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ABSTRACT

The clinical application of chemotherapy to brain malignancies has been severely
limited because many potential therapeutic agents are typically unable to penetrate the
blood-brain barrier (BBB). A novel approach to overcome this barrier uses focused
ultrasound to induce localized BBB disruption in a targeted region of the brain and
magnetic resonance imaging (MRI) to guide and monitor the procedure. The purpose of
this thesis was to develop a technique using MRI-guided focused ultrasound for trans-
BBB drug delivery applications.

This thesis demonstrates that MRI-guided focused ultrasound can be used to
achieve consistent and reproducible BBB disruption without invasive craniotomy in rats,
to enable doxorubicin to accumulate in normal brain at clinically therapeutic levels, and
to increase the antitumoral efficacy of doxorubicin in a rodent model of aggressive
glioma. Using a microbubble-based ultrasonographic contrast agent, focal BBB opening
was consistently achieved using transcranial focal pressures of 1.2 MPa or greater;
locations in the posterior brain exhibited consistent BBB disruption with applied focal
pressures of 0.8 MPa or greater. When combined with systemic administration of
liposomal doxorubicin, we achieved local drug concentrations of 900 ± 300 ng/g tissue in
the brain with minimal tissue effects, and up to 5400 ± 700 ng/g tissue with more
significant tissue damage, while accumulation in non-targeted contralateral brain tissue
remained significantly lower (p < 0.001). In addition, MRI signal enhancement in the
sonicated region correlated strongly with doxorubicin concentration in tissue (r = 0.87),
suggesting that contrast-enhanced MRI may provide useful feedback on drug penetration.
Finally, glioma-bearing rats treated with ultrasound-enhanced chemotherapy exhibited
significantly longer median survival times (31 versus 25 days; p = 0.0007) and slower
tumor growth (average tumor volume doubling time, 3.7 ± 0.5 days, versus 2.3 ± 0.3
days) than nontreated rats; rats which received standard intravenous chemotherapy
showed no significant difference in survival or tumor growth rate. In sum, this thesis
research provides pre-clinical data toward the development of MRI-guided focused
ultrasound as a noninvasive method for the delivery of agents such as doxorubicin across
the BBB to treat patients with diseases of the central nervous system.

Thesis Supervisor: Kullervo Hynynen
Title: Professor of Medical Biophysics, University of Toronto
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1 Introduction

1.1 Motivation

With all the scientific and medical advances over the last century, the brain

remains one area of which our understanding has advanced greatly but our ability to treat

has been sluggish. While imaging and diagnostics have grown by leaps and bounds, the

evolution of therapeutic interventions in the central nervous system (CNS) has not

enjoyed such rapid progress. Current standard clinical approaches to malignant brain

tumors, including surgical resection in combination with radio- and/or chemotherapy,

have met with limited success (1). Many other neurological or neurodegenerative

disorders do not yet have effective therapies, despite the rapid growth of the

pharmaceutical industry in recent years.

One major reason for the apparent bottleneck is the presence of the blood-brain

barrier (BBB). Formed by the endothelial cells that line the microvasculature of the brain,

the BBB prevents the entry of most blood-borne substances into the CNS. Its selective

permeability, based on lipid solubility, molecular size, and charge, protects the brain from

potential toxins but also limits the access of many prospective therapeutics (2). Potential

therapeutic agents are prohibited from passing from systemic circulation into brain

parenchyma (3, 4) or are unable to accumulate at sufficient therapeutic concentrations

(5). Although tumor vasculature is often malformed and the integrity of its BBB

compromised, the complex problem of drug delivery to the brain persists. Because

systemic chemotherapeutic agents are not able to penetrate solid tumors homogenously

(6), portions of the tumor are often left untreated or partially treated after traditional
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intravenous chemotherapy. Additionally, malignant cells may infiltrate the margin

beyond the visible tumor where the BBB is intact. Invisible to the surgeon and

unreachable by pharmacological interventions, these infiltrating cells are to blame in 78-

90% of cases of recurrent glioma (7, 8). Thus, the BBB remains a formidable obstacle in

the treatment of patients with brain malignancies. Even with aggressive surgical resection

and radiotherapy, the prognosis for the most common and most aggressive form of

glioma in adults is associated with a median survival of less than one year from the time

of diagnosis (1, 9).

Current strategies to circumvent the BBB are less than ideal. Methods of diffuse

BBB disruption allow widespread cytotoxic drug penetration to non-targeted brain tissue

(10) and can thus have dose-limiting side effects. Other methods which provide localized

drug delivery may increase the drug concentration at the target location while reducing

systemic toxicity effects, but they typically require invasive, high-risk neurosurgical

procedures (11, 12).

A novel approach to the problem of drug delivery to the brain uses focused

ultrasound to temporarily disrupt the BBB in a noninvasive and localized manner (13).

High-frequency acoustic energy penetrates soft tissue to induce effects deep below the

surface, thus allowing a noninvasive approach to therapy. When applied to the brain in

the presence of gas-filled microbubbles, ultrasound has been shown to stimulate active

vesicular transport and transiently disassemble tight junctional complexes to allow the

passage of molecules which would not otherwise penetrate the BBB (14, 15). As the

energy is tightly focused to diameters as small as <1 mm, its effects on the BBB can be

confined to a limited volume of tissue to enable targeted therapy (16-18). The high spatial
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resolution and noninvasive nature of ultrasound-induced BBB disruption make it an

advantageous technique for targeted drug delivery to the brain. In addition, the use of

magnetic resonance imaging (MRI) to guide and monitor the procedure enables precise

targeting and repeated application without ionizing radiation. Trans-BBB delivery by

MRI-guided focused ultrasound has now been demonstrated for numerous agents,

including liposomal doxorubicin (17), imaging fluorophores (19), Herceptin (16),

Alzheimer's disease immunotherapeutics (20), and other antibodies (21).

Focused ultrasound-induced BBB disruption addresses the limitations of other

drug delivery methods and shows great potential to have a positive impact on patients

with a variety of neurological disorders. However, further evidence of the therapeutic

benefit of ultrasound-enhanced trans-BBB chemotherapy is needed to advance this

technology toward clinical trials. Doxorubicin (DOX) is a prime candidate with which to

demonstrate the therapeutic potential of ultrasound-mediated trans-BBB drug delivery. It

is a highly effective cytotoxic agent with ubiquitous clinical use in the treatment of a

wide range of cancer types, but because it does not readily penetrate the intact BBB, it is

typically ineffective in treating intracranial lesions. Cancer patients who demonstrate

partial or complete response to DOX chemotherapy for extracranial lesions may no

longer enjoy such positive results if their lesions metastasize to the brain. Even in high-

grade brain tumors, in which the vasculature is abnormally permeable, the BBB often

prevents cytotoxic levels of DOX from being achieved in glioma tissue and in

intracranial metastases (5). If DOX were allowed to accumulate at sufficient

concentrations in the brain, its clinical impact on the treatment of patients with both

primary and metastic tumors could be significant. To advance the development of MRI-
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guided focused ultrasound for targeted drug delivery applications in the brain, this thesis

aimed to develop a protocol using MRI-guided focused ultrasound for the targeted

delivery of doxorubicin to the brain and to demonstrate its therapeutic impact in a disease

model.
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1.2 The Blood-Brain Barrier

1.2.1 Role

Comprised of the brain and spinal cord, the central nervous system (CNS) needs a

chemically stable environment to function properly. Neurons communicate through the

propagation of action potentials induced by the flow of ions into and out of the cells. In

the brain, their complex synaptic connections require that the surrounding extracellular

concentrations of sodium, potassium, and calcium be maintained within a very narrow

range. The hypersensitivity of neurons to the ionic balance of their environment

necessitates a mechanism of strict regulation of access to the brain microenvironment

from the vascular compartment. Such regulation exists in the form of the blood-brain

barrier (BBB). The BBB is a selectively permeable barrier between the brain parenchyma

and its blood supply. It regulates ionic balance within the brain and facilitates the

transport of nutrients from systemic circulation, while protecting the brain from

potentially harmful blood-borne molecules, which may otherwise be innocuous in the

peripheral organ system (4, 22).

1.2.2 History

The restrictive permeability of the brain was first observed by Paul Ehrlich in

1885. While studying staining in animals, he discovered that some injected dyes diffused

rapidly into most organs, whereas the brain showed very little uptake. His student Edwin

Goldmann further observed in 1913 that a dye injected directly into the surrounding

cerebrospinal fluid (CSF) was contained within the CNS, while the rest of the body

remained unstained (23). These observations provided the first documented evidence of a
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barrier which separates the cerebral microenvironment from its vasculature. Lina Stern

later proposed the existence of a "hemato-encephalic barrier" in 1921 (24).

Electron microscopy studies in the 1960's helped to elucidate the physical

structure of the BBB. They revealed that the actual barrier lay in the endothelial lining of

the brain (25). It is now recognized that the BBB is just one of several blood-CNS

barriers. Other blood barriers include the blood-CSF barrier and the blood-spinal cord

barrier (26, 27).

1.2.3 Blood supply to the brain

The brain is perfused by an extremely dense and extensive microvascular

network. Virtually all neurons and supporting glial cells are within 20 microns of a

capillary so that nutrients and oxygen carried by the blood can be delivered to the brain in

a quick and efficient manner. Since each brain cell has an almost direct connection to the

circulatory system, the vascular route would be an extremely effective way to deliver an

agent to the brain, if the molecule were able to enter the brain from circulation. However,

the presence of the BBB makes it very difficult for all but a few molecules to do so (28).

1.2.4 Physiology

Multiple mechanisms contribute to the functionality of the BBB. The primary

mechanism is the physical barrier between the blood and the brain's extracellular space

formed by the endothelial lining of the brain microvasculature. In addition, capillary

pericytes directly adjacent to the endothelium share a common basement membrane with

the endothelium and help to regulate endothelial metabolism. Astrocytes, one type of

glial cell, have extensions of the main cell body which terminate on the vessel wall,
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called foot processes; they both provide structural support and contribute to BBB

regulation (29). A secondary defense, in the form of an enzymatic barrier, serves to

inactivate drugs that may be able to passively diffuse through the endothelial cells. In

addition, an active efflux barrier causes many penetrating molecules to be transported

from the brain back into the blood. This multifunctionality of the BBB ensures that the

neuronal and glial environment is kept stable and that entry into the brain parenchyma is

strictly enforced (10).

1.2.4.1 Physical barrier

Endothelial cells which line the capillary walls serve as the physical interface

between the brain parenchyma and its blood supply. Unlike the loosely connected

endothelial cells of capillaries in peripheral organs, endothelial cells in brain capillaries

are tightly connected to each other by specialized proteins which form intercellular tight

junctions. Tight junctions are complexes of transmembrane proteins expressed by

endothelial cells and perivascular glia, including junctional adhesion molecules (30),

occludins (31), and claudins (32). Characterized by very high electrical resistance, on the

order of 1000 Ohms/cm 2, which is several orders of magnitude higher than intercellular

resistance of endothelial cells outside of the brain, tight junctions play a primary role in

forming the highly impermeable physical barrier of the BBB (33). Because the gaps

between the endothelial cells are well-occluded by the tight junctions, the paracellular

pathway across the endothelium is blocked in the brain.

The transcellular pathway across the endothelium is likewise severely limited in

brain capillaries in comparison to peripheral capillaries. Pinocytosis, a process by which

molecules are enveloped within a vesicle and transported across the endothelial cell
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membrane, is markedly reduced in the brain microvasculature, making it more difficult

for nonspecific molecules to diffuse freely across its membrane into the brain

parenchyma (34). As molecules can neither pass between nor through the endothelial

cells of the blood vessel wall due to the combination of the high-resistance endothelial

tight junctions and the restricted pinocytosis, these components both contribute to the

physical barrier of the BBB.

1.2.4.2 Enzymatic barrier

The endothelial cells produce a variety of enzymes which inactivate or degrade

molecules that are able to get past the physical barrier of the endothelial cells. In addition,

neighboring pericytes and astrocytic foot processes also produce such enzymes to

contribute to the functionality of the BBB (22, 35, 36). Conversely, the brain also

produces specialized enzymes which activate molecules that would otherwise be inactive

in the brain. For example, L-DOPA is an amino acid used in the treatment of Parkinson's

disease which is inactive in the peripheral blood system but which is converted to its

pharmacologically active form, dopamine, once it crosses the BBB (34).

1.2.4.3 Efflux barrier

A third mechanism exists for the undesired influx molecules which may penetrate

the other barrier mechanisms. The endothelial cells, pericytes, and astrocytic foot

processes of the BBB also produce efflux transporter proteins to escort undesired

molecules out of the brain. If a molecule which enters the brain from the blood happens

to be a substrate for one of the many active efflux proteins, it will bind to its transporter

counterpart and be carried across the endothelial cell membrane back into the vascular

compartment. P-glycoprotein (Pgp) is one particularly effective efflux pump which acts
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on multiple substrates and is highly active on the interior (lumenal) plasma membrane of

the capillary endothelium (37). Its location, multispecificity, and potency make Pgp a

critical barrier to therapeutic drug entry into the CNS, and its overexpression in tumor

cells confers multidrug resistance (38, 39).

1.2.5 Endogenous transport across the BBB

Selective transcellular access to the brain for circulating molecules is possible via

one of two transport mechanisms: free diffusion of small molecules or catalyzed transport

of small or large molecules.

1.2.5.1 Free diffusion of small molecules

Certain small molecules are able to cross BBB by free diffusion across the

phospholipid bilayer of the endothelial wall. In order to freely diffuse through the

endothelial cell membrane, molecules must meet stringent criteria, based on size, charge,

and lipid solubility. In general, molecules must be neutral, lipid-soluble, and less than

400-500 Dalton in molecular mass to be able to enter the brain parenchyma from

circulation by passive diffusion (2, 28, 34).

1.2.5.2 Catalyzed transport of small or large molecules

Endogenous transport mechanisms exist to accelerate the passage of certain

essential molecules which do not meet the criteria for free diffusion through the

endothelial wall. Small water-soluble vitamins and nutrients, such as glucose and neutral

amino acids, are brought into the brain from circulation through carrier-mediated

transport. For certain large-molecule peptides or plasma proteins, receptors present on the

endothelial cell membrane recognize specific molecules, such as insulin, leptin, and
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transferrin, which are transported through the endothelial cytoplasm by receptor-mediated

transcytosis (10).

1.2.6 Strategies for drug delivery to the brain

Multiple strategies to circumvent the BBB for the delivery of potential therapeutic

agents have been developed, including catheter-based interventions, pharmacological

manipulation of drugs, and alternative nonvascular routes. These techniques have

demonstrated potential, but each has major limitations: they are invasive procedures,

have toxic side effects and low efficiency, or are not sufficiently safe.

Intracranial drug delivery is further complicated in the case of CNS tumors.

Although the integrity of the BBB is often compromised in tumors, granting access to

blood-bourne agents which would not normally be able to enter the neural tissue, the

disruptions are localized and non-homogeneous (40). In addition, the distribution of the

microvasculature in solid tumors is itself hetereogeneous, leading to greater diffusional

requirements for drugs to reach neoplastic cells and spatially inconsistent drug delivery.

Furthermore, high interstitial pressure within the tumor and edema surrounding the tumor

often contribute to an increase in hydrostatic pressure in the normal brain parenchyma

adjacent to the tumor, making these regions even less permeable to drugs than normal

brain endothelium (34).

1.2.6.1 Catheter-based BBB disruption

Osmotic opening of the BBB is possible by injection of a hypertonic solution,

such as mannitol or arabinose, into a catheter placed in the carotid artery. The

introduction of the hyperosmolar solution causes a difference in osmotic pressure

between the intravascular space and the endothelial wall of the blood vessel. To balance



Introduction

the osmotic pressure, water rushes out of the endothelial cells, causing their shrinkage

and expansion of the intercellular spaces. In this way, the paracellular pathway through

the BBB, normally occluded by tight junctions, is transiently opened, allowing small and

large molecular agents to enter the brain interstitium over the period of a few hours (2,

41-43). Chemotherapy accompanied by osmotic BBB disruption has yielded moderate

augmentation of the delivery of antitumor agents to the brain (44, 45). One major

limitation of this method is that it affects the entire volume of tissue supplied by the

injected artery, allowing diffuse cytotoxic drug penetration to non-targeted brain tissue.

In addition, it has been associated with an increased risk of altered glucose uptake,

microembolism, and abnormal neuronal function (3, 34, 46).

A method thought to be potentially safer than osmotic BBB disruption is

biochemical BBB disruption by intracarotid infusion of agents such as leukotrienes,

bradykinin, nitric oxide, or analogs (47-49). In contrast to osmotic disruption methods,

these methods appeared to selectively affect brain tumor capillaries due to the down-

regulation of the enzymatic barrier in tumor endothelial cells, while leaving normal brain

capillaries unaffected (49, 50). Pre-clinical data in glioma-bearing rats showing enhanced

tumor drug delivery and survival led to clinical trials (51, 52), but the trials have since

been abandoned due to similar risks shown in osmotic BBB disruption (53).

Convection-enhanced delivery is another technique that utilizes a catheter-based

approach (11, 54-56). It is based on maintaining a pressure gradient by delivering a

continous interstitial infusion of a drug via intracranial catheters. The resultant bulk fluid

convection forces the aqueous solution through the brain interstitium to distribute the

drug over large volumes of target tissue (57). An alternative approach to increasing the
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pressure gradient is to increase the diffusion gradient by maximizing the concentration of

the the infused agent; such an approach has been shown to increase the volume of

distribution (58, 59). Clinical trials of convection-enhanced delivery of intratumoral

chemotherapeutic agents have shown some significant antitumor response rates with

varying degrees of clinical impact (60-63). However, the technique is not without its

limitations. Preferential flow of the forced fluid along white matter tracts can result in

unintentional distribution patterns of the drug, resulting in harmful consequences such as

diffuse astrogliosis (64, 65). Also, as with other transcranial catheter-based approaches, it

is an invasive intracranial procedure with significant risk of morbidity and mortality.

1.2.6.2 Pharmacological modification

Without altering the BBB permeability, pharmacological modification is another

approach which is being explored to increase the ability of agents to penetrate the BBB.

Since lipophilic drugs cross the BBB much more easily than their hydrophilic

counterparts, lipidization of small-molecule drugs can facilitate their passage through the

phosholipid bilayer of the endothelial cell membrane. By conjugation to a lipid carrier or

by reduction of the strength of its hydrogen bonding, lipidization increases the

transcellular transport of a molecule into the brain interstitium (66, 67). In another

process of pharmacological modification called cationization, proteins can be attached to

a charged molecule, which induces transcellular uptake as a result of interactions with

anionic groups on the cell membrane (68). However, while uptake in the brain is

increased by these processes, uptake is also increased in peripheral tissues, reducing the

plasma concentration and availability of the circulating agent and increasing the toxicity

to non-targeted tissues. In addition, efflux processes can also be enhanced by these
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processes, resulting in poor retention. Thus, poor selectivity and poor retention are major

limiting factors in the applicability of these approaches (34).

Other carrier-mediated or receptor-mediated approaches take advantage of the

endogenous transport mechanisms of the BBB by conjugating small- or large- molecule

drugs to a known BBB transport vector (69-71). These transport vectors have been

termed "molecular Trojan horses" because molecules which would not normally cross the

BBB are essentially disguised by the attached carrier molecule to gain entry to the brain

in pharmacologically significant amounts (72-74). For example, large molecules, such as

recombinant proteins, neuropeptides, and therapeutic genes, can be bound to an

endogenous peptide or monoclonal antibody which undergoes receptor-mediated

transcytosis, to form a chimeric peptide, enabling the attached agent to benefit from the

native BBB transport process (28). While this approach may be effective in small doses,

the technique is limited by the number of available receptors expressed on the brain

endothelium and by the finite carrying capacity of a given carrier (53). Furthermore, in

spite of the target selectivity and therapeutic potential of the technique demonstrated in

animal models (74), molecularly targeted therapies are often beleaguered by systemic

toxicity (75).

Biodegradable polymer-based nanoparticles, liposomes, and micelles are also

being developed for drug and gene delivery (76-78). The viability of these carrier-based

approaches is increased by the modification of their surfaces with poly(ethylene glycol),

a process known as pegylation, which increases their stability and increases their

circulation time in the body (79, 80). Nanoparticles have been shown to improve both

penetration and retention of a bound drug in the brain (81-83) and to improve therapeutic
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efficacy in glioma-bearing rats (76, 84). While these approaches show great promise,

they too are limited by their finite carrying capacity and considerable burden for chemical

conjugation.

Yet another strategy is to inhibit the drug efflux transporters expressed in the

BBB. The use of pharmacological modulators known as poloxamers blocks the activity

of efflux pumps such as Pgp, allowing increased transport of their substrates (85-87).

These modulators have been shown to effectively enhance the transport of intravenously

administered drugs to the brain in animal models (88, 89). However, a major limitation of

disabling the powerful, multispecific efflux barriers is that it allows the passage of all

substrates normally blocked by the transporter pumps, resulting in loss of protection

everywhere in the brain and dramatic neurotoxicity (37).

1.2.6.3 Other nonvascular routes to CNS drug delivery

Direct administration of an agent into the CSF is one way to bypass the BBB

altogether by using delivery routes which do not involve the vascular system. Drugs can

be infused into CSF through the brain ventricles (intraventricular route) or by lumbar

puncture (intrathecal route). Since the drug would be contained within the CSF by the

blood-CSF barrier, and since there is free molecular exchange between the CSF and brain

interstitial fluid, high CSF drug concentrations should theoretically translate into

therapeutic CNS drug concentrations with minimal systemic toxicity (34). In practice,

however, the rate of drug distribution within the CSF is very slow. Drug diffusion

through the brain parenchyma is also very slow and inversely proportional to the

molecular weight of the drug (90, 91). Furthermore, this approach is complicated by
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increased intracranial pressure and high clinical incidence of hemorrhage, neurotoxicity,

and CNS infections (34).

Localized drug delivery in the brain is possible with methods such as direct

intratumoral injection (92, 93) and controlled release from polymer implants (12, 94, 95).

Such approaches can deliver therapeutic molecules at a defined rate over a specific period

of time. Implantable devices can be positioned by stereotaxy in precisely defined targeted

areas and the procedure can be repeated if necessary (96). This technique has been shown

to prolong survival in patients with recurrent aggressive glioma and has proven its

clinical impact (95). However, the limited diffusion of drugs into the brain from the

implanted source and their rapid elimination by active efflux transport present

weaknesses to this approach to CNS drug delivery (94). In addition, due to the invasive

intracranial surgery required, this approach can only be used in a limited number of

patients and carries significant risk of morbidity and mortality with only modest benefit

(97).
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1.3 Focused Ultrasound (FUS)

A novel approach to deliver drugs to the brain uses focused ultrasound to

temporarily disrupt the BBB in a noninvasive and localized manner. In this technique,

acoustic energy is concentrated in a focal spot to induce localized biological effects deep

below the tissue surface with minimal effects to surrounding nontargeted tissue, even in

the path of the ultrasound beam (98-101). Advances in acoustic technology have enabled

the use of ultrasound in the brain, in spite of strong energy attenuation by the skull bone

(102, 103). Because acoustic energy can be applied in a completely noninvasive manner,

has the ability to precisely target tissue of interest while leaving other structures

unaltered, and enables the passage of pre-existing drugs through the BBB, focused

ultrasound offers distinct advantages over other diffuse or invasive methods of drug

delivery to the CNS.

1.3.1 Background

Ultrasound is generated by applying an electrical voltage to a piezoelectric

material, such as certain crystals or ceramics, which responds with mechanical

deformation in proportion to the applied voltage. The expansion or contraction of the

material causes the compression or rarefaction of its surrounding medium, such as air or

water. An oscillating voltage then produces pressure waves; at frequencies in excess of

-18 kHz, the upper limit of human hearing, the resultant pressure wave is termed

ultrasound. The effect works both ways, so mechanical stress will conversely induce a

voltage across the material. Thus piezoelectric transducers can be used both to generate

and receive ultrasonic signals.



Introduction

Ultrasound propagates as a mechanical wave through tissue with attenuation of its

pressure amplitude P(z) described by:

P(z) = Poe-"z  (1)

where p is the frequency-dependent attenuation coefficient per unit path length z due to

energy scattering and absorption in tissue, and Po is the incident peak rarefactional

pressure amplitude at the surface. Ultrasound has a relatively low absorption rate in soft

tissue; at 1.0 MHz, ultrasound has an approximate wavelength of 1.5 mm and its focal

penetration depth can reach up to 10 cm (104). As with any wave, reflection, refraction,

and diffraction at media interfaces of vastly different acoustic impedance, due to

differences in density and sound speed, severely reduce energy transmission. Much of the

mechanical energy lost from the propagating wave is converted to heat and absorbed in

the body. Thus, the use of ultrasound has been limited in areas of the body which include

interfaces between soft tissue and gas or bone, such as in the lungs, digestive tract, and

brain, where energy losses can cause unwanted heating and severe tissue damage (105).

The ability of ultrasound to be focused has made it practical for therapeutic use.

The size of the focal region is limited by the wavelength and its sharpness is determined

by the ultrasound frequency and the geometry of the source transducer (105). Thus,

higher frequencies with smaller wavelengths can achieve tighter foci, while lower

frequencies with greater wavelengths produce wider focal regions. Therapeutic

applications of focused ultrasound can be achieved with both thermal and mechanical

effects. In tissue ablation, the induced temperature is raised high enough over a short

period of time (-seconds) to cause cell death by protein denaturization and coagulative

necrosis, while in hyperthermia, an induced temperature change of only a few degrees for
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an extended period of time (-minutes) can sensitize tissue to radiation and chemotherapy.

In addition to thermal effects, focused ultrasound can induce mechanical effects in

biological tissue. In cavitation, the interaction of a gas bubble with the acoustic field,

whether by radial oscillation (stable cavitation) or violent collapse (inertial cavitation)

(106), can significantly enhance absorption and heating effects in tissue (107). Gas

bubbles can form spontaneously in tissue during exposure to high intensity focused

ultrasound, or pre-formed gas bubbles, such as those found in ultrasonographic contrast

agents, can be introduced into the acoustic field by intravenous injection. The variety of

bioeffects induced by focused ultrasound at therapeutic frequencies ranging from 0.5 to

10 MHz has prompted its investigation for diverse medical applications, including tumor

and tissue ablation (108-121), hemostasis (122-125), vessel occlusion (126-128),

thrombolysis (129-134), and BBB disruption for drug and gene delivery (16, 17, 21, 135-

140), in multiple organ systems.

1.3.2 History of therapeutic ultrasound in the brain

The use of ultrasound for therapeutic applications in the brain has been studied for

over half a century. In the early part of the 2 0 th Century, it was demonstrated that high

frequency sound waves could induce biological effects in tissue (141). In the 1940's,

other investigators attempted to use focused ultrasound to induce permanent changes in

animal brains for therapeutic applications but could not do so without undesired damage

due to the attenuation and distortion caused by the skull bone in the path of the ultrasound

(142, 143). Removal of a section of the skull bone by craniotomy in subsequent studies

enabled the use of focused ultrasound to produce discrete lesions deep within the brains

of animals and humans (144-149). In the 1960's, animal experiments with micro-
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thermocouples implanted in the brain revealed that tissue damage was caused by

temperature elevation at the acoustic focus resulting from the use of high intensity

focused ultrasound (150-154). Other studies demonstrated the capacity of ultrasound to

induce changes in the permeability of the BBB (155-157). In addition, ultrasound-

induced hyperthermia in the brain has been studied extensively to sensitize tissue and

enhance the therapeutic impact of radiation or chemotherapy (158-162). Thus, ultrasound

has been used to produce both structural and functional changes within the brain.

1.3.2.1 Development of ultrasound applications through the skull

Since the skull was viewed as a barrier to therapeutic applications in the brain,

early clinical studies for the treatment of patients with Parkinson's disease and malignant

brain tumors were performed by applying focused ultrasound to the brain through a

cranial window (163-166). By the late-1970's, the concept of focusing the acoustic

energy through the skull had emerged. Studies demonstrated that ultrasound at

frequencies less than 1 MHz could be focused through the skull with some distortion and

shifting of the foci (167-169). Phased transducer arrays were later suggested as a method

to compensate for the distortion caused by the skull. By adjusting the driving phase of

each transducer element in the array, the acoustic focus distorted by the skull could be

restored (170). This strategy, along with distributing the acoustic energy over a larger

surface area of the skull and active cooling of the scalp, can also address problems of

unwanted heating in and around the skull due to energy absorption in the bone (171,

172). The requisite phase and amplitude corrections factors for each individual transducer

elements can be derived from x-ray computed tomography (CT) scans (102, 173). A

hemispherical MRI-guided phased array system has been designed for thermal ablation of
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malignant brain tumors (174, 175), which has led to a phase I clinical trial (101). Since

the acoustic intensity used for BBB disruption is at least two orders of magnitude less

than for thermal ablation, it follows that such a system could also be used for noninvasive

BBB disruption through the human skull. Alternative methods of transcranial ultrasound

propagation, using lower frequencies (250-300 kHz) (176) or shear-mode transmission

(177, 178), which distort to a lesser extent in the bone, are being investigated to eliminate

the need for patient-specific CT corrections. Thus, several methods exist to compensate

for distortions in beam propagation induced by the skull bone to allow the ultrasound to

be applied completely noninvasively in the brain.

1.3.2.2 Development of targeting and monitoring methods

The development of methods to visualize diseased tissue and to monitor the

effects of focused ultrasound has been critical to its application in the brain. Crude

targeting in early clinical applications used a stereotactic frame based on x-ray images of

bony landmarks (164). A more advanced targeting system using CT guidance was later

proposed but not clinically tested (179). However, these methods did not offer the ability

to monitor the effects of ultrasound in the brain. More recently, MRI has been

demonstrated to provide both an effective means of both targeting and monitoring of

ultrasound in the brain (13, 21, 180-185). Its excellent soft-tissue contrast and high

temporal resolution confer the ability to distinguish diseased tissue from normal tissue in

many cases with unprecedented precision. Temperature-sensitive image sequences can

provide information on relative temperature changes with an accuracy of +0.5 deg C

(186-188). Furthermore, MR contrast enhancement during MRI-guided ultrasound-

mediated delivery of molecules across the BBB has been demonstrated to correlate with
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the amount of drug or antibody accumulated in the brain, indicating its potential to

provide important feedback during ultrasound-mediated CNS drug delivery (16, 17).

Finally, the combination of functional MRI and focused ultrasound may enable precise

focal stimulation of brain activity in targeted regions. The ability to steer the ultrasound

beam to a desired target and to closely monitor its effects with MRI has enabled this

technology to move beyond experimental status into clinical adoption. MRI-guided

focused ultrasound earned approval by the U.S. Food and Drug Administration for the

thermal ablation of benign leiomyomata, more commonly known as uterine fibroids, in

2004 (189).

1.3.3 Ultrasound-induced BBB disruption

1.3.3.1 BBB disruption using ultrasound alone

It has long been known that ultrasound is capable of disrupting the BBB (155-

157). In the 1950's, deposition of trypan blue and radioactive phosphate tracers in the

brain after exposure to focused ultrasound was used to demonstrate increased

permeability of brain capillaries without visible structural changes (155). BBB disruption

was later observed in the periphery of thermal lesions resulting from ultrasound-induced

tissue coagulation (135, 190). However, under further investigation, thermally induced

BBB disruption has always been associated with tissue damage (190). Disruption of the

BBB was also observed after high-intensity ultrasound exposures above the cavitation

threshold, sometimes without tissue damage, indicating that the effect may be related to

an interaction between the acoustic field and gas bubbles. However, the unintentional

BBB disruption was sporadic and unpredictable, and its association with tissue damage

was unclear (191, 192). In 1990, it was proposed that the phenomenon of ultrasound-
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induced BBB disruption could be used with antineoplastic agents and ultrasound-induced

thermal ablation to enhance the treatment of brain tumors (135). However, molecular

delivery into the brain by ultrasound-mediated BBB disruption would not be pratical

without a controlled reversible process which does not induce tissue damage.

1.3.3.2 Microbubble-enhanced ultrasound for BBB disruption

A method to induce focal BBB disruption in a predictable and reproducible

manner without obvious permanent damage to the brain tissue was demonstrated in

rabbits when pulses of focused ultrasound were applied through a cranial window in the

presence of an ultrasonographic contrast agent containing gas-filled microbubbles (13).

Unlike in thermal ablation applications which use high-intensity focused ultrasound

(193), the intravenous administration of gas-filled microbubbles allows the desired BBB

opening to be achieved with powers approximately two orders of magnitude lower than

those required in the absence of microbubbles and largely confines the induced bioeffects

within the walls of the blood vessel.

Successful focal BBB disruption has been demonstrated using ultrasound

frequencies ranging from 260 kHz to 2.04 MHz (13, 194-196), allowing the passage of

MRI contrast agents Magnevist® (gadopentatate dimeglumine, molecular weight: 938 Da)

(194) and MION (monocrystalline iron oxide nanoparticles, molecular weight: 10,000

Da) (197), trypan blue (molecular weight: 961 Da), horseradish peroxidase (molecular

weight: 40,000 Da) (195), and antibodies (molecular weight: 150,000 Da) (16, 21, 140)

into the brain. The size of the focal region demonstrated by contrast-enhanced MRI

decreased with increasing frequency, with focal diameters smaller than 1 mm possible at

the higher frequencies (196). The transient nature of the induced BBB disruption was



Introduction

confirmed by contrast-enhanced MRI, which showed that the BBB was mostly restored

5-6 h after exposure to ultrasound (sonication) and fully intact 2-5 days and 4 weeks after

sonication (195, 198). Focal BBB disruption was sometimes accompanied by minor

extravasation of erythrocytes from affected capillaries in the sonicated region, but no

regions of ischemia or apoptosis which would indicate a compromised blood supply were

detected, nor were delayed effects observed by MRI or histology up to 4 weeks after

sonication (198); the incidence of erythrocyte extravasation per unit area decreased with

lower frequencies (196). Thus, MRI-guided focused ultrasound can induce transient,

localized BBB disruption in a noninvasive manner to enable the passage of diagnostic or

therapeutic molecules into the brain and is a relatively safe alternative to invasive or

diffuse methods currently available. Furthermore, it can be achieved using ultrasound

frequencies suitable for transcranial delivery (195).

The influence of various sonication parameters on the induced BBB disruption

has been extensively explored since the introduction of the method. Most work cited has

used ultrasound exposures at low pressure amplitudes (<1 MPa) with 10-ms pulses

repeated at a frequency of 1 Hz for a duration of 20-30 s. One study showed that BBB

disruption was not affected by variation in the pulse repetition frequency but was

influenced by burst length (199) and peak negative pressure amplitude (16, 17, 21, 195).

The pressure threshold for BBB disruption has been shown to be dependent on both

frequency and burst length, increasing with the former (200) and decreasing with the

latter (199). However, when expressed in terms of mechanical index, defined as pressure

amplitude in MPa divided by the square root of frequency in MHz, the mechanical index

threshold appeared to be constant at 0.46 (95% confidence intervals: 0.42 to 0.50) when
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other sonication parameters are kept constant (196). Investigations of the impact of the

concentration of microbubbles on BBB disruption have been inconclusive (17, 199, 201).

1.3.3.3 Physical mechanisms

Ultrasound-induced BBB disruption appears to be mechanically, rather than

thermally, mediated; one study in rabbits using 1.63-MHz sonications concluded that the

temperature elevation induced during BBB disruption was approximately 0.025 deg C

(13). Although it is believed that ultrasound-induced BBB disruption is achieved by using

the microbubbles as cavitation sites (98, 99), the exact physical mechanism by which the

ultrasound-microbubble interaction induces disruption of the BBB is not fully

understood. Multiple biological effects may arise from the interaction of microbubbles

with a propagating acoustic wave in tissue (202). In stable cavitation, a bubble expands

and contracts at the frequency of the oscillating pressure field. It may grow in size by

rectified diffusion, when more gas diffuses into the bubble from the surrounding medium

during expansion than diffuses out of the bubble during the compression phase of the

pressure wave (203). In inertial cavitation, which occurs at high acoustic pressures, the

inertia of the surrounding medium can cause the violent collapse of the bubble during the

positive pressure cycle, producing shock waves and high-velocity jets (107), free radicals

(204), and high local temperatures (205-207). Another process known as acoustic

streaming occurs when the oscillation of bubbles causes their surrounding medium to

flow and is often associated with large shear stresses (208). In addition, the acoustic field

exerts a steady radiation force on the bubbles along the direction of the ultrasound beam,

pushing the bubbles against the blood vessel wall (209).

Of the above-described bioeffects, inertial cavitation would likely have the most
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significant effect due to the large energy concentrations in the region of the collapsing

bubbles. However, ultrasound-induced BBB disruption has been demonstrated over a

range of acoustic intensities at 260 kHz without wideband acoustic emission (200), a

known signature of inertial cavitation in vivo (150), indicating that inertial cavitation is

not necessary for the blood-brain barrier disruption. Bubble collapse detected by

wideband acoustic emission was associated with small regions of erythrocyte

extravasation, while bubble oscillations were detected when BBB disruption was induced

without vascular damage (200).

1.3.3.4 Biological mechanisms

Immunoelectron microscopy studies have provided some insight into the

biological mechanisms by which microbubble-enhanced focused ultrasound enables the

trans-BBB transport of macromolecules. One study showed that passage through the

BBB after treatment with microbubble-enhanced ultrasound occurs via both paracellular

and transcellular routes, including open endothelial cell tight junctions, enhanced active

vesicular transport, endothelial cell fenestration and channel formation, and free passage

through injured endothelium (14). Specifically, the redistribution and loss of

immunosignals for TJ-specific proteins occludin, claudin-5, and ZO-1 provide direct

evidence of the disassembling of the TJ molecular structure and associated functional loss

of the BBB immediately following ultrasound exposure; six hours after sonication, the

protein immunosignals and BBB function are both restored (15). Active vesicular

transport following ultrasound-stimulated BBB disruption was preferentially

demonstrated in brain arterioles, rather than venules or capillaries (210). Furthermore, an

in vivo study in mice using multiphoton microscopy through a cranial window revealed
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arteriolar vasoconstriction during the ultrasound pulses, followed shortly by leakage of a

tracer, suggesting that the increase in BBB permeability might be related to temporary

vessel spasm (19).
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1.4 Doxorubicin (DOX)

1.4.1 Clinical use

Doxorubicin (molecular weight: 580 Da) is one of the most commonly used

cytotoxic drugs in both single-agent and multi-agent chemotherapy regimens. It is used to

treat many solid forms of cancer, including breast (211), ovarian (212), bone (213), lung

(214), thyroid (215), and gastrointestinal carcinomas (216), as well as blood-derived

cancers, such as lymphoma and multiple myeloma (217-219) and soft-tissue sarcomas

(220). Because it has demonstrated antineoplastic efficacy against such a variety of

cancer types, it has enjoyed widespread clinical use for over 30 years (221). Figure 1-1

shows that intratumoral DOX concentration is strongly correlated (R2 = 0.90) with patient

response rate, irrespective of the type of cancer (222).
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Figure 1-1: Correlation of intratumoral DOX concentration and patient response rate. DOX

concentration measured in excised tumors is linearly proportional to the response rate of

patients with breast, gastric, or colorectal carcinoma (R2 = 0.90). Data taken from (222).
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Despite its extensive clinical use, DOX is not typically used to treat intracranial

tumors because, as a substrate for the powerful efflux pump Pgp, it cannot cross the intact

BBB (84). Systemic administration of DOX has seldom been effective in patients with

brain tumors due to poor accumulation in glioma tissue (5). However, it has been shown

to arrest cell growth and induce apoptosis in malignant glioma cell lines (223). Moreover,

direct intratumoral infusion of DOX has been shown to improve survival of glioma

patients (92). Thus, the antineoplastic efficacy of DOX against glioma is not in doubt.

The evidence indicates that if the accumulation of DOX could be increased to therapeutic

levels within the brain, it could be effective in the treatment of malignant brain tumors,

whether primary glioma or metastatic brain tumors which originated elsewhere in the

body.

1.4.2 Mechanism of action

Formerly known as adriamycin, doxorubicin belongs to the family of

anthracycline antibiotics. Like many chemotherapeutic drugs, it combats the uncontrolled

proliferation of cancerous cells by binding to DNA to inhibit nucleic acid synthesis and

block cell reproduction (224). Cell structure studies have demonstrated that DOX rapidly

penetrates cells and binds to perinuclear chromatin (225). It is thought to inhibit the

action of topoisomerase II, which is responsible for the unwinding of DNA during the

transcription process. The interference of DOX during the process of DNA transcription

and gene replication induces chromosomal aberrations and interrupts the continuous

cycle of cell proliferation, leading to cell death (226). The bioreactivity of DOX with

iron, oxygen, or free electrons in the body can also produce free radicals, such as the
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highly reactive hydroxyl radical (OH-), which themselves induce DNA damage (227,

228).

These multiple mechanisms of DNA damage make DOX a highly effective

cytotoxic agent. Cancerous cells are strongly impacted by the interference of DOX during

the cell reproductive cycle due to their high turnover rate. However, as with any

chemotherapeutic drug, DOX also causes unwanted cell death in normal cells as well,

especially in those which proliferate quickly, such as hematopoietic cells, gastrointestinal

cells and hair follicles. In addition, DOX can cause cardiomyopathy and loss of cardiac

function (229, 230), which is associated with the production of free radicals (231). The

encapsulation of DOX within microscopic (- 100 nm) phospholipids vesicles, known as

liposomes, has been shown to reduce the cardiotoxic effects associated with DOX while

prolonging circulation time (232, 233). Due to these benefits, this liposomal form of

DOX is most commonly used clinically.

1.4.3 Spectroscopy

Doxorubicin absorbs and emits light according to the spectra shown in Figure 1-2,

with peak absorption at 480 nm and peak emission near 595 nm (234). Because the

amount of light emitted is directly proportional to the number of molecules, the

fluorescent properties of doxorubicin allow us to make quantitative measurements.
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Figure 1-2: Fluorescence spectra for doxorubicin in aqueous solution. A, Absorption
spectrum show maximum absorption at 480 nm (curve B, pH 2-7) (235). B, Emission
spectrum with excitation at 479 nm shows maximum emission near 595 nm (234).
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1.5 Scope of this thesis

The overall goal of this thesis was to further develop MRI-guided focused

ultrasound for noninvasive trans-BBB drug delivery applications. In particular, we wish

to develop a method to enable the efficacious use of doxorubicin for the treatment of

intracranial malignant tumors.

In the first set of experiments, ultrasonic parameters were investigated to achieve

consistent, localized disruption of the BBB in rats with an intact cranium. The threshold

pressure amplitude for reliable BBB opening was determined. We also examined the

relationship between the acoustic parameters and monitoring data acquired by MRI. In

addition, the study confirmed our ability to focus the acoustic energy through the rat skull

despite its attenuating effects, eliminating the need for invasive craniotomy in future

experiments. The findings of this study helped to establish the framework for subsequent

drug delivery experiments.

Based on the parameters determined for BBB disruption, we developed a protocol

for the targeted delivery of liposomal doxorubicin to the brain in normal, healthy rats.

The drug delivery protocol was adapted to increase the local penetration of doxorubicin

through the BBB until its accumulation in the brain was within the human therapeutic

range. Variations in both ultrasound delivery strategies and ultrasonic contrast agent dose

were explored. In addition, the usefulness of MRI as a monitoring and feedback tool for

the drug delivery procedure was explored by comparing the imaging data to the

quantified accumulation of doxorobucin in the brain. These results provide evidence that

our ultrasound-enhanced drug delivery technique has the potential to enable the practical

use of doxorubicin in the brain, despite its inability to penetrate the intact BBB.
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In the final component of this thesis, the therapeutic efficacy of our technique was

put to the test. We compared ultrasound-enhanced trans-BBB drug delivery to standard

intravenous chemotherapy by measuring the impact of ultrasound-enhanced delivery of

doxorubicin on survival and on tumor growth rate in a rodent model of aggressive

glioma.

In sum, this thesis demonstrates that MRI-guided focused ultrasound can be used

to achieve consistent and reproducible BBB disruption without invasive craniotomy, to

enable doxorubicin to accumulate in normal brain at levels sufficient to have a

therapeutic effect, and to increase the antitumoral efficacy of doxorubicin in a rodent

model of aggressive glioma. These pre-clinical data are important to establish the

usefulness of this technique as justification to pursue the development of MRI-guided

focused ultrasound for trans-BBB drug delivery applications toward clinical trials.



2 Materials and Methods

2.1 Animals and Equipment

2.1.1 Animals

Male Sprague-Dawley rats (200-400 g) were acquired from Charles River

Laboratories (Boston, Massachusetts). In preparation for surgery or sonication, rats were

anesthetized by i.p. administration of ketamine (90 mg/kg) and xylazine (10 mg/kg), per

hour or as needed. The hair covering the dorsal surface of the skull was removed with

depilatory lotion. For experiments requiring i.v. administration of contrast agents or

chemotherapy, a 24-gauge catheter was inserted into the tail vein. For imaging on days

before or after sonication, rats were anesthetized by induction in a vaporized isofluorane

chamber (3% induction, 1-2% maintenance).

All animals were cared for in accordance with our institutional animal care policy.

For animals in experiments of acute BBB disruption or ultrasound-assisted drug delivery,

animals were sacrificed while under deep anesthesia 3.5-4 h after sonication by

transcardial perfusion with 0.9% NaCl solution and 10% formalin in 0.1 M phosphate

buffer, followed by harvest of the brain. For animals which were implanted with glioma

for the survival study, euthanasia of those exhibiting severely impaired activity or weight

loss in excess of 20% was conducted by i.p. injection of sodium pentobarbital (Euthasol,

180 mg/kg; Virbac Corporation, Fort Worth, Texas) or by transcardial perfusion with

0.9% NaCl solution and 10% formalin in 0.1 M phosphate buffer, while under deep

anesthesia.
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2.1.2 Ultrasound

2.1.2.1 Transducer

For all experiments, ultrasonic fields were generated by a single-element,

spherically curved, air-backed piezoelectric transducer (manufactured in-house) with a

diameter of 100 mm, radius of curvature of 80 mm, and resonant frequency of 1.5 or 1.7

MHz. The electrical impedance of the transducer was matched to 50 Ohms by means of

an inductor-capacitor circuit contained within an external matching box.

2.1.2.2 Transducer characterization

Figure 2-1 shows the characteristic beam plots of the 1.7-MHz transducer, which

produced a tight ellipsoid focal spot with diameter and length of 1 mm and 4 mm,

respectively, at half-maximum pressure amplitude.
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Figure 2-1: Characteristic beam plots for the 1.7-MHz transducer. A, Contour plot of relative
peak negative pressure amplitude at the cross-sectional acoustic focus in degassed,
deionized water. Pressure amplitude was normalized to the maximum value; 10 contour
levels at increments of 0.1 are displayed. The focal diameter was approximately 1 mm at
half-maximum pressure amplitude. B, Three-dimensional plot of relative peak negative
pressure amplitude of the cross-sectional beam plot shown in A. C, Contour plot of relative
peak negative pressure amplitude along the longitudinal axis of the acoustic focus. The
focal length was approximately 4 mm at half-maximum pressure amplitude.

2.1.2.3 Transducer calibration

The transducer efficiency was measured using an acoustic radiation force balance

system (236). The system is based on the principle that an acoustic wave exerts a force F

on an ideal absorbing target proportional to the acoustic power P, as described by:

F = Pcos (2)
c



Materials and Methods

where c is the speed of sound in the given medium and 0 is the angle of incidence (105).

The transducer was immersed in degassed, deionized water (pO2 <1 ppm) and

driven at peak-to-peak voltages ranging from 0.050 - 0.250 V in 50-mV steps. A densely

bristled brush was used as the absorbing target to encompass the complete acoustic beam

emitted by the transducer. The brush was suspended in the water by a thin wires attached

to an electronic weighing balance so that its face lay directly opposite the transducer. For

each voltage, the acoustic power output of the transducer was calculated from the force

exerted on the brush, which was measured by the change in weight of the absorbing

brush. The output acoustic power averaged over three measurements was divided by the

input electrical power to compute the efficiency of the transducer (Table 2-1).

Electrical Acoustic Power
Voltage (V) Power (W) (W Efficiency (%) Standard Error
0.050 1.93 1.04 53.9 6.57 x 103

0.100 7.67 4.17 54.4 .70x 10-2

0.150 17.2 9.30 54.1 3.73 x 10-2
0.200 30.7 16.6 54.2 7.63 x 10-2
0.250 48.0 26.4 55.0 1.09 x 10-'

Table 2-1: Acoustic efficiency of air-backed single-element transducer. Frequency: 1.696
MHz; Radius of curvature: 80 mm; Diameter: 100 mm; F number: 0.8.

2.1.2.4 Derated measurements accounting for energy losses in bone and tissue

The absolute and relative peak negative pressure amplitudes were measured in a

water tank with a calibrated 0.5-mm-diameter membrane hydrophone (Marconi,

Chelmsford, United Kingdom) and a 0.075-mm-diameter needle hydrophone (Precision

Acoustics, Dorchester, United Kingdom), respectively. However, due to the strong

attenuation of ultrasound in the bone and, to a minor extent, in the brain tissue, the

acoustic energy delivered to the brain in vivo is not the same as that measured in the
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water tank. To better understand how a given set of acoustic parameters translates into in

vivo effects, derated values accounting for energy losses through the skull and brain must

be determined. Brain tissue is known to have a mean attenuation coefficient of 5

Np/m/MHz (237). Energy losses caused by the rat skull bone were measured by

performing relative pressure measurements with the hydrophone in the water tank both

with and without an ex vivo rat skull placed in the path of the ultrasound beam. The

average pressure loss due to the skull over ten individual measurements was found to be

49%, with 51% of the incident energy transmitted through the skull. The pressure

amplitude values reported in this study are derated to account for these losses.

Figure 2-2 shows the cross-sectional and longitudinal beam plots of the acoustic

field produced by the placement of an ex vivo rat skull in the path of the ultrasound beam

approximately 4 mm proximal to the focal center, as compared to those measured in

water in the absence of the skull.



Materials and Methods

WITHOUT SKULL WITH SKULL

0

-0.2

-0.4

-0.6

-0.8

-1
-1 0 0.5 1 -1 -0.5 0

x (mm) x (mm)

." .. . . . .A

2.... ... 2 4

-2 - ' -2
-4 -4

y (mm) x (mm)

Z, 0.8-

0.7-
0.6-

0L 0.5-

0 0.4-

0.3-

E0.2-

01-

40~

-2'
3 2 1 0 -1 -2 -3 -4 -5

z (mm)

A

y (mm) x (mm)

-1

z (mm)

Figure 2-2: Comparison of beam plots with and without a rat skull in the beam path. A-B,
Contour plot of relative peak negative pressure amplitude at the cross-sectional acoustic
focus in the absence (A) and presence (B) an ex vivo rat skull; C-D, Three-dimensional plot
of relative peak negative pressure amplitude of cross-sectional beam plot in the absence
(C) and presence (D) an ex vivo rat skull; E-F, Contour plot of relative peak negative
pressure amplitude along the longitudinal axis of the acoustic focus in the absence (E) and
presence (F) an ex vivo rat skull. Pressure amplitudes were normalized to the maximum
values measured without the skull; 10 contour levels at increments of 0.1 are displayed.
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2.1.3 Experimental set-up

Figure 2-3 shows a diagram of the experimental set-up. 1 Inside the magnet room

of a standard 3-Tesla clinical MRI scanner, the transducer was mounted on an MR-

compatible 2 manual positioning system with three translational degrees of freedom and

immersed in a tank of degassed, deionized water (pO0 2 < 1 ppm). Outside the magnet

room, a personal computer network with standard magnetic parts controlled the

transducer by means of a function generator (model 395; Wavetek, San Diego,

California), power amplifier (50-dB gain, model 240L; E&I, Rochester, New York), and

power meter (model 438A; Hewlett-Packard, Palo Alto, California). Prior to each animal

experiment, the coordinates of the acoustic focus of the transducer were determined using

heat-sensitive MRI to visualize thermal changes induced in a gel phantom during high-

power continuous-wave sonications.

The animal was placed into a custom-made holder with a bite bar so that its head

was positioned above the transducer. The surface of the head was acoustically coupled to

the transducer by the degassed water. Ultrasound was propagated through the water to the

dorsal surface of the head and focused through the intact skull on a target centered 4 or 5

mm deep from the dorsal brain surface.

1 Diagram adapted from original artwork by Dr. Nathan McDannold.
2 The manual positioning system was made with aluminum and brass components so that it could be used
in the presense of the high magnetic field without interfering with the MRI scanner.
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MRI coil

Figure 2-3: Diagram of the experimental set-up. Inside the MRI magnet room, the

transducer was mounted on a manual MR-compatible 3-D positioning system and

immersed in a water tank integrated into the MRI table. Outside the magnet room, a

network consisting of a personal computer, function generator, power amplifier, power

meter, and dual directional coupler served to control the transducer. The animal was

placed into a custom-made holder with a bite bar so that its head was positioned above

the transducer. The surface of the head was coupled to the transducer by degassed,
deionized water.

2.1.4 Magnetic resonance imaging

The experimental set-up shown in Figure 2-3 was integrated into the table of a 3-

Tesla clinical MRI scanner (General Electric Healthcare, Milwaukee, Wisconsin) for

image guidance and evaluation. Each animal was placed on the table in the supine

position with the dorsal surface of the head centered on a 7.5-cm-diameter

transmit/receive surface coil (constructed in-house).

For all BBB disruption experiments, TI-weighted fast spin-echo (FSE) images

(repetition/echo time (TR/TE): 500/17 ms; echo train length (ETL): 4; matrix size: 256 x

256; slice thickness: 1.5 mm; field of view (FOV): 8 cm; number of excitations (NEX): 2;

flip angle (FA): 90 degrees) of the brain were acquired in three orthogonal planes. The

target site for BBB disruption was identified on the MR images and the transducer
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repositioned accordingly. Sonications were performed through the opening of the surface

coil, which was filled with a plastic bag [poly(vinyl chloride), thickness -75 um]

containing degassed water. After ultrasound-mediated BBB disruption was completed, a

bolus of gadopentatate dimeglumine MR contrast agent (Magnevist; Berlex Laboratories,

Wayne, NJ; 0.125 mmol/kg; 0.25 mL/kg; molecular weight: 938 Da) was injected into

the tail vein and additional images were acquired for up to 15 min.

2.1.5 Fluorometry

To quantify doxorubicin accumulation in brain tissue, a benchtop cuvette

fluorometer (VersaFluor; Bio-Rad Laboratories, Hercules, California) with changeable

filters was used. Because doxorubicin absorbs the most light between approximately 473

nm and 494 nm and emits maximal fluorescent light at about 590 nm (234, 238),

fluorescence measurements were performed using filters with excitation and emission

wavelengths of 480 ± 10 nm and 590 ± 5 nm, respectively.

To calibrate the fluorometer for doxorubicin quantification, a serial dilution of

DOX in acidified alcohol was used to measure the fluorescent signal of the extracted

supernatant. For DOX concentrations of 100-1000 ng/mL, the gain of the VersaFluor

fluorometer was set to medium. For lesser DOX concentrations of 10-100 ng/mL, the

fluorometer was not sensitive enough to differentiate small differences in concentration

using medium gain, so the gain was set to high. For each experiment, a freshly prepared

solution of acidified alcohol was used as a "blank" to zero the fluorometer. Figure 2-4

shows the calibration curves used to convert the fluorometric readings to doxorubicin

concentration.
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Figure 2-4: Calibration curves for fluorometric measurements of doxorubicin

concentration, showing a strong linearly proportional relationship between arbitrary

fluorometric units and doxorubicin concentration for A, medium gain (R2 = 0.97) and B,

high gain (R2 = 0.99). The calibration coefficients were obtained by forcing each linear fit

through zero.
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2.2 Blood-brain barrier disruption using transcranial MRI-
guided focused ultrasound

In the first step toward developing a protocol for targeted drug delivery across the

BBB in a standard pre-clinical rodent model, we investigated the ultrasonic parameters

needed to achieve reproducible, localized blood-brain barrier disruption in rats when

focused ultrasound is applied through the intact rodent skull. Although ultrasound is

strongly attenuated in bone, we hypothesized that the skull of the rat is thin enough to

permit the focusing of the ultrasound beam sufficient to induce localized BBB opening.

2.2.1 Sonications

Energy was delivered in pulsed sonications with burst length of 10 ms and pulse

repetition frequency of 1 Hz (i.e., 10 ms ON followed by 990 ms OFF; duty cycle: 1%)

for 30 s. Each sonication was accompanied by a bolus of a microbubble-based ultrasound

contrast agent (Optison; Mallinckrodt, St. Louis, MO) into the tail vein catheter. Each mL

of Optison contains 5 - 8 x 108 microbubbles, which are composed of perfluorocarbon

gas-filled albumin shells with a mean diameter of 2.0 - 4.5 x 10-6 m. The administration

of 0.1 mL/kg Optison was simultaneous with sonication and followed by 0.2 mL 0.9%

NaCl solution (normal saline). Multiple sonications in an individual rat were spaced 4 to

5 min apart to allow time for vascular clearance of the Optison, which has a pulmonary

elimination half-life of 1.3 ± 0.7 min (mean ± standard deviation (SD)) in humans.

To find the pressure amplitude with which BBB disruption was reliably induced,

sonications were performed in 50 rats in up to four target locations per brain, with

acoustic power levels ranging from 0.06 to 3.0 W, corresponding to derated peak

negative pressure amplitudes of 0.36 - 2.5 MPa in the brain. BBB disruption was
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measured by MRI contrast enhancement as described below.

2.2.2 Image analysis

MRI contrast enhancement was evaluated at each target location using software

written in-house using MATLAB (MathWorks, Natick, MA). The average signal

intensity within a selected 3x3xl-voxel region of interest (ROI) was normalized to the

pre-contrast baseline value of the ROI to calculate the signal enhancement. If the

maximum enhancement of the sonicated ROI, averaged over three consecutive time

points, exceeded that of a control ROI outside of the focal target by more than one

standard deviation, the BBB was considered to have been opened in that location.

2.2.3 Trypan blue staining

Trypan blue (ICN Biomedical, Aurora, OH; 80 mg/kg) was administered i.v. to

several rats prior to sonication for visual confirmation of BBB disruption in harvested

tissue samples.

2.2.4 Histologic analysis

Histologic analysis was performed for eight locations in two rat brains exposed to

ultrasound with acoustic power ranging from 0.12 to 1.2 W (0.5 - 1.6 MPa). The animals

were deeply anesthetized and sacrificed 4 h after the last sonication. Their brains were

perfused by transcardiac methods with 10% buffered formalin phosphate, embedded in

paraffin, and cut into 5-micron sections in the axial plane perpendicular to the direction

of ultrasound propagation. Every thirtieth section was stained with hemotoxylin and eosin

(H&E). Sections exhibiting the greatest effect were identified and evaluated for capillary

damage by light microscopy.
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2.3 Targeted delivery of doxorubicin to normal brain by ul-
trasound-mediated blood-brain barrier disruption

Once the parameters for consistent BBB disruption by transcranial sonication

were established, we adapted the technique to aid in the targeted delivery of the

chemotherapeutic doxorubicin in the rat brain. Our aim was to develop a protocol for

ultrasound-mediated BBB disruption which would allow DOX to accumulate at sufficient

levels in the normal in vivo rat brain to have a therapeutic effect.

2.3.1 Chemotherapy

Doxorubicin hydrochloride (DOX) encapsulated in long-circulating pegylated

liposomes (Doxil; Ben Venue Laboratories, Bedford, OH; 5.67 mg/kg) was selected for

targeted delivery through the blood-brain barrier. In this form, greater than 90% of the

drug is encapsulated within the liposomes. Once the liposomes pass from the vascular

compartment to the parenchyma, the liposome is degraded by endogenous enzymatic

processes and the encapsulated DOX is released in the tissue.

2.3.2 Ultrasound

The experimental set-up of the first study was used (Figure 2-3). Based on the

results of the previous experiments, 1.2 MPa was used to provide BBB disruption to

deliver doxorubicin to the brain. In the first set of experiments, we sought to identify an

ultrasound protocol which would deliver a therapeutic level of DOX through the BBB.

The acoustic parameters and delivery schedule were varied in 20 rats. The tissue drug

concentration was considered within human therapeutic levels when the dose reached

levels shown to correspond with a 39% patient response rate (clinical dose-response

curve) (Cummings 1986). For each rat, four overlapping pulsed sonications (Table 2-2;



Materials and Methods

Set #1, Sonication A) were performed on the brain and spatially distributed in the corners

of a 1.5-mm square to increase the area of BBB disruption. DOX was administered i.v. in

four bolus injections immediately after the Optison injections, for a total DOX dose of

3.0 - 5.7 mg/kg. To dramatically increase the amount of DOX delivered to the brain,

some rats also received an additional 40-min pulsed sonication (Table 2-2; Set #1,

Sonication B) in the center of the target region with Optison injections at 5-min intervals;

these additional low-power sonications were aimed to assist the break-up of the

liposomes and facilitate the release of DOX in the focal region. Figure 2-5 shows a

schematic of the final ultrasound protocol tested, which allowed doxorubicin to

accumulate in the brain parenchyma at therapeutic levels.

Sonication A: BBB Disruption *Sonication B: Increase DOX Uptake
DOX

Pressure Dur Optison Rep/ (mg/ Pressure Optison Rep/
# N (MPa) (s) (mL/kg) Config kg) (MPa) Dur (mL/kg) Config
1 20 0.8 30- 4 / 3.0- 40 1 /

120 0.1 square 5.67 mmin 0.1 center
5/

2 13 1.2 120 0.1- square 5.67 1.2 60 s 0.05- 8/
0.5 (corners 0.25 center

+ center)
*Only 4/20 rats in the first set received sonication B to dramatically increase the uptake of DOX in
the brain. For sonication B, Optison was administered every 5 min during the 40-min sonication.

Dur : duration of sonication; Rep: repetition of sonication; Config: configuration of sonications

Table 2-2: Experimental parameters for ultrasound-mediated delivery of doxorubicin to the
normal rat brain.
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Pressure Amplitude

1.2 M Pa .... ... ... ... ....
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Time

Figure 2-5: Schematic of ultrasound protocol (freq = 1.7 MHz) used to deliver doxorubicin
to the rat brain at human therapeutic levels. Five overlapping 120-s pulsed sonications at
1.2 MPa were performed on the brain and spatially distributed in the corners and center of
a 1.5-mm square to disrupt the BBB, followed by eight 60-s pulsed sonications in the
center of the target region at 5-min intervals to increase the uptake of DOX in the brain.
Sonications were accompanied by simultaneous injections of Optison microbubble
contrast agent (0.1 mLlkg for first 5 sonications, 0.05 mL/kg for last 8 sonications). See
Table 3-1 and text for further details.

2.3.3 Fluorometric assay

Trypan blue (ICN Biomedical, Aurora, OH; 80 mg/kg) was administered through

the tail vein after the completion of the treatment and imaging session to confirm

successful BBB disruption and to mark the target site of sonication for tissue harvesting.

Each animal was put into a state of deep anesthesia with an overdose of ketamine and

xylazine. To flush unabsorbed DOX from the cerebral vasculature, the brain was perfused

by transcardiac methods with normal saline 3.5 h after the last sonication. The site of

BBB disruption, identifiable by its trypan blue stain, was harvested along with its

contralateral counterpart for control. The concentration of DOX of each tissue sample

was determined by taking the average of at least three fluorometric readings on a

benchtop fluorometer.

2.3.3.1 Extraction and quantification of doxorubicin

A preparation of acidified alcohol (0.3 N HC1 in 50% EtOH) was used to extract

DOX from harvested tissue samples for fluorometric quantification (Bachur 1970). For
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these minute samples, we assumed the tissue density was approximately 1 g/cm 3. Thus,

the mass of each sample was equal to its volume. The mass of each sample was measured

and cut down 3 until it reached the appropriate size of-0.020 - 0.025 g.4 Each sample was

put into a 1.5-mL centrifuge tube with 20 volumes (400-500 flL) of acidified alcohol,

then homogenized with a motorized pestle, set in refrigerator at 4 deg C for 24 h.

Samples were then centrifuged at 16,000 x g for 25 min at 4 deg C. The supernatant was

extracted for immediate fluorometric reading or stored at -20 deg C (Bachur 1970).

2.3.4 Statistical analysis

Sonicated and contralateral control paired samples were compared using a two-

tailed paired Student's t-test. Values of p < 0.05 were considered statistically significant.

Additional analyses included least-squares linear regression and calculation of correlation

coefficients.

2.3.5 Effect of microbubble concentration on DOX delivery to the brain

In the second set of experiments, the effect of Optison dose on the amount of

DOX delivered to the brain was investigated in 13 rats for a fixed ultrasound exposure

scheme. For each rat in this set, the ultrasound protocol consisted of five 120-s

3 For reduction of the sample size, outer edges were cut to preserve the center of the focus, which was
likely to exhibit the greatest BBB permeability and the highest concentration of DOX.
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sonications at 0.6 W (Table 2-2; Set #2, Sonication A) and eight 60-s sonications at 0.3

W (Table 2-2; Set #2, Sonication B).

The first five sonications for BBB disruption were spatially distributed in the four

corners and center of a 1.5-mm square and accompanied by 0.1, 0.2, or 0.5 mL/kg

Optison injections, while the last eight sonications applied to the center of the target

region for increase DOX delivery were accompanied by 0.05, 0.10, or 0.25 mL/kg

Optison injections, respectively. As before, DOX was administered i.v. in bolus

injections immediately after the Optison injections during the first five sonications for

BBB disruption, for a total DOX dose of 5.7 mg/kg.

2.3.6 Histologic analysis

The brains of six animals (two animals per Optison dose) which were treated with

ultrasound but without DOX were examined to evaluate the histologic effects of the

ultrasound protocol on brain tissue. In addition, the brains of two animals were examined

one week after treatment with sonications accompanied by 0.1 mL/kg Optison injections

(the lowest Optison dose) and DOX. Histologic specimens were fixed in formalin and

prepared with H&E staining as before.

4 These values were chosen to ensure that the addition of 20 volumes of acidified alcohol did not exceed the
capacity of the 1.5-mL centrifuge tube so that no spillage occurred during homogenization, and that the
extracted supernatant was greater than the minimum volume of 250 ,uL of the fluorometric system.



Materials and Methods

2.3.7 Fluorescence imaging

To visualize the distribution of DOX in the brain after treatment with ultrasound-

induced focal BBB disruption (with 0.2 mL/kg Optison injections) and intravenous DOX

administration, volumetric projections of whole rat brains were obtained using a multi-

spectral small animal imaging system (Maestro; Cambridge Research and

Instrumentation, Woburn, Massachusetts; version 2.0.4; Excitation: 465 nm; Emission

detection: 365-700 nm; 120-150 ms exposure), which has the ability to identify

contributions from multiple components by linear unmixing of their spectral signatures.

Spectral data were also obtained for doxorubicin, trypan blue, and autofluorescence of a

brain treated with focused ultrasound but without DOX or trypan blue.

Brains were then sectioned at 50 pm and representative sections were mounted

and imaged using a Zeiss LSM 510 confocal laser scanning microscope (Carl Zeiss, Jena,

Germany) with a 25x or 63x objective and two-photon excitation at 800 nm using a

femtosecond-pulsed, mode-locked Ti:Saphire laser (Chameleon; Coherent Inc, Santa

Clara, California). Emission was collected with the META detector (Carl Zeiss, Jena,

Germany), a polychromatic, 32-channel detector for rapid acquisition of multiple

wavelengths.
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2.4 Therapeutic efficacy of ultrasound-enhanced chemother-
apy in a rodent model of aggressive glioma

After a method to deliver therapeutic levels of doxorubicin to the brain was

developed, the therapeutic efficacy of the technique was investigated in rats with

implanted aggressive glioma.

2.4.1 Cell culture

9L gliosarcoma cells were obtained from the University of California-San

Francisco/ Neurosurgery Tissue Bank. Cells were cultivated in Minimum Essential

Medium with Earle's salts, supplemented with 10% fetal calf serum, 1% L-glutamine,

1% MEM nonessential amino acids, and 0.1% gentamicin (10% FCS-MEM) in a 5% CO 2

chamber held at 37 deg C.

2.4.2 Tumor implantation

In the anesthetized rat, the dorsal surface of the skull was sterilized with an iodine

swab. A I-cm linear skin incision was placed over the bregma and a 1-mm burr hole was

drilled into the skull approximately 2 mm lateral to the bregma. A 10-p~L gas-tight

syringe (Hamilton, Reno, Nevada) was used to inject (0.5-1) x 105 9L rat gliosarcoma

(9L GL) cells suspended in 2-4 gL 10% FCS-MEM into the right or left frontal lobe at a

depth of 3.5 mm relative to the dural surface of the brain. To minimize convection at the

injection site, the cell suspension was slowly injected over 5 min. Two minutes after

injection, the needle was slowly retracted over an additional 5 min. The wound was

rinsed with 0.9% NaCl solution and the burr hole occluded with sterile bone wax

(Ethicon, Somerville, New Jersey) to prevent leakage of the cerebrospinal fluid. The skin
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was then closed with 5-0 silk sutures (Ethicon, Somerville, New Jersey). The rat

recovered from anesthesia under observation.

Each animal was given a one-time dose of antibiotic (Baytril, 2.5 mg/kg; Bayer

HealthCare, Wayne, New Jersey) and analgesic (Buprenex, 0.05 mg/kg; Reckitt

Benckiser Healthcare, Hull, England, UK) every 12 h for 24 h following surgery by i.p.

administration. Sutures were removed prior to sonication, usually 5 days after surgery.

MR images of the brain were acquired 7 or 8 days following implantation. Animals were

included in the study if the tumor appeared to be well-circumscribed and if the larger

cross-sectional diameter was within 1-3 mm, inclusive.

2.4.3 Study design

On Day 8 after implantation, each rat was randomly assigned to one of the

following groups: (1) no treatment (control), (2) a single treatment with microbubble-

enhanced MRI-guided focused ultrasound (FUS only), (3) a single treatment with i.v.

liposomal doxorubicin (DOX only), or (4) a single treatment with microbubble-enhanced

MRI-guided focused ultrasound and concurrent i.v. injections of liposomal doxorubicin

(FUS+DOX). Additional MR images of the brain were acquired weekly to monitor tumor

growth. Animals were followed until death, up to 55 days. Total survival times from

tumor implantation until death were recorded. To minimize potential confounding

factors, six animals which did not die of disease progression (i.e., animals whose tumor

resorbed or stabilized) were excluded from analysis.
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2.4.4 Sonications

For animals in Groups 2 (FUS only) and 4 (FUS+DOX) which received treatment

with microbubble-enhanced MRI-guided focused ultrasound, each rat was laid supine

over the water tank so that the dorsal surface of its head was acoustically coupled to the

transducer with degassed, deionized water. Pre-sonication images of the brain were

acquired to determine the size and coordinates of the tumor. The transducer was

repositioned to align its focus with the tumor, which was then exposed to pulsed

ultrasound (pressure amplitude: 1.2 MPa, burst length: 10 ms, pulse repetition frequency:

1 Hz, duration: 60-120 s; five sonications in square formation; see (17) for further detail).

At the time of this study, the ultrasonographic contrast agent Optison was not

commercially available. Therefore, another contrast agent (Definity, 0.01-0.02 mL/kg;

Bristol-Myers Squibb, New York, New York) containing perflutren lipid microspheres

(mean diameter, 1.1-3.3 pim) was used to achieve the cavitation effect for BBB

disruption. Definity was activated by shaking the vial for 45 s using Vialmix (Bristol-

Myers Squibb Medical Imaging, North Billerica, Massachusetts) and diluted to 0.1x

normal strength (maximum concentration, 1.2 x 109 bubbles per mL) with a solution of

0.01 M phosphate buffer, 0.0027 M KC1, and 0.137 M NaCl. At the start of sonication, a

bolus of the diluted contrast agent was injected simultaneously into the catheterized tail

vein, followed by a 0.2-mL flush with 0.9% NaCl solution. The transducer was then

moved to its new position and the procedure repeated every 5 min until the entire cross-

sectional area of the tumor and its margins had been exposed to the acoustic focus,

usually 5-9 sonications in total with the focal spot spacing of 1 mm. Contrast-enhanced

MR images with one-half dose of Magnevist MR constrast agent (0.125-mL/kg) were
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obtained immediately following the first two exposures, which were aimed 1 mm outside

of the tumor, to confirm the in vivo location of the acoustic focus relative to the tumor

prior to treatment.

2.4.5 Chemotherapy

Animals in Groups 3 (DOX only) and 4 (FUS+DOX) received single-agent

intravenous chemotherapy with doxorubicin hydrochloride encapsulated in long-

circulating pegylated liposomes (Doxil; Ortho-Biotech, Bridgewater, New Jersey). Each

rat was administered 5 slow bolus injections of DOX followed by 0.2 mL 0.9% NaCl

solution into the catheterized tail vein at 5-min intervals, for a total dose of 5.67 mg/kg.

For the animals in Group 4, the DOX injections immediately followed the administration

of Definity microbubble contrast agent and were concurrent with ultrasound exposure.

2.4.6 Magnetic resonance imaging

Additional images were acquired in animals with implanted glioma. To determine

the size and location of the tumor prior to sonication, two-dimensional T2-weighted fast

spin-echo images of the brain (TR/TE: 2000/91 ms; ETL: 8; matrix size: 256 x 256; slice

thickness/spacing: 1.5 mm/interleaved; FOV: 8 cm; NEX: 2; FA: 90 degrees) were

acquired in three orthogonal planes.

To show the baseline contrast enhancement of the tumor prior to ultrasound

exposure (Figure 2-6, left), two-dimensional T1-weighted FSE images of the tumor

(TR/TE: 500/13 ms; ETL: 4; matrix size: 256 x 256; slice thickness: 1.5 mm; FOV: 8 cm;

NEX: 4; FA: 90 deg) were acquired in the plane perpendicular to the direction of

ultrasound propagation and then repeated after i.v. administration of gadopentatate

dimeglumine MR contrast agent (Magnevist; Bayer HealthCare, Wayne, New Jersey;
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0.25 mL/kg). After treatment with ultrasound was completed, additional contrast-

enhanced TI-weighted FSE images were acquired to confirm successful ultrasound-

induced BBB disruption in and around the tumor (Figure 2-6, right).

Pre BBBD Post BBBD

Figure 2-6: Contrast-enhanced Tl-weighted magnetic resonance images of the rat brain
before (left) and after (right) ultrasound-induced BBB disruption around the tumor (arrows)
showed increased penetration of MR contrast agent through the BBB in the targeted area
after sonication. Scale bar: 10 mm

To assess the successful implantation and viability of the tumor and to track

tumor growth, additional images were acquired using a 4.7-Tesla small animal MRI

scanner (BioSpec Avance; Bruker, Billerica, Massachusetts) with a 33-cm diameter bore

and a 7-cm diameter RF 'H birdcage volume coil. T2-weighted rapid acquisition with

relaxation enhancement (RARE) images of the brain (TR/TE: 2000/85 ms; ETL: 8;

matrix size: 256 x 256; slice thickness: 1.5 mm; FOV: 8 cm; NEX: 2; FA: 90 degrees)

were acquired before treatment on post-implantation Day 7 or 8 and weekly after

treatment. The implantation was deemed successful if the tumor was well-circumscribed

and if the larger cross-sectional diameter was within 1-3 mm, inclusive.
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2.4.7 Image analysis

The size of the tumor was evaluated with image analysis software written in-

house using MATLAB (MathWorks, Natick, MA). Tumor volumes V were calculated

using an ellipsoid approximation

4 1
V - t- abc (3)

3 .2

where a, b, and c are the maximum diameters of the tumor measured in three orthogonal

planes on two-dimensional T2-weighted MR images. Least-squares nonlinear regression

analyses were performed to compare the rate of tumor growth between groups. For

animals for which MRI data were acquired on at least three different days, tumor

volumes were fit using an exponential model of the form

V = Ae k '  (4)

where A and k are constant parameters and t is the time in days after implantation. Tumor

volume doubling time T,2 was then calculated for each animal using the equation

ln(2)
T i 2 =n) (5)

k

2.4.8 Survival analysis

Population survival curves were also plotted using the Kaplan-Meier method

(239). Survival curves were compared between groups using the Log-Rank test.

Statistical analyses were performed using either GraphPad Prism version 5.01 for

Windows (GraphPad Software, San Diego, California) or Excel 2002 (Microsoft

Corporation, Redmond, Washington). The Bonferroni method (240) was used to compare

multiple pairs of groups. The significance level for the family of comparisons was set at



Materials and Methods

0.05. Since there are four treatment groups (including control) with six possible paired

comparisons, pairwise p values less than the Bonferroni-corrected threshold of 0.05/6 =

0.0083 were considered statistically significant.

2.4.9 Histologic analysis

For illustrative purposes, the brains of three animals were examined to compare

the histologic effects of different treatments. As with those in the survival study, these

animals were randomly assigned on post-implantation Day 8 to one of Groups 1

(control), 3 (DOX only), or 4 (FUS+DOX). Forty-eight hours after treatment, the animals

were euthanized by transcardiac perfusion with 0.9% NaCl solution followed by 10%

phosphate-buffered formalin while under deep anesthesia with ketamine and xylazine.

Their brains were harvested and fixed in formalin; tissue blocks containing the tumor

were embedded in paraffin and cut into 6-ipm serial sections perpendicular to the

direction of ultrasound propagation. Every thirtieth section was stained with hemotoxylin

and eosin (H&E) for examination by light microscopy.



3 Blood-brain barrier disruption using transcranial
MRI-guided focused ultrasound5

3.1 Results

3.1.1 Visual confirmation ofultrasound-induced BBB disruption

In order to eventually deliver DOX to the brain in a targeted manner, we first

investigated the use of MRI-guided focused ultrasound to induce local BBB disruption in

the rat brain when transmitted through the intact skull. Successful BBB disruption was

confirmed by localized regions of increased signal intensity on Ti-weighted MR images

of the brain, due to the penetration of the MR contrast agent through the BBB (Figure

3-1, left). In addition, diffusion of trypan blue into the brain parenchyma marked the site

of BBB disruption in harvested tissue samples (Figure 3-1, right).

3.1.2 Threshold response of ultrasound-induced BBB disruption

In 146 sonicated locations in the four quadrants of the brain, we observed a

threshold response to the applied focused ultrasound. BBB opening was consistently

achieved when we applied focused ultrasound with pressure amplitudes of 1.2 MPa or

greater (Figure 3-2). This value was therefore used to induce BBB disruption in

5 Published in Treat et al. (2007) Int J Cancer and reproduced with permission from Wiley-Liss, Inc.
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subsequent DOX delivery experiments. At pressure amplitudes below 1.2 MPa, the BBB

was successfully opened, as measured by MRI signal enhancement, in some locations but

not in all.

Figure 3-1: Confirmation of ultrasound-induced localized BBB disruption in the rat brain

by MRI and by trypan blue staining of the affected area. Left, T1-weighted contrast-

enhanced fast spin-echo image of a rat brain exposed in two locations to FUS at 1.2 MPa

showed localized regions of MR contrast enhancement in the brain, indicating focal

leakage of the MRI contrast agent (molecular weight: 938 d) through the blood-brain

barrier. Right, Corresponding scanned rat brain section at 4-mm depth in the focal plane.

Arrows indicate leakage of trypan blue from the vasculature into focal locations of the

brain parenchyma.
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Figure 3-2: Threshold of BBB disruption induced by transcranial focused ultrasound. BBB
disruption was consistently achieved when pressure amplitudes of 1.2 MPa or greater
were applied to the brain through the intact rat skull.

3.1.3 Variations in sensitivity to ultrasound-induced BBB disruption by
anatomical location in the brain

We noted that different locations in the brain exhibited varying responses to the

applied ultrasonic energy. In locations in the posterior quadrants of the brain, such as the

thalamus, hippocampus, or superior colliculus, lower pressure amplitudes were required

to induce consistent BBB disruption. While over all locations in the brain, 1.2 MPa was

the minimum pressure observed to achieve the desired effect, a lesser peak rarefactional

pressure of 0.8 MPa was sufficient to induce reproducible BBB disruption in the posterior

quadrants of the brain (Figure 3-3).
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Figure 3-3: Location dependence of threshold for ultrasound-induced BBB
disruption.Lower pressure amplitudes were required for consistent BBB disruption in
posterior quadrants (e.g. thalamus, hippocampus, superior colliculus) than in anterior
quadrants (e.g. caudate-putamen) of the rat brain.

3.1.4 MRI guidance of ultrasound-induced BBB disruption

Figure 3-4 shows the normalized MRI signal enhancement (mean ± SD) in the

sonicated region after injection of MR contrast agent as a function of peak rarefactional

pressure amplitude. Signal enhancement increased with pressure, indicating that more

MRI contrast agent was able to penetrate into the brain parenchyma when exposed to

higher pressure amplitudes. These data indicate that MRI monitoring of ultrasound-

induced BBB disruption could be useful in providing feedback on the extent of the

permeability achieved during or immediately after the procedure.
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Figure 3-4: Normalized MRI signal enhancement (mean StD) in the sonicated region after
injection of MR contrast agent as a function of pressure amplitude. Increasing signal
enhancement with pressure showed that greater BBB permeability was achieved at higher
pressure amplitudes and that MRI could provide feedback on the extent of the ultrasound-
induced BBB disruption.

3.1.5 Histologic results

For the single 30-s exposures used to detect the threshold of BBB disruption, no

necrotic lesions were observed in eight representative locations exposed to focal pressure

amplitudes from 0.5 to 1.7 MPa in two subjects administered 0.1 mL/kg Optison. The

H&E-stained samples showed a few extravasated erythrocytes, too few to be

characterized as hemorrhage. In a single location exposed to 1.2 MPa, two

hyperchromatic neurons were identified, which could possibly indicate damage.
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Figure 3-5: H&E-stained rat brain exposed in 4 focal locations to pressure amplitudes

ranging from 0.5 MPa to 1.7 MPa. No gross or microscopic tissue damage was noted for

pressure amplitudes between 0.5 to 1.2 MPa. In one location exposed to 1.7 MPa focal

pressure amplitude, a few tiny extravasations of erythrocytes were noted, but too few to

be characterized as hemorrhage.
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3.2 Discussion

In this chapter, we demonstrated a noninvasive method for localized and transient

disruption of the BBB using focused ultrasound through the intact rodent skull in

combination with gas-filled microbubble contrast agent. At frequencies of 1.5 or 1.7

MHz with 30 cycles of 10-ms bursts of pulsed ultrasound, the minimum focal pressure

amplitude required to consistently open the BBB in any of the locations we targeted in

both the anterior and posterior quadrants of the rat brain was 1.2 MPa. These parameters

formed the basis for the development of an ultrasound protocol for the targeted delivery

of DOX through the BBB.

Similar to previous findings in rabbits (13), greater pressure amplitudes resulted

in increased penetration of the MR contrast agent. Occasional neuronal damage was

observed in histological analysis of tissue samples exposed to 1.2 MPa, whereas the

lowest pressure amplitude observed to induce neuronal loss in rabbits was 2.3 MPa;

rabbit data between 1.0 and 2.3 MPa were not available for comparison to rats. In the

context of enhanced chemotherapy, the cell damage observed is most likely acceptable

for tumor therapy since it appears minimal compared with alternative treatments such as

surgical resection or ionizing radiation therapy.

The neuronal damage may be attributable, in part, to the higher microbubble

concentration in the rat bloodstream (twice that in the rabbit). Alternatively, standing

waves in the rat brain due to reflections between the base and the dorsal surface of the

skull, which were not present in the rabbit brain after craniotomy, may have increased the

actual in vivo pressure amplitudes beyond our estimated 1.2 MPa. Standing waves may

also offer an explanation for the variation in sensitivity between sonicated locations in the
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anterior and posterior brain, since the shape of the skull varies greatly between these

regions. In the posterior brain, where the threshold for consistent BBB disruption was

observed to be 0.8 MPa, standing waves between the virtually parallel base and dorsal

surface of the skull may have rendered actual in vivo pressure amplitudes greater than the

estimated 0.8 MPa; in the anterior brain, where the threshold for consistent BBB

disruption was observed to be 1.2 MPa, the base and dorsal surface of the skull form an

acute angle, so reflections off the base of the skull would be directed away from the

incident direction.

We demonstrated that the distortion of the ultrasound beam by the rat skull was

not significant enough to inhibit focal BBB opening. Subsequent experiments using MRI-

guided focused ultrasound to aid in targeted drug delivery to brain tumors in a rodent

model could thus be performed more efficiently without cranial surgery. Noninvasive

transcranial application of focused ultrasound for BBB disruption would also possible in

humans with the use of a phased transducer array, which can be adjusted to compensate

for the beam distortion caused by the skull, or other methods (see Section 1.3.2.1).

MRI guidance was used to target specific locations within the brain. Specifically,

images in three planes provided information on the depth of the acoustic focus of our

transducer relative to the dorsal surface of the brain, as well as its proximity to

anatomical structures such as the lateral ventricles. The feedback provided by contrast-

enhanced TI-weighted image data acquired immediately after the procedure showed that

MRI signal enhancement increased with greater pressure amplitudes of applied focused

ultrasound. Thus, MRI monitoring can provide important information on the extent of

BBB permeability induced by focused ultrasound. In subsequent drug delivery
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experiments, we explored the use of this tool to provide information on the amount of

drug delivered to the brain.



4 Targeted delivery of doxorubicin to normal brain by
ultrasound-mediated blood-brain barrier disruption6

In the previous chapter, we investigated the use of MRI-guided focused

ultrasound, applied through the intact rodent skull, to achieve consistent and reproducible

BBB disruption in a localized region of the brain. Once the ultrasound parameters were

established for consistent BBB opening in rats with an intact cranium, we then adapted

the technique to effectively deliver doxorubicin (DOX) across the BBB.

4.1 Results

4.1.1 Therapeutic Levels ofDoxorubicin Delivered to the Rat Brain

After ultrasound-induced BBB disruption and intravenous administration of

DOX, fluorometric measurements of DOX extracted from sonicated and contralateral

control regions of harvested brains are summarized in Table 4-1 and illustrated in Figure

4-1.

6 Published in Treat et al. (2007) Int J Cancer and reproduced with permission from Wiley-Liss, Inc.
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Table 4-1: Mean doxorubicin concentration (ng/g tissue) accumulated in sonicated and

control brain tissue after ultrasound-mediated BBB disruption and i.v. chemotherapy.

7000

6000

5000

4000

3000

2000

1000

0.2

! Sonicated

* Control

- --- 39% patient
response rate

4-

Optison Dose (mL/kg)

Figure 4-1: Concentration of DOX delivered to the brain as a function of Optison dose.

DOX concentration (mean ± SD) achieved in sonicated brain tissue met or exceeded the

concentration shown to have a clinical response for human tumors in vivo (dotted line,

see Cummings 1986). Note that the concentration of DOX delivered to the brain is linearly

proportional to Optison dose (r= 0.99).

For the lowest Optison dose of 0.1 mL/kg, the DOX delivered to the brain

parenchyma achieved a concentration of 900 ± 300 ng/g tissue. This concentration is

within the therapeutic range of 800 ± 500 ng/g tumor in vivo, which was reported to

correlate with a 39% clinical response rate in patients with breast carcinoma (222). At

higher Optison doses of 0.2 and 0.5 mL/kg, greater DOX concentrations of 2400 ± 900

ng/g tissue and 5400 ± 700 ng/g tissue were delivered to the sonicated area, respectively.

0.4 0.6
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DOX concentrations in control tissue samples remained at or below 250 ± 120 ng/g tissue

for all Optison doses. Notably, the difference in DOX concentration was highly

statistically significant (p < 0.001) for all paired sonicated and control tissue samples. In

addition, the DOX concentration in sonicated tissue increased linearly with Optison dose

(r = 0.99). All tissue DOX concentrations are reported as mean ± SD.

4.1.2 Correlation of MRI signal enhancement and DOX delivery

As in the previous study, contrast-enhanced TI-weighted MR images acquired

after ultrasound-mediated drug delivery showed localized signal enhancement in the

brain due to the penetration of the MR contrast agent at the site of BBB disruption. To

investigate the relationship between MRI signal enhancement and the concentration of

DOX delivered to the sonicated brain tissue, the MRI signal enhancement data were fitted

to a logarithmic curve as a function of tissue DOX concentration (Figure 4-2). A strong

correlation (r = 0.87) was observed between MRI signal enhancement and the

concentration of DOX delivered to the targeted site. As has been demonstrated between

MRI signal intensity and concentration of contrast agent (241), the relationship beween

DOX concentration and MRI signal enhancement is nonlinear.
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Figure 4-2: Correlation of MRI signal enhancement and DOX delivered to the targeted brain
parenchyma by MRI-guided focused ultrasound (logarithmic fit; r = 0.87)

4.1.3 Histologic findings

For the brain samples examined which were subjected to the sonication

parameters used for ultrasound-mediated DOX delivery, gross brain tissue integrity

remained intact in rats administered 0.1 mL/kg Optison (Figure 4-3a). At the other

extreme, severe macroscopic tissue damage was observed in rats administered 0.5 mL/kg

Optison (Figure 4-3d). In rats administered the intermediate dose of 0.2 mL/kg Optison,

one sample showed no macroscopic damage (Figure 4-3b), while another sample

exhibited severe tissue damage (Figure 4-3c). Light microscopic examination of samples

without gross damage (0.1 or 0.2 mL/kg Optison) revealed only a few extravasated

erythrocytes around blood vessels (Figure 4-3e), while higher magnification of samples

with gross damage (0.2 or 0.5 mL/kg Optison) showed injury characterized by

pronounced vacuolation, local tissue necrosis, and neuronal and glial nuclear pyknosis

(Figure 4-3f-h). The observed tissue damage was likely due to inertial cavitation (collapse

of bubbles) induced by the interation of the ultrasound and high concentration of
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microbubbles; some damage may be due to the dramatic astrocytic swelling that is

associated with increased BBB permeability in various models of brain injury (242, 243).

In the brains samples harvested and fixed in formalin one week after treatment

with intravenous DOX and focused ultrasound accompanied by 0.1 mL/kg Optison

injections, the treated and contralateral untreated hemispheres appeared comparable.

There were no evident inflammatory cells, nor areas of necrosis or diminished neuronal

presence, in the focal region. A few instances of increased perivascular space were

observed (Figure 4-4).

Figure 4-3: Transversal H&E-stained sections of rat brains harvested 4 h after sonication

with 0.1, 0.2, or 0.5 mLikg Optison injections (see Table I and text for parameters). (Top

panel) (a) No gross tissue damage observed in sonicated brain of rats given 0.1 mL/kg

Optison. In rats given 0.2 mLlkg Optison, brains (b) without and (c) with gross tissue

damage were observed. (d) Severe tissue damage was observed in rats given 0.5 mLlkg

Optison. (c, d) The lesion (arrow) is well-circumscribed and light-stained. (Lower panel) (e)

Higher magnification of samples without macroscopic tissue damage showed

extravasated erythrocytes near blood vessels. (f- h) Higher magnification of samples with

macroscopic tissue damage. (f) Arrowheads indicate borders of the necrotic core

surrounded by a narrow band of the vacuolated tissue. (g) Vacuolated neurons with

pyknotic nuclei. (h) Separation of the myelinated nerve fibers. (g, h) Tissue in the

sonicated region appears edematous. Scale bars: (a - d) 5 mm; (e) 100 p m; (f) 0.5 mm; (g,

h) 100 am.



Targeted delivery of doxorubicin to normal brain by ultrasound-mediated blood-brain barrier disruption

Figure 4-4: Transversal H&E-stained sections of brains of rats sacrificed 1 week aftertreatment with FUS+DOX using 0.1 mL/kg Optison. No inflammatory cells, nor areas ofnecrosis or diminished neuronal presence, were observed in the sonicated region, which
was similar in appearance to the nontreated contralateral tissue, except for a fewinstances of increased perivascular space.
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4.1.4 Distribution ofDOX revealed by fluorescence images

Spectral unmixing of fluorescence images of whole rat brains (Figure 4-5) after

treatment with ultrasound-induced focal BBB disruption (with 0.2 mL/kg Optison

injections) and intravenous DOX administration confirmed targeted deposition of DOX

in the sonicated region, further corroborating the focal contrast enhancement on T1-

weighted MRI and focal trypan blue staining on histological sections. Additional diffuse

DOX signal visible around the highly vascularized brainstem may indicate the presence

of DOX remaining in the vasculature. In addition, spectrally unmixed images obtained by

two-photon fluorescence microscopy under 25x magnification indicate that DOX co-

localized in discrete areas which are likely cells. These data confirm the release of DOX

from the liposomes, since the fluorescence signal of encapsulated DOX is quenched.
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Figure 4-5: Fluorescence images showing localized distribution of DOX in sonicated region

of rat brain after ultrasound-mediated BBB disruption with 0.2 mL/kg Optison and

intravenous DOX administration. A-D, Spectrally unmixed fluorescence images of the rat

brain showing (A) tissue autofluorescence, (B) DOX, and (C) combined tissue

autofluorescence (blue) and DOX (green). D, Microscopic distribution of DOX (red) viewed

with 25x objective. E, Normalized emission spectra of trypan blue, DOX, and brain tissue

autofluorescence showing peaks at 645 nm, 592 nm, and 506 nm, respectively (Ex: 465 nm).
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4.2 Discussion

Doxorubicin is one of the most actively used agents for systemic chemotherapy,

either as a single agent or in combination therapy. However, because this Pgp substrate

does not readily cross the BBB, the accumulation of DOX in brain tissue is typically

insufficient to be clinical effective in the treatment of patients with primary or metastatic

brain tumors (5). Although data on in vivo DOX concentration and cytotoxicity are

difficult to obtain and largely underreported, intratumoral DOX concentrations of 819 ±

482 ng/g tumor (mean ± SD) have been strongly correlated with partial or complete

responses in 39% of breast cancer patients (222). These data further suggest that the

DOX dose-response correlation (e.g. the exponential increase in percentage of patient

responders with intratumoral DOX concentration) was valid for multiple human cancer

types (r = 0.90), including breast, gastric, and colorectal carcinoma. To our knowledge,

data on the relationship between DOX concentration in human glioma and patient

response has not been reported.

We have demonstrated a noninvasive method for the targeted delivery of DOX

through the BBB such that drug levels shown to be therapeutic in human tumors are

achieved in the brain. Using MRI-guided focused ultrasound to locally disrupt the BBB

and systemic administration of DOX, we achieved localized DOX concentrations in the

targeted brain parenchyma in excess of reported clinical benchmarks. Importantly, MRI

signal enhancement was strongly correlated with the DOX concentration in the sonicated

brain, perhaps providing a means for on-line guidance of the procedure. The

accumulation of DOX in non-targeted brain tissue remained low, reducing the risk of

neurotoxic effects associated with DOX penetration through diffuse BBB opening by
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osmotic methods (244, 245) or through attaching DOX to drugs designed to pass the

barrier (75). Fluorescence microscopy results suggest that DOX colocalized with cells in

the sonicated region, but it remains to be explored which cell types were involved and

whether the agent gained intracellular penetration or remained on the cell membrane.

With an Optison dose of 0.1 mL/kg, the ultrasound protocol used for the delivery

of therapeutic levels of DOX had only minimal vascular effects but no macroscopic

tissue damage in the brain. These effects are certainly less than would be caused by the

invasive procedures required for currently available methods of intratumoral delivery of

chemotherapy agents (12, 55, 93). One week after treatment with ultrasound-enhanced

DOX chemotherapy at this Optison dose, there was no evidence of inflammation,

necrosis, or neuronal loss. Thus, our delivery of therapeutic levels of DOX by ultrasound-

induced focal BBB disruption resulted in only minor acute vascular injury and did not

appear to induce lasting delayed histological effects.

We delivered even greater concentrations of DOX to the brain with 0.2 and 0.5

mL/kg Optison, but the tissue damage was more significant and greater than previously

seen in rabbits (13, 198), which may indicate the presence of inertial cavitation during

BBB disruption (200). Direct comparisons are difficult, however, due to variations in

Optison dose and in the duration of ultrasound exposure. Since macroscopic tissue

damage was observed in some but not all of the rats sonicated with 0.2 mL Optison, we

postulate that it would be possible to achieve comparable DOX delivery with lesser tissue

effects by using lower acoustic power and prolonged exposure. Alternatively, these

effects induced by greater Optison doses could be used to one's advantage in the

treatment of the bulk of a solid tumor, where tissue destruction is desirable.



5 Therapeutic efficacy of ultrasound-enhanced
chemotherapy in a rodent model of aggressive glioma

In the previous chapter, we confirmed that ultrasound-enhanced delivery of DOX

to the normal rat brain makes it possible to achieve tissue drug concentrations at levels

sufficient to have a therapeutic effect in humans. To demonstrate the therapeutic benefit

of trans-BBB delivery by MRI-guided focused ultrasound in vivo, we examined the

impact of focused-ultrasound enhanced chemotherapy on survival and on tumor growth

rate in a rodent model of aggressive glioma.

5.1 Results

5.1.1 Improved survival in rats with implanted glioma after treatment with

ultrasound-enhanced chemotherapy

We first investigated the therapeutic efficacy of ultrasound-enhanced

chemotherapy by comparing the population survival curves between groups of rats with

implanted 9L GL tumors which received different treatments. Figure 5-1 shows the

Kaplan-Meier estimates of survival in rats which received (1) no treatment (N = 13; black

solid line), (2) FUS only (N = 9; blue dotted line), (3) DOX only (N = 17; red dashed

line), or (4) FUS+DOX (N = 24; purple dotted-dashed line). Six animals treated with

FUS (either by itself or in combination with DOX) did not recover after treatment,

possibly due to prolonged time under anesthesia; these animals are considered lost to

follow-up (censored) after Day 8. Four animals treated with FUS+DOX, in which the

tumor had resolved or stabilized, survived beyond 55 days. However, because such



Therapeutic efficacy of ultrasound-enhanced chemotherapy in a rodent model of aggressive glioma

resolution was also observed in two control animals, stable disease was considered a

potential confounding factor; all six animals were excluded from the survival analysis.
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Figure 5-1: Fraction of survival (Kaplan-Meier plot) of rats with intracranially implanted 9Lgliosarcoma after treatment on day 8 with one of the following: microbubble-enhanced
focused ultrasound (FUS only), i.v. administration of 5.67 mg/kg liposomal doxorubicin
(DOX only), or microbubble-enhanced focused ultrasound and i.v. administration of 5.67mg/kg liposomal doxorubicin (FUS+DOX). Rats which received a single treatment ofFUS+DOX had a 24% greater median survival time than nontreated rats (Log-Rank X2 =11.61; p = 0.0007) and a greater proportion in long-term survivors; the other treatment
groups were not significantly different from the control group.

The median survival times for each group were 25, 25, 29, and 31 days,

respectively. The Log-Rank test for the groups 2, 3, and 4 compared to the nontreated

reference group yields X2 = 1.25 (p = 0.26), 1.86 (p = 0.17), and 11.61 (p = 0.0007),

respectively. Thus, rats which received a single treatment of FUS+DOX had a 24%

greater median survival time than nontreated rats, and the difference was highly

significant (p = 0.0007). In contrast, rats which received DOX only had a 16% greater

median survival time than nontreated rats, but the difference was not statistically
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significant (p = 0.17). In addition, the proportion of long-term (> 40 days) survivors in

the FUS+DOX group was 26.7%, whereas no rats in the other three groups survived

beyond 34 days. There was no significant difference in survival between animals treated

with FUS only and nontreated controls.

5.1.2 Delayed tumor growth in rats with implanted glioma after treatment
with ultrasound-enhanced chemotherapy

Images of the brain obtained weekly before and after treatment were used to

compare the effects of each treatment on glioma growth rate. Figure 3 shows an example

of T2-weighted MR images of the brain of a rat treated with FUS+DOX (top row) and of

one treated with DOX only (bottom row). On a week-by-week basis, the rat treated with

FUS+DOX seemed to exhibit a tumor growth pattern comparable to that of the rat treated

with DOX only until two weeks after treatment, when noticeable differences in the

growth patterns emerged. While the tumor in the DOX-only-treated rat continued to grow

exponentially (R2 = 0.999) even after treatment, tumor growth in the FUS+DOX-treated

rat was visibly delayed, allowing the ultrasound-enhanced treated rat to survive longer.
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Figure 5-2: T2-weighted magnetic resonance images of a rat brain with implanted 9L
gliosarcoma (outlined) before and 1, 2, and 3 weeks after treatment with focused
ultrasound and i.v. liposomal doxorubicin (FUS+DOX; top row) or treatment with i.v.
liposomal doxorubicin (DOX only; bottom row). While the tumor in the rat treated with DOX
only continued to grow exponentially (R2 = 0.999) even after treatment, tumor growth in the
rat treated with FUS+DOX was visibly slowed in comparison.

To further investigate this anecdotal evidence, exponential growth time constants

for each rat were calculated from least-squares regression analyses. Animals treated with

FUS+DOX exhibited an average tumor volume doubling time (T;/2- SD) of 3.7 ± 0.5

days, whereas those treated with DOX only had a doubling time TI = 2.7 ± 0.4 days.

Animals who received FUS only or no treatment exhibited similar tumor growth rates as

the latter group with T7/2 = 2.2 ± 0.3 days and T/,2 = 2.3 ± 0.3 days, respectively. These

results confirmed that rats treated with FUS+DOX had longer average tumor volume

doubling times than any other group (Figure 5-3). In all cases except one, the coefficient

of determination R2 of the exponential fit exceeded 0.94. One animal treated with
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FUS+DOX was excluded from the calculation of the average doubling time (,,/2 = 7.9

days) because its tumor growth pattern after FUS+DOX treatment was not well described

by an exponential fit (R2 = 0.44). Thus, ultrasound-enhanced delivery of DOX appeared

to slow the growth of the glioma compared to standard intravenous administration of the

agent without concurrent BBB disruption.

Average Tumor Volume Doubling Time

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

1r 1

____r_~

Control FUS DOX FUS+DOX

Figure 5-3: Average tumor volume doubling time in rats with intracranially implanted 9L

gliosarcoma after treatment with one of preparations listed in Figure 5-1. Doubling time

was calculated from exponential growth time constants determined from least-squares

regression analyses. Rats treated with FUS+DOX had longer average tumor volume

doubling times (3.7 ± 0.5 days) than any other group.

5.1.3 Histologic findings

Figure 5-4 shows the results of the preliminary histologic evaluation of brains

from animals with implanted 9L GL tumors. At their centers, the tumors from the rat

treated with DOX only and from that treated with FUS+DOX (Figure 5-4A) showed little
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difference from the nontreated tumor. Tightly packed tumor cells with a few sparse

necrotic foci were visible in the central regions of all samples (Figure 5-4B, arrow).

Greater differences were visible at the tumor edges. The edge of the tumor treated with

FUS+DOX was characterized by parenchymal vacuolation and damaged tumor cells

(Figure 5-4C), unlike the tumor edges in the nontreated control animal and that treated

with DOX only (Figure 5-4D), which remained intact. Damage was also noted in the

tissue beyond the solid tumor in the latter sample (Figure 5-4A, arrow). Notably, in the

animal treated with DOX only, undamaged infiltrating tumor cells were visible in the

tissue beyond the solid tumor (Figure 5-4D, arrow) and surrounding an intact blood

vessel.
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Figure 5-4: H&E-stained histologic sections of rat brains implanted with 9L gliosarcoma,
harvested 48 h after treatment. A, Highly cellular malignant 9L gliosarcoma in an animal

treated with FUS+DOX on day 8. Damage was noted in the peripheral region of the tumor

and in the tissue beyond the tumor boundary (arrow). B, Detail of central region of A,

showing densely packed undamaged tumor cells adjacent to focal necroses (arrow),

similar to those found in the rat treated with DOX only and in the nontreated control rat. C,

Detail of peripheral region of A, showing parenchymal vacuolation and damaged tumor

cells. D, Detail of a similar tumor in a rat treated with DOX only, showing intact tissue at

the tumor edge and undamaged infiltrating tumor cells in the tissue beyond the solid

tumor (arrow). Scale bars: A, 500 pm; B-D, 50 pm.
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5.2 Discussion

In the previous chapter on drug quantification, we demonstrated that it is possible

to achieve therapeutic levels of doxorubicin in localized areas of the brain by using MRI-

guided focused ultrasound to induce transient BBB disruption in rats (17). In the present

study of therapeutic impact, we have shown that targeted delivery of doxorubicin by

ultrasound-induced BBB disruption significantly improves survival and slows disease

progression in rats with aggressive glioma. Rats who received ultrasound-enhanced

chemotherapy showed a modest but highly significant increase in median survival time,

as well as an increase in the proportion of long-term survivors, compared to those who

received stand-alone chemotherapy. In addition, follow-up MRI confirmed that rats who

received the combined treatment experienced slower tumor growth with increased tumor

volume doubling times.

Not surprisingly, rats treated with only intravenous doxorubicin exhibited no

significant difference in survival from those who did not receive any treatment. This

finding is consistent with previous studies which show that systemically administered

doxorubicin has minimal impact against aggressive glioma due to poor BBB penetration

(5). Similarly, rats treated with only microbubble-enhanced focused ultrasound showed

no significant difference in survival from the control group. Thus, neither ultrasound nor

intravenous chemotherapy was sufficient on its own to achieve the improved survival

benefit observed when the two treatments were combined.

The enhanced therapeutic efficacy of the combined treatment is attributable to the

augmented penetration of doxorubicin through the ultrasound-induced BBB disruption.

The interaction of low-power focused ultrasound with intravascular microbubbles is
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thought induce mechanical stresses on the brain microvascular endothelial wall, which

can be exploited to induce focal and transient BBB opening (13). It is arguable that the

histologic effects of the ultrasound at the tumor margins may have contributed to the

slowed tumor growth and increased survival times observed in rats treated with

ultrasound-enhanced chemotherapy. Vacuolation in the tumor margin may have inhibited

growth at its proliferative edge. However, since animals who received ultrasound without

chemotherapy exhibited no significant difference in survival from nontreated control

animals, we believe that the ultrasound in itself would be an unlikely explanation of the

improved survival effect that we observed. It is more likely that the therapeutic benefit of

the ultrasound-enhanced treatment resulted primarily from the increased penetration of

doxorubicin across the BBB and its accumulation in and around the tumor, thus

improving the antitumoral efficacy of the systemic agent, while histologic effects may

have played a secondary role, if any.

Furthermore, previous studies of focused ultrasound with Optison microbubble

contrast agent in normal brain tissue have shown that it is possible to achieve BBB

disruption without significant histologic effects up to one month after sonication (198,

200). In these studies, BBB disruption could be achieved without tissue destruction or

capillary extravasation of erythrocytes in the absence of wideband emission, a signature

of inertial cavitation in vivo (150); when BBB disruption was accompanied by wideband

emission, minor capillary extravasation of erythrocytes after acute exposure was

observed (200). Although the histologic effects observed in the current study were more

severe than in previous studies, it should be noted that the ultrasound protocol used in this

study of therapeutic efficacy has not yet been optimized for drug delivery. In addition,
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extensive parametric studies on the threshold for tissue damage using focused ultrasound

and Definity microbubble contrast agent have not yet been performed. It remains to be

explored whether and how the effects of microbubble-enhanced focused ultrasound in

neoplastic tissue differs from its effects in normal brain tissue.

While previous studies have illustrated the feasibility of drug delivery across the

BBB using MRI-guided focused ultrasound, this study is the first to demonstrate its

therapeutic benefit in vivo. Although the increase in survival time is modest, it should be

noted that it was achieved here with only a single treatment with ultrasound and a single

dose of doxorubicin, whereas a typical chemotherapy regimen consists of multiple doses

over time. We postulate that the therapeutic benefit of MRI-guided focused ultrasound-

enhanced chemotherapy could be increased with repeated administration. Since the BBB

disruption induced by focused ultrasound has been shown to be transient and reversible

(195), repeated use of this technique in the clinical setting should be possible.
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6.1 Conclusions

The central nervous system is highly sensitive to changes in the extracellular

environment. Because the interstitial concentrations of ions and other molecules must be

carefully controlled, capillary walls in the CNS are much less permeable than elsewhere

in the body. Their specialized endothelium, which separates the brain from its blood

supply, performs the very important function of policing what can and cannot enter the

brain from systemic circulation. While this blood-brain barrier maintains the stable

chemical environment necessary for normal brain function, it also poses a nontrivial

obstacle to neuropharmacological interventions. Only drugs less than 400-500 Daltons

with high lipid solubility are able to cross the intact BBB, which precludes the use of

virtually all large-molecule drugs and greater than 98% of small-molecule drugs (246).

Thus, a method to overcome this obstacle in a safe, reliable, and cost-effective manner

could radically alter the way we treat patients with CNS disorders today.

Doxorubicin is one such antineoplastic agent whose use in the CNS is stymied by

its inability to cross the intact BBB. It is widely used in both single-agent and

combination chemotherapy to treat extracranial cancers, but the BBB renders it

ineffective against malignancies within the brain. Although it has been shown to be

effective against malignant glioma both in vitro (223) and in vivo when injected directly

into the tumor (92, 247), standard systemic administration of this potent cytotoxic agent

results in poor accumulation in glioma tissue (5). The evidence suggests that if the agent

had a means of penetrating the BBB and if its accumulation in the brain could be
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increased to therapeutic levels, then its clinical use could have a profound impact on

survival in patients afflicted with malignant brain tumors of either primary or metastatic

origin.

In this thesis, we have developed a technique to enable trans-BBB localized drug

delivery using MRI-guided focused ultrasound and demonstrated its potential for impact

using doxorubicin as our agent of interest. Previous studies in rabbits have demonstrated

that low-intensity pulsed ultrasound, in combination with an ultrasonographic contrast

agent containing gas-filled microbubbles, could be used to reliably induce focal

disruption of the BBB to allow the passage of molecules which would not otherwise

penetrate into the brain (13). To further develop this technique for drug delivery

applications in a pre-clinical rodent model, we investigated the ultrasonic parameters

needed to achieve consistent, localized disruption of the BBB in rats with an intact

cranium. Using frequencies of 1.5 or 1.7 MHz with 30 repetitions of one 10-ms pulse per

second, we determined that focal BBB opening was consistently achieved with

transcranial focal pressures of 1.2 MPa or greater; locations in the posterior brain

exhibited consistent BBB disruption with applied focal pressures of 0.8 MPa or greater.

In addition, we demonstrated an association between applied pressure amplitude and MRI

signal enhancement in sonicated locations in the brain, which provides evidence of the

expediency of MR image guidance and monitoring. Furthermore, the study described in

Chapter 2 confirmed our ability to focus the acoustic energy through the intact rat skull

despite its attenuating effects. These findings helped to establish the framework for

subsequent drug delivery experiments and allowed us to proceed without the additional

step of performing an invasive and time-consuming craniotomy for each animal.
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Based on the parameters determined for transcranial ultrasound-induced BBB

disruption, we developed a protocol for the targeted delivery of doxorubicin to the brain

in normal, healthy rats. Combined with systemic administration of liposome-encapsulated

doxorubicin, the ultrasound protocol was adapted to increase the local penetration of the

agent through the BBB until its accumulation in the brain was within the range of in vivo

drug concentrations shown to elicit a clinical response (222). We achieved local drug

concentrations of 886 ± 327 ng/g tissue in the brain with minimal tissue effects, and up to

5366 ± 659 ng/g tissue with more significant tissue damage. Given that doxorubicin

concentrations of 819 ± 482 ng/g tumor were measured in the excised tumors of patients

with breast carcinoma and that such concentrations were shown to correlate with a 39%

clinical response rate (222), our achievement of doxorubicin concentrations in the brain

in excess of those achieved in patient responders reaffirms that our ultrasound-enhanced

technique for trans-BBB drug delivery has real potential for clinical significance.

Importantly, the distribution of doxorubicin in the brain remained localized to the

area targeted by the acoustic focus. Drug acccumulation in non-targeted contralateral

brain tissue was shown to be no greater than 251 ± 119 ng/g tissue and significantly

lower than in areas of focal BBB disruption (p < 0.001). These results indicate that the

accumulation of doxorubicin was concentrated in the sonicated area and that drug

penetration to non-targeted areas of the brain was minimal, which would greatly reduce

the risk of neurotoxic effects in patients. In addition, by showing that the MRI signal

enhancement in the sonicated region correlated strongly with doxorubicin concentration

in tissue (r = 0.87), we demonstrated the significance of combining the ultrasound

technique with contrast-enhanced MRI guidance and its implications for feedback with
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respect to drug penetration in the brain. Taken together, the results of Chapter 4 provide

evidence that our ultrasound-enhanced drug delivery technique has the potential to enable

the practical use of doxorubicin in the brain, despite its inability to penetrate the intact

BBB.

In the final component of this thesis, we demonstrated that ultrasound-enhanced

trans-BBB delivery of doxorubicin significantly improves the antineoplastic efficacy of

the agent in a rodent model of aggressive glioma. After a single treatment with

ultrasound-induced BBB opening and systemic administration of liposomal doxorubicin,

glioma-bearing rats exhibited significantly longer median survival times (31 versus 25

days; p = 0.0007) and slower tumor growth (average tumor volume doubling time, 3.7 ±

0.5 days, versus 2.3 ± 0.3 days) than nontreated rats. In contrast, rats which received a

single dose of standard intravenous liposomal doxorubicin showed no significant

difference in survival or tumor growth rate. Additionally, the proportion of long-term

(>40 days) survivors among rats which did not exhibit stable disease substantially

increased to 26.7% after ultrasound-enhanced chemotherapy, compared to zero in both

nontreated rats and in rats which received standard chemotherapy. As could be expected

of our first examination of ultrasound-enhanced chemotherapy in a disease model, these

preliminary survival benefits were realized in the context of severe histologic damage.

Our results described in Chapter 5 clearly show that neither ultrasound nor

standard intravenous chemotherapy was sufficient on its own to achieve the improved

survival benefit observed when the two treatments were combined. Since doxorubicin

had little effect in the absence of ultrasound-induced BBB disruption and vice versa, the

therapeutic benefit of the ultrasound-enhanced combination treatment likely resulted
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from the increased penetration of doxorubicin across the BBB and its accumulation in

and around the tumor. These results are particularly notable because the survival benefit

was demonstrated with only a single treatment of ultrasound-enhanced chemotherapy.

Repeated treatments, as typically required for clinical chemotherapy regimens, may

further augment the therapeutic benefit of ultrasound-enhanced drug delivery

demonstrated in this thesis. Moreover, since the protocol has not yet been optimized for

drug delivery, even greater gains in therapeutic efficacy with lesser histologic sequelae

should be possible. Thus, our in vivo demonstration of the increased antitumoral efficacy

of doxorubicin resulting from ultrasound-mediated delivery across the BBB represents a

major milestone in the development of this technique for neuropharmacological

applications.

The advantages of using focused ultrasound to induce BBB disruption as a

technique for drug delivery to the brain are numerous. The resultant opening of the BBB

is temporary, completely noninvasive, spatially resolved, and generically applicable for

the delivery of agents of a wide range of molecular size (up to -150 kDa) (16, 19, 210).

Its combination with MRI for guidance and monitoring allows the spatially confined

delivery of the agent to be steered to a targeted region of the brain and may provide an

important means of on-line feedback during drug delivery. Because the BBB presents a

significant barrier in the treatment of many neurological conditions, the development of

this technique for the delivery of agents across the BBB and other blood-CNS barriers

would have innumerable clinical applications, including but not limited to malignant

glioma.
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The role of chemotherapy in the treatment of patients with brain tumors has been

controversial. Individual randomized controlled clinical trials of the use of single-agent or

multi-agent chemotherapy in addition to cranial irradiation have failed to demonstrate

any significant improvement in median survival. However, meta-analysis has shown a

significant difference in median survival in brain tumor patients who receive

chemotherapy (248). Although the effect of chemotherapy on median survival is

controversial, there is little doubt that chemotherapy significantly increases the

proportion of long-term survivors from less than 5 percent to approximately 15-20

percent (249). This finding has been consistent across trials (1) and is consistent with our

current results.

Recent developments in the identification of genetic markers linked to

chemotherapeutic response (250, 251) have renewed interest in the use of chemotherapy

for brain tumors with agents which can cross the BBB, such as temozolomide (252). The

development of focused ultrasound-induced BBB disruption as a noninvasive method for

targeted drug delivery to the brain could further reinvigorate the field by opening the door

to a wide spectrum of potential neurotherapeutics which may otherwise be ruled out

based on their current inability to penetrate the BBB.

The need for a safe, effective, and reliable method to deliver drugs to the brain is

great. In addition to those with brain malignancies, patients afflicted with neurological or

neurodegenerative conditions, such as Alzheimer's disease, Parkinson's disease,

Huntington's disease, multiple sclerosis, epilepsy, stroke, aphasia, autism, chronic pain,

schizophrenia, bipolar disorder, or clinical depression, are among those who could benefit

from a technique to surmount the BBB. Not only could such a method render usable
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many existing agents with known potency, it could also accelerate the pre-clinical

screening process for new drugs and imaging probes. Thus, the development of our

technique for trans-BBB drug delivery has potential for impact at multiple levels,

including the basic understanding, early diagnosis, and treatment of disorders of the CNS.

By confirming the significant impact of ultrasound-induced BBB disruption on the

antitumoral efficacy of systemic doxorubicin, the pre-clinical data presented in this thesis

provide justification for the continued development of MRI-guided focused ultrasound

for trans-BBB drug delivery applications toward clinical trials.
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6.2 Recommendations for future work

The long-term goal of this research is to develop a clinically viable technique for

ultrasound-mediated drug delivery applications so that we may significantly improve

diagnostic capabilities and therapeutic options for patients with disorders of the CNS.

Much work remains before this technology will be practical for clinical use. Further

quantitative studies are needed to optimize the ultrasound parameters for maximum

efficiency, to optimize the dose delivery schedule for any given application, and to ensure

the safety of the application. In addition, a better understanding of the physiological

response of the brain to ultrasound exposure would enable us to refine the technique for

improved efficacy and advance its development toward clinical trials.

Chapter 5 of this thesis presents some of the earliest data on the in vivo

therapeutic efficacy of ultrasound-mediated BBB disruption and CNS drug delivery in a

tumor model. However, because it is one of the first investigations using ultrasound in

live tumors, a comprehensive study of any differences in the physical and biological

effects of focused ultrasound in tumors and normal brain tissue has not yet been

conducted. The extensive investigations on the effects of microbubble-enhanced focused

ultrasound on normal brain tissue and vasculature may not necessarily be translatable to

pathological tissue and vasculature. Since tumor vasculature is know to be abnormal and

leaky (253), the interaction of ultrasound and microbubbles at the blood vessel wall may

result in different effects in the so-called blood-tumor barrier than in the normal blood-

brain barrier. To improve our ability to apply focused ultrasound to the brain in a safe and

efficacious manner, future work should seek to reveal any such differences, which may

significantly alter the established parameters for ultrasound-induced BBB disruption.
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MRI has proven to be a useful tool to guide the focal BBB disruption to a desired

location, to verify the status of the BBB disruption by the penetration or exclusion of MR

contrast agents in the brain, and to monitor the impact of the treatment on tumor growth.

The relationship between MRI signal enhancement and applied pressure amplitudes

demonstrated in Chapter 3 and that of MRI signal enhancement and DOX concentration

in brain tissue demonstrated in Chapter 4 indicate that MRI has the potential to provide

useful feedback on the extent of ultrasound-induced BBB disruption, the resultant drug

penetration in the brain, and the eventual restoration of the BBB. MRI has also been

demonstrated to provide noninvasive image characterization of cerebral blood flow,

cerebral blood volume, and vascular permeability (254-263) and could perhaps be further

exploited to provide information on the time-variant neurovascular permeability induced

by ultrasound. Most current MRI-based models of BBB breakdown are based on an

assumption of constant neurovascular permeability, as is the case in chronic neurological

diseases such as multiple sclerosis and tumors (258). Since the BBB opening induced by

ultrasound is a transient effect that reverses with time (13), the assumption of constant

neurovascular permeability is not valid for our application. To improve these models and

their practical use for patient treatment, the vascular permeability of the sonicated

location could be quantified by MRI over the time course of the induced focal BBB

disruption (4-6 hours) to obtain information that could be useful in determining the ideal

window for drug delivery. These data could then be used to develop more sophisticated

models of BBB permeability which take into account the time-variant nature of the

opening of the BBB induced by focused ultrasound.
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Finally, the preliminary fluorescence imaging results present in Chapter 4 offer

interesting findings on the likely cellular colocalization of DOX in the brain after

ultrasound-enhanced chemotherapy but are not conclusive. To better understand the

biophysics of the ultrasound-induced BBB disruption, longitudinal fluorescence imaging

studies could be used to shed light on the distribution (intracellular versus extracellular,

neuronal versus glial) of an agent over time following ultrasound-mediated delivery.

Fluorescence markers could also be used to track cellular activity and distribution.

Microglia, the macrophages of the brain, have been identified as the first responders to

CNS injury (264-266). They release and respond to several cytokines as well as

neurotoxic substances, including nitric oxide (267), which itself has been implicated in

modulation of microvascular permeability (47, 268). Thus, it is likely that microglia play

an active role in the physiological response of the brain to focal stimulation with

microbubble-enhanced ultrasound, leading to localized and transient disruption of the

blood-brain barrier. Because microglia perform a vast number of immune-related roles

(269), it is also likely that they would act as the primary players in mounting the brain's

immune response to the entry of exogenous agents into the brain parenchyma following

ultrasound-induced BBB disruption and thus reduce the potency of therapeutic agents.

Therefore, a better understanding of the behavior of microglia in response to ultrasound-

mediated CNS drug delivery may help in the development of more effective techniques

for targeted drug delivery to the brain.
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