
Monopolistic Insider Trading in a Stationary

Market
by

Zhihua Qiao
Ph.D. Statistics

the University of Pennsylvania (2006) I
Submitted to the Sloan School of Management

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2009

@Zhihua Qiao, 2008. All rights reserved.
The author hereby grants to MIT permission to reproduce and to

distribute publicly paper and electronic copies of this thesis
document in whole or in part.

Author..............................................
Sloan School of Management

I , December 15, 2008

Certified by. .............

Leonid Kogan
Nippon Telephone and Telegraph Professor of Management

S .9Thesis Supervisor

Certified by

Accepted by.

Jiang Wang
Mizuho Financial Group Professor of Finance

Thesis Supervisor

Ezra Zuckerman
Nanyang Technological University Professor

Head of the Ph.D. Program

ARCHNES

ACHUSETTS INSTIVfTE
OF TECHNOLOGY

WAR 18 2009

JIBRARIES

_ _ I

MASS





Monopolistic Insider Trading in a Stationary Market

by

Zhihua Qiao

Submitted to the Sloan School of Management
on December 15, 2008, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

This paper examines trading behavior of market participants and how quickly private

information is revealed to the public. in a stationary financial market with asymmetric
information. We establish reasonable assumptions, under which the market is not efficient

in the strong form. in contrast to the Chau and Vayanos (2008) model. First, we assume

that the insider bears a quadratic transaction cost. We find that the trading intensity

of tilhe insider is inversely related to transaction cost and that the market maker's uncer-

tainty about private signals is positively related to transaction cost. As transaction cost

approaches zero, the economy converges to that of the Chau and Vayanos (2008) model.

Second, we assume that the insider can observe signals only discretely and at evenly spaced

times, at a lower frequency than that at which trading takes place. The sparseness of sig-

nals induces insiders to trade patiently before the next signal comes in, as in the finite

horizon model of Kyle (1985). Furthermore, the degree of market efficiency declines as

signals arrive more sparsely. Finally, we assume that arrival times of private insider sig-

nals are random. In such case, the insider is less patient and trades more smoothly than

with fixed arrival times As a result. market prices incorporate private information more

quickly.
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Chapter 1

Introduction

Informed trading under asymmetric information has drawn the attention of numerous stud-

ies in the past few decades. Studies 1 have looked at such questions as: How are security

prices formed and how quickly is the information about profitability incorporated into the

prices? What is the role of market makers in the price discovery process? And will an

insider trade slowly to control the cost of price impact or quickly to make a quick killing?

These questions, which are part of the market mnlicrostructure research, are also related to

market efficiency. The efficient market hypothesis formulated by Eugene Fama in 1970,

suggests that, at any given time, all available inforination-public and private--is fully

reflected in the stock prices. This type of efficiency is called strong-form efficiency. On

the other hand, the semi-strong-form efficiency hypothesis states that only publicly avail-

able information, for example past prices, is incorporated into the market prices. While

it is p)lausible to think that strong-form efficiency does not describe reality2 , it is impor-

tant to understand what the conditions are for the market to closely resemble strong-form

efficiency.

The first generation of the informed trading literature, which begins with Kyle (1985),

'for example. Kyle (1985), Back (1992), Back, Cao and Willard (2000).
2 For example, Fama (1991)



examines strategic trading strategies and their price impact with competitive market mak-

ers. In the Kyle model of informed trading, a monopolistic insider strategically submits

orders to a competitive market maker and some liquidity traders submit exogenous order

quantities. The market maker can only observe the batch orders. In equilibrium, the

insider patiently submits orders and thus gradually reveals his private information. The

private information is fully revealed to the public only at the end of the trading session.

Clearly, this model does not reveal strong-form efficiency

In the Kyle model, the insider receives a signal at the beginning of the trading session.

This signal represents the final payoff of the risky asset at the end of the trading session.

Chau and Vayanos (2008) (henceforth CV) conjectures that this is a critical assumption

to induce the insider to trade slowly. CV studies the market efficiency in a stationary

framework with infinite horizon. In CV, the financial market is similar to that in the Kyle

model. The main difference is that the insider receives private information repeatedly.

CV adopts the notion of Wang (1993) that the private information is a mean reverting

stochastic process that determines the dividend growth rate of a risky stock. The insider's

objective is the present value of expected future profits. It is shown that in a discrete

time setting, the monopolistic insider reveals his information very quickly by placing a

large order each period; as the market approaches continuous time. the insider's rate of

order flow converges to infinity and the market maker's uncertainty about the insider's

information converges to zero. This says that the market can be arbitrarily close to strong-

form efficiency. However. the insider's profit does not converge to zero as the market

approaches efficiency, which means that there is nontrivial return to the cost of information

acquisition. This is in contrast with the usual postulation that the positive profits of the

insider are inconsistent with the strong form of the efficient market model3 .

It is argued in CV that the strong-form efficiency outcome is due to the combination of

impatience and stationarity rather than any peculiarity of their assumptions. More con-

3 For example, see Rozeff and Zaman (1988)



cretely, these authors show that impatience is introduced if any of three factors is present:

time discounting, publicly revealed information, and obsolescence of private information

through inean-reversion in the firm's profitability. CV also argues that impatience alone

cannot lead to the quick trading of the insider. It is the stationarity of the market, in addi-

tion to the insider's impatience that induces quick trading. Therefore, it may appear that

strong-form efficiency is a rolbust result that holds under relatively weak model assump-

tions. In this paper, we argue that this is not the case. That is. some of the assumptions

that are essential for strong form efficiency in CV may still be too strong to approximate re-

ality. Some of the assumptions in the CV model that fall into this category are described as

follows. First, the insider is risk neutral. so his signal precision is not taken into account as

lie optimizes his trading strategy. If the insider is risk averse, lie will trade less aggressively

and the degree of market efficiency goes down. Second. the market maker is risk neutral

and hence does not charge any inventory cost. Given the risk aversion of the market maker,

inventory cost may limit the insider's trading and acquisition of information by the market

maker. Third, the insider is not subject to any transaction cost. It is intuitive that very

high transaction cost will potentially prohibit the insider from trading quickly. Fourth, tile

insider is perfectly informed in the sense that he receives continuous private information

with no time lag. This can be relaxed in several ways. For example, the insider can receive

the signals at a lower frequency than the trading frequency. Another alternative is that

the insider receives the signals at stochastic times. This dissertation examines the effect of

these latter two assumptions.

First, we introduce a transaction cost in the quadratic form faced by the insider, that

intuitively prevents the insider from trading quickly. Ordinarily. traders face three types

of transaction cost: order processing cost. inventory cost and adverse selection cost. Here,

transaction cost can be regarded as an order professing cost. Note that, strictly speaking,

there should be no inventory cost if the market maker is assumed to be risk neutral.

Adverse selection cost also exists in the economy, due to asymmetric information. We



assume the transaction cost is quadratic with respect to the rate of the insider's trading, to

gain tractability for the model. Also note that the transaction cost is on the total position

of the insider, rather than a fixed cost per transaction. Nonetheless, this type of transaction

cost has a strong deterrent effect on the insider. In the presence of the transaction cost,

the insider trades slowly and the market is no longer strong-form efficient.

Next, we ask what is different if the insider receives private information at a lower

frequency than the one at which the trading takes place. In CV. the assumption that

the insider receives signals repeatedly is interpreted as an approximation of a proprietary-

trading desk. which generates a flow of private information on a stock through superior

research. There is no reason to believe that the agent always produces signals at a particular

high frequency. It is also assumed in the CV paper, however, that tile insider receives the

signals at the same frequency as the one at which the trading takes place. Hence it is natural

to relax the latter assumption with the assumption that the frequency of the private signal

is lower relative to trading frequency. For maximal tractability, we study a continuous

time model, i.e.. the frequency of trading is infinitely high. Private signals are assumed

to arrive at fixed and evenly spaced times. The infinite horizon market is still stationary,

although the equilibrium has certain dynamics within each period between two consecutive

signals. To focus on the effect of the frequency of the private signal. we let the transaction

cost be very small. We show that during the interval between two consecutive signals, as

time goes by the trading intensity of the insider increases, the price impact declines, and

the insider's informational advantage declines as well. More importantly, we show that, as

the frequency of the private signals of the insider decreases, the proportion of the private

information that is incorporated into the market price, which can be regarded as a measure

of market efficiency, also declines. In other words, the degree of market efficiency is lower

than that in the CV model, which shows approximate strong-form efficiency.

Finally, we relax the assumption that the insider receives private information at deter-

ministic and evenly spaced times. We study the alternative case, in which the arrival time



of the next signal is random. With a prop-trading desk example, this says that the research

department cannot guarantee that the new signal will be produced at a pre-specified time.

Instead, once a signal is produced, the next signal can be produced at any subsequent time

according to a probability distribution. To compare the two cases, we assume that the

mean arrival time in the stochastic arrival case is roughly the same as the arrival time in

the fixed arrival time case With the arrival time following a truncated exponential distri-

bution, we show that the insider trades more smoothly. That is. while in the fixed arrival

time case, the insider's trading intensity increases and shoots up immediately before the

next signal arrives; in the stochastic arrival time case, he trades more aggressively right

after receiving a new private signal, and less aggressively as time passes by, relative to the

case in which the arrival time of the signals is fixed. This is intuitive because in the fixed

arrival time case, the insider is very patient and waits until the moment immediately before

the next signal to use up his private information on the last signal. By contrast, in the

stochastic arrival time case, if he is too patient, his signal is likely to be wasted since the

next signal can arrive at any time, thus making his last signal obsolete. On the other hand,

the trading intensity of the insider increases less quickly in the later part of the trading

period because he is not sure when exactly the next signal will arrive.

To make a stark comparison between the CV model and our model with transaction

cost, we study a discrete time model in which the private signals of the insider arrive at

the same times that the trading takes place. This model converges to the CV model when

the transaction cost vanishes, and converges to a continuous time model with continuous

trading and a continuous private signal process. The latter model can also be obtained as

the limit in our primary model, as the frequency of tile insider signals increases without

bound. For this latter model with a continuous signal process. we obtain the comparative

statics of the variables of interest to highlight the effects of trading costs, for example,

liquidity and market maker's uncertainty, as the parameter corresponding to transaction

cost changes. When transaction cost decreases, the insider trades more aggressively, the



price impact increases, and the market maker's uncertainty about profitability decreases. In

particular, when transaction cost diminishes, the equilibrium solution approaches strong-

form efficic(y.

The other assumptions we discussed earlier but do not study in this paper are tile risk

aversion of the insider and the market maker. Wang (1993) studies a rational expectation

equilibrium model in a stationary infinite horizon economy, in which both the market

maker and the insider are risk averse. As a result, the market maker charges traders for

the inventory risks that tile market maker bears. In that model, the insiders are assumed

to be competitive, and the market maker and the insider submit demand schedules and

price is determined by the market clearing condition. This equilibrium shows very different

characteristics from those in CV(2008). In particular, no traders trade aggressively and

there is no strong-form market efficiency. The insiders trade quickly on their information

if they are risk neutral. Under the risk aversion assumption, however, they trade slowly

and the private information is revealed to the market gradually.

Chau (1999) also studies dynamic trading and market making in a similar framework.

The author's dynamic model involves the same market participants: a financial market with

a strategic large trader, a market maker, and noise traders. However, a major difference

is that in Chau (1999) the large trader and the market maker both face inventory costs,

which constitute the major source of risk investigated.

This thesis is organized as follows. In the next chapter, we study the general en-

vironment of continuous time trading and discrete private signals. Our model is very

comprehensive and nests many models as special cases. For example, if we take the limit

when the time interval between private signals goes to zero, then the private signals occur

continuously. This special case is discussed in Chapter 3. To make a clear comparison

between our model and the Chau and Vayanos (2008) model, we study a discrete time

model in Chapter 4, where trading times coincide with the times at which signals arrive.

Chapter 5 extends the first chapter by introducing the more general assumption that the



arrival times of private signals are stochastic.
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Chapter 2

A General Framework with

Discrete Private Signals

2.1 Introduction

It is argued in CV that the insider is impatient in a stationary financial market for three

reasons: time discounting, public revelation of insider information through dividends and

the obsolescence of insider information through mean reversion in the firm's profitability.

Nonetheless, it is still quite puzzling to see such a prominent model prediction as the

insider's quick trading. This dissertation seeks to contribute a deeper understanding of

why insider trading volume is so large. In this section, I examine the continuous time

model, in which the insider can receive only discrete signals. One simple conjecture is that,

since the insider has less informational advantage, he will trade less aggressively. While

this is true, I provide more detail on trading behavior between any two consecutive private

signals. More importantly, my results indicate that risk neutrality is probably a more

fundamental reason for the aggressive trading of the insider.



2.2 Model Setup

The model setup is similar to Chau and Voyanos (2008). There are two assets. The first

is a riskless bond with exogenous constant return r. The second is a stock that pays a

dividend at rate Dt, where Dt is a diffusion process with the following dynamics

dDt = v (gt - Dt) dt + o-DdB D .  (2.1)

It is mean reverting and its time varying mean gt is itself an Ornstein-Ulenbeck (OU)

process,

dgt = K (9 - gt) dt + agdB9  (2.2)

For simplicity, I assume that the two Brownian motions BD and B 9 are independent. The

dividend process and the dividend growth process, (2.1) and (2.2). are adopted from Wang

(1993); these have become standard in modeling asymmetric information in an infinite

horizon. As explained in Wang (1993), v (gt - Dt) is the expected growth rate of dividends.

The state variable gt can be interpreted as the true underlying profitability of the risky

asset. I require that v > 0 so that the dividend process indeed depends on the underlying

state variable gt. When n = 0, the process yt is simply a Brownian motion. Since our aim

is to investigate the implication of insider trading in a stationary financial market, I will

focus on the case in which N > 0.

The assumptions on the market participants are standard and follow Kyle (1985). There

are three types of traders: a market maker, an insider and noise traders. The market maker

is competitive and is risk neutral. The insider is risk neutral and behaves strategically. The

market maker and the insider have the utility function

E [jcM ' r(s-t) n

where c' denotes consumption at time s, and FT' denotes the information set at time t



of the market maker. It is helpful to notice that in the above utility function, since the

discounting is the same as the riskless interest rate, agents are indifferent about the timing

of consumption, and therefore value the consumption stream using the present value of

expected cash flow. discounted at the riskless interest rate. Noise traders are exogenous

and submit order flows as follows

dzt = r(dB

Let dxt denote instantaneous order flow of the insider trader. The market maker observes

only the aggregate order flow dxt + dzt.

For simplicity I assume that now the insider can observe signals only at evenly spaced

time intervals, but that trading still takes place continuously. Denote by A the length of

the time interval between signals of gt. Clearly, one of the complications of the model is

that the insider must estimate the true underlying short-run mean process g. We denote

his filtering solution as g'.

From the insider's perspective, the true value of the stock at time t is equal to the

present value of expected dividends conditional on his information. This value is similar

to the price set by the market maker, except that the expectation is conditional on the

insider's information set.

Vt = [J e r(s-t)Ddsj .

With the same calculation as for the market maker, the present value can be simplified as

Pt = AoDt + Aig + A2 -

The insider is also risk neutral, and has the object function

O_ 2maxtegy. In te bracket t of Pt he integrand is the instantaneous net

where Ot is the trading strategy. In the bracket of the integrand is the instantaneous net



profit at future time t. The first part of the net profit is the payoff from trading a quantity

Ot at time t; the second part is a quadratic transaction cost 1 . The introduction of the

transaction cost is the main difference between tile current paper and CV (2008). This is

motivated by the following economic intuition. The market price in the Kyle model is the

batch order price; therefore, there is no bid-ask spread. The market price reflects only the

market maker's inference based on batch orders, which includes the insider's trade. Trades

move prices because the insider is better informed than the market at large. However, this

kind of theoretical market price ignores two components in the actual transaction prices in

the market, order processing costs and inventory costs. Since we assume that the market

maker is risk neutral, then. strictly speaking under this assumption, there is no inventory

cost. In this paper, transaction cost can be considered the order processing cost, which

is assumed to be exogenous and has a quadratic form. On the other hand, if the market

maker is not risk neutral, there is a cost that the market maker charges to compensate for

bearing the inventory risk. In Wang (1993), the market maker is risk averse, so inventory

costs are built in endogenously.

Since the market maker is competitive and thus makes zero profits, he sets price as the

conditional expectation of the present value of expected future dividends of the stock

Pt = E r(s-t)Ddslm . (2.3)

His information set -tm involves two stochastic processes: the dividend process Dt and

the insider's trading strategy mt. The conditional expectation can be brought into the

integrand. By substituting in D and g we can show that the price is

Pt = AoDt + A 1E (g9t Fm) + A 2A

where A0 , A 1 and A2 are three positive constants depending on tile parameters. The details

'Perhaps the cost should be c 101 + E - 1[ >0o] This may be very difficult to solve though



are given in Appendix A. The resulting price is intuitive because the processes D and g

are jointly Markov. The interpretation is that the price positively depends on the current

level of dividends, and the levels of the short run mean g and the long run mean g, in a

simple linear way.

2.3 Equilibrium

Recall that the price set by the market maker is

Pt = AoDt + Alg' + A 2p (2.4)

where gm is the market maker's conditional expectation of the state variable gt given his

information set at time t. Similarly, the insider's valuation of the stock is given by the

above formula, except that the mean process gt is known by the insider.

vt = AoDt + Algt + A 2 j.

As a result, the insider's objective can be expressed as

maxE -rt [(q - gi) t A -19 ] (t . (2.5)
ot to

Below, we will let : = Al'c and abuse the notation to let c denote c. We consider linear

equilibrium in which the agents' strategies are linear functions of the state variables. In

particular, we assume that the insider has linear strategy of the following form

dxt = t
3t (gI g m) dt. (2.6)

This carl be a candidate strategy only if gm is observable by the insider. From the pricing

equation (2.4), we see that the insider can infer a market maker's expectation g' fromn



observing the price. We also assume that the market maker sets the price according to

equation (2.4) with the conditional expectation having the following dynamics

dg' = K ( - gm ) dt + A (t)[dxt + dzt] + (t) [v (D - gm ) dt + dD] . (2.7)

The intuition of the above strategy by the market maker is as follows. The first term reflects

mean reversion of the true underlying process g. The market maker further updates his

belief on g with two pieces of incoming information, aggregate order flow, the second term,

and dividend payout, the third term.

Definition 1 A paZr of linear strategies (xt,pt) satisfying (2.4), (2.7) and (2.6) zs a Nash

equilibrium zf the followzng two condztzons hold:

1. Given the market maker's pricing rule (2.4) and (2.7), and insider chooses the optimal

strategy dxt = Otdt to maxiize hzs expected future profit (2.5). Given the insider's strategy

(2.6), the market maker sets przces equal to the conditzonal expectatzon of the present

dzscounted value of the stock with equatzon (2.3).

To solve the Nash equilibrium, we need to solve the market maker's inference problem

and the insider's optimization problem and then match their strategies.

2.4 Insider's Inference

At the beginning of each interval [t, t + A], the insider needs to solve the filtering problem.

He observes gt, and {D,.t < s < t + A}. and needs to find E [glsF].



Proposition 2 The filterng has soluton

dY 2 ()2 2ds = -2 s-, (t) =
ds 92

,where B3 D is a standard Brownzan Motzon in [t, t + A] under nsider's filtration.

Proof. See appendix. U

To make the behavior of Es regular, we assume that ag and (D are sufficiently large.

2.5 Market Maker's Inference

Recall that the market maker sets the competitive price as Ps = AoD, + Alg + A 2j.

where g' is his estimation given his information framework to time s. Suppose the insider's

strategy is dxs = Osdt = 3 (s) (g' - g ") dt. Then the market maker observes (xt, Dt) and

updates his estimation on (gt, g), denoted by (g', gm). Since the market maker knows

that the insider receives a perfect signal at the beginning time t. the market maker would

impose E (gt .tm) = E (g~ 7Fm). We denote the conditional variance of the market marker's

filtering problem by E (t) - Var ((gt, g') .Ft"), which is a 2 by 2 matrix. The (i, j) element

of this matrix is denoted by E,3. To satisfy the stationarity condition, it is required that

the variance E (t) , as a function of time, is the same on each interval [lA, (1 + 1) A]. In

particular. let t = IA and we have

E ie (t A) - Z11 (t) - t/ d rl (s) = 0.

Now we state the results of the filtering problem for the market maker as follows.



gZm (s) andProposition 3 The solution to the filterng satisfies gm (s)

dgm = K ( - g) dt + {C1 (s) v2 2 ( _ g
+ r (s) V--ldB D + Y 2 (s) 38 u, ldBu

The conditonal variances are gzven by

d11= -2 - ,+ C - (m)2 V2 D2
ds I 1f g 11 V D

dE2 2 = 2KEZ 2D22 _m V2

ds

d22 -2 (K + E , 2, ) D) (m

ds - L\ ~ D L22 - L12

Ygm)}dt

(ym 3)2 , 2

-2 m m
D 11 12

)2 
2 2

_ ( 3s) 2
u -2

and they satisfy

Proof. See appendix. *

Therefore we can substitute the observable processes (xt, zt, Dt) into the above SDE of

gmn, and the linear pricing rule expressed using the observable is

dgm /- ( g") ds - 3 (s) vgmds + A (s) [0sds + rudB'] + ' (s) [dD, + vDds]

where A (s) - Em (s) 1j 2 and - (s)wiil;~\1= L12 U3 ~S E1z (s) vU7D.

2.6 Insider's Optimization

According to the Nash equilibrium, we conjecture that the insider anticipates that the

pricing rule of the market maker is

- (s) vg m ds + A (s) [dxt + dzt] + (s) [dD, + vDsds] .

(2.8)

m) + E~ S cr)32 ( 2

mm32 -2
E22 l12 s Cu

E" (s) = E, (s) + Y (, E2 (S) = Ym () .12 \ 22 ~1

dgm _ g ) ds



As before, the insider's objective function is the expected present value of the the total

profit, which is equivalent to

max E e-rt [(g9) Ot c0 2] dt.
Ot JO

Now the insider receives discrete signals at times {lA}tcz. which makes his optimiza-

tion problem mathematically more complex. We can approach the insider's dynamic pro-

gramming problem as a discrete one with continuous control variable Os over each in-

terval [lA, (1 + 1) A]. Formally, we define the insider's value function at time 1A to be

V (1, g, g~n). The insider's optimization is a Markov control problem and the market

maker's estimation error is the only state variable because it is Markov as

( Mi-) A-Y1)A)= 6 A(lA)-A((l+1)A) 1[) (2.9)

+ /-A( + I A )  A(s)A (s) -A (s) [Osds + rudBu] - 1 (s) v 1 dB D

where A (.) is defined by (log A (s))' = (K + (s) v). This dynamic of the state variable

is proved in the appendix. We explicitly write the time 1 in the value function simply to

facilitate understanding the derivations. The market stationarity guarantees that the value

function is time independent.

The discrete time dynamic programming problem with infinite horizon has the following

Bellman equation

V(1, g - g-)

sup Et' { - r(t) [(q, _ g,) 0, _ c0 2 dt + c rAV (I + 1, gt+A, }'
{O ,t<s<t+A} t

where the state variable evolves according to equation (2.9). The state variable is a discrete

time stochastic process, observable to the insider at each discrete time IA. Notice that at

the discrete times {lA}lCz, the insider knows the true value of g. and thus g'.a = g .As



emphasized above, one special property about this dynamic programming problem is that

the control variable is a continuous function over each period [lA, (1 + 1) A] Therefore, the

Bellman equation above cannot be solved by routine methods, such as taking derivatives

to obtain first order conditions. Instead, we must solve it by considering the continuous

time optimal control problem on the finite time interval [IA, (1 + 1) A]. In particular, let us

consider the insider's short term (per period) objective function, given the value function

V (1, gt - g') at the discrete times {lA}1,z

sup E - r(s-t) [(gs gs) 0, - c02] dt + e-rAV ( + 1 gtA A)}

{O ,t<s<t+ tIA}

d (g' - gnm) = [ + (s) v] (g _ gm) dt - A (s) Odt

-A (s) (dB + [E - (s)] vadBO D

This is the finite horizon stochastic control problem. Denote the value function by J (s, g - g)

then, the discrete time Bellman equation is just

V (1, Y - gm) = J (0, gA- g ). (2.10)

We address this equation later. For the finite horizon per period problem, the terminal

value is

9(1+ 1 A - 9(~+1) = e-' EI+1) V ( + 1, 9(l+1)A, 9 1)A . (2.11)

Therefore, the per period problem can be solved using the regular approach, the Hamilton-

Jacobian-Bellman equation. To summarize, the insider's problem can be broken down into

two pieces. The outside piece is a discrete time infinite horizon problem, with a continuous

time control variable. The inside piece is a finite horizon continuous time stochastic control

problem. The solution to the latter problem can be considered to play a similar role as the

first order condition of an ordinary discrete time Bellman equation.



Proposition 4 The finte horizon stochastic control problem has the following solutzon.

The value functon is given by

J (s, g g m) = e -r [a (s) (gI - )2 + (s)

where the functions a (-) and 6 (-) satisfy the ordinary dzifferentzal equations

0 = -ra (s) (2.12)[1 2a (s),A(s)] 2
+ a' (s) - 2(s) [K + (s)V D2  2a (s) A4c

0 =-r (s) + ' (s) + a (s) [(A (s) )+ I-ru Z i (1)]2 ]

The terminal value conditions for these equations are gzven below: they combine the ter-

mznal condztion of the per period problem and the Bellman equaton of the infinzte horizon

dynamzc programming problem. The optimal control of the insider is gzven by

[1- 2a (s) A (s)] ( )
2c

Proposition 5 The value function of the infinmte horizon problem zs

V (1, g - g,) = a (0) (g - gm2 + 6 (0)

where a (-) and 6 (.) satisfy the ordinary

the terminal value conditions

a (A a

A) an=

dzfferentzal equations in the last proposition and

(0)

(0) Z (A) + (0).

The control varable is gzven in the last proposition.



2.7 Equilibrium Solution

In this subsection we fully solve the equilibrium. The insider receives the signals at discrete

times {lA}tz, which leads to the new properties of the model. During each interval

[1A, (1 + 1) A], the market maker and the insider have their time dependent strategies,

involving deterministic functions A (t), (t) and 3 (t). The estimation uncertainty of the

market maker E (t), the functions a (t) and 3 (t) in the insider's value function, are also

time dependent. Since the insider's uncertainty has an exact relation with the market

maker's uncertainty E (s) = E (s) - E (s), we treat it as a separate function in the

mathematical derivation of the solution. Because the market is of infinite horizon and is

stationary, it is necessary that all strategies utilized by the participants and other related

deterministic functions are the same during each time interval [lA, (1 + 1) A]. This is in

the same spirit as a standard infinite horizon discrete dynamic programming problem.

To find the equilibrium solution, we combine the market maker's inference and the

insider's inference and optimization, using the definition of Nash equilibrium. We have the

following eight deterministic functions

to solve. We have eight equations and three terminal conditions for three differential

equations. The number of constraints is just enough to identify the unknowns. It turns

out that we can derive two equations involving only two functions (E', a (s)) and thus

solve them first. All other functions can be obtained consequently. Details are in the

appendix C.

The equilibrium solutions can be visualized as in figure 2-1 and 2-2. In figure 2-1, the

transaction cost coeffici(nt is c = 0.4, while in figure 2-2, the coefficient is c = 0.004. The

plots are very informative. We start by examining the case in which there is nearly no

transaction cost, i.e. c = 0.004. First, the insider trades very patiently. In addition, the



trading intensity of the insider explodes at the end of the trading interval. In this respect,

the market within the interval between two consecutive signals of the insider has similar

characteristics as that in the Kyle model. The factors behind this phenomenon are similar

to the factors in the Kyle model. However, we observe several new and interesting points,

as follows.

Second. it is helpful to examine the information asymmetry Ell (s) - E z (s) plotted in

the top left panel. At the moment when each trading period starts, the market maker

has the greatest information disadvantage since the insider knows the signal precisely.

As the market maker learns from the aggregate order flow, which includes the insider's

orders, information asymmetry is reduced gradually. At the end of the trading interval,

the insider submits huge order flows and drives the difference between the uncertainties

between the two players close to zero. With this result, it is not difficult to understand the

market maker's and the insider's individual uncertainties. During each trading interval, the

insider's uncertainty about the signal increases from zero, and how large it becomes depends

on the length of the interval A. For example, if A is very large, the insider's uncertainty

E increases until it finally stabilizes at the steady state variance of the true process gt. By

comparison, the market maker's uncertainty about the true signal yt starts high, decreases,

then increases to the extent that it becomes very close to the insider's uncertainty. In the

end, the market maker's uncertainty reassumes its level at the beginning of the trading

period, as required by the stationarity of the infinite horizon market. In the first part of

the interval the market maker's uncertainty is dominated by the fact that his information

asymmetry is decreasing. In the second part of the interval the market maker's uncertainty

is mainly influenced by the fact that the insider's uncertainty is increasing.

Third, the price impact A (t) decreases during the trading period. This is in contrast

with the Kyle model in which A is a constant over the finite period. From the expres-

sion A (t) = E (s) 3 (s) 2. we see that there are two effects that determine the size

of the price impact A (t). The first effect is the insider's relative information precision



YE (s) = Ern (s)- E (s). In our model, tile insider knows the true mean g perfectly only at

the beginning of the trading period. His uncertainty gradually increases, as depicted in the

top-right panel. In the Nash equilibrium, the market maker anticipates this and therefore

sets prices less responsively as time goes by. The second effect that influences A is the pro-

portion of the insider's orders relative to the order size of the noise traders 3 (s) /cr. This

proportion increases over time within the interval and hence moves the price impact A (t)

upward. The first effect dominates and consequently A (t) decreases over time. However,

in the Kyle model there is only one signal received by the insider, the final payoff at the

end of the trading period. The two effects defined above exactly offset each other in the

Kyle model. Actually. it is the constant A that achieves an equilibrium solution.

Finally, it is inspiring to notice the following seemingly contradictory properties in this

market. On the one hand, the insider loses his information advantage gradually. On the

other hand, at the end of the trading period, his trading intensity shoots up sharply. This

is in accordance with tile Kyle model but is surprising in our framework, since the insider

can become ignorant of the true mean g himself but he still trades arbitrarily aggressively.

Close to the end of the trading interval, the insider anticipates the next signal, and thus

he will submit enormous orders to use up his information from the last signal, no matter

how tiny is his information advantage. This demonstrates the fact that the risk neutrality

assumption on the part of the insider is so strong that it produces implausible results.

When we turn to the chart for relatively greater transaction cost, i.e., c = 0.4, we

find the expected results. The insider's trading intensity increases very slowly and does

not jump up close to the end of the trading period. This is because the transaction cost

deters him from doing so. As a consequence, information asymmetry deceases over time

less rapidly and furthermore, the market maker's information uncertainty decreases to a

lesser extent before rising.

We also compare the equilibria in two markets in which the insider receives signals

at different frequencies, with everything else equal. The results of the case with higher



frequency are plotted in figure 2-3. At high frequency, the insider's uncertainty only slightly

increases before the next signal arrives. Since his estimation of the true mean is accurate,

he trades more aggressively over the short period. This is turn explains why the market

maker's uncertainly is small in absolute terms. In addition, each interval is shorter so the

insider's trading intensity is smoother, explaining why the market maker's uncertainty is

large relative to the insider's uncertainty. A reasonable measure of market efficiency is

Z*- Z (S)

where the numerator is the excess of the conditional uncertainty of the market maker

over that of the insider, and the denominator is the difference between the estimation

uncertainty, assuming the dividend rate to be the only observable element of the filter.

and the insider's conditional uncertainty. Equivalently, the denominator is the amount of

private information that the insider holds, and the numerator is the difference between the

precision of information between the market maker and the insider. In other words, the

numerator is the portion of the private information that is not incorporated into the market

price. This fraction is never greater than 1. In figure 2-3. this fraction is roughly between

one-half and zero during the interval between the two consecutive signals. By contrast,

in figure 2-2, this fraction is much larger, close to 1 most of the time. Therefore, we can

conclude that with higher frequency of the insider's signals, the market is more efficient.

The intuition is that when the insider receives signals more frequently, as explained above,

his trading is smoother, and therefore the market maker can track his private information

more closely.

Overall, when the insider receives signals only at discrete times, the market efficiency

in strong form does not hold, even as the transaction cost is infinitesimal. The market is

less efficient when the transaction cost is greater or when the insider receives signals less

frequently.
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2.8 Conclusion

The results of Chau and Vayanos (2008), that a stationary market with a monopolistic

insider is approximately efficient in the strong form, is quite interesting and surprising.

However, these results do not seem to reflect real financial markets. In particular, it is

not plausible that the insider would submit a huge order flow constantly over an infinite

horizon. We find that in the CV model there are some seemingly moderate assumptions

that actually deviate from reality. These assumptions are critical for the derivation of

strong form efficiency in the CV model, and relaxing these assumptions can potentially

reconcile the empirically doubtful conclusions of strong-form efficiency. We introduce two

more realistic assumptions, namely that there exist transaction costs and that the frequency

of signal arrivals and the frequency of trading are different.

We show that the presence of a transaction cost in the quadratic form faced by the

insider will prevent the insider from trading quickly. Moreover. the market is no longer

efficient in the strong form. In addition, we introduce the assumption that the insider

receives private information at a lower frequency than the frequency at which trading

takes place. The solution of the equilibrium shows that between two consecutive signals,

there is an interesting pattern of trading intensity of the insider, price impact, and the

insider's informational advantage. Furthermore, the degree of nmarket efficiency is lower

than the case in which the frequency of private signals equals the frequency of trading.
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Chapter 3

Limiting Case with Continuous

Private Signals

3.1 Model Setup

In this chapter, we study a limiting case where the length of time intervals between the

insider's private signals goes to zero. The assumptions different from before will be high-

lighted.

As before, the market maker sets the price as the conditional expectation of the present

value of expected future dividends of a stock

Pt = E C r(s t)DdsFn . (3.1)

This can be simplified to be

Pt = AoDt + Algt + A 2g (3.2)

where < is the market maker's conditional expectation of the state variable gt, given his

information set at time t.

Notice that the insider observes g perfectly, so we replace E (gtIF) in the market



maker's valuation by g. From the insider's prospective. the present value of the stock can

be simplified as

Pt = AoDt + Algt + A 2g.

As a result, the insider's objective can be expressed as

maxE e-rt [(9 - ) t A1-'ro0] dtl-to 1 (3.3)
Ot t o

We consider linear equilibrium, in which the agents' strategies are linear functions of state

variables. In particular, we assume that the insider has linear strategy of the following

form 2

dxt = 3t (g - g) dt. (3.4)

We also assume that the market maker sets the price according to equation (3.2) with the

conditional expectation having the following dynamics

dgt = K (g - .) dt + A (t) [dxt + dzt] + (t) [v (D - g) dt + dD] . (3.5)

Definition 6 A pair of linear strategzes (xt,pt) satisfyzng (3.2), (3.5) and (3.4) is a Nash

equzlzbrzum zf the followzng two conditions hold:

1. Given the market maker's pricing rule (3.2) and (3.5), insider chooses the optzmal

strategy dxt = Otdt to maxzmnze hzs expected future profit (3.3). Given the znsider's strategy

(3.4), the market maker sets prices equal to the condztzonal expectation of the present

discounted value of the stock wzth equatzon (3.1).

1In the following we will let c = A lc and abuse the notation to let c denote .
2 This can be a candidate strategy only if g is observable by the insider. From the pricing equation (3.2),

we observe that the insidei can infer market maker's expectation gt from observing the price.



3.2 Market maker's filtering problem

First we look at the market maker's inference problem. The market maker updates his

belief about the underlying state variables based on the observed variables, the dividend

process. and the aggregate order flow submitted by the insider and the noise traders. We

follow the standard Kalman-Bucy 3 filtering technique to derive the solution to the inference

problem.

Formally, the market maker observes the aggregate order flow and the dividend process

(Y, D). Dividend evolves according to equation (2.1) and total order flow satisfies the

following stochastic differential equation

dYt = gt g- t) dt + audB'.

Equivalently, the processes (I,)D), defined by the following SDE evolution

DO 07D dBD

are observable to the market maker. The unobserved state variable is the dividend growth

dgt = K (g - t) dt + odB.

Define .& = E (g:|I.') and Var (yt1 T).

Proposition 7 Gzven the znszder's strategy (3.4), the market maker wzll update the con-

dztzonal expectatzon g and the condztonal varzance E of the state varzable g by

dg = K ( - ) dt + A (t) [Odt + orudZu] + , (t) [v (g - g) dt + o7DdBD] (3.6)

3 Lipster and Shiryaev (2001).



and

E' (t) = -2E (t) + - E2t) t + 2

where A (t) = Y (t) 36tl/2 and 2 (t) = tv/o

The filtering theory tells us that the estimate g is updated because g is expected to

change, and because new information from observable processes is available. The first

term reflects the part of g that is expected to change in the same manner as g. The new

information from the observable processes is incorporated into the estimation, as there is

a correlation between the state variable and the drift of the observable variables (, D).

The second term of the RHS of equation (3.6) reflects the correlation between g and Y,

and the third term reflects the correlation between g and D.

Notice that the conditional variance evolves deterministically and satisfies an ordinary

differential equation of the Reccati type, but in general there is no closed form solution of

the differential equation. However, we can circumvent this problem if we are only interested

in the steady state of the stationary financial market. The convergence of the filters to their

steady state solution is proved, under mild conditions, in Anderson and Moore (1979). In

the steady state, the uncertainty E (t) is constant over time and therefore E' (t) _ 0. The

insider's strategy is also constant; therefore, we obtain an algebraic equation of the two

varialbles E and 3

-2KE + r ± 2 + = 0. (3.7)

Furthermore, when the market maker can only infer the process gt based on observation

of the dividend process, his conditional variance of gt is greater than the case in which he

observes both gt and Dt. In the former case, the steady state conditional variance satisfies

the quadratic equation (3.7) where the strategy 3 is replaced by zero. and the valid solution

is given by

V -

l d



To facilitate the equilibrium analysis. we write the filtering solution (3.6) as a stochastic

differential equation of the observable variables of the market maker

dgt = K (g - g) dt + A [dxt + dzt] + " [v (D - g) dt + dD] . (3.8)

As explained above, the market maker updates his estimate of g using the information on

the aggregate order flow and the dividend cash flow In the steady state of the stationary

financial market, A (t) and " (t) are not time dependent.

3.3 Insider's optimization

Notice that the insider cannot observe the total order flow as the market maker does;

therefore, he cannot imitate the market maker by working out the filtering problem to

obtain the market maker's conditional expectation of the insider's private information.

However, recall that the market maker sets the price as in equation (3.2), thus the insider

can infer the market maker's conditional expectation of the insider's private information

from the price process and the dividend cash flow.

In the Nash equilibrium, the insider anticipates a rational pricing rule of the market

maker. In our model, due to perfect competition, the market maker sets price as the

present value of the expected future dividend cash flow. conditional on his information set.

By the assumed Markov property of the processes (D, g). the pricing rule is determined by

equation (3.2). Therefore, the pricing rule essentially boils down to an updating scheme

of short run mean g. We assume that the insider anticipates the market maker updates g

using equation (3.8), which is equivalent to

d = K (g - g) dt + Adt + A (t) a>dZ + [v (g - g) dt + aDdBD]



Then Insider's optimization is

max E e
Ot O

rt [(9g g) Ot - cO2] dt.

This is a standard stochastic control problem. The state variables are (g, g). However, a

more careful look renders

d(g- g)

= K ( g) dt + +ogdB g A (t) Odt - A (t) adZ" - ~ (t) [v (g -) dt + cDdBD]

= [(K - v3t) ( - g)- A (t) 8] dt + ugdB g A (t) a(dZu - -3taDdBD

This, in addition to the function form of the optimization objective, says that the estimation

error of the market maker is tile single state variable of the insider's stochastic control

problem.

Let J (t, g - g) denote the value function. Then the value function satisfies the HJB

equation

0 = sup Jt + J [(JK
Ot

vt) (9 - 9) - A (t) 0] + Jgg [(g)2 +

+ [(g - g) Ot - 2] C-,rt

s.t. [(K "t) (9 g) A (t) 0] dt + (gdB g

lim E [J (7, g
T--+OO

) ] = 0.

Suppose the functions A (t) and 7 (t) are not time varying.

Proposition 8 The HJB equatzon has a solutzon of the form

J (t,. - ) = e-rta ( - 2 e-rt6

A (t) oadZu - 'tDdBD

-2 2 2 2 ],At +;t ]



where a and 6 satisfy the following equations

0 = -r + c2 + a (A2 2 + 22D) (3.9)

0 = -ra - 2a (yv + ,) + - (1 - 2aA)2 . (3.10)
4c

The optimal tradng strategy zs linear and gzven by

-2aA + 1
0= (g- g). (3.11)

2c

Proof. See appendix. U

The main conclusion is that given the market maker's pricing rule, the insider chooses

a linear trading strategy. The value function is a quadratic function of the market maker's

estimation error. It is important to notice that when deriving the insider's optimal solution,

we have already incorporated the fact that in the steady state, the market maker's choices

A (t) and -' (t) are constants, which in turn implies that the insider's strategy depends on

tile state variable in a time invariant fashion, and so does the value function, except the

time decaying e-rt. The stationarity of the economy is the main difference between this

paper (also CV (2008)) and Kyle (1985).

Comparison between our infinite horizon model of a stationary financial market and

the finite horizon model is in order. In the Kyle (1985) model. trading occurs over a finite

horizon [0, T]. At the beginning of the trading period, the insider learns about the final

payoff v - VT of the stock. There is no dividend payout of the stock. The noise trader

is assumed, as before, to submit exogenous order flows dzt = o,,dBt independent of tilhe

insider. If the market maker's pricing rule is dPt = At (dxt + dzt), then the risk-neutral

insider has the value function

1 1
J(t,v -P) (v - P)2 + - a (T t)

2A 2



where the terminal condition is J (T, v - P) = 0. There are two major differences between

the Kyle model and our model. First, in the Kyle model, the insider's trading strategy is

not determined by his own optimization problem, since the HJB equation is linear in the

insider's trading strategy Ot. For the insider's optimal control problem to have a solution,

the terms in HJB that do not relate to Ot should add up to zero. This requires that the

market maker sets A (t), the reciprocal of the market depth, to a constant. The terminal

value condition of the value function implies E (vl.F) = 0. Therefore, the insider's strat-

egy is determined in the following way. The insider chooses 3 (t) such that the market

maker, given 3 (t), chooses a constant A (t) and infers the terminal payoff perfectly. i.e.

E (vTFF) = 0. In the Kyle model the equilibrium solution strongly depends on the Nash

equilibrium concept. This is quite different from the common property of optimization

problems, that the solutions are usually given by first order conditions. In our model, the

insider's strategy is determined by his optimal control problem, because with the quadratic

transaction cost, the HJB equation is not linear in Ot. Second, in the Kyle model, in prin-

cipal the insider's trading intensity 3 (t) and the market maker's liquidity choice A (t) are

deterministic functions of time, since the financial market has a finite horizon. Although

it turns out that A (t) is a constant, it is only a special property of the Nash equilibrium

solution. On the other hand, in our model, since we have a stationary framework, any

control variables must be constant over time. This places a strong requirement on the

equilibrium solution. Later we will show that stationarity is indeed much more restrictive

than it appears.

It is helpful to point out a caveat. The insider's strategy given by equation (3.11) may

seem to implicate that insider's trading intensity 3 = (1 - 2cA) /2c explodes as transaction

cost diminishes. Although this result is true, the reasoning behind it goes beyond this

equation alone. The variables a and A are themselves affected by the parameter c. To

analyze the comparative statics, we must solve the equilibrium, that is, to solve for the

variables as functions of the parameters only.



3.4 Equilibrium solution

To solve the steady state equilibrium values of (EE, A, a, 6. , 3), we combine the solutions to

the market maker's inference problem and the insider's optimization problem and obtain

a system of equations. These can be simplified as follows.

Proposition 9 (A. E) are jointly determined by the following system of equations.

A2 = 1 -2K + 2 V E2

0 = E (E - 2cAc) (r + 2K + 2v2o 2 ) - 2cA30.

The remainder of the parameters (a. 6., 3) can be solved subsequently.

E 2cAo
a-

2AE
2a 2

2 -= 
.2 

-

The limiting behavzor as the transaction cost diminishes zs

lim A =
c10 01

limE = 0,
c--0

lin 3 = co,
c-O

lim = 0.
c-0

The results are easy to interpret. First, when the transaction cost is small, the solution

is consistent with the discrete time setup in CV (2007), in the sense that there is approx-

imate strong form market efficiency. The insider's rate of trading is huge and the market



maker's uncertainty about the underlying true profitability gt is negligible. However, mar-

ket depth converges to a constant a,u/g and we show that the insider's profit converges to

a positive constant. It is clear that there does not exist a Nash equilibrium in the continu-

ous time model in the limit when there is no transaction cost. Second, our model explains

more than CV about what is the outcome when the insider bears a transaction cost. There

exists an equilibrium in which the insider's trading intensity is finite and the market maker

cannot infer the true signal gt perfectly from the aggregate orders and the dividend rate.

In such case. the market is not strong form efficient. We can calculate comparative statics

from the solution to the model. The parameters are plotted in Figure 1 as the transaction

cost varies.

3.5 Conclusion

We take the limit in the general model as the frequency of the insider's private signals

increasing to infinity, which means private signals are observed continuously. In this special

case, every deterministic process that the market maker and the insider control becomes

constant in equilibrium. rather than periodic as in Chapter 1. For example, E(t), a(t),

q(t) are constant over the infinite horizon. Major effects resulting from trading costs are

highlighted in the simpler model. For example, we show that if there is a transaction cost

in the quadratic form faced by the insider, it will prevent the insider from trading quickly.

Moreover, the market is no longer efficient in the strong form.



Chapter 4

Discrete Trading and Comparison

with Strong Form Efficiency

4.1 Discrete Trading Setup

In this section, we briefly describe the results for a discrete framework, in which trading

takes place at fixed and evenly spaced times. The private signals of the insider are assumed

to arrive exactly at these trading times. This framework extends that in the CV model

by only bringing in a trading cost for the insider; therefore, the model here nests the CV

model. The continuous time model in Chapter 2 can also be considered a limiting case, as

the trading interval shrinks to zero, of the discrete time model in this chapter.

The assumptions are the same as in the above continuous time model, except that

trading takes place at a set of discrete times {lh},,z. There is a quadratic transaction cost

for the insider's trades, otherwise this economy is essentially the same as the one in CV

(2007).

The dividend rate is mean reverting

D, = D-_ 1 + vh (g1-g - Dl-1) + ED.



with the short run mean process g itself reverting to a constant g according to

g9 = gi-1 + Kh (9 - gi-1) + Eg,l.

The parameters v and K determine the reversion rate of these processes. The errors ED,l

and Eg,I are both i.i.d. and independent of each other, and normally distributed with mean

zero and variances a2 h and a2 h, respectively. The market maker is competitive anrid sets

the price as the expected present value of future dividend streams conditioned on his

information set

P = E [ A Dhe |(lF)hFm = AoD + A 1E (gilFT/') + A 2j

where the second equality is derived as above by substituting into the processes (D1,, g91);

this essentially results from the joint Markov property of the dividend rate and the true

underlying mean. Noise traders' orders at time lh are Eu,t, with mean zero and variance

72h.

We consider only linear strategies for the market maker and the insider. The market

maker's inference is conjectured to evolve according to

g = (1 - /h) gi-1 + Khy + D (D1 (1 1 - ,h) Dr_ 1 - vhl_1) + AX (x 1 + ul) .

We also conjecture the insider's trading strategy to be

The insider is risk neutral and bears transaction cost cx /h for trading at time lh. Thus,1/L V I~lljLL~~IICb~ ILD



his objective function is

maxE Z X (gi - ) - c e-r( '-r ) f

The equilibrium can be solved in the usual fashion. We first solve the market maker's

inference problem given the insider's strategy 3 (gl- - ~1-1), aind define his conditional

variance of the state variable to be E, - Var (gf i). Then given the market maker's

estimation g and the pricing rule, we solve the insider's optimization problem, obtaining

a quadratic value function B (g- j1_1)2 + C in our case, and optimal trading intensity

3. Finally, we combine the solutions of the two players. There is no simple closed form

solution to the equilibrium. The equilibrium is characterized by a system of equations,

which are presented in the appendix. However, the limiting behavior when the trading

interval vanishes can be expressed easily as in the following proposition.

Proposition 10 The equzlbrzum r s determined by system of equations, as follows

[1 - (K + VAD) h] (1 - 2A e-rhB)
2 (Ax + ch - - Ae-rhB)

2  1 + 4e-rBclh-

4 (Ax + ch-1 - A2 -rhB)'

C -e - rhB (A 2 + A2 + 2 ) h.
-D ( C D D XJ 9±4 h

(1 - Nh) Eah
AD --

E, (320 r+ v 2 ogh 2 ) + 2 u2'D,2 D D -2h'

(1 - lh) 2 
9  h 2

Whe (322 v2 2h 2 2h

W (32T 2q +c v 2r to h2) + (r ( oloh g

When h - 01 the equilzbrzum converges to the equilibrium solution to the continuous time



model as presented in proposition 9

lir 1g, Ax, B, C, A \D, )- A,, •

Proof. See appendix. *

4.2 Comparison with Strong-form Market Efficiency

CV (2008) computes the equilibrium in a discrete time setting with infinite horizon. Our

discrete time model nests their model, since we add a transaction cost. As the transac-

tion cost approaches zero, we can derive the equilibrium results of the CV model. For

convenience, we list the main results from CV (2008) below.

Proposition 11 When the insider zs trading., the asymptotzc behavior of the equhbrium

zs characterzed by

AD 2
lirn 9

lirn Ax =
h-0 au

lim s- _w l i

h-O V/h r2

lirn B -
h-O 2-g

lim C = -
h-i r

What, as CV (2007) claims, is most striking is that when calendar time converges to

zero, the size of insider's trading 3 is v/h, which is larger than order h. Therefore, the

rate of order size 3/h converges to infinity. In addition. the insider's trading reveals more

and more information, as seen from the fact that E9 is also of order v/h, which means



that the market maker's uncertainty about the insider's private information converges to

zero as the time interval converges to zero. Another important variable is the insider's

trading volume, xj = 3 (gl-1 - 91-1), which is of order h3 / 4 . Thus the volume generated

by the insider within a fixed time interval is of order h- 1/4, which converges to infinity

when h goes to zero. The marker maker's estimation is also interesting. The updating

of his belief about g depends on total order flow and dividend rate through Ax and AD.

respectively. As the trading interval approaches zero, the price impact of the dividend rate

converges to zero. This is intuitive, because the market maker's update needs not rely as

much on dividend rate when the insider places a huge, informative order flow. It may be

surprising that the price impact of the aggregate order flow converges to a finite number,

since total order flow is more informative than the Kyle model. This is explained in CV

(2008) that the market maker faces less uncertainty and the information has smaller effect

on the prices.

As we are interested only in model implications for the near continuous trading case,

our discrete time model stands in notable contrast with the CV model. First, the CV

model does not converge to an equilibrium model in continuous time, since the equilibrium

solution diverges as h approaches zero. Our discrete time model converges to a continuous

time model when the trading interval approaches zero, as seen in proposition 11. In our

discrete time model, so long as the transaction cost is not zero. the insider's rate of trading

does not explode when h approaches zero. In particular, the rate of trading of the insider,

measured by parameter 3, is of order h, as opposed to order f in the CV model. Another

difference is the insider's profit margin gl - y1. This also converges to zero in the CV

model but does not do so in our model. The magnitude of the profit margin not only

determines the insider's profit, but also has an effect on the insider's trading volume. It

is natural to see that the insider's profit has a nonzero limit. Combining the properties of

3 and (g - g), we observe that the volume of the insider's trading xl = 3 (gi-i - 1- 1) is

also h, which means that the rate of trading volume with respect to time between trading



converges to a finite number. This is a crucial difference from the CV model. Consequently,

the market maker cannot infer insider information perfectly. In other words, the market

maker's uncertainty Eg about the true mean g converges to a positive number. Therefore

the continuous time limit of the financial market is not strong form efficient any more, so

long as the transaction cost exists.

CV explains in detail that the main difference between their model and the Kyle model

is the stationarity of the market. Here, stationarity refers mainly to the fact that the

insider repeatedly receives private signals, the true underlying short run mean g of the

dividend rate. It is this kind of stationarity that drives the insider to be much less patient

than the insider in the Kyle model. In our model, however, the insider is also impatient.

The additional quadratic transaction cost prohibits him from trading aggressively.

Our model nests the CV model. When the transaction cost approaches zero, our

discrete time model converges to their model. On the other hand. as the time interval h

approaches zero, our discrete time model converges to the continuous time model in chapter

3 while the CV model does not converge, as trading frequency increases without bound.

The relationship between the three models is described in diagram 4-1. The solutions to

the CV model, however, quantitatively have a limiting property when h - 0, although in

the limit, the CV model has no solution. The solutions for our continuous time model on

the right hand corner of diagram 4-1 exhibit the same limiting characteristics as trading

cost vanishes, i.e., c - 0.

This last convergence between the right two models in diagram 4-1 can be seen in Figure

4-2, which shows what happens to the solution of our continuous time equilibrium when

trading costs vary. It is clear that when there is almost no transaction cost, the solution has

the same properties as the solution to the CV model in the near continuous trading case.

For example, the trading intensity of the insider can be arbitrarily large and the uncertainty

E of the market maker can be arbitrarily close to zero for sufficiently small transaction costs

c. The comparative statics when c varies are straightforward. Since transaction cost is the



Discrete

time model
in chapter 4

CV model

h-->O

h-->0

Continuous
time model
in chapter 3

Limit not
exist

Figure 4-1: relation between the models

only factor keeping the impatient insider away from aggressive trading, the insider's trading

intensity increases as transaction cost decreases. Moreover, as transaction cost decreases,

price impact increases, and equivalently, market depth decreases. The reason for this is

intuitive. As c decreases, the trading volume of the insider 3 (g - g) increases. The market

maker anticipates this in equilibrium, therefore he believes that a larger proportion of the

aggregate order flow comes from the insider traders. As a result, the market maker moves

prices more responsively to the total order flow. This means that market depth is shallower

when transaction cost is lower. Finally when transaction cost is lower, the higher trading

volume of the insider carries more information; therefore, the market maker's uncertainty

about the signal E is less.
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4.3 Conclusion

In this chapter we examine a discrete time model that nests both the CV model and the

continuous trading model in chapter 3. When trading frequency increases to infinity, the

model converges to the continuous trading model described in chapter 3. On the other

hand, when trading cost approaches zero, the model converges to the CV model. The

nesting relation between these models is illustrated in diagram 4-1. The solution to our

discrete time model does not attain the strong form efficiency property, as opposed to the

CV model. Some details of the comparison have been provided in this chapter.
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Chapter 5

Discrete Signals at Random Times

5.1 Discrete Signals at Random Times

As noted in the previous section, close to the end of the trading interval, the insider

anticipates the next signal to occur, thus he will submit orders of enormous size to use up

his information from the last signal, no matter how tiny his information advantage is. It

would be interesting to study a different framework, where the time of the occurrence of the

next signal to the insider is not guaranteed. Put it in another way, as each private signal

occurs, the insider cannot forecast the occurence of the next signal without uncertainty.

Mathematically. the previous model assumes that the length of the time interval between

two consecutive signals is deterministic (and fixed for simplicity). Now we want to alter this

assumption such that the signals come stochastically. To maintain the stationary market

assumption, we require that the random variables representing the arrival time of each

new signal g are independent and identically distributed. It is standard to assume that

this random variable follows an exponential distribution. However, we adopt a truncated

exponential distribution with the following probability density function

f (t)= 0 < t < T.
1 - e-F



The benefit of this distribution is that it has finite support. The interpretation of this

distribution is that if the next signal does not arrive at or before time T, the insider will

produce his own signal at time T. This can be regarded as a model in which the insider

is a firm with a R&D department. For example suppose T is two weeks, and the mean

of the untruncated exponential distribution is 2 days. What happens then is that the

insider expects to receive the next signal at a stochastic time, with the average at 2 days.

However, if two weeks pass and no signal occurs, then the firm's R&D department acquires

and reveals the signal perfectly. Potentially the acquisition of the signal imposes some cost

to the R&D department; however, we ignore that cost in this paper, for simplicity.

Only the assumption on the timing of the private signals is changed. Therefore, in the

derivation of the equilibrium, most steps are intact. The insider's optimization problem is

the one that needs more careful calculation. As before, the insider's optimization problem is

an infinite horizon problem that can be broken down into two parts. First, a discrete time

dynamic programming with infinite horizon, and second, countable identical continuous

time stochastic control problems within each interval between the two consecutive signals.

Suppose the current time is t and this is the time at which the insider receives the 1th

signal. The Bellman equation for the discrete time dynamic programming is

V (1, gt - gtm)

sup E4{j r(st) [(g" - ) 0, - c 2 ]t] dt + TV(I+
{ Ot t< s< t+ l- 

-}  

1

We can solve this discrete time Bellman equation by considering the continuous time

stochastic control problem with finite horizon [t, t + r], as in the last section.

sup E s [(g; ) , - C 02] ds + re- r (1 + 1,9~, )
0t9 1,O<9.11 TI T



subject to

d (g' - g)

=- [ + (s) V] (g' - gm ) dt - A (s) Osdt - A (s) oudB + [E - EI (s)] vt-aDldBD

However, the horizon is random which brings a new complication. Below, we follow the

approach in Richard (1975) to solve this stochastic control problem with uncertain horizon.

Suppose 7 has the probability density expressed above. We define the following related

functions

1 - e - t  e - o r - e-
T

F (t) = - T G (t) = 1 - F (t) = 1 -

f(T) de-c oT
f (T, t) - f  T > t

G (t) e-o_ -,o'

h(t) f(t,t) o

where F is the cumulative distribution function, G is the tail cumulative probability distri-

bution, and f is the conditional probability density for random time 7 = T conditional on

T > t. Finally h is the hazard function in survival analysis. With these notations, it can

be shown that in the above per period stochastic control problem, the objective function

is equivalent to the following

1 ' o
sup Et - { G (T) e [(g- g) OT cO]

{O9,t<s<T} G (t)

+f (T) e-rTV (1 + 1,gT, g)}dT.

We denote the value function by J (s, g'\ gi). Then, the discrete time Bellman equation

is simply

V (1, go,g m) = J (O, g - ) (5(5.1)



We will address this equation later. For the finite horizon per period problem, the transver-

sality condition is

J (T, g g-  ) = e-V'TE V (1 + 1, g , g) . (5.2)

Proposition 12 The value function of the infinite horizon dynamr programmng is

V (1, g - ) = n (0) ( g m) 2 + (0)

where a and 6 are determmzstic functzons on interval [0, T] sattzsfying the ordinary difer-

entzal equations

ra (s)) + '(s)- 2a (s) { [ + (s) v 2 a 2]

{ [1 - 2a (s) A (s)] e [a (0) a(s)] =0,
2c e- - e-OT

-r (s) + (5 (s) + a (s) [(A (s) owU)2 + ()]2 2D2

+ [6 (0) - 6 (s) + a (0) E (s)] = 0,e- - -

with the terminal value conditions

a (T) = a (0),

6() = ~ (0) + a (0) E (T-) .

The inszder's optzmal control zs gzven by

= 1- 2a (s)A(s) (gI )
2c

Figure 5-1 shows the plot with parameters c = 0.004, 0 = 1 and T = 2. We mainly

compare this plot with figure 2-2. In the previous model, the next signal will arrive at



time t = 1. Now our assumptions are such that once a signal occurs, the arrival time

of the next signal is distributed as a truncated exponential. with cumulative distribution

function plotted in the lower-left panel. In other words, the next signal is only guaranteed

to arrive before t = 2, however, it can arrive before any time t for 0 < t < 2 with positive

probability. It is clear that this randomness of signal arrival gives the insider tile incentive

to trade more aggressively at tile beginning of the interval between signals, since he expects

the new signal to arrive at any time. On the other hand, if the new signal has not arrived

at time t > 1, then the insider will not raise his trading intensity rapidly by a large amount

since he is still not sure when the next signal will occur, as opposed to the previous model

with fixed arrival time. in which the insider will rapidly escalate his trading intensity just

before the new signal arrives at t = 1. In summary, the new pattern for the insider's

trading is that trading intensity is smoother with stochastic arrival of signals. Moreover,

this further explains that the information asymmetry between the insider and the market

maker declines more quickly in the new model.

5.2 Conclusion

We examine the case in which the arrival time of the next signal is not deterministic. With

the arrival time following the truncated exponential distribution, we show that the insider

trades more smoothly. He trades more aggressively right after receiving a new private

signal, and less aggressively as time passes by, relative to the case in which signal arrival

time is a fixed constant.

There remain several unanswered questions. One involves separation of the effect of

risk aversion of the market maker from risk aversion of the insider. Either one may induce

the insider to trade slowly. However, in Wang (1993) both market maker and insider are

risk averse. It is interesting to study the properties of tile equilibrium when only one of

them is risk averse. Intuitively, risk aversion of the market maker means he will charge

more for large orders, for bearing inventory risk. Risk aversion of the insider, on the other
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hand, means that the insider will refrain from submitting large order flows since he not only

seeks to utilize his private information, but also needs to take into account the precision

of that private information. This concern limits his trading aggressiveness.
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Appendix A

Market Maker's Pricing Rule

Proof of the market maker's pricing rule.

Proof. Under our assumption, the dividend growth is a mean-reverting process. The

solution to the Orstein-Ulenbeck process is

gs = e-K(s-t) gt + ( e-K(s-t)) e K(s u) CdB

and therefore the conditional expectation given time t filtration is

Etgs = c-K(s-t)Et [gt] + (1 e-K(s-t) )

To solve the SDE for the dividend process Dt, we use a integrating multiplier

d [ev tD t] = vevtDtdt + c" (v (gt

= e"t (vgtdt + 0DdBD)

e IT DT = Ce"Dt + ST
c"8 (vgsds + UDdBD)

D t ) dt + JDdBD )



This implies that the dividend process can be represented by

DT = e-v(T-t)Dt + e-v(T-s) [vgds + 9DdS]

Take conditional expectation we have

EtDT = e-v(T-t)Dt + Te-" T-s)Et [gs] ds

= e-"(T-t)Dt + v

= eC-(T - t) D t + v (gt - )

T-s) [e-K(s-t)t (--

T e-(T-s) e-K(s-t)ds

- K(s-t)) ] ds

+ i e-v(T- )ds

-= v(T-t)Dt + -K(T-t)

+ (1 - e - 'v(T - t))

Market maker sets the price to be the discounted future dividend payout

Pt = Et e-r(T-t)DTdT

1 v 1
1 Dt + O

v+r v-K r+K

1
- Dt + (ge

v+r ( +K) (v+r)
1

S Dtr +
v+r

1
- +Dt +
V+r

(r + K) ( + )9t

(r + K) (v + 9

( r r + v (r K) (v + r)

vK
+ r (r + v) (K + r)

S)(t -

+ )+ (
r

1r
r+v1 

9) + (

C-v(T-t) ) (gt



Appendix B

Proof to the Propositions

Proof of proposition 7

Proof. By standard Kalinan-Bucy filtering technique

Liptser and Shiryaev (2001)), we have

= ~ (9 - o) dt

3 (t) [ (t)(g - ) dZ]+ 2 -
+ D(

(for example see Wang (1993) or

) dt + o7dB D ] (B.1)

and

E' (t) = -2KE (t) + 2 _+2 (t) (B.2)

Proposition follows once At and yt are defined. *

Proof of proposition 8 (insider's optimization)

Proof. Let J (t, g, g) be the value function, then we can write the HJB equation of the

67

-- 2

dg = (g - g) dt + E (t) (3, v)
0

0 (t)
d gdt

2 DD - ( ['1 -



insider as

O = sup Jt + gK( gt) +

+ _J (,2 (t) 2 2 + 12)

1

J+ [(g ) 2+ [K(2 )+AO+ y (g

-(gj)) ti- 2 -t

First order condition is given by

J A + (g - 2cO) e-r = 0

0 = (JAert + g -g)
2Now conjecture the value function is

Now conjecture the value function is

(B.3)

J (tg, g)= -crta (t) (g

We can derive the following properties of the value function.

Jt = rerta (t) ( g)2 - rT-t6

J = -2ecrt(g )

Jg = 2e-rta (B.4)

Substitute back into equation (B.3) we can get

1
8 = (g - g) (-2aA + 1) (B.5)

2c

Plug the value function and the solution to the control variable Ot back into HJB equation

)2 + e-rt6 (t)



and we get

S= -re-'rta(t) (g - )2 _ rert6 + 2e ta (g - ) K (9 - t) + ae-rt 2

- 2e-rt(g g) K + (g - )(-2aA + 1) + v (g -)
2c

+ aert ( 2 (t) +

+ -rt 2 (-2aA + 1) - c (g - )(-2AA + 1) 21

Simplify the above identity and we have

0= -r (g- )2 - 2 lg- g)2 (-2zn + 1) + 1 -2aK (g )2

2c

- r6 + a (A2 t2+ 2 --

There are two terms. The first term is a quadratic term of the estimation error of the

market maker (g - )2 , and the second term is a constant. Letting both equal to zero we

obtain the following two equations

0 =-r6 + co + (A2 2 2

0= -ra - 2a (-2aA+l1)+'u+n]
2c

+ (-2aA + 1) - c (-2c + 1) 2

where the second equation can be shown to be equivalent to the one given in the proposition.

proof of proposition 9.



Proof. Recall the definition of the notations

AE3

We can see that 3 a r,/E. In proposition (8), insider's strategy is given by 3 =

1 (-2aA + 1). By equating the two expressions. we find

Ao 1 - 2aA

E 2c

Therefore we can solve a as a function of some other parameters

2cAo)

E

In the steady state, E (t) is a constant, recall that equation (B.2) implies equation (3.7)

9 2 X 2

which is equivalent to

0 = -2KE + r - A 2

A2 =1 (
071

2KE + o2

Equation (3.9) can be expressed as

0 = -r5 + 2N(T

( 2 a r(
2

- 2
7"

2nKE - c

aK(E - 08

2
D

(B.6)

V E2

2
0DY

(B.7)

(B.8)

1
a = -

2A



Equation (3.10) is equivalent to

0 = -ra - 2a 2 + , +
D

0 = -ra - 2a 2 + K, +
aD

0= -ra - 2a 2 +K +

0 ( 2cA) (r + 2K +

1 2

(-2A + 1)2

1 ( (I - 2aA)) ' 2aA+1) 2

-au( (-2aA + 2+1)

2C

2Ev2 -2 ) - 2cA3u

The above four equations (B.6)(B.7)(B.8)(B.9) can jointly determine the steady state equi-

librium values of (E, A. a, 6). The remain two parameters (3, 3,) follows. z Proof of propo-

sition 10. Proof. The market maker's inference is the same as the Chau and Vayanos

(2007) setup, therefore we have

9~ = (1 -Kh) QI1 + Khg + D (D - (1 -4 h) D 1 - vhg_-1 ) + AX (xI + ul)

where

(1
AD = (I

(1

Zg (32j7Ax =

- (1-

Y9g (3
2 a2

Kh) EZvu2h

+ u2~ ) + c~ uh

- ih) 3Z2
+ v h2 ) + u7u h

Kh) 2  22 h
+ - + (T2h

+ 2 2h2) 2 2

The Bellman equation is

V (gi- I 9-i) = maxE x (gi - ) ch 1 2 + F-rhV (gl, 1)]01-1 -1-1) = XlX 1

(B.9)



Market Maker's estimation error in period 1 is

91-1) - ADED,l - , (xl + al) + Eg,l

Substituting into the Bellman equation, we find

B (g-1 - 11)2 + C

= maxxt { [1 - ( + AD) h] [g-1
Xl

+ e-rh B ([1 ( + vAD) h] [g -1 1-1 x 2  2 2 2 21-1] - Axx) 2 + A2o2h + XO h + O- h

The first order equation is

0 = [1 - (K + vAD) h] (gl-1

2Aze-rhB ([1

1-1) - 2Axxl - 2ch-lxl

(K + VAD) h (yl-1

which implies

x 1 = 3 (9g-1 - 1-1)

with

[1 - (i + AD) h] (1 - 2Ae-'rhB)

2 (Ax + ch - 1 - A e-rhB)

Substitute into Bellman equation, we have

B (91-1 - 9 1 ) 2 + C

= rhB 2 2 2 -2 + -rhC

[1 - ( + VAD) h]2 (1 - 2Axe-'rhB) 2

4 (Ax + ch - 1 A e-rhB)
(9l-1 - 9-1)2

+ C-rhB [1 - (N- + AD) h]2 [9-1

+c}

91-1) Ax 1)

gl - 91 = [1 - (K + vAD)h] (gl-1

91-1] - Axxl} - ch-1 2

91-1]
2



which yields

[1 - (K + pAD) h]2 (1 2Axe-rhB) 2

4 (A + ch - 1 - A2 e-rhB)

= [1 - (K + AD) h]2 ((1 2Axe - rh

+ e rhB [1 - (, + vAD) h]2

B) 2 + 4e-'rhB (Ax + ch - 1

4(Ax +ch- - A e-rhB)

1 A rh It,-I

[I (K + AD) h]2  
1 - t 1+ G c

4 (Ax + ch - 1 - A2e

C 1 e-rhB ( 2 2 2 2 2) hC 1-C D D  x

Now we write the equation for B again

4A2 -rhB 2 +4{e-rhch-' [1
Ax +4[

(K + PAD) h] 2 (Ax + ch - 1) B [1 (K + PAD) h]2 = 0

The quadratic equation has solution

B =
B- 2A2erh [

A = r{hch-l[

Se rch- 1 [I - (t

1 - (K + PAD) h]
2

z + vAD) h 2 (_ Ax + Ch-1)

(Ax + ch-1) } 2 _ -rh [1 ( + vAD) h]2
__I x -

Proof of proposition 11.

Proof. Equation for 3 becomes

Equation for Ax becomes
E9 3

x =2 h- ~g

The above two equations imply

2cAX~2
1 - 2AxB =

Y1

B =

A2 e-rhB)x

rhB)

3
h

1 - 2AxB
2c



Equation for AD becomes

Equation for Eg becomes

EDIV
AD =2

D

A2 2 2 2 2 22 + 2KE = 0

When h = 0, equation for B becomes

(1- 2AxB) 2 = 4cB [r + 2K + 2ADv]

(2cAt2

Equation for C becomes

CEg - 2cAiTX [2+222c EgA r + 2
AxE Y I

Cgv2
+ 2

(DD

C = 1B (AD D + A2 +)
1"

This finishes the proof S

Proof of proposition 2.

Proof. Formally

dgS, (= gs) ds + dB S

dD, = vgsdt + UDdB D

Proof of proposition 3.

Proof. Then Market maker's filtering is

S-K

2 -D
2

0 g dt +
-K_ p 2 D J2 D L -(D1

0a
0

dBD

dBU

dB 9

d 9 K dt +

g9 1 -rj



and the observed variables are

d dt +
0 3s g

The solution to the filtering is

d ]m [ Kg dt +

g- m MI r

-Kn

g - gm dt +
[y%_4gm

cD 0 0]

0 a, 0

= dt +
r, EV2D 2

+ 
D

S[Zr () v + Zv] a1
1Em2 D

0
2 u 2

O s (71

2 () 3s2 1j

z (s) so 1
22 I

gm dt

dB _ 
m

dBD

dBu

[mi 1 anF3m1 VJD1

d D
Bm2 0

0 0

7u 0

dBD

dBu

dBS

0

_ E 2 D2
gm dt

0

3s

dBD

dBu

dB 9

and
dBD

dB"

V 0 0 0
+ +

0 6, -Ev 0

o g - m dt +
3sl g tgZm



dY = [ K
ds EV2 U 2 -K

v 0 0

E +E K

0
Em + m -

Ev 2 7 2  E Z 2 (-2
D D

0 2
D

0

T
0

Kn Ziu~oj

([ Vs c
0

0 3s-

Simplify the Riccati equation,

dsm [dS2 
2

2

+
0

0

(K+ E u2-2 2 )

o
E2V2-2

Emy

2v v

11 12
zM E]

12 22

C 12 s3IEM 38 ]22Bj

+m [
+E

-H

V2
2r- 2

D

O EV

21 [ S

T
0

K- 2 --2

E v + EU

12CZ~~iO - ~Z1

-2nE + Yv 2 - 2 y im12 D 11[ 2 o
() E2U2 D

Z D20-D2 Z

-2KE' 2 a2C, - 2g-2 m
2 V D 11 D , 12

2Ev 2 oD 2ZiEm - 2 (K + EV 2 0F3 2 ) EM
D 12 D nT ~ 22

[3v22D2  m32
u- 

2  E, UT-2v m v + ZZr(2 1 1
2

11 D 2 /s u 11 D 12 1 O 2  
2 22s

( 12 2 22) 2 D2 2 2 2 V 2 u 21222

and therefore

2E\ + a (m) 22 2 2
11 9 11 D

dEm
12 -2Em- E 2 2 Em

ds 
D 12

22= -2 (K + ElV.2 - ) 2 m
ds D 22

V 2 (- 2E Cm -Em E 3 20-2
2D 11 12 22 12 2

m 2 2 l 2 _ sm )2 -2
12 OD - 22 2 a u

Think about the infinite steps. At the beginning of each interval [t, t + A], insider starts a

( 3)s 2 . 2



brand new filtering problem, with initial observation gt, and initial E (t) = 0. The Market

maker. also starts a new filtering problem, however, he knows that gt = g', therefore, at

initial time s = t, he would force gtFm = gI.Fm and this implies

t K][9t ]

9 Em (t)

Now we just need to determine g~m and EC (t). Suppose that he uses the last interval result

on g (discards results on gZ), that is

Cm (t) = (t-)

If this is the case, then we can show that for all s the following hold

Em (S) = E2, (S)

and further more,

gm (s) = g m (s)

holds for all s C [t, t + A]. To satisfy the stationary condition, one sufficient condition is

that

t
t + A dE, (s) = 0

Er (t)
11 -



and therefore at each end point of the interval Em (t + nA) - E'. It is clear that

dgm ' = gm) dt + Emi /D 2 Ej 2 -s 2 (K2(gg] dt +
1 11 D 2 U ( s (g I 91m)

= K(g(- gm) dt + {C' (s) v2a 2 (g 9M) + EM (S) 3 2 (2
12n

rDdBD

~udB

gim)} dt

1)
+ E, (s) vj-ldBD + E' (s) 3s 1 dBu

Therefore we can substitute the observable processes (Xt, Zt, Dt) into the above expression,

and the linear pricing rule is

dgm K( g) dt - m (s) v2 -D2 gmdt

+ A (s) Odt + - (s) vgds + 3 (s) cDdBD + A (s) oudBu

where A (s) E (s) 3 2 and (s) - Er (s) vaD 2

Proof of proposition 4 and 5.

Proof. We have

d (g' - n) = dg - (- gn) ds + (s) ids

- X(s) [Ods + oa,dB] - (s) { (vD 2 -1 [dg'- K

= - (K + ' (s) v) (g' gi) ds - A (s) [OOds + orudB]

S') ds] + vg ds

Em' (s) V'UD sD

(K.+- (s) )

9m

A (s) [Osds + audBu] - Y' (s) vaD ldfzD

= K (j - gm ) ds 7 (s) vyg'ds + A (s) [Ods + audBu] + - (s) [dD, + vDsds]

Let A'(s)A(s)

d(cA(s) ?_- M)

=eA(s) [(g' - gm) A' (s) ds + A (s) d (g'

=eA(s) (s)



g -)A = eA(lA)-A((l--1)A) (gA

+ e-A((l+1)A) 0 C A (s) { A (s) [Osds + uadB"] ZE (s) V(T'DdB zD12 D 8

By Nash equilibrium. insider knows that the pricing rule is

dg m  ( ) ds -y (s) vg m ds + A (s) [Ods + adB"] + ,(s) [dD, + vDsds]

Recall that

Cv
dg= (g - g )ds + dBJD

9D

K (g g) ds + EvaD2 [ vgIds + dD, + vDds]S D S i ~~

This implies that

dD, + vDds = (EJD2 ) - 1 [dg K (g - g) ds] + vg'ds

then we have

d (g - m) = dg, K g') ds + . (s) vgmt ds

- A (s) [0,ds + audB'] - (s) (Ev D2)-1 [dg

= - (K + (s) v) (g - gm) ds - A (s) [Ods + CT

(g - gY)ds] +vgds}

dB"] - i~2 (s) v(U dB D

The long term infinite horizon objective function is as follows. Suppose current time is

We have

mgl )1



t = IA, the discrete timie Bellman equation is given by

V (1, gt - gtm)

= sup
{O ,t<s<t+A}

E {jt+iA
El t t+

e-r(s-t) (g g) - C02 dt + e-rV (1 + 1, t+, 9t +)}

where the state variables evolve according to

gt+A = e- Ag (1 - e ) +~ e (-(SU)cagdBg

t- exp (
g'M+A = exp ( t A ) ) ei(S) [Kjds + - (s) gds + AsOds]

dt

+ exp (-2I(t i A)) [S) V D-) (s) dJ3lD + ,aupdBu]

Notice that the state variables are both discrete time stochastic processes, observable to

the insider at each discrete time IA. The evolution of the state variables can be proved as

follows. Recall that

dg = ( - g) ds + cgdB9

dgm = (g- ) ds + (s) (g' - gm) ds + AXO~ds + E' (s) vold$bD + AsiudBu

where ' (s) - EZ (s) v12D 2 . Let ;' (s) (s) + K. This implies that

gt+A = e- 9gt + (1 - e ) + t+ e- (s-u) gdB g

and

d[exp ( (s)) gm] = e (')dgm + gmei(s) ' (s)

= (s) [ gds + (s) g ds + Aosds + S SvlDd + AIDodBU]
I S Jf



this implies that

t+A

gt+ = exp (- (t + A))
t+A

es(s) [jIds + (s) gsds + AXOds]

0 (S) [I, 1-YD (s) df, + A8J~dBuL]

where the insider's strategy controls this state variable through

exp {- [ (t + A) - (s)} (s) A (s) Ods.

Now let us consider the insider's short term (per period) objective function

sup E' {j t+

{Ot,t<s<t+A} t
e -

r(s
-

t) [(s g - c0 2] dt + e V (1 1, gt+CA,g )

d (g - gm') = -[K + (s) v] (g - gm) dt - A (s) Osdt

-A (s) oudB" + [Y - Yf1 (s)] vaDu ldbD

This is the following finite horizon stochastic control problem. Denote the value function

by J (s, g' - g ). Then the discrete time Bellman equation is just

V (1, gt, Y ) = J (0, g - g') .

We will deal with this equation later. For the finite horizon per period problem, the

terminal value is

J (A, g+A - giA) = e-rAE+a V (1 + 1, gt+A, gmA)t t+ t+ -Stta



Let d = g' - g, then the HJB equation is

0 = sup J, - Jd [K + Ell (S) V 2 2

+ Jdd [(A (s) 7)2 + Z

+ e-" (s - g m) O,

( 2 ( 2 -21
11\ 1 "

e- rsc6
2

then the FOC is

which implies

We can conjecture that

J (s, d) =-e" ra (s)(g 7m) 2±+() }

Jd = e-rS" { 2a (s) (g - gm)I

Then FOC becomes

[1 - 2a (s) A (s)]
2c

1 - 2a (s) A (s)

2c

J, = (-,ra (s) + a' (s)) e-"S (g

m) +A(s) 8s

JdA (S) + -rs ( 9m) 2e-rScO = 0

-e"rsJdA (s) + (g 9gs)

gm)

gmi) 2 ,-rs (s) + C (s )



Plug back into HJB we have

0 = (-ra (s) + o' (s))e-s (g

e-rs2a (s) (g

m )2 _ e-rsS (s) + e-rs (s)

gm) m [K + S) (s) V 2 D2 ] (g' m)

+ er" (s) [(A) (A) )2 + [Z j (s)] 2 v22] + C rsc [1 - 2a (s) A (s)] (g g)
2c

Simplify

0 = (-ra(s) + ' (s)) (g

- 2a (s) [n + EM (s) V 2 0 (g - mg) 2

+ a (S) [(A ((S))2] m 2 V20 D 2 _Y m 2[1 - 2a (s) A (s)] 22cc 2

The following two equations are sufficient

[1 - 2a (s) A (s)]20 = -ra (s) + a' (s) - 2a (s) [K + E (s) 22 ]  [1 ( (S
4c

0o = -rd(s) + ' (s)+ a(s) [(A (s) ,)2 + [Z

Now by the discrete time Bellman equation (2.10) we have

v (1, gt, gt) = a (0) (g

Zm (S)]2 V2Du21D

9gm2 + 6 (0)

To satisfy the terminal condition (2.11), we must have

) 2 + (A)} - E I V (1 + 1, t+A,g tA)

gM)
2

r~5(s) + ' (s)

eCr (g?+,



Substitute in the discrete time Bellman equation

a (A) (g'S - gA) 2 + 6 (A) = E+A J (0, gt+A

= E+ a (0) (gt+A

Note that

EZ-+aVt+A = 9t'+

Et+Ag92 A ar+A + (
t4 2

2 (

This implies that

E a (0) (gtt+A _ A)2 + 6 (0)

= E a (0gt) + - 2 9t+AgtA + (gt+A)2 + 6 (0)

= a (0) (z (A) + (gA) 2 - 2 9+AAt, + (giA)2 + 6 (0)

Sa(0) (g,A9 - gA)2 + a (0) E (A) + 6 (0)

Therefore equation (2.11) becomes

S2 (0) (
gt+a) + ~a=(0) (g t+ gt"4A) 2 + a (0) Y (A) + 6 (0)

This further implies

a(A) =(o0)

6(A) = (o) (A) + 6 (O)

Proof of proposition 12.

9t+)A) i 6 (0)

a (A) (94+A



Proof. The long term infinite horizon objective function is as follows. Suppose current

time is t = IA, the discrete time Bellman equation is given by

v (1, gt, gtm)

r(s-t) _[( gm) Os (o] dt + - T v (I + 1, g9t+ , 9 )}Ssup E tt
{Ot,t<s<t+r} t

To simplify the notation, we can let t = 0. It is clear that the state variables evolve

according to

.9t+a = eC t + (1 - e- ) +
t+A

gtra = exp (- (t + A)) e (s ) [L

t+sA '(dt[

C K(S-" " )gdB'

ds + (s) g'ds + AOds]

ID" (s) d tD + AscrudBu]

Notice that the state variables are both discrete time stochastic processes, observable to

the insider at each discrete time IA. The evolution of the state variables can be proved as

follows. Recall that

dg = (g

dgm (

g) ds + agdB9

gS) ds + 1 (s) (g - gm) ds + + A ds + EmZ (s) voD- d D + XA8cdB 1

where '" (s) - E' (s) v2 aD
2. Let 5' (s) = - (s) + K. This implies that

gt+A = eC t + (1 - e ) +
. t

e- h(s-) JrgdB9



and

d [exp (f (s)) gm] = e(S)dgm + g ,'(s) / (s)

=- s0(s) [hYds + o (s) g'ds + AOds + sv DdB 1D + A o rudBu

this implies that

t+Agt+A = exp (-,(t + Ax))
t+

+ exp (- (t + A)) t
t+

where the insider's strategy controls this state variable through

exp

Suppose T < T. Let the CDF be

F (t)

,{- [, (t + A) - , (s)]} A (s) o8ds.

1- e - t

1 - e- ¢T

t _ e-T
1 - e- ¢ 7

G (t) =1- F(t)=

f (t) =
1 - e-¢O

f(T)f (T, t) f (T)
G (t)

= C IT>t
e-ht - e--T

h (t) = f (t, t) =
e-Nt _ e-r O

Now let us consider tie insider's short term (per period) objective function

gm) 0 - cO2 ds + -)V ( + 1 9(lY , g )sliOt, p E { rs

e"') [ngds + 1 (s) g'ds + AOsds

eC( [ 1 O (s) d D + AsorudBu

J (0, o - gm) =



J (t, g) - 9tm)

sup El f (T, t) e-T [ (g
{ O,t<s<T}

sup E? {G (T) e- " [(g
{Ot ,t<s<T} G(t)

+ f (T) e-rTV (1 + 1,gT, g)}dT

g) O - c 2 ds + e-r ( + 1,g,~) dT

gm) OT T- cI

subject to

d (gI - gn)

= [s + (s) v] (g' m) dt A (s) Osdt A (s) oUdBU + [E - EC (s)] vorDdB D

V (1,g ,g," ) = EsV (I + 1,gs,g"1)

This is the following finite horizon stochastic control problem. Denote the value function

by J (s, g' - g"). Then the discrete time Bellman equation is just

V (1,go, g') = J (0O,gI - g).

We will deal with this equation later. For the finite horizon per period problem, the

transversality condition is

J (T, g m ) = -rTEV (1 + 1, g, g)

Let d g - gn , then the HJB equation is

0 = sup Jt d r,+ (t) 2  ] (g gin) + A(t) O

+ Jdd [(A (t) )2 + [ m (t]2 02 -2

+{ert [(g gm) Ot cOt] +h(t) rtV (1 + 1,gt, gm)}-h(t) Jf Yt t t tY~Y



then the FOC is

JdA (S) + e-rs(g gm)

which implies

8
ersJdA (s) + (g

We can conjecture that

J (s, d) = ' " s a (s) (g gm) 2 ±+3(8)

Jd -= rs {2a (s) (gl - gm)I

Then FOC becomes

[1 - 2a (s) A (s)]g
2c

1 - 2a (s) A (s)

2c

Js = (-ra (s) + a' (s)) e-" (g gM)
2

re-rs (S) + - , (S)

Plug back into HJB we have

0= (-r (s) + ,' (s))e" ( r 9n) 2 re-,r6 (S) + cr61 (S)

im)

2
l ()] 2 V2] +-2

h (s) c " a (s) (gs_
g 2c

+ -r"U (S) [(A (s) 0,)2+

+ h(s) e-V (1 + 1.g, g, )

2e-'c"c = 0

gim)

gm)

-rs2a (s) (gS - gi) { [ + E,7 (s) v 2 7D2] (gf



V1(g , 9m) = Es J (0, gs

=E , {c(O) (g

= a (0) ((g) 2

= (0) (g-

g9) = Es (0) (gs 9m )2 + 6 (0)
S2 gg' +(g,)2 + (o)}

+ Z (s)- 2gg' + (g)2) + 3(0)

g )2 + 6 (0) + a (o) (s)
9.31 ()E S

0 = (- ra (s) + a' (s) (g' gm)2 rS (s) + '' (s)

2a (s) (g - gm ) { [, + EL' (s) V 2 D2 ] I(

+ a (s) [(A (s) )2 + [Z

+ h(s) {a(0) (g'- g7)'

l (S)]2 2 -2 +L1 1\ VS , ]

9m) I

[1 - 2a (s) A (s)] (g
c 2c

Y- (s) - h (s) a (s) (9

The following two equations are sufficient

ra (s) + a' (s) 2a (s) ( [K + Em (s)v22]

[1- 2a (s) A (s)] 2 - (0)
2+ - [a(0)
2c e-** - e-4T

a (s)] = 0=o

y[ ()]2 V20D211 D

- - - [6 (0) 6 (s) + a(0)) ()] = 0

The terminal condition is

J (T, gz m) = m -rTE V ( + 1Iylg

e (T (0)m)-g} + 6 (0) + a (0) (O) (T)

Recall that

Simplify

}M)}
9m) 

2

,.6 (s) + 6' (s) + a (s) [(A (s) ,) 2 + [

{- r (T) (g_ gm 2 + )



This implies

a (T) - (0)

6 (T) 6 (0) + a (0) E (T)

U



Appendix C

Solution to the Discrete Signal

Equilibrium

We want to represent all other functions using only E' and a. Notice that

3 (s)
1 - 2a (s) A (s)

EM (s)

A (s)= 12

s) U 12 (S)

E 1 2 3 = crA (s)

we can transform equation (2.8) to

= -2 (. + Zv2--2z m
ds

(Zm 2 V2 D 2
M S) 2

2 [coF + a (s) E21
U[o+~)j() 12~

En (0) = E m (A) + (A)

O-Eml (S)
OL' " u 12 S)CVrra+n (S) ym S)



and we can transform equation (2.12) to

0 = -ra (s) + ' (s) 2a (s) [ + ( (' (s) + Y (s)) v2 2 2

a(0) = a(A)

Finally 3 is determined by

a ( Z~E (S) 2
L 2 [co7 + a (s) E; (s)

+ E, (S)2 20,2D2

6 (A) = a (O) (A) + (0).

6' (s) = r6 (s)

and

1 ca4

4 [cg2 + a (s) Er (s)]2
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