms is a commonly-used technique

in demand forecasting. This paper proposes a method for extending the

usefulness of the technique where long lead times are encountered.

Section II describes a technique for estimating errors at an arbitrary

lead time.

Section III describes a computer program incorporating this technique.

Section IV gives a brief summary of results, which is offered only as

indication without any claim of statistical significance.

M. The Exponential Smoothing Model of Demand --

Evaluation of Errors

A wide class of demand-generating processes seem to be well modeled by

d(t) = (s + rt) • f(t) + u(t) (1)

where d(t) is demand at time t

s is "average" demand at time

r is a 1 inear trend term

f is a seasonal factor

m
f normalized so that Z f(t) = m, where m is number of periods in a

t=l

seasonal cycle J

and u(t) is a random variable normally distributed with zero mean and

variance independent of t.

While this model is conceptually neat, one sad fact of life is that, to

remain valid, it must admit of changes (albeit slow changes) in the values

of s, r, and the f's. Normally it Is expected that the changes in model

parameters are sufficiently slow to be swamped by the u's in any given period.
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One useful way of estimating the model parameters so as to use them

for predictive purposes is known as Exponential Smoothing with Linear Trend

]

and Ratio Seasonals in which the parameters are recursively estimated as

fo 1 1 ows

:

Q(l) = D(l)/F(l) (2a)

S(l) = A^-^Qd) + (l.-A) vr (S(l-l) + R(l-l)) (2b)

R(l) = B ^v (s(|) - S(l-l)) + (1.-B) ^v R(i-l) (2c)

F(l+M) = C -> (D(l)/S(l)) + (l.-C) vv F(l) (2d)

where:

D(l) is actual demand in period I

Q(l) is deseasonal ized demand as of period I

D(|) is actual demand in period 1

F(l) is estimated seasonal factor for period I

S(l) is estimated average deseasonal i zed demand as of period I ( not

period 0)

R(l) is estimated trend for period !

M is the number of periods in one seasonal cycle (e.g., 12 for most
monthly data)

and A, B, and C are "smoothing constants" between and 1.

It is evident from the above that the process needs S(0), R(0), and

F(|) ... F(m) to begin, but thereafter needs only D(l) for each period to

conti nue.

The proof of the pudding, however, is in the prediction, and the

appropriate prediction for month I + L is:

P(l+L) = (S(l) + L -> R(l)) .V F(l + L) (3)

where P is a predicted demand, and the F's are reused, i.e.,

F(l+L = F(l+L-M), M < L <; 2M (k)
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Now, if the model (l) is valid, then the "best" possible estimates of

S. R, and the F's will give the "best" possible prediction. These parameters

are obviously dependent on the choice of A, B, and C, as well as on the

measured demands D, so that the problem is to choose appropriate values of

A, B, and C to produce the "best" estimates of the parameters. Typically

this is done by establishing a set of smoothing constants and running the

smoothing process against historical data for periods L = I ... I, predicting

1 period ahead, and forming the sum:

I

E = Z (((D(J) - P(J)) ^v-.v 2) .V G '!r:c (|-j)) (5)

j = l

where G is a weighting factor < 1.

This associates a squared-error term with a set of smoothing constants.

If G is less than 1.0, the most recent periods are emphasized in the sum,

reflecting the idea that errors long-past are not so important as errors in

the recent past.

Since we can associate an error term with any set of smoothing constants,

we can obviously find an "approximately optimum" set by an exhaustive search

or by hi 1
1 -cl imb ing or by some combination of both. This is called

"Adaptive Smoothing".

The remainder of this paper is insensitive to which method of the two

above is used, so we here leave the point.

It is widely held that the procedure outlined above results in a set

of parameters which will give the "best" predictions of future demand. While

"nonsense" is perhaps too strong a word to apply to this belief, let us at

least try to cast some doubt (or some stones). There are at least four

reasons why this approach ought to be examined very carefully before being

adopted:
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1. The model (I) is only approximately valid. If It were exact, then

we could Indeed conclude that the set of smoothing constants which minimized

prediction error 1 period in advance was the set which would yield the "best"

estimates of model parameters.

2. The manager who is on the line for a sales forecast does not care

whether the parameters are correct. He wants to know that his predict ions

are good for some meaningful lead time (perhaps 6 to 30 periods). It may

be useful to note here that after some time, the F's may no longer sum to

M, and S and R may be under or over-stated proportionately. This great

change in model parameters makes absolutely no difference in the prediction'.

3. Assuming that the desired prediction lead-time is greater than 1,

the process as described yields no estimate of error (or cost) at the actual

lead-time to be used.

k. Where did the sum-of-squared-errors term arise, anyway? It came

from statistics, least-squared fits, and the like, where its virtue is

computational simplicity (later in this paper we exploit this In another

context). In this case, however, there is no great computational advantage

and the error (or, more properly, cost) function might just as well be

absolute deviation or any arbitrary thing like:

D(J) - P(J) (6)

Before proceeding, we should probably dispose of objection {k) above.

While there is nothing idea! about the sum-of-squared-error formulation, it
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does have a number of advantages. First, and probably controlling, if we

I

divide such a sum by the sum of weights E (G ''' (l.j)) we obtain a number
J=l

like a variance, which can be viewed as an estimate of the variance of u

2
(see Equation (1)). While this analogy cannot be pushed too far, it is

useful for people with some "feel" for statistical concepts. Second, the

square root of the "variance" is at least of the same order of magnitude as

the expected absolute error in each prediction, and this is a useful number

for the user. Third, and last, if the error (or cost) function Is even

mildly discontinuous, there is little hope of finding an acceptable

"approximately optimum" set of parameters by any method short of exhaustive

search on an extremely fine grid.

So, having raised four objections and backed off from one, we pursue

the other three, all of which seem to be easily answered by simply evaluating

predictions at the desired lead time rather than at a lead time of 1.

As with many brilliantly simple solutions, this one has rather grave

flaws, for if we have data for periods I ... N and desire a prediction for

period N + L, our error function will contain terms for predicted vs.

actual demands in periods L ... N, i.e., based on parameter values as of

periods ... N-L. Thus, instead of having N terms, the error function will

contain N-L + 1 terms. Worse yet, the most recent of those will be L periods

old. Perhaps some numbers are in order.

Suppose we have 30 periods 1 ... 30 of real data and wish to predict

period hl\ so L is 12. !f we were predicting with L = 1, our error function

would contain P(l) - D(l) through P(30) - D(30) based on S(0), R(0), F(l)

... F(M) through S(29), R(29), F(30) ... F(29+M). Instead with L = 12, we

will use P(12) - D(12) through P(30) - D(30), based on S(0), R(0), F(l) ...

F(M) through S(l8), R(!8), F(19) ... F(!8+ M) .
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The fact that each sum of errors has 11 fewer terms than it otherwise

would is serious indeed, but it pales by comparison with the fact that the

most recent such term is always 11 periods too old (relatively). Clearly

another way out is desirable.

We now propose a method of estimating error at an arbitrary lead time.

It is based on the assumption that the expected squared error at any lead

time L is a linear function of L itself, given a set of smoothing constants

and the initial estimates S(0), R(0), and F(l) ... F(M). Let us adopt some

new notation:

Z(I,L) = (S(l) = L -•• R(l)) * F(l+L); the prediction of (7)

period I + L made at the end of period 1.

E2(|,L) = (Z(1,L) - D(! + L)) -'-v 2 ; the square of the difference (8)

between the actual demand in period I + L and the prediction

made for the same period at the end of period I.

W(l) = G -'-'" (N-l), G < 1 . ; a weighting factor corresponding (9)

to period I's set of predictions for periods i + L, where L = 1

... N - 1 .

We now seek coefficients U and V such that the double sum

N-1 N-1

Z (W(l) E (E2(I,L) - U - V * L) -nc 2) (10)
1=0 L=l

is minimized. In essence, we are going to perform a weighted curve-fitting

with lead time the independent variable, squared prediction error the

dependent variable, and weights falling geometrically with age of prediction,

We will produce N " (N+l)/2 "observations" (or, more properly, points to be

fitted) as follows:
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Using data through period (i.e., the initial estimates), we produce

predictions for periods I . . . N, i.e., Z(0, 1) ... Z(0, N). The squared

difference between each prediction and its corresponding data item is

E2(0, 1) ... E2(0,N) and the associated lead time is L = 1 ... N. The weight

for all these points is G »W' N.

Similarly, using data through period 1, we produce predictions for

periods 2 ... N, i.e., Z(l,l) ... Z(1,N-1), corresponding errors E2(l,l)

... E2(1,N-1) and lead times L = 1 ... N-1 . The weight for all these is

G -w- (N-1).

This process continues until, using data through period N-1, we predict

period N, i.e., Z(N-1,1), error E2(N-l,l), at lead time L=l, with weight G.

Ignoring the weights for a moment, a scatter diagram of these points

would look something like Figure 2:

Error

.1
•''^'

'

'

.->",V*-"
, ; t J?c^*-- "

Lead Time

Methods for obtaining such a "best linear fit" btq well known, so we

state only the equations used to find U and V

XO = Y [ 1 ]

XI = Y[L]/XO

X2 = Y[E2(|,L)]/X0

XI 1 = Y[L ^'' 2]/X0 - XI -.Wf 2

X22 = Y[E2 (l,L) -'-v 2 ]/X0 - X2 -Wr 2

X21 = Y[L -•- E2(!,L)]/X0 - XI ^v X2

V = X21/X22

U = X2 - V • XI

(12a)
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where the special symbol Y[H] is taken to mean

N-1 N=l

Y[H] = E (W(l) E H) (13)
1=0 L=l

Now we obtain an estimate of the expected squared error at any lead time L

as

E = U + L -•- V (14)

This answer to the first three objections stated on page k has some

flaws, of which any potential user should be aware:

1. It is expensive. Each set of smoothing constants tested requires

doing a linear regression computation involving N '> (N + 1 )/2 observations.

This works out to approximately kH times the calculations required for

simple evaluation of error at L = 1 . Computer time is rapidly becoming a

cheap commodity, however, and a practical problem (N = 96, L = 12, 125

different combinations of A, B, and C) takes about 3 minutes of 709^ time.

This is not excessive for, say, a monthly forecast of corporate sales.

2. It could be wrong -- especially where the actual demand-generating

process at work is very close to the model given in (1), where, presumably,

the simple scheme of evaluation at L = 1 would be better. In certain

pathological cases (such as using the wrong value of M) V might be negative

a clear indication of trouble, since for some L, this would imply negative

squared errors. This did not occur in several trials with "dirty" data,

however.

3. It is very sensitive to the choice of G, S(0), R(0), and F(l) ...

F(M). The simple scheme is also sensitive to these, but, because the

relationships are simpler, obvious mistakes are more easily detected.

k. It rests on some shaky foundations -- notably the assumption that
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squared error of prediction rs a linear function of lead time. This is not

much more ridiculous than the rest of the assumptions which underlie

exponential smoothing, a technique which is well established and

demonstrably useful.

In summary, we have described a method for choosing a set of smoothing

constants on the basis of expected error at some arbitrary prediction lead

time. It attempts to accomplish three objectives: overcome minor

invalidities in the model underlying Exponential Smoothing with Linear Trend

and Ratio Seasonals; emphasize quality of prediction rather than quality of

parameters; and give a meaningful estimate of error at arbitrary lead time

rather than at the normal, nearly-meaningless 1 period. These objectives

are achieved at some cost: increased computation; increased risks of error

due to poor initial conditions of strange data; and shaky theoretical under-

pinning. While the model has performed well in limited tests with real

data, it will be some time before any determination of its relative advantage

can be made.

III. Design of a Computer Program Using the
Method for Choosing Smoothing Constants

As occasionally happens, the method of selecting smoothing constants

described above was incorporated into an operating computer program some-

what before it had been conceptualized. It is useful, perhaps to describe

the program from the point of view of a use.

I . General

The program is designed to run on an IBM 709-7090-7094 operating under

the control of the 9/90/9^ FORTRAN Monitor System (FMS). The operating deck

consists of:
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* (installation sign-on card)

* XEQ
(binary deck)

* DATA
(data cards)

The program is input-driven by a set of control cards. The basic scheme

is to read input data until a control card is recognized, then log a message

to the effect that such-and-such control card was encountered, and then

proceed to take action as designated by the control card. Thus a wide variety

of functions can be called for by changes in the input deck rather than the

program.

2. Entering Basic Data

When the program encounters a card where the first six columns are

"DEPEN, it is conditioned to accept basic demand data. It reads one more

card, interpreted as follows:

Columns 1 - 60 Alphabetic description of data

61 - 62 Period of first piece of data entered

63 - Sk Year

65 - 66 Period of last piece of data entered

67 - 68 Year

69 - 70 M, the number of periods/year (e.g., 01, Ok, 12, 52)

The first and last periods given in this card define the number of periods

(200 maximum ) of data to be entered. The program expects these data to

follow immediately, 9 eight-column fields per card.

3

.

Establishing a Set of Smoothing Constants

When the program encounters a card whose first six columns are "ALPHA

it reads one more card to define a set of smoothing constants as follows:
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Columns 1 - 2 Number of values of A to be tried

3 - k First value of A in 1/lOOth

5-6 Second through 11th values of A

23 - 2k Same as above

25 - 26 Number of values of B to be tried

27 - kS As above

^9 - 50 Number of values of C to be tried

51-72 As above

In default, the program uses 5 values each of A, B, C, specifically .1,

.3, .5, .7, .9.

k. Establishing a Range of Predictions

When the program encounters a card whose first six columns are "RANGE,

it reads one more card to define a set of ranges of data as follows:

Prediction Range: Columns 1 - 2 Period First data point

3 - k Year

5-6 Period Last data point

7-8 Year

Evaluation Range: 9-10 Period First data point

11-12 Year

13 - 1^ Period Last data point

15 - 16 Year

Computation Range: 17 - IS Period First data point

19 - 20 Year

21 - 22 Period Last, data point

23 - 2k Year

The prediction range is the range of dates over which prediction based
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on the already stored data are desired.

The evaluation range is the range of dates over which prediction error

is to be estimated. It normally would be identical with the prediction

range

.

The computation range is the range of dates of the basic data which may

be used in the predictions. It normally coincides with the range of stored

data.

If we denote the range of stored data as the "data range", then the

default conditions are as follows:

If one leaves unspecified

Low date prediction range

High date prediction range

Low date evaluation range

High date evaluation range

Low date computation range

High date computation range

The program uses

High date data range +1

Low date prediction range

Low date prediction range

Low date evaluation range

Low date data range

Minimum of: High date of data range
and low date prediction range less 1

The '-'^ANGE card also initiates the actual prediction procedure.

A. Force all ranges to consistency with prediction range.

B. Form initial estimates of S(0), R(0), F(l) ... F(M). The program

"cheats" by using the first two years of the computation range to produce

these estimates

.

C. For all possible combinations of A, B, C, form an estimate of the

error at the mid-point of the evaluation range. This corresponds exactly

to the method discussed in section 1 except that it truncates the curve-

fitting process not at N but at lead time corresponding to the difference

between the high dates of the evaluation and computation ranges. (This

saves some time.)
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0. Using the "best" A, B, C, form terminal estimates of S(N)j R(N),

F(N+1) ... F(N+M).

E. Form and print estimates for the prediction range.

For purposes of testing, the program also contains facilities for

analyzing differences between actual and predicted demands, and for comparing

its predictions with those made by a simple linear regression against an

optimally-lagged leading indicator series. These, however, are not directly

relevant.

IV. Results in Brief

Tests were made on two series, both monthly ten-year sales histories

of inexpensive durable goods. Predictions were made for the period covered

by the last year of the series given average lead times of six (6) to thirty

(30) months. Over this limited range, at least, the actual average squared

error appeared to be no worse than linear with lead time. In none of the

trials did the estimated average error at a specified lead time differ from

the actual average error observed by more than 10%.
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Footnotes

See Holt, Modigliani, Muth, and Simon, Planning Production, Inventories,
and Work Force (Englewood Cliffs: Prentice Hall), I960, and R. G. Brown,

Smoothing, Forecasting, and Prediction of Discrete Time Series (Englewood
CI iffs: Prentice Hall), 1963

2
Note that the model which minimizes this "variance" does not necessarily
produce unbiased estimates of demand.

3
Some closed systems tend to generate their own internal cycles. As

Forrester points out, such systems are not good subjects for statistical or
quasi-statistical analysis at the aggregate level.
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