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ABSTRACT

Modification of synapses by neural activity has been proposed to be the substrate for experience-

dependent brain development, learning, and recovery of function after brain damage. In the

visual cortex, the trength of cortical synapses can be bidiredionally modified, where in response

to a critical level of postsynaptic activation, synapses are strengthened (long-term potentiation;

LTP) and below this level, synapses are weakened (long-term depression; LTD). Previous work

in visual cortex has suggested that the threshold for synaptic modifications is dependent on the

recent history of visual experience, a phenomenon called metaplaticity. Recent mechanistic

studies have shown that experience-dependent adjutments of the modification threshold

correlate with changes in the subunit composition and function of NMDA-type glutamate

receptors (NMDARs). However, causality has not been conclusively eltablished. Here we

examined the mechanistic basis of metaplaticity, and Pecifically how this process is mediated

by a switch in NMDAR subunit composition by focusing on the NR2A subunit of the NMDA

receptor in visual cortex. We provide evidence for the fundional significance of the NR2A

subunit in metaplastic changes both in synaptic platicity elicited in vitro and in naturally-

occurring platicity in vivo. We also performed a comparison of in vitro methods of inducing

plasticity and those which subserve in vivo experience-dependent changes in synaptic strength.

These findings represent an important step forward in understanding how plasticity thresholds

are regulated in the brain.
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CHAPTER I
Introduction and Background

For centuries researchers have sought to underftand how one acquires, stores, and

accesses information. As early as the fourth century, Hippocrates potulated that the

brain is the seat of intelligence. Over a century ago, Ramon y Cajal made a conceptual

breakthrough concerning the brain as the location of information storage (Bliss and

Collingridge, 1993). By demonstrating that networks of neurons communicate with

one another, it was further elucidated that such interadctions participate in maintaining

a representation that serves as a memory. Specialized juncions called synapses were

found to house these dynamic interadctions among neurons and be susceptible to

modifications. Nonetheless, an undertanding of how synaptic mechanisms may serve

to underlie memory has remained elusive.

Sensory experiences help to refine synaptic connedctions throughout the

life of the animal so that the world can be properly analyzed. For mammals, early

postnatal development is a period of great use-dependent and experience-dependent

modification in the brain, where cortical circuitry undergoes a considerable amount

of maturation and refinement. However, the rate of such plasticity significantly

decreases as a fundction of age. Although much research has been condudcted on how

neural connedctions are formed during development, of particular interet is how
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ongoing sensory-driven adivity can shape synaptic connedivity and underlie the

basis of memory formation.

In 1949, Donald Hebb increased our understanding by proposing an

innovative theory about how ensembles of neurons interad at the level of the

synapse. Hebb postulated that "when an axon of cell A is near enough to excite

cell B and repeatedly or persistently takes part in firing it, some growth process or

metabolic change takes place in one or both cells such that A's efficiency, as one of the

cells firing B, is increased'" suggeting adivity-dependent changes in synaptic efficacy

(Hebb, 1949). "Hebbian" modification thus arises from concurrent adivation of both

presynaptic and postsynaptic cells, resulting in an increase in synaptic strength. Bliss

and Lomo in 1973 were the firt to experimentally support Hebb's potulate (Bliss

and Lomo, 1973). In an attempt to replicate robust sensory-driven adctivity, they

administered high-frequency eledrical stimulation (HFS) to monosynaptic excitatory

pathways in the hippocampus, a structure known to be involved in some forms of

learning and memory. The brief HFS caused a sustained increase in the efficacy of

synaptic transmission. Thus, the long-lasting enhancement of synaptic transmission

that was firt described theoretically by Hebb (1949) and confirmed experimentally by

Bliss and Lomo (1973) has been termed long-term potentiation (LTP). Alternatively,

"anti-Hebbian" modifications occur when presynaptic activity fails to induce or

synchronize with a atrong potsynaptic re@onse (Levy and Steward, 1979). For

intance, weak postsynaptic activation induced by low-frequency Stimulation

(LFS) to monosynaptic excitatory pathways in the hippocampus result in long-

term depression (LTD) of synaptic Strength. Due to the stable, long-lasting synaptic

modifications that characterize LTP and LTD, these phenomena have become popular

models for the cellular mechanisms that may underlie information Storage among

neural syStems.
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The hippocampus and neocortex are both excellent model systems for

studying changes in cell network connecdions. In hippocampus, plaslicity can be

evaluated by stimulating any of the main excitatory pathways (perforant, mossy fiber,

and Schaffer collateral pathways). While LTP and LTD have been fully characerized in

the CAl region of the hippocampus, a number of studies have extended the principles

of LTP and LTD to glutamatergic excitatory synapses throughout the mammalian

brain (Kirkwood et al., 1993). For intance, the visual cortex provides an excellent

model syStem for Studying neocortical plaSticity. In the visual cortex, sensory-driven

adcivity can be easily modified in order to underStand how experience modifies

neural connedcions (Kirkwood et al., 1993). Intensive Study of hippocampal and

visual cortical plaSticity promises to provide insights into the development of sensory

sytems and the acquisition and Storage of memories.

PROPERTIES OF LONG-TERM POTENTIATION

There are a variety of ways to generate LTP, involving high-frequency Stimulation to

a pathway of choice. As stated earlier, LTP may be induced via brief (-1 sec) repetitive

trains of high-frequency Stimulation (-loo Hz) (Bliss and Lomo, 1973). Protocols such

as theta burSt (TBS) and primed-burSt stimulation have also been used to induce LTP;

these inducion protocols are designed to mimic synchronous firing patterns similar

to those that occur naturally in the hippocampus during learning (Otto et al., 1991).

LTP can even be generated with low-frequency Stimulation of presynaptic fibers, as

long as the potsynaptic cell is Still Strongly depolarized. In this inStance, injedcing

current into the poStsynaptic cell to induce sufficient depolarization and giving i

Hz Stimulation to presynaptic fibers will also elicit LTP (Kirkwood and Bear, 1995).

Therefore, Strong poStsynaptic adctivation will lead to the Strengthening of synapses.



INTRODUCTION AND BACKGROUND

Although it can take only a few milliseconds to induce, LTP can laSt for

hours in vitro, and even weeks and months in vivo (Bliss and Lomo, 1973; Abraham

et al., 2002). In order to elicit LTP, pre- and potsynaptic activity muSt be paired:

(1) presynaptic neurons muSt be adtivated (release neurotransmitter), and (2)

potsynaptic neurons muSt depolarize (Hebb, 1949; Bear et al., 1987). There are

three basic properties associated with LTP: (1) input- secificity, (2) associativity,

and (3) cooperativity. LTP is input-Secific, meaning that only those synapses that

are activated are modified. Therefore, when a population of neurons receives two

independent inputs, LTP induced at one set of inputs will not Sread to synapses

made by the second set of inacive afferent fibers on the same potsynaptic neurons

(Kirkwood and Bear, 1994a). LTP also exhibits associativity; for example, weak non-

LTP-inducing Stimulation on one set of synapses is able to generate LTP when paired

with Strong LTP-inducing timulation in an adjacent set of synapses to the same cell

(Bliss and Collingridge, 1993). The third property, cooperativity, maintains the idea

that while weak stimulation of one set of inputs might not lead to LTP inducion,

weak Stimulation of many sets of converging inputs might be able to sufficiently

depolarize poStsynaptic neurons to produce LTP. There is also an intensity threshold

for the inducion of different forms of potentiation whereby the Strength and

pattern of tetanic timulation can convey a difference in the time course of synaptic

modification. For instance, weak tetanic Stimulation will elicit a few minutes of pot-

tetanic potentiation, intermediate tetanic Stimulation will elicit 15-30 minutes of

short-term potentiation, and strong tetanic Stimulation will elicit at leaSt an hour of

LTP (McNaughton et al., 1978; Malenka, 1991).
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PROPERTIES OF LONG-TERM DEPRESSION

Whereas atrong postsynaptic activation can induce long-term potentiation, weak

postsynaptic acivation can cause long-term depression. For instance, administering

90o pulses of timulation of 0.5-3 Hz to the Schaffer collateral pathway, will generate

LTD in the pyramidal cells of CAl (Dudek and Bear, 1992). Like LTP, LTD has also been

implicated as a mechanism underlying memory, and can be elicited in the visual,

somatosensory, inferotemporal, and motor cortices (Bear, 1996). Thus, the strength

of cortical synapses can be bidiredionally modified in both the hippocampus and the

visual cortex, such that above a critical level of potsynaptic adivation synapses are

strengthened and below which synapses are weakened (Kirkwood et al., 1993).

There are three types of LTD: (1) heterosynaptic LTD, (2) associative LTD, and

(3) homosynaptic LTD. LTD can be heterosynaptic, meaning that tetanic stimulation

of one pathway can potentiate its target cells, but also depress the synaptic strength

of target cells from converging untetanized or weak afferents (Lynch et al., 1977).

LTD is associative when uncorrelated activation of a test pathway by LFS and tetanic

stimulation of a converging pathway results in depression of synaptic strength of the

test pathway (Stanton and Sejnowski, 1989). LTD is homosynaptic, or input-*ecific,

when presynaptic adivation of a pathway by LFS results in moderate postsynaptic

activity, resulting in the depression of synaptic strength of the stimulated pathway

(Dudek and Bear, 1992). In addition, the magnitude of homosynaptic LTD is

frequency-dependent. The range of stimulation frequencies that elicit this synaptic

depression varies between o.1 Hz and lo Hz (Dudek and Bear, 1992; Torii et al., 1995).
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MOLECULAR MECHANISMS UNDERLYING

SYNAPTIC PLASTICITY

THE ROLE OF THE NMDA RECEPTOR

A truly comprehensive description of the inducion processes underlying LTP and

LTD does not rest in the release of neurotransmitter and a subsequent depolarization

of the postsynaptic neuron. What is needed is the existence of a molecular

coincidence detedor, a component that can appropriately tie together these

phenomena and elicit a response.

The involvement of postsynaptic NMDA (N-methyl-D-a Sartate) receptors

(NMDARs), a pharmacologically disinguishable subtype of glutamate receptors,

satisfies the requirements of a coincidence detedor. By being both ligand- and

voltage-dependent, the NMDAR channel differs in fundamental ways from non-

NMDAR channels. When glutamate and co-agonist glycine binds to the NMDAR, the

channel opens to allow cations, including calcium, to enter the cell (Benveniste and

Mayer, 1991; Clements and WeStbrook, 1991). However, the current of cations can

only flow once the magnesium (Mg' +) blockade within the ion channel is released. In

order to relieve the Mg2' block, the postsynaptic cell must be sufficiently depolarized.

These ligand- and voltage-dependent properties, requiring both glutamate binding

and membrane depolarization, make the NMDAR a suitable coincident detedor of

presynaptic and postsynaptic acivity (Molinoff et al., 1994).

A wealth of data supports the idea that NMDAR adivation is required for

inducdion of the most commonly studied forms of LTP and LTD. By being both ligand-

and voltage-dependent, the NMDAR allows calcium entry into the cell whereby

large, transient elevations in intracellular calcium lead to LTP, while lower, sustained

elevations in calcium lead to LTD (Molinoff et al., 1994). The role of the NMDAR as a

molecular coincidence detedor is thought to underlie the bidiredctional regulation of

synaptic strength by triggering signal transdudcion cascades (Mori and Mishina, 1995).
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Indeed, the ability to block LTP and LTD in vitro and in vivo by NMDAR

antagonists D-2-amino-5-phohonopentanoic acid (APV) or (R, S)-3-(2-

carboxypiperazin-4-yl)propyl-1-pho@honic acid (CPP) has been demonatrated in

both hippocampus and visual cortex (Morris et al., 1986; Dudek and Bear, 1992;

Kirkwood et al., 1993; Wong et al., 2007; Sato and Stryker, 2oo8). Because the

experimental indudion of LTP is typically sensitive to NMDAR antagonits, an

approach to examine the importance of synaptic platicity in learning and memory

has been to block NMDARs in regions of the brain during @pecific learning tasks.

For example, APV injedcted into the lateral ventricles of rats blocks LTP inducion in

the dentate gyrus and causes a deficit in *satial memory formation (Morris et al.,

1986). What accounts for the induction of either LTP or LTD lies in the makeup of the

NMDAR itself.

The cloning of cDNAs encoding the subunits of the NMDAR has led to a

great increase in the knowledge and understanding of the structural and fundional

properties of this receptor. Expression Studies have revealed three families of NMDAR

subunits: the NR1, NR2, and NR3 families (Ishii et al., 1993; Sucher et al., 1995). By

alternative *slicing, NR1 subunits may be expressed in nine different variants from a

single gene, of which eight isoforms form fundional ion channels (Hollmann et al.,

1993). Four genes give rise to NR2 subunits NR2A through NR2D, and three genes

give rise to NR3A-1, NR3A-2, and NR3B (Monyer et al., 1994; Cavara and Hollmann,

2008). The different eledrophysiological properties of the NR1, NR2, and NR3 subunit

families suggest fundctional differences. The NR1 subunit is necessary to contruct a

fundioning receptor, and combines with the NR2 and NR3 subunits in a variety of

ways that determine its varied properties, including differences in single channel

charaderitics, sensitivity to Mg 2" blockade and coagonist stimulation (Cavara and

Hollmann, 2008). Although NR1 expression in the brain is ubiquitous, there is *secific

regional and developmentally regulated expression of the NR2 and NR3 subunit

families. While the functional contribution of NR3A and NR3B subunits are currently
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being explored, peak expression of the NR3A subunits occurs as early as embryonic

age E15, and reduces to hardly detectable levels after two weeks in most 9trudures.

NR3B subunit expression is restridced to motor neurons in the brain stem and kinal

cord. However, of particular interest to developmental platicity are the members

of the NR2 subunit family. In the embryonic brain, the only subunits expressed are

NR2B and NR2D, located in a wide distribution and contained in the diencephalon

and brain stem, reSedively. While NR2B is localized in the cortex, thalamus, *sinal

cord, hippocampus, superior colliculus, and hypothalamus, NR2D is moaly expressed

in midbrain strucdures. By two weeks of postnatal life, a shift in expression occurs

in favor of NR2A and NR2C, while NR2D expression is significantly lowered. While

NR2A is upregulated in cortex and hippocampus, NR2C is restrided mainly to the

cerebellum (Monyer et al., 1994). The main funcional differences between the

subunits lie in comparative differences regarding Mg2+ blockade, gating, and receptor

kinetics. For example, receptors containing the NR2C subunit are less sensitive to

blockade of Mg2+ and MK-801, an NMDAR antagonist, than are receptors containing

NR2A or NR2B subunits (Molinoff et al., 1994).

Targeting NMDARs to the synapse is extremely important for efficient

synaptic transmission. To understand how NMDARs localize at the synapse,

biochemical studies have shown dired interactions of NMDARs to the PSD-95 family

of proteins, a major component of the postsynaptic density (PSD) (O'Brien et al.,

1998). The PSD, a cytoskeleton *Secialization beneath the poslsynaptic membrane of

neuronal synapses, contains organized signal transdudion complexes that re ond

to the activation of postsynaptic receptors. Specifically, the C-terminal cytoplasmic

domains of the NR2 subunits bind to the N-terminal PDZ domains of PSD-95 (Kornau

et al., 1995). PSD-95 colocalizes with NMDARs at glutamatergic synapses, allowing for

the clustering of NMDARs at the synapse (Niethammer et al., 1996).
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The differences in expression patterns and receptor kinetics of NMDARs in the

mammalian brain have implications regarding several features of synaptic plasticity.

In potnatal visual cortex, the predominant NMDAR subtypes are NR2A- and NR2B-

containing NMDARs (Monyer et al., 1994). NMDAR subunit composition in this region

is developmentally regulated (Sheng et al., 1994). For example, juvenile rodent visual

cortex shows a predominance of NR2B-containing NMDAR subunits. As the animals

age, an increase in NR2A protein levels was observed while NR2B subunits remained

constant. In addition, Carmignoto and Vicini observed longer NMDAR excitatory

potsynaptic currents (EPSCs) in juvenile rats than in adults, which may contribute

to why juveniles demonstrate greater susceptibility for platicity than adults do

(Carmignoto and Vicini, 1992). Consistent with this data, there was a concomitant

increase in NR2A protein that was accompanied by shorter NMDAR-mediated EPSCs,

indicating that the receptor subunits were indeed incorporated into full NMDAR

complexes at the plasma membrane (Nase et al., 1999). Thus, the putative molecular

basis for the duration of NMDAR-mediated EPSCs lies in the differences in NR2A and

NR2B receptor kinetics. These differences run in parallel to the greater magnitude of

LTP and LTD mechanisms in juveniles. For instance, Kirkwood and colleagues found a

tight correlation between the duration of NMDAR EPSCs, the ability to elicit LTP and

LTD, and age (Kirkwood and Bear, 1994b; Kirkwood et al., 1995). Taken together, the

data demonstrate that a low NR2A/NR2B ratio results in the slower kinetics seen in

young animals, whereas a higher NR2A/NR2B ratio is associated with faster currents

seen in mature animals (Monyer et al., 1994). The fat kinetics of NR2A-containing

NMDARs, which lend to reduced calcium entry into the cell, and the slow kinetics of

NR2B-containing NMDARs, which increase calcium entry into the cell, can control the

bidiredional regulation of synaptic trength in both hippocampus and visual cortex

(Tang et al., 1999; Philpot et al., 2oola).
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The influx of calcium ions through the NMDAR is essential to triggering

the biochemical mechanisms underlying synaptic plasticity. For example, calcium-

chelators, used to block the postsynaptic rise of Ca2 +, prevent the indudction of LTP

and LTD (Lynch et al., 1983; Mulkey and Malenka, 1992). The adctivation of NMDARs

results in varied elevations in postsynaptic calcium: LTP of synapses is a result of

a 4Sike in calcium entry which leads to the activation of protein kinases, whereas

LTD of synapses is a result of moderate and suatained calcium entry that favors the

adctivation of protein phoShatases (Lisman, 1989). To induce NMDAR-dependent

LTP and LTD, NR2A and NR2B proteins have been shown to bind to different sets of

scaffolding and signaling proteins based on differences between their C-terminal

cytoplasmic domains. Therefore, acdivation of either NR2A or NR2B can translate into

changes in platicity (Perez-Otano and Ehlers, 2005). Studies of the signaling cascades

initiated following NMDAR-dependent calcium entry into the cell have led to attempts

to find necessary and sufficient molecules, some of which include a-amino-3-

hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) trafficking, calcium/

calmodulin-dependent kinase II (CaMKII), calcium/diacylglycerol-dependent protein

kinase (PKC), cAMP-dependent protein kinase A (PKA), and calcineurin for regulating

plasticity in the mammalian brain. The involvement of these mechanisms in synaptic

platicity is discussed below.

THE ROLE OF THE AMPA RECEPTOR

In addition to NMDARs, excitatory glutamatergic synapses also contain AMPARs

that are subjec to adivity-dependent changes. Adctivation of the presynaptic

neuron releases glutamate, which in turn adivates AMPARs that can depolarize

the poStsynaptic cell sufficiently to relieve the voltage-dependent Mg2+ block of

NMDARs. The opening of the NMDAR results in augmented calcium levels that

can trigger protein expression and changes in pho Shorylation States. AMPARs are

heterotetramers that consist of a combination of GluR1-4 subunits that vary in their

C-terminal tails, thus interadcting with different sets of proteins (Wisden and Seeburg,
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1993; Sheng and Sala, 2001). Unlike NMDARs, which are generally static (Benke et al.,

1993), AMPARs are dynamic, i.e. they can be trafficked into and out of synaptic sites,

in re@onse to adctivation of AMPARs, NMDARs, metabotropic glutamate receptors

(mGluRs), and insulin receptors (Malinow and Malenka, 2002). This trafficking to and

away from the synapse has been recognized to play a major role in synaptic plasticity.

The amount of AMPARs at the synapse is maintained by the pho~shorylation of

GluR2-GluR3 subunits that continuously cycle in and out of synapses, whereas

the phoshorylation of GluR1-GluR2 subunits and GluR4-containing receptors are

internalized from or added into synapses during periods of synaptic weakening

or atrengthening (Jiang et al., 2oo6). Blocking AMPAR endocytosis prevents LTD

(Luscher et al., 1999; Crozier et al., 2007); blocking delivery of AMPARs to the synapse

prevents LTP (Hayashi et al., 2000). Therefore, AMPAR trafficking adctively mediates

changes in synaptic strength.

THE ROLE OF CaMKII

CaMKII is a highly concentrated multi-subunit calcium/calmodulin-dependent

serine-threonine kinase in the postsynaptic densities of hippocampus and neocortex

(Kennedy et al., 1983); it is activated by calcium entry through NMDARs, which, in

turn, leads to rapid autopho~shorylation of CaMKII and renders it persitently acive

and calcium-independent (Miller and Kennedy, 1986). Upon autophoSIhorylation,

CaMKII can phoshorylate multiple subtrate proteins that mediate LTP until it

is depho~shorylated by protein pho@hatases. In particular, the pho@phorylation

by CaMKII at one site on the GluR1 subunit, Serine-831, will increase channel

condudctance and insertion of AMPARs to the synapse and allow for the expression of

LTP (Barria et al., 1997a). By blocking phoshorylation of CaMKII, LTP cannot be induced

in both the hippocampus and visual cortex (Funauchi et al., 1992; Barria et al., 1997b).

In particular, the role of one of the four isoforms of CaMKII, aCaMKII,

has been implicated to be important for LTP expression in both the hippocampus

and visual cortex (Funauchi et al., 1992; Silva et al., 1992b; Kirkwood et al., 1997).
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Specifically, the interadction of CaMKII with NMDAR subunits may be important for

eliciting a certain magnitude of plasticity. In this regard, the NR2B subunit of the

NMDAR has a higher affinity to bind to CaMKII than does the NR2A subunit. Since the

changes at synapses from NR2B-containing NMDARs to NR2A-containing NMDARs

can result in reduced synaptic platicity, Barria and Malinow performed mutations

in the NR2A subunit that allowed for high-affinity binding of CaMKII and were able

to retore plasticity. In addition, mutations in NR2B that resulted in lower association

with CaMKII blocked synaptic plasticity (Barria and Malinow, 2005). Therefore, these

studies show how NMDAR subunits can regulate synaptic plasticity by means of how

they interadct with downstream molecules such as CaMKII.

THE ROLE OF PKC AND PKA

PKC and PKA have also been implicated as important protein kinases that are capable

of pho fhorylating the GluR1 subunit of AMPARs, leading to the expression of LTP.

Like CaMKII, PKC targets pho horylation of Serine-831 (Roche et al., 1996). PKA, on

the other hand, phoSphorylates Serine-845 of the GluR1 subunit, modulating AMPAR

function. The involvement of both PKC and PKA has been indicated mainly through

the use of *Secific inhibitors of these kinases. The role of PKC has been established

in the maintenance of LTP, such that inhibitor K-252b will not affect the induction

of LTP, but will reduce LTP to baseline after an hour in the hippocampus (Reymann

et al., 1988). However, other studies have shown that inhibition of PKC can prevent

LTP indudction, and postsynaptic infusion of PKC can produce potentiation (Hu et al.,

1987; Hvalby et al., 1994). Support for a role of PKA arises from studies done in the

hippocampus whereby the early and late phases of LTP are sensitive to PKA inhibitors,

but postsynaptic infusion of PKA did not enhance synaptic transmission (Frey et al.,

1993; Huang and Kandel, 1994; Blitzer et al., 1995). Notably, PKA has been shown to

function as a gate for LTP by regulating protein phoShatase adctivity that can lead to

LTD (Blitzer et al., 1995). High levels of PKA can enhance AMPAR fundction, whereas

low levels of PKA can lead to LTD.
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THE ROLE OF CALCINEURIN

With regard to homosynaptic long-term depression, a downstream effed of calcium

entry through the NMDAR is the inhibition of PKA and the subsequent acivation

of calcineurin (protein pho@hatase 2B), a serine/threonine protein phos~hatase

(Klee et al., 1979). Calcineurin can (in conjundion with protein pho shatase 1)

depho@horylate *secific sites on NMDARs and AMPARs to contribute to the

expression of synaptic plasticity (Lieberman and Mody, 1994; Ehlers, 2ooo). Okadaic

acid, which inhibits both protein pho Shatase 1 and calcineurin, inhibited LTD-

induced dephoshorylation of Serine-845 with no effed on LTP in hippocampus

or visual cortex (Mulkey et al., 1993; Kirkwood and Bear, 1994b; Lee et al., 2000).

Mechanistically, PKA adctivators, which inhibit calcineurin, are found to induce

enhancement of NMDAR-mediated currents (Cerne et al., 1993); on the other hand,

application of calcineurin shortens the duration of NMDAR channel opening in rat

dentate gyrus and superior colliculus (Shi et al., 2000; Arias et al., 2oo002). In addition

to dephoshorylation of CaMKII (Barnes et al., 1995), the aCdiviy-dependent induction

of calcineurin activity has also been shown to depho@horylate a site on NR2A

subunits, which in turn, coincides with a shortening of NMDAR kinetics (Townsend et

al., 2004). In particular, inhibition of protein pho Shatase 1 and calcineurin by okadaic

acid results in pho@horylation of NR2B subunits in rat hippocampus, which might

explain the persiatent broadening of NMDAR-mediated currents that are indicative of

NR2B-containing NMDARs (Arias et al., 2002).

Colledctively, the above discussion demonstrates that there are a number

of molecules that can affecd the induction of either LTP or LTD by altering their

interadions with NMDAR subunits. In addition to these mechanisms, other non-

NMDAR-dependent processes have been identified which also contribute to synaptic

plasticity; these additional mechanisms are discussed in Chapter V.
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THE BCM THEORY

In the brain, the Strength of cortical synapses has been shown to be bidiredionally

modifiable; in re@onse to salient stimulation, synapses may be persistently enhanced

(long-term potentiation; LTP) or weakened (long-term depression; LTD). These

adivity-dependent modifications of synaptic connections underlie refinement

of cortical organization in visual cortex. Metaplasticity is a higher order feature

of the brain: it is the plasticity of synaptic plasticity (Abraham and Bear, 1996). It

is a process that describes how the adivation history of synapses modifies their

readctions to subsequent experience. BienenStock, Cooper, and Munro incorporated

bidiredctional synaptic plasticity into a synaptic learning rule that accounts for

experience-dependent acquisition of stimulus seledivity (Figure 1-1, p. 36). In this

model, the point of crossover from weakening to strengthening of synapses is called

the modification threshold (0 m). The modification threshold is not fixed; rather,

the diredion the threshold slides depends on the history of postsynaptic acivity.

Essentially, it monitors the direction or magnitude of subsequent adivity-dependent

synaptic plasticity for maintaining homeostasis in the brain (Bienenstock et al., 1982;

Bear, 2003). For instance, dark-rearing an animal provides an environment of low

visual activity that will shift the threshold to the left, thus favoring subsequent LTP

(Kirkwood et al., 1996). Conversely, adivating synapses with sensory Stimulation

that does not lead to either LTP or LTD will shift the threshold to the right, thus

favoring LTD (Huang et al., 1992). As a result, the properties of synaptic plasticity are

"metaplastic'" to keep synaptic strengths within a useful dynamic range (Bear, 2oo3).
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VISUAL CORTICAL PLASTICITY

Numerous atudies of how mechanisms of synaptic modification are incorporated in

the developing mammalian brain have been performed in various sensory regions

of neocortex. A well characterized sensory area is the visual cortex, where visual

experience helps to refine synaptic connections throughout development (Gordon

and Stryker, 1996). An excellent model sytem to study experience-dependent

modifications is the rodent visual cortex as it is extremely sensitive to changes in

visual experience, which are relatively simple to control. Furthermore, mice are

particularly amenable to powerful genetic tools that are readily available for evaluating

the molecular and cellular mechanisms underlying visual cortical platicity.

PARADIGMS THAT INDUCE VISUAL CORTICAL

PLASTICITY

Previous studies have suggeated that the threshold for synaptic modifications can

itself be modified by visual experience, and visual experience can be manipulated

in a variety of ways. Environmental manipulations, such as dark-rearing or eyelid

suture, demontrate that the proper development of visual circuitry is governed by

experience. In addition to dark-rearing that can delay developmental maturation of

visual re sonse properties (Carmignoto and Vicini, 1992), another way to undertand

the role of experience in development is by studying the properties of ocular

dominance (OD) platicity. Monocular deprivation (MD), achieved by suturing one

eyelid shut, invokes rapid changes in visual cortex whereby synaptic connedctions

subserving the deprived eye are weakened while synaptic connedctions subserving

the non-deprived eye are maintained (Hubel and Wiesel, 1970). This manipulation

invokes OD plasticity, which manifets anatomically as a decrease in the territory
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occupied by inputs subserving the deprived eye, and as an increase in the area of

inputs driven by the non-deprived eye (Antonini et al., 1999). Physiologically, there

is a redudcion in the magnitude of responses subserving the deprived eye, and an

increase in the responses driven by the non-deprived eye (Frenkel and Bear, 2004).

This OD shift has two fundional phases: firt, there is a rapid deprivation-induced

depression of deprived-eye responses and, subsequently, a delayed potentiation of

non-deprived eye responses (Frenkel and Bear, 2004). Importantly, the mechanisms of

LTD appear to underlie the synaptic depression of deprived-eye inputs (Heynen et al.,

2003).

The malleability of the visual system in response to various forms of visual

experience is a great model to understand how experience modifies the brain. Dark-

rearing or binocular deprivation can be used to reveal how visual experience shapes

the receptive fields of visual cortical neurons. Extracellular recordings from the

primary visual cortex in animals reared in complete darkness revealed an absence

of orientation and stimulus seledcivity that is normally present in animals that are

light-reared (Fagiolini et al., 1994). When receptive field properties are measured in

dark-reared rodents at postnatal day (P) 60, for example, visual acuity is immature and

resembles that of light-reared animals before the onset of juvenile platicity. However,

light deprivation can extend the period of juvenile plasticity by several weeks. This

process is reversible; exposure of as little as two hours of light can rapidly promote

synaptic enhancements (Buisseret et al., 1978).

However, there are a number of visual cortical events that do not require

visual experience such as the establishment of a cortical map of visual Sace (Ruthazer

and Stryker, 1996), ocular dominance (Crair et al., 1998), and crude orientation

seledctivity (Stryker and Harris, 1986). Upon eye opening, rodent visual cortex

undergoes a refinement of connedcions in response to visual stimulation; patterned

visual experience provides refinement of orientation and diredion selectivity
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(Sengpiel et al., 1999; Li et al., 2oo6), modification of OD (Wiesel and Hubel, 1963),

and alterations in receptive field properties (Smith and Trachtenberg, 2007). During

this sensitive period in early postnatal life, the visual cortex is particularly susceptible

to adivity-driven modifications. This window of time in juveniles is known as the

critical period, during which robust plasticity occurs (postnatal 3-5 weeks). During

this time, many types of synaptic plasticity such as LTP are more robuat than when the

animal reaches the adult stage (Kirkwood and Bear, 1995). At this Stage, experience-

dependent plasticity takes longer to achieve and is of less magnitude (Katz, 1999).

Therefore, since plasticity atill occurs in adulthood, the critical period will be referred

to as the period of juvenile plasticity (Sato and Stryker, 2008).

The influence of experience versus development is difficult to separate

into two entities; the two phenomena are intertwined and edify one another. Thus,

interpretations as to what mechanisms underlie either category have been challenging

to assess (Crowley and Katz, 2000). In this discussion, mechanisms underlying

experience-dependent plasticity have emerged based on the correlations of the *Satial

and temporal overlap of proteins and their subsequent changes as a consequence of

disruptions in visual experience.

MOLECULAR MECHANISMS UNDERLYING

METAPLASTICITY

THE ROLE OF THE NMDA RECEPTOR

Studies have etablished that normal, experience-dependent modifications of visual

cortex receptive fields require activation of NMDARs. In particular, experience-

dependent regulation of NMDAR composition appears to regulate the indudion

of synaptic plasticity. For example, upon eye opening, both biochemical and

eledrophysiological studies demontrate a lateral switch of predominant NR2B-
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containing NMDARs at the synapse to extrasynaptic sites while a teady increase

of NR2A-containing NMDARs cluster at the synapse (Li et al., 1998; van Zundert et

al., 2004). Similarly, PSD-95 is also reditributed to synapses in the mouse superior

colliculus and visual cortex upon eye opening. This upregulation of PSD-95 has

been found to facilitate the concomitant upregulation of NR2A subunits and the

downregulation of NR2B subunits at the synapse (Yoshii et al., 2003). This process

is also dynamic; if the eyelids are sutured shut after eye opening, the levels of PSD-

95 decrease from the synapse along with a coincident decrease in NR2A subunits.

Therefore, PSD-95 is important for increasing surface expression of NR2A-containing

NMDARs, as well as decreasing the rate of their internalization (Lin et al,. 2004). In

studies of animals with normal visual development, biochemical assays of primary

cultures of juvenile cortical neurons have shown that NR2A-containing NMDARs tend

to localize diredctly apposed to synaptic vesicle release sites, whereas NR2B-containing

NMDARs are localized in perisynaptic or extrasynaptic locations (Li et al., 1998). Thus,

the localization of NMDAR subunits at the synapse is altered by the introdudion of

visual experience.

Delaying the proper development of visual circuitry by dark-rearing from

birth also delays the onset of shorter NMDAR EPSCs without affeding the amplitude

or rise times of NMDAR resonses in visual cortex (Carmignoto and Vicini, 1992).

Indeed, biochemical tudies demonstrated that dark-rearing mice delays the increase

in NR2A levels (Chen and Bear, 2007). Therefore, a low NR2A/NR2B ratio results in

the slower kinetics seen in dark-reared animals, whereas a high NR2A/NR2B ratio

is associated with the fater currents seen in light-reared animals (Carmignoto and

Vicini et al., 1992). In support of the BCM theory, previous studies have suggeted

that the threshold for synaptic modifications can be modified by visual experience;

the induction of LTP is favored in the visual cortex of animals reared in the dark

compared to that of light-reared controls (Kirkwood et al., 1996). Specifically,
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dark-rearing animals will result in a shift in the modification threshold to the left,

favoring the atrengthening of synapses (Kirkwood et al., 1996; Philpot et al., 2003).

Consequently, the two receptor subtypes contribute a difference in kinetics to the

NMDAR as well as in synaptic plasticity.

The switch in subunits is also dynamic, i.e. metaplastic. For instance, while

light deprivation promotes retention of high levels of NR2B-containing NMDARs and

delays insertion of NR2A-containing NMDARs, light exposure for just 2 hours can

lead to a robust increase in NR2A levels. This increase is absent following application

of the translation inhibitor cycloheximide, indicating the importance of experience-

induced NR2A protein synthesis (Quinlan et al., 1999b). Alternatively, dark-exposing

light-reared animals or returning light-exposed dark-reared animals into the dark for

3-4 days can significantly decrease NR2A levels and increase the duration of NMDAR-

mediated EPSCs, similar to those in age-matched dark-reared animals (Quinlan et

al., 1999a). Therefore in juveniles, the change in the properties of NMDAR-mediated

re~sonses reflects the diversity in NMDAR subunit composition.

In the intance of MD, applying the NMDAR antagonist APV in kitten visual

cortex prevents the consequence of shrinking lateral geniculate cells in re sonse

to the deprived eye. This study performed by Bear and Colman establishes the

contribution of the NMDAR to cortical plasticity (Bear and Colman, 1990). Similarly,

in the mouse, blocking NMDARs with competitive antagonist CPP showed that the

temporal phases, depression of deprived-eye responses and the potentiation of non-

deprived eye re sonses, comprising the OD shift are NMDAR-dependent in juveniles

(Sato and Stryker, 200o8; Cho et al., 2009). Furthermore, by using a CxNR1 mouse, a

mutant mouse that loses functional NMDARs in adulthood, there was a loss of OD

plasticity in the visual cortex by the age of P70, indicating that adult platicity requires

NMDARs (Sawtell et al., 2003).
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To undertand how OD plasticity affeds NMDAR subunit composition, Chen

and Bear also performed an assessment of NMDAR subunit composition following

the two phases of MD in juvenile mouse visual cortex. After 3 days of MD when

depression of deprived-eye re@onses takes place, NR2B protein is increased. After

7 days of MD when potentiation of non-deprived eye re~Sonses takes place, NR2A

levels are decreased with no overall change in NR1 subunits (Chen and Bear, 2007).

Therefore, there is a correlation of subunit change with the physiological changes

induced by MD.

With regard to adult visual cortical plasticity, adult rats that received to days

of dark exposure before brief MD (the time course can also include 1-3 days of light

exposure in between) can exhibit a juvenile-like shift in OD plasticity (He et al., 200oo6).

Quantitative immunoblot analysis of NMDAR proteins in these adults following

MD showed a decrease in the NR2A/NR2B ratio due to an increase in NR2B protein

in perisynaptic or extrasynaptic sites (Yashiro et al., 2005; He et al., 2oo6). Overall,

these findings suggest that experience-dependent modifications in the properties

of synaptic platicity are correlated with, and possibly governed by, changes in

NMDAR subunit composition. Although the biochemical and eledtrophysiological

data demonstrate strong correlations that the NMDAR subunit composition and

fundction underlie changes in the threshold for synaptic modifications, it has not

been established by causality. With the use of a genetically modified mouse in which

NR2A protein levels are not fundionally expressed, it is possible to truly fix the NR2A/

NR2B ratio and to observe its effecs on the properties of synaptic plasticity and

metaplaticity.

It has already been etablished that the fundction of NMDARs are unique; they

serve as a gating mechanism for calcium to subsequently trigger second messenger

cascades to establish a proper threshold for synaptic plasticity (Mori and Mishina,

1995). The importance of mechanisms downstream of NMDAR adivation has also
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been implicated in OD plasticity tudies; the roles of adctivity-regulated cytoskeleton-

associated protein (Arc), CaMKII, PKA, calcineurin, and tissue plasminogen acivator

(tPA) in metaplaticity are discussed below.

THE ROLE OF Arc

The immediate early gene protein Arc is observed at excitatory glutamatergic

synapses in visual cortex and rapidly activates and accumulates in dendrites in

resonse to visual stimulation (Lyford et al., 1995; Steward et al., 1998). Arc adivation

is necessary for adivity-dependent refinement of visual projedctions to visual

cortex (Wang et al., 2oo6), and its importance in synaptic plasticity was tested in

hippocampus whereby Arc antisense oligonucleotides attenuate LTP (Guzowski et al.,

2000). Its expression is also NMDAR-dependent, since blocking NMDARs prevents

Arc expression (Lyford et al., 1995). In visual cortex, a main role for Arc is to regulate

AMPAR internalization by interacing with the endocytic machinery (Chowdhury

et al., 2oo6). Specifically, Arc KO mice diplay decreased endocytosis as well as an

increased number of surface AMPARs (Chowdhury et al., 2o06). This decrease in the

ability for endocytosis will have an impact on the typical loss of AMPARs at the surface

that occurs during LTD and MD (Heynen et al., 2003). Therefore, as expeded, Arc KO

mice exhibit a small OD shift due to reduced deprived-eye depression (McCurry et al.,

submitted). There is also a decrease in the amount of internalized AMPARs in these

mutant mice. This versatile Arc molecule is now emerging as an active participant

underlying synaptic plasticity.

THE ROLE OF CaMKII

With regard to CaMKII, Taha and Stryker used mutant mice that contained a variant

of CaMKII that cannot be converted to the constitutively acive, calcium-independent

state. In visual cortical platicity studies, they demongIrated that in the absence of

contitutively adctive CaMKII, the indudtion of the OD shift took longer to acquire
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(Taha and Stryker, 2005). Therefore, the conversion of CaMKII to the calcium-

independent form is important for rapid expression of plasticity in the visual cortex.

THE ROLE OF CALCINEURIN AND PKA

In order to undertand the role of calcineurin in metaplasticity, Yang et al. used a

conditional calcineurin overexpressing mouse and discovered no OD shift compared

to wild-types even if the deprivation was prolonged. The loss of the OD shift is due to

the loss of depression of deprived-eye re sonses, suggesting that LTD is saturated in

these animals. The loss of the OD shift is also particular to calcineurin overexpression,

since suppression of calcineurin will reatore OD plasticity (Yang et al., 2005). PKA

inhibitors have also been shown to block the indudion of OD shifts in kitten visual

cortex (Beaver et al., 2001). Furthermore, PKA's four regulatory subunits (RIa, RIP,

RIIa, RIIp) connote individual contributions to platicity: deletion of RIP leads to loss

of both LTP and LTD without changing OD platicity (Hensch et al., 1998b); deletion

of RIIa decreases the magnitude of LTP, does not affedct LTD but till allows for the

depression of deprived-eye regonses of the OD shift (Rao et al., 2004); and deletion

of RII3 does not affect LTP, but blocks LTD and the OD shift (Beaver et al., 2002).

Although brief MD has been found to induce LTD in visual cortex (Heynen et al.,

2003), the select effeds of blocking LTD without affeding OD reveal different types of

platicity at play. Thus, the PKA signaling pathway is important for synaptic and OD

plasticity. However, conferring their importance to particular subunits is complex and

not fully determined.

THE ROLE OF tPA

Another candidate molecular mechanism for metaplagsicity is extracellular matrix

molecule tPA. tPA forms a table complex with the NR1 subunit of the NMDAR in

mouse cortical cultures; its NMDAR-dependent release into the extracellular sace via

calcium-dependent secretion results in the cleavage of the amino-terminus of NRI.
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The cleavage of NR1 enhances signaling mediated by NMDARs - too much cleavage

can actually result in NMDAR-induced neuronal death (Nicole et al., 2001). In the

hippocampus, tPA co-immunoprecipitates with NR2B and tPA expression stimulates

NR2B expression; in tPA KO mice, the typical upregulation of NR2B is absent (Pawlak

et al., 2005). Behaviorally, the tPA KO are deficient in hippocampus-dependent

tasks whereby the animal takes longer to learn but eventually learns. Infusion of tPA

reverses these deficits, and facilitates LTP and learning (Pawlak et al., 2002).

tPA is also expressed in primary rat visual cortex, particularly in layers II/

III and IV. Its appearance correlates with the period of robust juvenile plasticity and

declines thereafter (Zheng et al., 2008). Studies in visual cortex show a role for tPA

in OD plasticity. It was already known that strudural changes occur following long

periods of MD whereby thalamocortical axons subserving the deprived eye retract

whereas arbors subserving the non-deprived eye expand (Antonini and Stryker,

1993; Antonini et al., 1999). However following brief MD, rapid strucural changes

have also been found to occur at the level of dendritic S*ines. Dendritic SPines are

important for plasticity since they receive the majority of excitatory input, and their

physical features are sensitive to adivity (Hering and Sheng, 2001oo). For intance, spine

motility decreases over development, and remains Stable during the period for robust

juvenile plasticity (Lendvai et al., 2000; Majewska and Sur, 2003). Brief MD causes

Sine motility to increase in the area contralateral to the deprived eye (Oray et al.,

2004). This change in trudural plasticity has been linked to tPA because tPA levels

are upregulated after 2 days of MD. In addition, exogenous application of tPA has been

shown to increase Sine motility similar to that caused by brief MD (Mataga et al.,

2004; Oray et al., 2004). tPA KO mice showed little or no OD shift, but the OD shift

could be restored upon intracerebroventricular tPA infusion (Mataga et al., 2002).

Therefore, the extracellular matrix can contribute to strudural changes that ultimately

affed its funcional role in metaplasticity.
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It is apparent that there are multiple mechanisms that may underlie

experience-dependent modification of synaptic plasticity in visual cortex. To increase

our understanding of cellular mechanisms in juvenile mouse visual cortex, we have

utilized transgenic technologies to diredcly determine the funcional significance

of proteins that have been indicated to play a role in plasticity. Therefore, we

took advantage of a genetically modified mouse in which the NR2A subunit is not

fundcionally expressed and examined its effed on the properties of synaptic plasticity

and metaplasticity. Speculations on other possible mechanisms underlying both

synaptic plasticity and metaplaticity are discussed in Chapter V. *&
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The Bienengtock, Cooper and Munro model of metaplaSticity

The contribution of bidiretional synaptic modifications to ocular dominance (OD) plasticity

in visual cortex can be modeled by a learning rule where low levels of postsynaptic adctivation

induce long-term depression (LTD) and high levels induce long-term potentiation (LTP)

(BienenStock et. al., 1982). This model suggeSts that the magnitude of the poAtsynaptic reSonse

determines the modification of synaptic weight. The crossover from LTD to LTP is called the

modification threshold (0m). Importantly, the value of Om is not fixed; rather, it "slides" as a

fundion of the history of potsynaptic activation. The diredion the modification threshold slides

is determined by the history of potsynaptic activity.



CHAPTER II
Obligatory Role ofNR2A for Metaplasticity in Visual Cortex

This chapter was published together with Dr. Benjamin Philpot and Dr Mark Bear in Neuron (2oo7) Vol. 53,

pp. 495-502.

ABSTRACT

Light deprivation lowers the threshold for long-term depression (LTD) and long-

term potentiation (LTP) in visual cortex by a process termed metaplasticity, but the

mechanism is unknown. The decreased LTD/LTP threshold correlates with a decrease

in the ratio of NR2A to NR2B subunits of cortical NMDA receptors (NMDARs) and

a slowing of NMDAR-mediated excitatory poStsynaptic currents (EPSCs). However,

whether and how changes in NR2 subunit expression contribute to LTD and LTP have

been controversial. In the present Study, we used an NR2A knockout (KO) mouse to

examine the role of this subunit in the experience-dependent modulation of NMDAR

properties, LTD, and LTP. We found that deletion of NR2A abrogates the effedcts of

visual experience on NMDAR EPSCs and prevents metaplaSticity of LTP and LTD.

These data support the hypothesis that experience-dependent changes in NR2A/

NR2B are functionally significant and yield a mechanism for an adjuStable synaptic

modification threshold in visual cortex.
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INTRODUCTION

MetaplaSticity - the plasticity of synaptic plasticity - is a change in the properties

of synaptic modification as a fundction of the recent higtory of cellular or synaptic

adivation (Abraham and Bear, 1996). A robut demonstration of metaplasticity is the

change in the properties of long-term potentiation (LTP) and long-term depression

(LTD) in visual cortex of animals deprived of vision (Kirkwood et al., 1996; Philpot et

al., 2003). After a period of reduced cortical activity caused by dark-rearing (Czepita

et al., 1994; Maffei et al., 2006), LTP is enhanced and LTD is reduced over a range of

stimulation frequencies compared to light-reared (LR) animals. These changes are

rapidly reversed by light exposure of the dark-reared (DR) animals. Such findings are

in accordance with the theoretical proposal of a synaptic modification threshold that

"slides" as a function of the average adivity of cortical neurons (Bienenstock et al.,

1982). A sliding modification threshold enables the synaptic competition that yields

timulus-seledive neuronal re onses and contribute to homeostasis by keeping the

network of modifiable synapses within a useful dynamic range (Bear, 2003).

The forms of LTP and LTD in visual cortex that are subjed to metaplastic

regulation are triggered by trong and weak adctivation of poatsynaptic NMDA

receptors (NMDARs), re sedively. A mechanism for metaplasticity is suggeted by

the observations both in vitro and in vivo that NMDAR fundion is enhanced in visual

cortex of DR animals and diminished after brief light exposure (Tsumoto et al., 1987;

Fox et al., 1992; Philpot et al., 2003). Such changes in NMDAR function would be

expected to lower and raise LTD/LTP thresholds, resedtively.

While there are many ways to modulate NMDAR effeciveness, one appealing

mechanism is the adivity-dependent regulation of NMDAR subunit expression

and assembly. NMDARs consist of the obligatory NR1 subunit in combination with

NR2A-D and NR3A-B subunits (Perez-Otano et al., 2001). NR2A and NR2B subunits,

which predominate in posnatal cortex (Watanabe et al., 1993; Monyer et al., 1994;
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Sheng et al., 1994), exhibit several important differences that can influence NMDAR-

mediated platicity. Firt, NR2B-containing NMDARs have longer current duratinos

than NR2A-containing receptors, due to a higher affinity for glutamate and slower

rates of desensitization (Monyer et al., 1992; Laurie and Seeburg, 1994; Priestley et

al., 1995; Vicini et al., 1998). Second, NR2B-containing NMDARs carry more calcium

charge per unit current than NR2A subtypes (Sobczyk et al., 2005). Third, NR2A and

NR2B subunits have ditindt intracellular binding partners (Husi et al., 2ooo; Sans et

al., 2000; Steigerwald et al., 2000; Gardoni et al., 2001; Vissel et al., 2002; Yoshii et al.,

2003; Barria and Malinow, 2005).

Complementary biochemical, biophysical, and pharmacological studies

have shown that dark-rearing leads to a decreased NR2A/NR2B ratio in synaptic

NMDARs, which is rapidly reversed by light exposure (Quinlan et al., 1999a; Quinlan

et al., 1999b; Philpot et al., 2001a; Chen and Bear, 2007). The time course of these

bidirectional changes in NMDAR subunit composition correlates well with the

changes in LTD/LTP thresholds in visual cortex. Thus, it has been hypothesized that

inactivity caused by light deprivation gradually decreases the NR2A/NR2B ratio, which

raises the LTD/LTP threshold. This model is attractive since a lowered NR2A/NR2B

ratio has the effects of prolonging and increasing calcium curents through NMDARs

and recruiting calcium/calmodulin-dependent protein kinase II - changes that would

be expeded to lower the threshold level of NMDAR activation required to trigger LTP.

Other than the correlations mentioned above, however, there is no dired

evidence that NMDAR subunit composition contributes to metaplafticity in visual

cortex. Resolving this quetion has taken on new importance with the publication of

recent reports suggeting an entirely different view of how NR2A and NR2B subunits

contribute to LTP and LTD, reSedively (Liu et al., 2004; Massey et al., 2004).

According to these studies, decreasing the NR2A/NR2B ratio should promote LTD

over LTP. To distinguish among these very different hypotheses and to determine the
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contribution of NR2 subunit expression to metaplafticity in visual cortex, we have

atudied the effects of visual experience and deprivation on the properties of NMDAR-

mediated synaptic transmission, LTP, and LTD, in visual cortex of mice with a genetic

ablation of NR2A.

RESULTS

NR1, NR2B, AND GluR1 LEVELS ARE UNCHANGED IN JUVENILE NR2A KO

MICE

To tet for possible compensatory alterations of glutamate receptor expression

in NR2A-deficient mice, we firt performed an immunoblot analysis of NMDA

(NR1, NR2A, and NR2B) and AMPA (GluRI) receptor subunit expression in

synaptoneurosomes prepared from visual cortex of +/+, +/-, -/- mice (Figure 2-1).

To control for protein loading and the degree of synaptic enrichment, we normalized

receptor subunit protein levels to the synaptic vesicle protein synapsin (Table 2-1). As

expeded, NR2A levels were significantly reduced in NR2A-deficient mice (n's = 6, 5,

and 7 animals for +/+, +/-, -/-, regsedively; F( 2 , 17) = 17.83, p < 0.0002). Consistent

with previous observations, NR2A levels in +/- mice were approximately half that of

wild-types (Sakimura et al., 1995; Kutsuwada et al., 1996). De Site reducions in NR2A

levels in +/- and -/- mice, levels of the obligatory NRI subunit were unchanged in

NR2A-deficient mice (F( 2 ,17 ) = 1.55,p = 0.24). There was also no significant effedt on

NR2B levels (F(1,5) = 0.34, p = 0.59) as observed previously (Morikawa et al., 1998).

Levels of the GluR1 AMPA receptor subunit were also not changed in the mutant mice

(F(2,17) = 0.88, p = 0.44). These data indicate that there were no gross abnormalities

in the expression of ionotropic glutamate receptors at the synapse, other than the

expected loss of NR2A expression in +/- and -/- mice. Our observation that other

ionotropic glutamate receptor subunit levels remain unchanged in the visual cortex



OBLIGATORY ROLE OF NR2A IN METAPLASTICITY

of NR2A-deficient mice is similar to previous findings demonstrating that NR2B, NR1,

and GluR1 levels in the immature somatosensory cortex are unaltered by the loss of

NR2A (Lu et al., 2001).

LOSS OF NR2A MIMICS AND OCCLUDES THE EFFECT OF DARK-REARING ON

NMDAR EPSCs

To test for gross differences in NMDA receptor function in layer II/III of visual cortex,

we generated input-output curves of pharmacologically-isolated NMDA receptor-

mediated EPSCs in +/+, +/-, and -/- mice reared normally or in complete darkness

(with sample sizes between 15 and 35 cells for each of the six groups, Figure 2-2; data

from heterozygotes were excluded from this figure for clarity but were included in

all tatistics). In this and all subsequent comparisons, the experimenters were blind

to genotype. Because ANOVA revealed a significant main effed (F(5, 1590) = 3.2,'

< 0.008), post-hoc analyses were used to test for group differences. This analysis

revealed that dark-rearing significantly enhanced the input-output relationship of

NMDAR responses in wild-type (WT) mice (Figure 2-2d; p < 0.0007). However, dark-

rearing failed to alter the input-output curves of NMDAR responses in NR2A knockout

(KO) mice (Figure 2-2e; p = 0.79). Consistent with our observation that NR1 levels

were unchanged in NR2A-deficient mice, we detected no redudion in the evoked

NMDAR currents in NR2A-deficient mice at this age. Our direct measurements of the

relationship between atimulation intensity and NMDAR EPSC suggest that there is no

net loss in the number of NMDARs functionally expressed at the synapse in NR2A-

deficient mice. This finding is consitent with a report from Lu and colleagues who

demontrated that the ratio of NMDAR/AMPAR synaptic currents in the immature

somatosensory cortex are not influenced by genetic deletion of NR2A (Lu et al., 2001).

Coupled with our biochemical data demontrating that there is no gross change in

NR2B levels, our eledrophysiological observations sugget that NR2B-containing

NMDARs that would normally be targeted to perisynaptic sites are likely targeted to
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synaptic sites in the absence of NR2A. Thus, at least at the ages examined and layer

examined, NMDAR current amplitudes are not impaired in the absence of NR2A.

To test the contribution of NR2A subunits to experience-dependent

modifications in current duration (Philpot et al., 2001a), we recorded NMDAR EPSCs

in visually-identified layer II/III pyramidal cells. As expected, dark-rearing significantly

increased NMDAR current duration in layer II/III pyramidal cells of normal mice

(Figure 2-3a; F( 1,12 7) = 13.31, p < 0.0005). The NR2A deficiency also prolonged NMDAR

current durations (F(2 ,12 7) = 13.72, p < o.o0oo1), and there was a significant interadction

between rearing condition and genotype on EPSC duration (F( 2 ,27 ) = 4.40, p < 0.02).

PoSt-hoc analyses (Fisher's PLSD) revealed that LR, WT animals had significantly faster

currents than that of DR animals and NR2A-deficient mice (+/-, -/-). Notably, dark-

rearing had no effedct in mice lacking fundional NR2A subunits (p = 0.89). These data

demonstrate that genetic ablation of fundctional NR2A subunits mimics and occludes

the consequences of light deprivation.

We have previously demonstrated that the temporal summation of NMDAR-

mediated EPSCs is extremely sensitive to small changes in NMDA receptor current

durations (Philpot et al., 2001a). NMDAR currents in layer II/III pyramidal cells were

evoked by extracellular stimulation of layer IV for 11 pulses at 40 Hz, and the total

EPSC amplitude was measured after each pulse (Figure 2-3b). Total EPSC amplitude

was described by a significant interadction between pulse number, genotype, and

rearing condition (F(2 0,12 0 0 ) = 2.4, p < 0.0007). Consistent with the observation that

NMDAR current durations from LR, WT mice differed significantly from all the other

groups, pot-hoc analyses revealed that the only significant differences in temporal

summation arose between the LR, WT mice versus all the other groups. These data

demonstrate that modest increases in NMDA receptor current duration, driven by a

genetic or experience-dependent redudion in NR2A levels, are sufficient to maximize

temporally summated NMDAR EPSCs generated by 40 Hz stimulation. Moreover,

the genetic loss of NR2A occludes further changes by dark-rearing on NMDAR EPSC

temporal summation.
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DEPRIVATION-IND UCED METAPLASTICITY FAILS TO OCCUR IN NR2A KO

MICE

To assess differences in cortical plasticity, layer II/III field potentials were evoked by

layer IV stimulation in visual cortical slices of P21-P28 mice (Kirkwood et al., 1996;

Philpot et al., 2003). There was no effecd of deleting NR2A on LTP induced in layer II/

III of slices prepared from LR animals. Remarkably, however, the metaplaticity of LTP

and LTD was completely absent in the NR2A KO mice.

In WT mice, dark-rearing significantly enhanced LTP induced with a 40

Hz tetanus, confirming previous observations in rats (Kirkwood et al., 1996). LTP

in LR mice measured 111.8 ± 4.2 % of baseline (n = 13) compared to 123.1 ± 1.9 % of

baseline in DR mice (n = 8; p < 0.05; Figure 2-4a). In contrast, there was no effed

of dark-rearing on the level of LTP induced by 40 Hz stimulation in NR2A KO mice

compared with LR, NR2A KO mice (LR: 114.4 ± 2.9 % of baseline, n = 14; DR: 113.6

± 3.8 % of baseline, n = 9; p = o.88; Figure 2-4b). These data suggest that although

NR2A is not required for LTP in visual cortex, it is essential for experience-dependent

metaplaticity.

In WT mice, dark-rearing significantly reduced LTD induced with a 1 Hz

tetanus, again confirming previous findings in rats (Kirkwood et al., 1996; Philpot

et al., 2003). LTD in LR mice measured 82.0 ± 2.7 % of baseline (n = 6) compared

to 92.7 ± 1.4 % of baseline in DR mice (n = 6; p < 0.003; Figure 2-4c). We were

surprised to find that 1 Hz stimulation in LR, NR2A KO mice produced no LTD at

all; ingtead, responses modetly potentiated (114.9 ± 1.8 % of baseline, n = S; Figure

2-4d). Moreover, there was no longer any difference between LR and DR animals with

reed to the plastic re onse to 1 Hz stimulation (DR: 111.3 ± 6.8 % of baseline, n = 8).

These data suggest that the LTP threshold is greatly reduced in the absence of NR2A

and no longer modified by the history of cortical experience.
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To better determine how genetic deletion of NR2A altered the shape of the

frequency-re Sonse funcion, we tested the consequences of 30 minutes of 0.5 Hz

stimulation in WT and KO mice reared normally (Figure 2-4e-f). We found that this

manipulation produced a modest but significant depression in both KO and WT mice

(WT: 91.2 ± 8.2 % of baseline, n = 6; KO: 87.9 ± 1.6 % of baseline, n = to). These data

indicate that it is possible to weaken synapses in NR2A KO mice, and that the genetic

deletion of NR2A produces an extreme leftward shift in the frequency-re~sonse

function (see Figure 2-5).

DISCUSSION

To summarize the major findings of this study, our data show that visual experience

regulates NMDAR EPSC kinetics and temporal summation, LTP, and LTD in layer II/

III of mouse visual cortex as previously reported in rats (Carmignoto and Vicini, 1992;

Kirkwood et al., 1996; Philpot et al., 2001a; Philpot et al., 2003), and that these effeds

of experience require the NMDAR NR2A subunit. In the absence of NR2A, the NMDAR

EPSC kinetics and summation resemble those observed in DR, WT mice, and there is

no additional effedct of dark-rearing in the NR2A KO mice. Metaplasticity of LTP and

LTD is completely lost in the absence of NR2A, and the loss of NR2A appears to greatly

lower the threshold for inducing LTP with low-frequency atimulation. Taken together,

the data support the hypothesis that experience-dependent changes in NR2A/NR2B,

documented previously in visual cortex (Quinlan et al., 1999a; Quinlan et al., 1999b;

Chen and Bear, 2007), are fundionally significant and provide a mechanism for an

adjustable synaptic modification threshold (Bear, 2003).

Our data provide diredct evidence that experience-dependent modifications

in NMDAR current duration are due to a change in NR2 subunit composition.

Previous atudies demonstrated a atrong correlation between an increase in sensory
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experience, an increase in the NR2A/NR2B ratio, and faster NMDAR current

durations (Carmignoto and Vicini, 1992; HeStrin, 1992; Crair and Malenka, 1995;

Flint et al., 1997; Stocca and Vicini, 1998; Nase et al., 1999; Quinlan et al., 1999b;

Philpot et al., 2oola). The correlation between the expression of NR2A and NMDAR

kinetics in hippocampus (Kirson and Yaari, 1996), visual cortex (Quinlan et al.,

1999b; present atudy), and somatosensory cortex (Flint et al., 1997; Lu et al., 2001)

suggested that changes in NMDAR composition underlie the developmental and

experience-dependent modifications in NMDAR current duration (although see

(Barth and Malenka, 2001), an idea supported by the absence of developmental

shortening of NMDAR currents in neurons lacking NR2A (Fu et al., 2005). However,

other mechanisms also contribute to the developmental shortening of NMDARs

(Prybylowski et al., 2000; Rumbaugh et al., 2000; Shi et al., 2000). The present atudy

provides direct evidence for the importance of NR2A for experience-dependent

modifications in NMDAR currents, because the consequences of dark-rearing on NMDAR

current duration are mimicked and occluded by the genetic loss of NR2A fundtion.

While our data clearly show that the presence of NR2A is a molecular

requirement for experience-dependent modifications in NMDAR current duration

in visual cortex, it remains to be seen if NMDAR current duration is modified at the

level of NR2A expression itself or through poattranslational modifications occurring

through NR2A. For example, Shi and colleagues suggeted that calcineurin acivity

can shorten NMDAR kinetics (Shi et al., 2000). Because the pho@hatase can act

through NR2A (e.g. (Krupp et al., 2oo2)), we cannot rule out the possibility that

po9ttranslational modifications secific to NR2A are responsible for experience-

dependent modifications in NMDAR current. Given evidence that NMDARs are largely

unaffected by genetic deletion of calcineurin (Zeng et al., 2001ool), we favor the idea

that the ratio of NR2A/NR2B is the major underlying facor for experience-dependent

modifications in visual cortex. Regardless, our data indicate that experience-
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dependent modifications in NMDAR kinetics within visual cortex require the presence

of NR2A and are unlikely to occur through altered expression of NR1 Slice variants or

posttranslational modifications of NR1 or NR2B.

The importance of the NR2B to NR2A subunit switch for synaptic plasticity

has remained a matter of controversy. Several influential papers suggest that

NR2A and NR2B subunit-containing NMDARs have a separable role in synapse

modification, with NR2A subtypes regulating LTP and NR2B subtypes regulating

LTD (Liu et al., 2004; Massey et al., 2004). The validity of these findings is now

being questioned because of suggestions that these tudies were condudcted using

non@ecific concentrations of NR2A-seledtive antagonists and/or because of difficulty

replicating the initial findings (Berberich et al., 2005; Neyton and Paoletti, 200oo6;

Morishita et al., 2007). Recent data contradid the initial findings that NR2A and

NR2B play distinct roles in regulating the polarity of synaptic plasticity, and instead

suggest that either subunit is capable of inducing LTD and LTP (Berberich et al., 2o005;

Weitlauf et al., 2005; Zhao et al., 2005). While much of the confusion surrounding

the role of NMDAR subtypes in synaptic plasticity may be the result of regional and

developmental differences in NMDAR expression (see (Philpot et al., 200lb)), our data

support an alternative interpretation of the funcion of the NMDAR subunit switch.

We suggest that the NR2A/NR2B ratio refledts-and is set by-the amount of ongoing

cortical activity, which normally increases during postnatal development. The NR2A/

NR2B ratio establishes the threshold for subsequent adivity-dependent synaptic

modifications. We favor the idea that this threshold is set diredctly by the biophysical

and biochemical properties of NMDARs at modifiable synapses, but additional

sequelae, such as a change in inhibitory tone (Steele and Mauk, 1999; Fagiolini et al.,

2003) may also contribute.

Although we observed an extreme reduction in the stimulation frequency

required to induce LTP in the NR2A KO mice (see Figure 2-5), the absence of NR2A

failed to enhance the magnitude of LTP that can be induced, consistent with previous
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observations (Lu et al., 2ool). This finding suggests that there may be separable

mechanisms for regulating the threshold for inducing synaptic platicity and the

magnitude of the expressed plasticity. A parsimonious explanation for the lack of

enhanced LTP in NR2A KO mice may be that there are limited resources available to

make synapses stronger, and that these may be tightly and independently regulated

in a homeotatic manner. Consistent with this idea, potentiated synapses have been

observed to compete for a limited supply of "platicity factors'", which can limit the

total synaptic expression of LTP (Fonseca et al., 2004).

Taken together, the data suggest that during visual cortical development

the progressive increase in the NR2A/NR2B ratio in a normal visual environment

raises the threshold for inducing LTP such that only the most strongly correlated

inputs are maintained while less correlated inputs are more likely to be weakened.

This experience-dependent adjutment in the platicity threshold normally allows

neurons to become progressively more tuned to seledct features of the environment

(BienenStock et al., 1982). Thus, the loss of orientation selectivity and incomplete

expression of ocular dominance platicity previously reported in the NR2A KO mouse

(Fagiolini et al., 2oo3) is likely to be a manifetation of impaired metaplasticity in vivo.

MATERIALS AND METHODS

Subjects: Mice deficient in NR2A were generously supplied by S. Nakanishi. The mice

were developed by replacing the region *sanning the M2 transmembrane segment of

NR2A subunits with a neomycin resistance gene as previously described (Kadotani et

al., 1996). A pathogen-free line was rederived on a C57BL/6 background by Charles

River Laboratories. Wild-type (+/+), heterozygote (+/-), and NR2A KO (-/-) mice

were used between postnatal days (P) 21-28. Subjeds were fed ad libitum and reared

in normal lighting conditions (12/12 light/dark cycle) or in complete darkness.
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Cortical Slice Preparation: Following an overdose of barbiturates (i.p.), mice were

decapitated upon disappearance of corneal reflexes in compliance with the U.S.

Department of Health and Human Services. The brain was rapidly removed and

immersed in ice-cold dissecion buffer (composition is as follows: 87 mM NaCI, 2.5

mM KCI, 125 mM NaH 2 PO 4, 25 mM NaHCO 3, 75 mM sucrose, to mM dextrose, 1.3

mM ascorbic acid, 7 mM MgC12, and o.5 mM CaC12,) bubbled with 95% 02 and 5%

CO 2. The visual cortex was rapidly removed and 350 im coronal slices were cut using

a vibrating microtome (Leica VT100S). Slices recovered for 15 min in a submersion

chamber at 32 oC filled with warmed artificial cerebral @inal fluid (ACSF; 124 mM

NaCI, 5 mM KC1, 1.25 mM Na 2PO 4, 26 mM NaHCO , 1 mM MgCI2, 2 mM CaC 21, and to

mM dextrose, saturated with 95% 02 and 5% CO2) and then cooled gradually to room

temperature until use.

Extracellular Eledtrophysiology: Slices were transferred to an interface recording

chamber maintained at 30 oC and perfused with ACSF at a rate of 2.5 mL/min. A

stimulation eleArode (concentric bipolar tungsten) was positioned in layer IV, and a

glass recording electrode (-1 Mf) filled with ACSF was positioned in layers II/III. The

magnitude of re@onses evoked by a 200 iisec pulse was monitored by the amplitude

of the field potential. Stimulation intensity was adjusted to elicit half the maximal

response, and stable baseline re sonses were elicited every 30 sec. The resulting

signals were filtered between o.1 Hz and 3 kHz, amplified 1ooo times, and captured

at to kHz on an IBM-compatible computer using pCLAMP 9.2 software (Molecular

Devices). After achieving a stable baseline (< 5% drift) for 15 minutes, slices were

Atimulated with either 40 Hz stimulation for 1 second, repeated three times with a

to second interval, or 900 pulses at 1 Hz, or 9oo pulses at 0.5 Hz. Field excitatory

postsynaptic potential (FP) amplitudes were recorded every 30 seconds for 45 minutes

following the cessation of the Stimulation protocol. Control and experimental subjeds
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were run in an interleaved fashion. The data were normalized, averaged, and reported

as means + SEM. Changes in synaptic Strength were measured by comparing the

average re onse amplitude 35-40 minutes after conditioning stimulation to the pre-

conditioning baseline resonse.

Voltage-Clamp Recordings: Slices were placed in a submersion chamber,

maintained at 31 'C, and perfused at 2 mL/min with oxygenated ACSF containing 4

mM MgC12, 4 mM CaC12, 1 VM glycine, 50 M picrotoxin (Fluka), and 20 M CNQX.

These conditions are sufficient to pharmacologically isolate NMDAR-mediated

responses (Quinlan et al., 1999b; Philpot et al., 2001a; Philpot et al., 2o01b). Layer II/III

pyramidal cells were visually identified using a Nikon E600FN microscope equipped

with IR-DIC optics. Patch pipettes were pulled from thick-walled borosilicate glass.

Open tip resistances were 3-5 MiQ when pipettes were filled with the internal

solution containing: 102 mM cesium gluconate, 5 mM TEA-chloride, 3.7 mM NaCI,

20 mM HEPES, 0.3 mM Na-GTP, 4 mM Mg-ATP, o.2 mM EGTA, to mM BAPTA,

and 5 mM QX-314 chloride (Alomone Labs, Jerusalem, Israel) with pH adjuSted to

7.2 and osmolarity adjuSted to ~300 mmol/kg with sucrose or ddH,O. Cells were

voltage-clamped at +40 mV in the whole cell configuration using a patch-clamp

amplifier (Axoclamp ID, Axon Instruments), and data were acquired and analyzed

using a syStem from DataWave Technologies Inc. (Boulder, CO). Pipette seal

resiStances were > 1 GO, and pipette capacitive transients were minimized prior to

breakthrough. Series resiStance was monitored throughout the experiment by giving

a teSt pulse and measuring the amplitude of the capacitive current filtered at 30

kHz. Only cells with series resitance < 30 MkI were included in this study. No series

resistance compensation was applied. Input resistance was monitored throughout

the experiment by measuring the amplitude of the Steady-State current, filtered at 2

kHz, evoked from a test pulse. Excitatory potsynaptic currents (EPSCs) were evoked
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from a stimulating eleArode (concentric bipolar stimulating; -200 am tip separation)

placed in layer IV, and stimulation intensity was adjuted to evoke -loo pA response.

Stimulation was given for 200o psec every 6 sec. To examine fundional changes in the

summation of NMDAR-mediated currents, 11 pulses of 40 Hz trains of stimulation

were given every 6 sec for 3 min. In addition, input-output curves were generated by

systematically adjuting the stimulation intensity from o to 80 VIA. The deadivation

kinetics of NMDAR-mediated EPSCs were described by averaging 30o evoked re@onses

and fitting the current decay using the following formula:

I(t) If exp(-t/Tf) + Isexp(-t/Ts),

where "I" is the current amplitude, "t" is time, "If" and "Is" are the peak amplitudes

of the fat and slow components, resedively, and "Tf" and "Ts" are their re~sedive

time contants. A non-linear regression in GraphPad Prism software (San Diego, CA)

was used to fit decay curves. For quantification purposes, we used the weighted time

constant (r,), calculated as:

Tw = Tf (If/(If + Is)) + Ts (Is/(If + IS))

Biochemical Analysis: Synaptoneurosomes were prepared as previously described

(Hollingsworth et al., 1985; Quinlan et al., 1999b). Briefly, animals were given a lethal

dose of barbiturates (i.p.) and decapitated upon disappearance of corneal reflexes.

The brain was quickly removed into ice cold dissedion buffer (212.7 mM sucrose,

2.6 mM KC1, 1.23 mM NaH 2 PO , 26 mM NaHCO, to mM dextrose, 1 mM MgC12, 0.5

mM CaCI2, o.o2 mM CNQX, o.1 mM APV) saturated with 95% 02 and 5% CO2. Visual

cortices were bilaterally removed and placed in homogenization buffer consiting

of lo mM HEPES, 2 mM EDTA, 2 mM EGTA, 0.5 mM DTT, o.1 mM PMSF, lo mg/L

leupeptin, and loo nM microcylsin. The samples were homogenized using 2 mL

glass tissue homogenizers (Kontes, Vineland, New Jersey), filtered through a double

layer of os05 m pore nylon mesh filter, and finally passed through s pm pore filter
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paper. Homogenized tissue was centrifuged at 3,600 RPMs for lo minutes at 4 'C. The

sediment containing a high density of synaptic protein was then resu sended in 1%

boiling SDS and Stored at -20 oC. An optical densitometric assay (BCA Assay, Pierce)

was used to measure the concentration of synaptic proteins. Protein concentrations

across samples were normalized and preserved from decay with sample buffer. to

Vg of protein were loaded per lane and samples were run on 7.5% polyacrylamide

gels using BioRad mini-protean II and III cells. Gels were then transferred to

nitrocellulose membranes (BioRad) and probed againat NR2A (Molecular Probes,

1:250), NR2B (Santa Cruz, 1:250), synapsin (Chemicon, 1:15oo), GluR1 (Oncogene

Research, 1:1ooo), or NR1 (Chemicon, 1:1ooo). Samples were next probed with

the appropriate secondary antibody conjugated to horseradish peroxidase in Tris-

buffered saline (pH 7.4) containing o.1% Triton X-loo. To visualize the immunoblots,

enhanced chemiluminescence (Amersham ECL) was used with autoradiographic

film (Amersham Hyper ECL). Developed autoradiographs were scanned using Alpha

Imager software. Samples from +/+, +/-, and -/- were run simultaneously on

each gel to control for antibody penetration and exposure time. Immunoblot bands

were quantified by densitometric analysis using NIH Image software. Notably, long

exposure times revealed a faint NR2A band in NR2A KO mice, suggesting some cross-

readivity of the NR2A polyclonal antibodies with NR2B. For quantifying NR1, NR2A,

and GluR1 levels, densitometric intensities were expressed as a ratio of synapsin levels

and normalized to the averaged protein levels in +/+ mice.

Statistics: Either multiple fador ANOVA's or mixed effed ANOVA's with a repeated

measures fador were run with pol-hoc analyses (Fisher's PLSD) to teSt for Statiatical

significance between multiple groups. Data are expressed as means + SEM, and

significance was placed at p < 0.05.

Drugs: Unless otherwise noted, drugs were purchased from Sigma.



FIGURE 2-1

+/+ + - - /- +/+.+- +- - ++ +/+ +/+-- -+

NR2A NR2B
NRI

GIuRi Syn
Syn

NR2A-deficient mice express normal levels of synaptic NR1, NR2B, and GluR1 subunits.

NR2A-deficient mice express normal levels of synaptic NR1, NR2B, and GluR1 subunits. The

We9tern blot illualrates representative examples of NR2A, NR1, GluR1, NR2B, and synapsin (Syn)

immunoreadive bands from the synaptoneurosome preparation in +/+, +/-, and -/- mice aged

P21-P28. For quantification, receptor subunit levels were divided by synapsin levels to control

for loading and efficiency of synaptic enrichment in the synaptoneurosome preparation, and the

resulting ratio was normalized to the average value for +/+ mice (see Table 2-1). Note that NR2A

levels were reduced to roughly half of control levels in +/- mice and absent in -/- animals, while

NR1, NR2B, and GluR1 levels were not affected by the genetic manipulation.



TABLE 2-1

NR2A NR2A NR1 GluR1 NR2B
genotype protein protein protein protein

+/+ 1.00 ± 0.05 1.00 ± 0.01 1.00 ± 0.06 1.00 ± 0.13

+/- 0.52 0.25* 0.94 ± 0.11 1.08 ± 0.10 N.A.

4- 0.03 ± 0.05* 0.83 ± 0.04 0.94 ± 0.06 1.16 ± 0.25

NR2A-deficient mice express normal levels of synaptic NR1, NR2B, and GluR1 subunits.

Normalized synaptic protein levels expressed as fraction of wild-type mean ± SEM.
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(a) Schematic of recording configuration. (b) Example of IR-DIC image of a whole-cell recording

from a layer II/III pyramidal cell. (c) Example demonstrating pharmacologically isolated NMDAR

EPSCs evoked by increasing layer IV stimulation. (d) Dark-rearing enhanced the input-output

relationship of NMDAR-mediated events compared to resPonses recorded from LR, WT

mice (+/+). (e) NR2A-deficient mice maintain atrong evoked NMDAR-mediated responses.

Experience-dependent modifications of the input-output relationship of NMDAR EPSCs failed to

occur in NR2A knockout mice. For graphs in (d) and (e), data are expressed as means + SEM.
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EPSC duration in visual cortex layer II/III pyramidal cells.

(a) NMDAR EPSC decays were quantified by calculating a weighted time constant (TW) from the

double-exponential fit (see Results). Bar graph depidcts the averaged Tw (± SEM) for NMDAR-

mediated re@onses from LR or DR mice (+/+, +/-, and -/-). Traces are of normalized

representative EPSCs, for the corres@onding genotype in the bar graph below, recorded from DR

(dark trace) or LR (light trace) animals. Note that NMDAR-mediated EPSCs are prolonged in DR

cortex from +/+ mice, but loss of NR2A mimics and occludes the consequences of dark-rearing.

Bar graph values from left to right are: 83 ± 6.4 ms, 150 ± 12.5 ms, 130 ± 8.6 ms, 159 ± 8.1 ms,

173 ± 9.2 ms, and 175 ± 11.5 ms. (b) Reducing NR2A expression genetically or by dark-rearing

enhances the temporal summation of average (± SEM) NMDAR EPSCs evoked at 40 Hz (11

pulses). Traces represent normalized NMDAR EPSCs from WT (light trace) and NR2A KO (dark

trace) mice. Stimulus artifacs were clipped for clarity.
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(a) Averaged data (± SEM) and representative waveforms demonAtrating that dark-rearing enhances

the induction of LTP at 4o Hz stimulation in wild-type mice. (b) Visual deprivation fails to modify
the magnitude of LTP induced by 4o Hz stimulation in NR2A KO mice. (c) 1 Hz stimulation induces
robust LTD in LR, WT mice. Dark-rearing reduces the magnitude of LTD. (d) 1 Hz atimulation induces
LTP in NR2A KO mice, and dark-rearing fails to modify the magnitude of the plasticity. Scale bars: 5
ms, 500 PV.
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CHAPTER III
The ratio ofNR2A/NR2B NMDA receptor subunits determines
the qualities of ocular dominance plasticity in visual cortex

This chapter was published together with Lena Khibnik, Dr. Benjamin Philpot, and Dr Mark Bear in
Proceedings of the National Academy of Sciences (2oo9) Vol. 106, pp. 5377-5382.

ABSTRACT

Bidiredional synaptic plasticity during development ensures that appropriate

synapses in the brain are strengthened and maintained, while inappropriate

connections are weakened and eliminated. This plasticity is well illustrated in mouse

visual cortex, where monocular deprivation during early poasnatal development leads

to a rapid depression of inputs from the deprived eye and a delayed strengthening of

inputs from the non-deprived eye. The mechanisms that control these bidirecional

synaptic modifications remain controversial. Here we demonstrate, both in vitro

and in vivo, that genetic deletion or redudion of the NR2A NMDA receptor subunit

impairs adivity-dependent weakening of synapses and enhances the strengthening

of synapses. While brief monocular deprivation in juvenile wild-type mice normally

causes a profound depression of the deprived-eye response without a change in the

non-deprived eye re!sonse, NR2A knockout mice fail to exhibit deprivation-induced

depression and instead exhibit precocious potentiation of the non-deprived eye

inputs. These data support the hypothesis that a redudction in the NR2A/NR2B ratio

during monocular deprivation is permissive for the compensatory potentiation of

non-deprived inputs.
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INTRODUCTION

The circuitry of primary visual cortex is susceptible to changes in sensory experience

during early postnatal development, as evidenced by the well studied paradigm of

monocular deprivation (MD) (Hubel and Wiesel, 1970). MD and reverse suture studies

demonstrate that the strength of synapses is bidiredionally modifiable (Blakemore

and Van Sluyters, 1974; Movshon, 1976; Mioche and Singer, 1989). A detailed time

course of the synaptic events following MD in mice shows that the initial consequence

is a rapid depression of the deprived-eye inputs followed by a delayed strengthening

of the non-deprived eye inputs (Frenkel and Bear, 2004). However, little is known

about the molecular mechanisms that regulate the susceptibility of synapses to

bidiredctional modifications in their strength.

Bidiredctional synaptic plasticity has been studied in slice recordings of visual

cortex in the form of long-term potentiation (LTP) and long-term depression (LTD),

whereby synapses strengthen and weaken in reponse to stimulation (Kirkwood et

al., 1993). These adivity-dependent modifications can be modeled by a learning rule

where high levels of postsynaptic acivation (evoked eledtrically by high-frequency

stimulation) induce LTP and smaller levels of postsynaptic activation (evoked

eledctrically by lower frequency timulation) induce LTD (Bienenstock et al., 1982). The

crossover point from synaptic weakening to strengthening is called the modification

threshold (0 m). An important feature of this model is that the value of 0 m is not fixed;

rather, its value can "slide" as a fundction of the history of postsynaptic acivation.

According to the BCM theory, closing the dominant contralateral eye first leads to

depression of the deprived synapses, followed by a leftward shift in 0 m due to the

redudion in average cortical adctivity. This shift in 0 m is permissive for the subsequent

increase in the rekonses to the non-deprived, ipsilateral eye (Frenkel and Bear, 2oo4).

A wealth of data now indicates that deprivation and experience during early

postnatal development can indeed modify the plasticity threshold. For example, a
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period of complete darkness lowers the plasticity threshold such that LTP is enhanced

and LTD is attenuated across a range of timulation frequencies (Kirkwood et al.,

1996; Philpot et al., 2003; Philpot et al., 2007). These observations demonAtrate that

the susceptibility of synapses to plastic changes in visual cortex modifies in relation to

their history of experience-driven acivity.

Data suggest that the shift in the modification threshold is caused by a

change in N-methyl-d-asartate (NMDA) receptor fundion (Philpot et al., 2003), and

regulation of the molecular composition of the NMDA receptor provides a powerful

means to achieve this change. The NMDA receptor is a heteromer that contains

the obligatory NR1 subunit and a mixture of NR2A-D subunits that alter receptor

properties (McBain and Mayer, 1994; Monyer et al., 1994). At birth, most cortical

NMDA receptors contain the NR2B subunit (Monyer et al., 1994). NR2A subunit levels

gradually increase with development and reach a maximal expression between the

peak and end of juvenile plasticity (Flint et al., 1997; Roberts and Ramoa, 1999). This

switch from predominantly NR2B to NR2A subtypes is experience-dependent and

refleds the recent history of visual experience (Quinlan et al., 1999a; Quinlan et al.,

1999b; Philpot et al., 2oola). During MD, after the initial depression of deprived-eye

re sonses, there is a transient reduction in the NR2A/NR2B ratio that slightly precedes

open-eye re sonse potentiation (Chen and Bear, 2007). Because lowering the NR2A/

NR2B ratio reduces the threshold for inducing LTP in mouse visual cortex (Philpot et

al., 2007), it has been proposed that adivity-dependent regulation of NR2A and/or

NR2B receptor expression is the molecular basis for the sliding modification threshold.

In the current study, we examined the connedion between NMDA receptor

subunit composition and the qualities of bidiredctional synaptic platicity in the visual

cortex of NR2A knockout (KO), heterozygote (Het), and wild-type (WT) mice. We

confirm in layer IV that reducing NR2A expression shifts to lower frequencies both

the LTP threshold and the optimal stimulation for LTD. In resonse to MD, VEPs
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evoked in vivo through the deprived eye fail to depress normally in NR2A mutants.

Intead, an ocular dominance shift occurs by precocious potentiation of re@onses

through the non-deprived eye. These data support the hypothesis that experience-

dependent modifications in the NR2A/NR2B ratio at synapses provides a powerful in

vivo mechanism for regulating subsequent indudion of plasticity.

RESULTS

EFFECT OF NR2A GENE DOSAGE ON THE SYNAPTIC MODIFICATION
THRESHOLD IN LAYER IV OF MOUSE VISUAL CORTEX

The goal of this tudy was to determine how decreasing the NR2A/NR2B ratio

alters the LTD/LTP modification threshold in vitro and compare this with changes

in the properties of naturally occurring platicity in the visual cortex in vivo as a

consequence of MD. We examined this question using mice with targeted disruption

of one or both alleles of the NR2A gene (Kadotani et al., 1996). Because NR2A mutant

mice do not display compensatory alterations in NR1 or NR2B subunit expression in

visual cortex at the ages of interet, reducing NR2A expression effedively changes the

NR2A/NR2B ratio (Philpot et al., 2007).

The bidiredional changes in visual regonsiveness that occur after MD were

established using visually evoked potentials (VEPs) recorded in layer IV of visual

cortex (Frenkel and Bear, 2004). Current source-density (CSD) analysis in vivo has

confirmed that changes in the amplitude of layer IV VEPs reflect changes in synaptic

current sinks in this layer (Sawtell et al., 2003; Liu et al., 2oo8). However, previous

tudies of LTP and LTD in NR2A mutant mice were performed in layer II/III (Philpot

et al., 2007), and it is now understood that there are significant laminar differences

in the mechanisms of visual cortical plasticity in mice (Crozier et al., 2007; Liu et al.,

2008). Therefore, our study began with an analysis of the effedct of NR2A gene dosage
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on synaptic plasticity in layer IV of slices of mouse visual cortex, the layer in which

ocular dominance plasticity is also studied. We repeated in layer IV the experiments

previously described in layer II/III (Philpot et al., 2007).

To test whether the plasticity threshold was altered by reducing NR2A gene

dosage, we examined the consequences of a Stimulation protocol (1 Hz for 15 min) in

KO and Het mutants that typically results in LTD in normally-reared WT mice (aged

between postnatal days (P) 21-28). Following colledion of a baseline, 1 Hz Stimulation

produced reliable depression in WT mice (83.03 ± 2.56 % of baseline, n = 8 slices

from 7 mice; Figure 3-lal). However, as previously shown in layer 11/1III1 of the KO

mouse, we discovered that 1 Hz Stimulation causes LTP of layer IV FP amplitudes in

mice lacking NR2A (111.39 ± 2.33 % of baseline, n = 9 slices from 7 mice; Figure 3-lal).

Moreover, in the NR2A Het mice, 1 Hz Stimulation resulted in a modest depression

of synapses (93.77 ± 5.33 % of baseline, n = 9 slices from 7 mice; Figure 3-la1 ) that

was intermediate between the WT (p = 0.034) and NR2A KO (p = o.ool) values.

Importantly, basal synaptic transmission was comparable between genotypes (Figure

3-la 2 ) and there was no correlation between baseline FP amplitude and the percent

change in synaptic transmission following 1 Hz Stimulation (Figure 3-la 3 ). These

results are consistent with previous conclusions that that the LTD-LTP threshold is

proportional to the level of NR2A expression in mouse visual cortex (Philpot et al.,

2007).

To confirm that the plaSticity observed in the NR2A mutants was Still NMDA

receptor-dependent, we repeated the experiment in the presence of the competitive

NMDA receptor antagonist APV (D-2-amino-5-phojhonopentanoic acid; so M). In

addition to the expeded effed of APV on LTD in WT mice (n = 5 slices from 3 mice)

(Crozier et al., 2007), we found that blocking NMDA receptors prevented both the

residual LTD in the Het mice (n = 5 slices from 3 mice) as well as the LTP induced by 1

Hz Stimulation in the KO animals (n = 5 slices from 3 mice; Figure 3-1b).
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Finally, to confirm that reducing NR2A caused a change in the induction

requirements for LTD/LTP rather than a dose-dependent loss of LTD, we repeated

the experiment using 0.5 Hz Atimulation-a frequency that was shown previously to

be optimal for LTD induction in visually-deprived animals (Philpot et al., 2003). We

found that 900 pulses at o.5 Hz elicited reliable and statitically significant depression

in mice of all genotypes, with the greatest effec in the NR2A KO (NR2A KO: 70.56 +

6.41% of baseline, n = lo slices from 5 mice; Het: 79.05 ± 6.86 %, n = 6 slices from 3

mice; WT: 84.43 ± 5.64 %, n = 6 slices from 3 mice; Figure 3-1c). Taken together, these

data lead us to conclude that lowering the NR2A/NR2B ratio shifts the frequency-

response curve to the left, and the degree of this shift is proportional to the amount of

NR2A present in visual cortex.

EFFECT OF NR2A GENE DOSAGE ON THE OCULAR DOMINANCE SHIFT
FOLLOWING MD IN LAYER IV OF MOUSE VISUAL CORTEX

We next examined the impadct of altered NR2A and synaptic plasticity on ocular

dominance platicity in layer IV of mouse visual cortex. Elecrodes were chronically

implanted in layer IV of the binocular zone in primary visual cortex. Baseline VEPs

were measured at P27-P29, and the eyelid of the eye contralateral to the experimental

hemishere was sutured closed. After three days of MD, the sutured eye was opened,

the animal was allowed to recover from anesthesia, and VEPs were again recorded.

We assessed ocular dominance plasticity by determining the ratio of contralateral

to ipsilateral eye re~sonses (C/I ratio), which is normally about 2:1 at baseline and

decreases after MD to around 1:1. Our results show that NR2A KO and Het mice, as

well as their WT littermates, exhibit a normal shift in the C/I ratio (day o: 1.67 ± 0.21,

day 3: 0.89 ± 0.13 in KO, n = 8, p = o.ol; day o: 1.75 ± o.o9, day 3: 1.05 ± 0.14 in Het, n =

9, p < 0.01; day o: 1.95 ± 0.22, day 3: 0.90 ± 0.13 in WT, n = io, p < o.ool; Figure 3-2a),

similar to what has been reported previously (Fagiolini et al., 2003). The degree of the

shift is inditinguishable among the three genotypes (Kruskal-Wallis test, n = 27; p =

0.81).
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However, upon closer examination of the deprived- and non-deprived

eye responses, we discovered profound differences in the qualities of the ocular

dominance shift between the genotypes (Figure 3-2b). As previously reported (Frenkel

and Bear, 2o04), we found that deprived-eye resonses in WT mice were significantly

depressed (day o: 211.2 ± 17.1 [VV; day 3: 127.6 ± 30.5 V, n = 10, p = 0.oo2; Figure

3-2b), and non-deprived eye responses remained at baseline levels (day o: 114.5 ± 13.2

V, day 3: 151.9 ± 26.4 [IV, n = 10, p = 0.07; Figure 3-2b). In stark contrat to WT mice,

the deprived-eye responses in NR2A KO mice were unchanged (day o: 188.2 ± 19.7

pV, day 3: 202.6 ± 21.4 pV, n = 8, p = 0.55; Figure 3-2b), whereas the non-deprived eye

responses dramatically potentiated (day o: 118.5 ± 11.6 [V; day 3: 247.9 ± 34.3 pIV, n =

11, p = 0.005; Figure 3-2b). Results in the Het mice were intermediate: there was still a

significant depression of the deprived eye (Figure 3-2b; day o: 221.3 ± 14.7 [V, day 3:

180.0 ± 26.5 pV, n = 9, p = 0.04) and a slight but 9tati9tically significant potentiation of

the non-deprived eye responses (day o: 129.1 ± 10.4 [V; day 3: 175.2 ± 14.9 pIV, n = 9,p

= 0.03).

These findings are consistent with the idea that reducing the NR2A/NR2B ratio

promotes the deprivation-induced adjutment of the BCM modification threshold,

and thereby enhances open-eye response potentiation and reduces deprived-eye

response depression in vivo, similar to what we observed in the slice experiments.

However, an alternative explanation is that the shift occurs normally, but is

superimposed on an exaggerated global upward scaling of re onses caused by visual

deprivation. To inveftigate the possibility of enhanced synaptic scaling in resonse to

deprivation, we recorded VEPs before and after 3 days of binocular lid suture in NR2A

KO and WT littermates. An increased homeostatic scaling response should lead to

subtantially increased visual responses after binocular deprivation (BD).

Our results show that the C/I ratios of both NR2A KO and WT do not change

following this visual manipulation (day o: 2.16 ± 0.19 [V, day 3: 1.92 ± 0.20 pIV in KO,
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n = 7; day 0: 2.34 ± 0.15 [V; day 3: 2.57 ± 0.43 VV in WT, n = 7; P = 0.31; Figure 3-3a).

More importantly, BD did not affect the VEP amplitudes of contralaterally-projeding

eyes (day 0: 228.4 ± 16.2 [V, day 3: 232.0 ± 35.5 ipV in KO, n = 7; day o: 236.5 ± 35.7 PV,

day 3: 220.8 ± 35.1 pV in WT, n = 7; p = 0.72; Figure 3-3b) nor the VEP amplitudes of

ipsilaterally-projeding eyes (day o: 111.9 ± 11.5 [iV, day 3: 121.6 ± 12.0 VV in KO, n = 7;

day o: 99.2 ± 12.2 pV, day 3: 87.0 ± 6.8 [iV in WT, n = 7; p = 0.26; Figure 3-3b). These

data indicate that reduction of NR2A does not promote synaptic scaling in re@onse to

3 days of visual deprivation.

OPEN-EYE POTENTIATION IN WT MICE REQUIRES NMDAR ACTIVATION

In WT mice, MD for > 5 days causes potentiation of visual re@onses that we

hypothesize is enabled by a deprivation-induced decrease in the NR2A/NR2B ratio

(Chen and Bear, 2007). This hypothesis rests on the assumption that re onse

potentiation is an NMDAR-dependent form of "Hebbian" synaptic plasticity (Bear,

2003; Smith et al., 2009). The alternative hypothesis is that re@onses increase by

global upward scaling (Mrsic-Flogel et al., 2007), a process that has been shown to

be independent of NMDAR adtivation (Turrigiano and Nelson, 2004). To distinguish

among these hypotheses, we designed experiments in which NMDARs were blocked

pharmacologically during the time @an when re@onse potentiation occurs (Figure 3-4a).

Following 3 days of MD, which allowed for deprived-eye depression, either

CPP ((R, S)-3-(2-carboxypiperazin-4-yl)propyl-1-pho@honic acid; lo mg/kg) or saline

was injeded i.p. every 6 hours over the course of 4 additional days of MD. The saline

controls showed a normal re@onse to 7 days of MD. First, deprived-eye re@onses

were significantly depressed relative to baseline (Figure 3-4b; day o: 198.2 ± 16.6 [V;
day 7: 155.4 ± 17.7 pV, n = 7, p = 0.007), but as described in previous studies (Frenkel

and Bear, 2004), this depression was less than that observed after 3 days of MD (cf.

Figure 3-2b, WT). Second, open-eye re@onses were significantly potentiated (Figure

3-4b; day o: 104.7 ± 13.0 pV; day 7: 163.0 ± 21.0 [V, n = 7, p = 0.035). In contrast, the
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mice that received CPP injections exhibited deprived-eye depression similar to what is

obtained after 3 days of MD (Figure 3-4b; day o: 200.4 ± 22.8 pV; day 7: 115.7 ± 31.8 VV,

n = 7, p = 0.004), and the ipsilateral-eye responses remained unchanged (Figure 3-4b;

day o: 94.8 ± 6.1 V; day 7: 106.3 ± 24.9 [V, n = 7, p = 0.62). The blockade of re onse

potentiation with an NMDAR antagonist is not consistent with the scaling hypothesis.

DISCUSSION

Our data show that even a graded redudtion of the NR2A subunit can dramatically

alter the qualities of NMDAR-dependent bidirecional synaptic plasticity in layer IV

of visual cortex. Reduced NR2A expression shifts the LTD-LTP threshold to the left;

consequently, some stimulation frequencies that would normally lead to LTD cause

LTP instead. In vivo, the patterns of synaptic activity that normally cause depression

of responses from the deprived eye no longer have that effeCt, and the patterns of

synaptic activity through the open eye that normally have no effect, cause precocious

potentiation of responses instead. Our results are consistent with the hypothesis that

the NR2A/NR2B ratio Secifies the value of the synaptic modification threshold that

choreographs the bidirectional cortical re sonse to monocular deprivation.

A considerable body of work in the visual cortex has shown how the subunit

composition of NMDARs varies during the course of early poanatal development

and after periods of visual deprivation. As the cortex matures, the NR2A/NR2B ratio

progressively increases, reaching an asymptote around the time of adolescence. This

developmental profile is at least partially experience-dependent, as even brief episodes

of visual deprivation can reversibly lower the NR2A/NR2B ratio. Changes in NR2A and

NR2B expression also occur during the course of MD. In the hemi shere contralateral

to the deprived eye, the NR2A/NR2B ratio is significantly reduced after 5 days of MD

(Chen and Bear, 2007).
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Three primary theories have been advanced in the literature regarding the

possible significance of NMDAR subunit composition changes: (1) the subunit switch

might bring the classically-defined critical period for ocular dominance plasticity

to a close (Nase et al., 1999), (2) an increase in NR2A might favor the indudion of

LTP versus LTD (Liu et al., 2oo4; Massey et al., 2004), or (3) the adivity-dependent

increase in the NR2A/NR2B ratio adjuAts the threshold for synaptic plasticity and

facilitates the refinement of receptive field properties in juveniles (Katz, 1999; Quinlan

et al., 1999a; Quinlan et al., 1999b; Philpot et al., 2o00ola).

The idea that the NMDAR subunit switch might bring the critical period to

a close was attractive because the timing of the NMDAR subunit switch seemed to

coincide with a redudion in NMDAR function and the end of the critical period.

However, closer examination demontrated that NR2A levels in layer IV are maximal

during the period of maximal plasticity, not at the end, suggesting that the increase in

NR2A is not the ultimate signal for terminating juvenile ocular dominance plasticity

(Roberts and Ramoa, 1999; however, see Erisir and Harris, 2003). Moreover, NR2A

KO mice continue to exhibit an age-dependent decline in ocular dominance platicity

(Fagiolini et al., 2003), corroborating findings in the somatosensory cortex (Lu et al., 2001).

The second putative role for NMDA receptor subunits was that NR2A-

containing receptors were a requirement for the indudion of LTP, while NR2B

receptors were a requirement for the indudion of LTD (Liu et al., 2004; Massey et

al., 2004). This possibility was attractive because it provided a simple mechanism to

describe the developmental loss of NMDAR-dependent LTD observed in many regions

of the brain. However, the validity of these findings is now being quetioned because

these Atudies were conducted using nonSpecific concentrations of NR2A-seledive

antagonists (Neyton and Paoletti, 2006). Moreover, recent data contradidct the initial

findings that NR2A and NR2B play distinc roles in regulating the polarity of synaptic

plasticity (Berberich et al., 2005; Weitlauf et al., 2005; Zhao et al., 2005; Morishita et
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al., 2007; de Marchena et al., 2oo8). Finally accumulating evidence (Sakimura et al.,

1995; Lu et al., 200ool; Frenkel and Bear, 2004; Weitlauf et al., 2005; Philpot et al., 2007),

including findings from the present study, demonstrate that LTP can be induced in

NR2A KO mice, suggesting that a synaptic requirement of NR2A for LTP is overly

simplitic.

The current findings fit ben the theory that NMDA receptor subunit

composition regulates a sliding threshold for bidirecional synaptic plasticity

(Bienenstock et al., 1982; Katz, 1999). As previously demonstrated in layer II/III

(Philpot et al., 2007), we find in layer IV that reducing NR2A expression shifts the

optimal LTD stimulation frequency leftward and enables LTP at low Stimulation

frequencies. It has been suggested previously that the drop in NR2A/NR2B protein

that normally occurs between 3 and 5 days of MD enables the potentiation of the

non-deprived eye by shifting the modification threshold to the left (Chen and Bear,

2007). Our finding of reduced deprived-eye depression and precocious open-eye

potentiation after 3 days of MD in the Het and KO animals is consistent with this

theory. However, rather than setting the threshold per se, reducing NR2A appears

to remove a constraint on how faft it can adjusl, so that 3 days of contralateral-eye

MD is sufficient to cause potentiation of the ipsilateral-eye re sonses. Additional

mechanisms for adjuting the threshold independently of NR2A could include

regulation of NR2B (Chen and Bear, 2007) and/or the total number of NMDARs

at the synapse (Philpot et al., 2007), among other possibilities (Abraham, 2008;

Yoshimura et al., 200o8).

The current data are relevant to the recent debate over whether the

compensatory potentiation of the non-deprived eye after MD refleds a process

analogous to input-specific LTP enabled by metaplastic adjustment of the

modification threshold (Sawtell et al., 2003; Frenkel and Bear, 2004), or a cell-wide

process of homeostatic synaptic scaling (Mrsic-Flogel et al., 2007; Kaneko et al.,
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2008). Scaling is a phenomenon that does not require NMDAR activation (Turrigiano

and Nelson, 2004), so the ocular dominance plasticity phenotype in the NR2A

mutant mice is unlikely to result from altered scaling. Moreover, consitent with

findings in adult mice (Sawtell et al., 2003; Sato and Stryker, 2008), we find that the

re sonse potentiation caused by 7 days of MD in juvenile mice requires NMDAR

adivation. Therefore, the current findings implicate metaplaticity rather than scaling

as the mechanism for deprivation-induced re sonse potentiation, at leat in layer IV.

In conclusion, our data support the hypothesis that the experience-dependent

regulation of the NR2A/NR2B ratio is critical for adjuting the threshold for synaptic

modifications, both in vitro and in vivo. These data sugget that lowering the NR2A/

NR2B ratio might provide a permissive milieu for strengthening weak cortical inputs.

An exciting possibility is that manipulation of this ratio, either experientially or

pharmacologically, could be exploited therapeutically to promote synapse rewiring

after brain injury or disease.

MATERIALS AND METHODS

Subjeds: Mice deficient in NR2A were generously supplied by S. Nakanishi. The

mice were developed by replacing the region fanning the M2 transmembrane

segment of NR2A subunits with a neomycin resitance gene as previously described

(Kadotani et al., 1996; Sawtell et al., 2003; Sato and Stryker, 2008). A pathogen-free

line was rederived on a C57BL/6 background by Charles River Laboratories. WT

(+/+), heterozygote (+/-), and NR2A-KO (-/-) mice were used between postnatal

days (P) 21-28 for in vitro experiments and P24-P36 for in vivo experiments. Subjedts

were fed ad libitum and reared in normal lighting conditions (12/12 light/dark cycle).

All animals were handled according to the rules and guidelines set forth by the MIT

Animal Care Committee. There was no significant difference in AMPAR-mediated
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re~sonses across genotypes, as evidenced by the fadcts that (1) the baseline VEP

amplitudes were not different (Figures 3-2b, 3-3b), (2) the baseline FPs evoked in layer

IV by white matter aimulation were not different (Figures 3-2a 2 and 3-2a 3), and (3)

the stimulation intensities required to evoke a half-maximal FPs were not different.

Whole-cell recordings of AMPA/NMDA receptor ratios in layer IV cells revealed

no difference between KO and WT, suggesting a normal level of NMDA receptor

expression at these ages (data not shown). As described previously, changes in NR2A

gene dosage sytematically alter NR2A protein and the properties of NMDA receptor-

mediated synaptic currents in visual cortex (Philpot et al., 2007).

Cortical Slice Preparation: Following an overdose of barbiturates (i.p.), mice were

decapitated upon disappearance of corneal reflexes in compliance with the U.S.

Department of Health and Human Services. The brain was rapidly removed and

immersed in ice-cold dissedion buffer (composition: 87 mM NaC1, 2.5 mM KCI, 1.25

mM NaH PO 4, 25 mM NaHCO, , 75 mM sucrose, o10 mM dextrose, 1.3 mM ascorbic

acid, 7 mM MgC12, 0.5 mM and CaCI2) bubbled with 95% 02 and 5% CO 2. The visual

cortex was rapidly removed and 350 Vm coronal slices were cut using a vibrating

microtome (Leica VT100S). Slices recovered for 15 min in a submersion chamber at 32

'C filled with warmed artificial cerebral spinal fluid (ACSF; 124 mM NaCI, 5 mM KC1,

1.25 mM Na2PO4,, 26 mM NaHCO 3, 1 mM MgC12, 2 mM CaC12, and to mM dextrose,

saturated with 95% 02 and 5% CO 2) and then cooled gradually to room temperature until

use.

Extracellular Eledrophysiology: Slices were transferred to an interface recording

chamber maintained at 30 oC and perfused with ACSF at a rate of 2.5 mL/min. A

stimulation eledrode (concentric bipolar tungsten) was positioned in white matter,

and a glass recording eledrode (-1 MQ) filled with ACSF was positioned in layer
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IV. The magnitude of regsonses evoked by a 200oo sec pulse was monitored by the

amplitude of the field potential. Stimulation intensity was adjuted to elicit half the

maximal re@onse, and stable baseline re@onses were elicited every 30 sec. The

resulting signals were filtered between o.1 Hz and 3 kHz, amplified iooo times, and

captured at o0 kHz on an IBM-compatible computer using pCLAMP 9.2 software

(Molecular Devices). After achieving a table baseline (< 5% drift) for 15 minutes,

slices were stimulated with 90o pulses at 1 Hz or with 900 pulses at o.5 Hz. Field

excitatory postsynaptic potential (FP) amplitudes were recorded every 30 seconds

for 45 minutes following the cessation of the Stimulation protocol. The concentration

used for bath application of D-APV was so .M. Control and experimental subjects

were run in an interleaved fashion. Objedctive criteria (baseline drifts no greater than

5% and proper waveform alignment) were applied as inclusion criteria for further

analysis. The data were normalized, averaged, and reported as means + SEM. Changes

in synaptic strength were measured by comparing the average re@onse amplitude

35-45 minutes after conditioning stimulation to the pre-conditioning baseline resonse.

Miniature EPSC Recordings: Slices were maintained in ACSF containing 124

mM NaCI, 3 mM KCI, 1.25 mM Na 2PO4, 26 mM NaHCO, 1 mM MgC12, 2 mM CaC12,

and 20 mM D-glucose, saturated with 95% 02 and 5% CO2 with pH adjusted to

7.25 and osmolarity adjusted to 315 mOsm. Recording eledrodes were filled with

internal containing 20 mM KC1, loo mM (K)gluconate, to mM HEPES, 4 mM Mg-

ATP, 0.3 mM Na-GTP, and to mM Na-pho~Shocreatine with pH adjusted to 7.25

and osmolarity adjusted to 300 mOsm. AMPA receptor-mediated miniature EPSCs

(mEPSCs) were recorded in the presence of blockers for voltage-gated sodium

channels (tetrodotoxin; 200 nM), GABAA receptors (picrotoxin; 50 IM), and NMDA

receptors (D,L-APV; loo VM). To further block NMDA receptor currents the internal

recording solution contained 1 [iM MK8oi and mEPSCs were recorded at negative
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holding potentials (-80o mV). Events were firt identified using an automatic template

detedion program (pCLAMP; Molecular Devices) and then manually verified so

that only events with a monotonic rise time and exponential decay were included in

the analysis. Over too events were analyzed for each data point for each cell. AMPA

receptor-mediated mEPSC amplitudes in layer IV cells were not tatistically significant

between NR2A KO (18.58 ± 1.76 pA, n = lo neurons from 3 mice) and WT (18.90 + 1.30

pA, n = 13 neurons from 3 mice) mice.

In Vivo EleCrophysiology: VEP recordings were condudcted in awake mice as

described previously (Frenkel and Bear, 2004). Mice were anethetized with 50 mg/kg

ketamine and to mg/kg xylazine i.p. Tungten microelectrodes (FHC, Bowdoinham,

ME) were chronically implanted into binocular visual cortex at P24. Reference

electrodes were placed bilaterally into prefrontal cortex. All eledrodes were secured

in place with cyanoacrylate and the entire exposure was covered with dental cement.

For MD and BD, P27-P29 mice were anethetized by inhalation of isoflurane

(IsoFlo 2-3%). Lids were sutured using 6-0 vicryl. Animals were monitored daily

to ensure a full seal. Mice whose eyelids did not remain fully shut for the entire

duration of MD were excluded from the study. For CPP experiments, CPP (Tocris

Bioscience) or saline was delivered intraperitoneally every 6 hours at to mg/kg

(Heynen et al., 2003; Frenkel et al., 2006).

Visual Aimuli consited of full-field sine-wave gratings of o% and loo00%

contrast, square reversing at 1 Hz, and presented at 0.05 cycles/degree. VEPs were

evoked by either horizontal or vertical stimuli. As described previously, timuli of

orthogonal orientations were presented pre- and post-MD in order to avoid the

phenomenon of stimulus-seledive response potentiation (SRP) (Frenkel and Bear,

2004; Frenkel et al., 2006). Visual dislay occupied 920 x 660 of the animal's visual

field. Visual atimuli were presented to left and right eyes randomly. A total of loo-
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200 stimuli were presented per each condition. VEP amplitude was quantified by

measuring trough-to-peak response amplitude, as described previously (Sawtell et al.,

2003).

Statistics: Global ANOVA's with a repeated measures factor were run with post-hoc

analyses (Fisher's PLSD) to test for statistical significance between multiple groups.

Data expressed as means + SEM, and significance was placed at p < 0.05.

Drugs: Unless otherwise noted, drugs were purchased from Sigma.
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The ocular dominance shift following 3 days of MD is qualitatively different in NR2A KO,
Het, and WT mice.

(a) There is a significant decrease in C/I ratios of WT (n = lo), Het (n = 9), KO (n = 8) mice
following 3 days of MD. Average values of C/1 ratios (± SEM) are plotted. Asterisks indicate p <
o.ol. (b) Day o and day 3 waveforms, averaged across all individual experiments (scale: loo ms,
loo 1 V). Average trough-to-peak amplitude (± SEM, n = 1o) of VEPs in WT mice in re@onse to
deprived-eye (filled bars) and non-deprived eye (open bars) Stimulation during baseline (day o)
and after 3 days of MD. There is a significant decrease in the deprived-eye VEP amplitude and no
change in the non-deprived eye VEP amplitude (left). Average amplitude (+ SEM, n = 9) of VEPs in
Het mice in re@onse to deprived-eye (filled bars) and non-deprived eye (open bars) stimulation
during baseline (day o) and after 3 days of MD. There is a significant decrease in the deprived-eye
VEP amplitude and significant increase in the non-deprived eye VEP amplitude (middle panel).
Average amplitude (± SEM, n = 8) of VEPs in KO mice in response to deprived-eye and non-
deprived eye stimulation during baseline (day o) and after 3 days of MD. No change in deprived-
eye VEP amplitude is observed, but the non-deprived eye VEP amplitude is significantly increased
(right). Asterisks indicate p < 0.05.
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CHAPTER IV
Comparisons of mouse visual cortical layer IV recordings in vitro
and in vivo

Among the data presented in this chapter, chronic VEP recordings were done in collaboration with Lena
Khibnik and Dr Mikhail Frenkel.

ABSTRACT

The circuitry in which visual information flows to the cortex has been well defined

anatomically and electrophysiologically. These studies have provided a major basis

for evaluating both LTD/LTP and naturally occurring synaptic plasticities in layer

IV of visual cortex. However, the support for comparing in vitro white matter (WM)

stimulation with in vivo retinal stimulation has not been characterized. In vivo

platicity studies have the advantage of an intad visual sytem, whereas visual cortical

slices typically do not contain the presynaptic cell bodies of the thalamus that sends

information to cortex. In this study, we evaluate the diredct adctivation of thalamic

afferents in layer IV of visual cortex by WM stimulation in vitro. WM stimulation

adctivates thalamocortical axons, but it has not been demonstrated to be a valid

substitute for an intadct lateral geniculate nucleus (LGN) receiving patterned visual

stimulation in vivo. By performing a comparison of current source-density analyses,

using a novel pharmacological method to isolate thalamocortical input to cortex, and

testing a funcional assay, we demonstrate the validity in comparing mouse visual

cortical layer IV recordings evoked by WM Stimulation in vitro with patterned visual

stimulation in vivo.
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INTRODUCTION

Primary visual cortex is the first site of convergence of information from the two eyes.

The input from retina to cortex defines the receptive field properties of postsynaptic

cells in visual cortex (Sherman and Guillery, 1996; Sherman and Guillery, 1998). In the

mouse, visual Stimulation adivates the retinal ganglion cells, which relay information

along excitatory glutamatergic afferents to thalamic relay cells in the dorsal lateral

geniculate nucleus (LGN) (Coleman et al., 2009). The LGN then delivers this retinal

information with precision along excitatory axons that synapse primarily onto layer

IV cells (Alonso and Swadlow, 2005; MacLean et al., 20o6). Thalamic afferents in

layer IV of visual cortex relays visual information to cells in layer IV, which transfers

information to layers II/III, which continues to send feed-forward input to cells in

layers V/VI (Liu et al., 2008). Deep layer cells then process modulatory input back

to thalamus and non-thalamic subcortical strudures for more refined processing of

visual information (Brumberg et al., 2003).

Thus, layer IV cells conStitute a firt Stage of cortical processing for sensory

input. Therefore, many studies of the visual cortex aim to seledively adivate and

analyze responses of cells receiving thalamic input in layer IV of visual cortex. In

monkey, cat, and mouse, ocular dominance plasticity has been observed by Studying

reSponses evoked in layer IV in vivo in reSponse to patterned visual Stimulation (Hubel

et al., 1977; Shatz and Stryker, 1978; Frenkel and Bear, 2004). For that reason, many in

vitro Studies of the visual cortex aim to selectively adivate thalamic afferents in layer

IV of visual cortex by Stimulating white matter (Daw et al., 2004; Crozier et al., 2007).

However, there is Sarse evidence that the two preparations are recruiting the same

pathways, or if it is valid to correlate the findings from these two preparations.

With the use of the visual thalamocortical slice preparation, it is possible to

maintain the anatomical connedivity between LGN and visual cortex (MacLean et al.,

2006). MoSt importantly, MacLean et al. reported that layer IV cells in mouse primary



LAYER IV RECORDINGS, IN VITRO AND IN VIVO

visual cortex receive diredct LGN input. However, most in vitro studies prepare slices

that do not preserve an intact LGN. In order to study re@onses in layer IV of visual

cortex, a classical approach is to stimulate the thalamocortical axons that reside in

white matter (WM). Although synaptic re@onses can be reliably evoked in layer IV,

determining what portion of the re@onse is fundctionally from LGN has not been

characerized in the practice of stimulating WM to simulate acivation of a detached L,GN.

In the current atudy, we examined the relationship between WM stimulation

in vitro and patterned visual stimulation in vivo for responses evoked in layer

IV of mouse primary visual cortex. By performing current source-density (CSD)

analyses, we confirm that adctivity evoked in layer IV by WM stimulation is comprised

of direct LGN input. By utilizing a novel pharmacological method to suppress

intracortical adctivity and preserve thalamocortical input, we also observe that a

major portion of layer IV resonses evoked by WM stimulation is monosynaptic and

of thalamic origin. In this preparation, we show that the drug cocktail of muscimol

+ SCH50911 eliminates polysynaptic adctivity including intracortical inhibition and

reveals thalamocortical adctivity when recording both field potentials and whole cell

re Sonses evoked by WM atimulation. Latly, we show that experience-dependent

changes in synaptic atrength evoked in vivo occlude platicity ex vivo in an in vitro

preparation. Taken together, these data confirm that WM stimulation in vitro adctivates

thalamocortical fibers sufficiently to represent LGN acivation.

RESULTS

RETINOGENICULOCORTICAL PATHWAYS IN THE MOUSE VISUAL SYSTEM

To confirm the anatomical trajedctory of axons from retina to cortex, we first injeded

o.5% cholera toxin-B into the retina of postnatal day (P) 18 mice. Cholera toxin-B is a

sensitive neuroanatomical tool used to label anterograde and retrograde connedctions
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(Luppi et al., 1990). We allowed the tracer to diffuse for 24 hrs, resulting in the

labeling of the retinogeniculate pathway (Figure 4-la). Slices were then prepared

and imaged using confocal microscopy. Figure 4-lb presents an example of the

distribution of retinogeniculate cells labeled in mouse LGN; it is apparent that a

substantial portion of the dorsal LGN (dLGN) receives eye-*ecific input from retina.

To observe the anatomical connedions between LGN and cortex, o.5% cholera

toxin-B was injeced into the LGN in the same way described previously to label

the thalamocortical and corticofugal pathway (Figure 4-1c). Figures 4-Id-e show an

example of the anterograde and retrograde labeling of LGN afferents to and from

visual cortex. The greatest density of the thalamocortical input is to layer IV of visual

cortex; alternatively, considerable corticofugal input to LGN is from layer VI cells.

Thus, neurons from LGN receive retinal afferents, and layer IV of primary visual

cortex is the main entrance of sensory information from the LGN.

COMPARISON OF LAMINAR ACTIVATION PROFILES IN VIVO AND IN VITRO

CSD analyses have been used to determine the Satio-temporal pattern of current

sinks and sources at different depths within cortex (Mitzdorf, 1985). Postsynaptic

membrane currents are manifested as current sinks (inward currents) and sources

(outward currents) and are evoked by the acivation of presynaptic fibers. The CSD

profile in visual cortex in vivo is derived from a laminar adivation profile, which can

be generated by tracking a recording eledrode through the cortex while recording

visually evoked field potentials (VEPs) (Sawtell et al., 2003). While historically it was

used as a physiological method for the fundional identification of *Secific lamina

in cortex, it also reveals the properties of afferent adivity that are rekonsible for

generating laminar field potentials. In the in vivo preparation, the major source of

input from LGN is to layer IV of visual cortex, as determined by its maximal

current sink (Figure 4-2a).
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As a result, layer IV was established to be the appropriate laminar position

to record thalamorecipient cells. Recording VEP amplitudes in layer IV evoked

by patterned visual stimulation has proven to be a useful technique to determine

how visual experience can modify sensory processing. In addition to studying the

properties of ocular dominance (OD) plasticity in this cortical layer, this method

has been useful in understanding how repeated exposure to *secific sensory

stimuli can modify and improve perception of visual 9timuli in mouse visual cortex

(Sawtell et al., 2003; Frenkel and Bear, 20o4; Frenkel et al., 2006). This phenomenon,

called stimulus-seledive re sonse potentiation (SRP), is a seledctive enhancement

of resonses in layer IV of mouse visual cortex to repeated presentations of visual

atimuli of a particular orientation. Accordingly, CSD analyses performed in vivo have

confirmed that the changes in the amplitude of the layer IV VEPs following both the

alterations in ocular dominance and the indudction of SRP refledct changes in synaptic

current sinks in this layer (Sawtell et al., 2003; Frenkel et al., 200oo6). Therefore, to

undertand and compare the in vivo and in vitro pattern of cortical adctivation in

the mouse, there is a need to perform a CSD profile by recording extracellular field

potential resonses in layer IV evoked by WM stimulation in a slice.

In a visual cortical slice preparation, a recording elecrode was tracked from

pial surface to WM in loo Vm Steps. At each recording depth, ten 200 [tsec biphasic

pulses were delivered to the WM, re sonses were averaged and a corre sonding

one-dimensional (depth) CSD profile was congtruded (Figure 4-2b). WM stimulation

produced a maximal current sink in layer IV of visual cortex. Therefore, the CSD

analysis confirmed that the maximal negative-going extracellular field potential (FP)

evoked in layer IV of mouse visual cortex by WM stimulation in vitro reflects

a current sink qualitatively similar to the VEP in vivo. These data lead us to

conclude that the greatest source of thalamic input in both in vitro and in vivo

preparations is to layer IV cells.
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CHARACTERIZATION OF THALAMIC INPUT TO VISUAL CORTEX BOTH
IN VIVO AND IN VITRO

While it is known that visual processing consists of feed-forward inputs to cortex,

intracortical processing, and feed-back inputs to LGN, we wanted to confirm that the

field potentials we measure with VEPs and those following WM Stimulation refledt

feed-forward thalamacortical synaptic currents (Miller et al., 2001ool). Recently, Liu and

colleagues developed a method for the functional dissection of thalamic and cortical

circuits by silencing intracortical activity and isolating thalamic input to cortex (Liu

et al., 2007). By infusing a cocktail of muscimol (GABAA receptor agonist to eliminate

polysynaptic intracortical activity) and SCH50911 (*Secific GABAB receptor antagonist

used to overcome the nonSecific effect of muscimol on presynaptic transmission),

they were able to preserve the monosynaptic, thalamic input to auditory cortex in vivo.

We first sought to Study the thalamocortical input to visual cortex in vivo by

infusing the drug cocktail during patterned visual stimulation. Similar to what Liu

and colleagues observed, application of the drug cocktail eliminated cortical S@iking

(Figure 4-3a-b) and preserved measurable thalamocortical re@onses (Figure 4-3c).

The next step was to establish that the drug cocktail could eliminate polysynaptic

adtivity in vitro. To do so, we recorded a series of stable reSonses in layer IV in

reSonse to WM Stimulation, then we recorded reSonses following bath application

of SCH50911 (70 [aM), followed by muscimol (50 aM), and finally by CNQX (lo 1 M)

to eliminate all synaptic activity. Field potentials (FPs) and postsynaptic potentials

(PSPs) of single neurons were simultaneously elicited in layer IV by WM stimulation

in visual cortical slices prepared from mice at P21-P28 (Figures 4-4a, 4-4b). Somatic

whole-cell current-clamp recordings were obtained from pyramidal neurons and

maintained at = -go90 mV, which is below the calculated reversal potential for chloride

in our experiments (-82 mV) (Figure 4-4b). Thus, all polysynaptic adctivity, including

depolarizing inhibitory postsynaptic potentials (IPSPs), is observed in the intracellular

recordings following stimulation of WM. In order to show that intracortical inhibition
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is eliminated with the use of the drug cocktail, we also examined both excitatory

potsynaptic potentials (EPSPs) and IPSPs in pyramidal neurons of layer IV evoked by

WM atimulation (Figure 4-4c). These somatic whole-cell current-clamp recordings

were maintained at ; -40 mV, a relatively depolarizing steady-state potential, and a

higher stimulation intensity was used to reveal both EPSP and IPSPs in the response.

Bath application of SCH50911 alone did not alter field potential re sonses

(field potential re@onses: loo.22 ± 3.4 % of baseline, n = 9, p = 0.96, Figure 4-4a 2 ),

however there was a significant reduction of whole-cell re@onses (85.15 ± 6.36 %

of baseline, n = 8, p = 0.003, Figure 4-4b, ) . The initial reduction of the whole-cell

re onse by SCH50911 can be attributed to the loss of GABAB receptor-mediated

inhibition of the depolarizing IPSPs. Bath application of both SCH50911 and muscimol

significantly reduced the synaptic re~sonse as assayed in both field potential and

PSP recordings (field potential responses: 47.1 ± 5.7 % of baseline, n = 7, p < 0.0001,

Figure 4-4a 2; whole-cell reSonses: 24.67 ± 2.57 % of baseline, n = 7, p < 0.oool,

Figure 4-4b). In the set of experiments detecting both EPSP and IPSPs, following bath

application of SCH50911, the late onset inhibition incurred by the GABA B receptor

adctivation is eliminated but does not change the overall amplitude of the reSponse

(EPSP: SCH50911: 103.53 ± 8.44 % of baseline, p = 0.68; IPSP: SCH50911: 100.32 ± 11.o %

of baseline, p = 0.97, Figure 4-4c1). In addition, bath application of both SCH50911 and

muscimol eliminated all polysynaptic activity, including inhibition, in the re@ponse

(EPSP: muscimol + SCH50911: 71.42 ± 8.88 % of baseline, n = 11, p = o.oo02; IPSP:

muscimol + SCH50911: 1.65 ± 1.37 % of baseline, n = 11, p < o.oool, Figure 4-4c 2 ).

The reduction of all reponses following SCH50911 + muscimol can be interpreted as

the loss of intracortical activity while the thalamocortical input to cortex is largely

preserved (Liu et al., 2007).

The kinetics of the cortical activation pattern in resonse to thalamic

adtivation in the absence of the drug cocktail reflects a combination of both

thalamocortical and intracortical components. For instance, the fat rising phase of
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the resonse represents monosynaptic, thalamocortical input, whereas the slower

phases represent integrated local and thalamic input. As expeded, the latency to peak

of the intracellular recordings decreased to one rapid phase following application

of the drug cocktail, suggesting that the slower phase is due to intracortical adivity

(baseline: 10.o9 ± 0.57 ms, n = 9; SCH50911: 9.55 ± 0.79 ms, n = 8, p = 0.53; muscimol

+ SCH50911: 5.32 ± 0.34 ms, n = 7, P < o.oool, Figure 4-4b 3 ). Interestingly, the latency

to peak of the field potential recordings did not change prior to and following the

experiment irresedive of the presence of the drug cocktail (baseline: 5.48 + 0.29

ms, n = 9; SCH50911: 5.30 ± 0.25 ms, n = 9, p = 0.67; muscimol + SCH50911: 5.31 ±

0.36 ms, n = 7, p = 0.70, Figure 4-4a 3 ). Therefore, moft of the field potential re sonse

is of monosynaptic, thalamic origin. For the whole-cell recordings maintained at

-40 mV, there are two peaks in the EPSP portion of the reSonses. The firt peak

represents thalamocortical activity, whereas the second peak represents intracortical

adctivity. Following application of SCH50911 + muscimol, however, the multiple peaks

in the EPSP are reduced to one monosynaptic peak. Since thalamocortical resonses

typically have a higher intensity threshold (Liu et al., 2007), the use of higher

stimulation intensity explains the same latency to peak of the responses throughout

the experiment (baseline: 4.73 ± 0.40 ms, SCH50911: 4.46 ± 0.35 ms, p = 0.65;

muscimol + SCH50911: 4.85 ± 0.40 ms, p = 0.98, n = 11, Figure 4-4c 3 ).

Confirming that the remaining FPs and PSPs were a result of excitatory

monosynaptic activity, the synaptic responses of both field and whole-cell recordings

were eliminated following bath application of lo [M CNQX (field potential resonses:

12.5 ± 12.5 % of baseline, n = 5, p < o.oool, Figure 4-4a 2 ; whole-cell re@onses: 5.35

± 1.22 % of baseline, n = 5, p < o.ooo1, Figure 4-4b.; EPSP: lo0.9 1.84 % of baseline,

n = 11, p < o.ooo1; IPSP: o ± o % of baseline, n = 11, p < o.oooi, Figure 4-4c2 ).

Taken together, these data lead us to conclude that extracellular field potentials and

intracellular recordings in layer IV evoked by WM 9timulation are representative

primarily of monosynaptic, thalamic input.
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CHANGES IN SYNAPTIC STRENGTH IN VIVO ALTER SUBSEQUENT
PLASTICITY IN VITRO

To show that the effeds of in vivo platicity can be studied in vitro, we tested the

phenomenon of stimulus-seledive re sonse potentiation (SRP) ex vivo. SRP is a

seledive enhancement of re onses in layer IV of mouse visual cortex to repeated

presentations of timuli of a particular orientation that are presented to the awake

mouse over a number of days (Frenkel et al., 2oo6). It has been shown that the

inStrudive effed of repeated presentations of a particular visual Stimulus can be

relayed and modified in mouse visual cortex, such that it will cause a Stable increase

in the magnitude of the cortical re~onse to that particular Stimulus. Preventing

adivity-dependent insertion of AMPA receptors into synapses, an event that has

been shown to underlie LTP expression, blocked the increase in synaptic Strength

following SRP training. But can these plastic changes incorporated in vivo occlude

plaStic changes induced in vitro? It has already been demonstrated that changes in

synaptic Strength in vivo can alter subsequent plasticity in vitro. For inStance, slices

prepared from animals that have been reared in the dark demonstrate greater LTP

than in animals reared in normal light conditions (Kirkwood et al., 1996; Philpot et al.,

2007). Similarly, platic changes incurred in vivo such as the depression of deprived-

eye reSponses following monocular deprivation, occludes LTD in a slice preparation ex

vivo (Heynen et al., 2003; Crozier et al., 2007). Thus, when Frenkel et al. demonstrated

a novel form of perceptual learning in the visual cortex, it was important to determine

if this phenomenon utilized the mechanisms of LTP in visual cortex. This can be

tested in vitro by examining the magnitude of LTP following indudion of SRP. If

SRP utilized the same mechanisms that subserve LTP, then LTP should be occluded

from slices from these animals, which can be tested by inducing LTP ex vivo. In

these experiments, recording eledrodes were implanted in layer IV of the binocular

region of mouse primary visual cortex at P26. The mice were given a daily exposure

to stimuli of several orientations over a period of 4 days to induce SRP and at P36,
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visual cortical slices were prepared (Figure 4-5a). Extracellular FPs were recorded in

layer IV evoked by WM stimulation. To test for gross differences in basal synaptic

transmission, we generated input-output curves from both control (animals presented

with a grey screen only) and trained animals undergoing SRP. In all comparisons,

the experimenters were blind to training experience. This analysis revealed that SRP

training enhanced the input-output curves of FP re onses in layer IV (SRP: n = 6,

control: n = 8, Figure 4-5b). To assess differences in cortical plasticity, a theta burst

(TBS) protocol that typically induces LTP in control animals was used to induce

plasticity in slices from both groups of animals. As expedcted in control animals, we

found that TBS of WM resulted in a significant potentiation of responses in layer IV

(108.57 + 2.64 % of baseline, n = 5, p < o.o5, Figure 4-5c). Conversely, in those animals

that underwent SRP, we found that the ability to induce LTP was occluded (97.96

± 1.89 % of baseline, n = 6, p = 0.15, Figure 4-5c). Therefore, plastic changes in the

visual cortex following patterned visual stimulation in vivo can occlude subsequent

platicity in vitro. Overall, these studies indicate a valid comparison between in vitro

and in vivo recordings in layer IV evoked by either WM stimulation of patterned visual

stimulation, re sedtively.

DISCUSSION

The visual cortex has become an excellent model sytem for undertanding the

mechanisms of experience-dependent plasticity. It is well supported that layer IV of

visual cortex receives the bulk of visual information diredctly from LGN, which has led

to a number of studies recording adcivity in this layer in response to visual Stimulation

in vivo (Sawtell et al., 2003; Frenkel and Bear, 2004; Frenkel et al., 200o6; Crozier et al.,

2007; Cho et al., 2009). Although elecdrical stimulation of white matter is believed

to timulate thalamocortical axons to layer IV in vitro, it has not been proven to be a

good subStitute for the LGN strudure itself.
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Our findings strongly support the notion that relating the plastic changes

induced by WM stimulation and those induced by patterned visual stimulation in vivo

is a valid comparison. We found that anatomical tracing of the retinogeniculocortical

pathway leads to labeling of thalamic afferents primarily in layer IV of mouse visual

cortex. To determine the visual cortical recipient of thalamic afferent adctivity, CSD

analyses shows a maximal current sink in layer IV in both preparations (Sawtell et

al., 2003). The use of a pharmacological method to isolate thalamic input to cortex

demontrates that a large portion of the extracellular FP and whole-cell resonses in

layer IV is monosynaptic and of thalamic origin. Lastly, the intrudive effect of SRP

training in layer IV in vivo occludes layer IV platicity in vitro.

While the use of the muscimol and SCH50911 drug cocktail has been shown

to largely preserve thalamic input to cortex in vivo, a few limitations arise when using

WM stimulation to evoke responses in layer IV (Liu et al., 2007). In particular, this

type of stimulation will adivate all fibers that pass near the stimulating electrode,

including axons of pyramidal cells located in supra- and infragranular layers. Some

of these pyramidal cells make collateral synapses in layer IV. Therefore, even if

polysynaptic activity is blocked via use of the drug cocktail, one cannot confirm

whether the synaptic resonses in layer IV are entirely due to thalamic input or

collaterals of other pyramidal cells. While the possibility of stimulating nonthalamic

fibers exists in this preparation, it is evident from the rapid kinetics of the resonse

following application of the drug cocktail that the activity is monosynaptic and of

thalamic origin. Thus, the molt plausible interpretation to make from this experiment

is that mostly axons originating from thalamus are being activated.

Overall, it is rather amazing that thalamocortical adctivity described here can

be deteded in an in vivo or an in vitro preparation. For example, in the cat visual

system, it has been estimated that 5% of geniculate relay cells receive input from retina

(Van Horn et al., 2000). From the 5% of LGN relay cells that convey visual information,
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only 5-10% of cells in layer IV receive feed-forward transmission of visual information

from thalamic afferents (Ahmed et al., 1994). The reat of the input to LGN is involved

in modulatory fundction from cortex and various braintem sites, thus illustrating

a tightly coupled bidirectional interadction between thalamus and visual cortex

(Sherman and Guillery, 2oo6). In the mouse visual system, neuroanatomical tracing

and morphometric techniques have revealed that about 50o-6o% of retinal ganglion

cells make synapses in LGN (Drager and Olsen, 1980; Coleman et al., 20o09). Almost

all of the relay cells in LGN send afferents to the visual cortex, 20% of which project

to interneurons (Coleman et al., 2009). However, in mouse, the percentage of layer

IV cells that receive thalamic input has not been quantified. Nevertheless, the ability

to detedct this synaptic transmission and the changes made in layer IV of visual cortex

following manipulations of visual experience in vivo is fascinating. Even more so,

the ability to stimulate a subset of thalamocortical axons that are functional after

dissection from LGN and to record a measurable thalamic response in vitro is

rather extraordinary.

MATERIALS AND METHODS

Subjeds: Wild-type C57BL/6 mice (postnatal day 18-28) were obtained from Charles

River Laboratories and housed at MIT. Subjects were fed ad libitum and reared

in normal lighting conditions (12/12 light/dark cycle). All animals were handled

according to the rules and guidelines set forth by the MIT Animal Care Committee.

Ocular Injedions: For ocular injections, mice were anesthetized by inhalation of

isoflurane (1%-2%) and placed under a surgical microscope. The temporal portion of

the conjundiva was exposed. To access the vitreal chamber, the temporal portion of

the globe was reflected anteriorly by gently pulling a 7-0 silk suture that was threaded

through the conjunciva and secured to the operating surface. The conjundiva was
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then trimmed using fine angled scissors to expose the sclera. A small pundcture was

made into the vitreous chamber with a fine needle posterior to the corneoscleral

jundction. A glass micropipette with a tip diameter of 30 1m was attached to a

manually driven microinjedion apparatus (MMP, World Precision Instruments,

Sarasota, FL, USA) and inserted into the vitreous chamber at a depth of approximately

2 mm. Both eyes were injeded with approximately 1.o pL of cholera toxin-B (CTB)

subunit conjugated to Alexa-488 (green) and Alexa-555 (red) (Invitrogen, Carlsbad,

CA, USA) (0.5% in o.ol M pho shate-buffered saline and 2.o% DMSO). Following

injedction, the eye was rinsed with aterile eye drops and coated with an antibiotic

ointment to prevent infecion.

dLGN Injedions: Mice were anesthetized with a mixture of ketamine and xylazine

and prepared for tereotaxic injedctions as previously described (Frenkel et al., 2oo006).

The following tereotaxic coordinates were used for each region: dLGN: -1.7 mm

posterior to bregma and 3.3 mm lateral from the midline, 2.50 mm down from the

dural surface. A small burr hole (1.o mm in diameter) was made at each coordinate

and a small bone flap was removed to expose the underlying dura and cortex. Dyes

(prepared as described above) were injedcted using a Nanojed II injedction sytem

(Drummond Scientific, Broomall, PA, USA). Tip diameter for injedion pipettes was

approximately 20 Vim and to x 13.2 nL (pausing 10-15 sec between injedions) was

injedcted into dLGN. The pipette was left in place for 2-5 min. Upon removal of the

pipette, the exposed skull was covered with dental cement and the animals were

allowed to recover for 2-3 days prior to perfusion.

Tissue Preparation and ImmunohiStochemitry: Animals were euthanized

by an overdose of pentobarbital and transcardially perfused with 50o mL of 4%

paraformaldehyde in o.1 M phosphate buffer. Eyes and brains were removed and
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potfixed for 1 day at room temperature or 2-5 days at 4 oC. For tracer-labeled brain

tissue, loo [Im-thick sections were cut in the coronal plane using a vibratome. Serial

sedtions were mounted onto glass slides (Superfroft Plus, Fisher Scientific, Pittsburgh,

PA, USA), and allowed to adhere. The addition of DMSO to the CTB solutions

facilitated the @read of label in retina and brain tissue. Samples were included for

analysis if CTB tracer was present though the entire extent of medial dLGN or if

the overlying optic tract was thoroughly labeled. All sedctions and flat-mounts were

covered with an aqueous-based mounting medium (Biomeda GelMount, Foster City,

CA, USA) and coverslipped, allowed to cure at room temperature for 2-18 hrs and

then sealed with clear nail polish to prevent drying.

Confocal Imaging: All images (lo24xLo24 pixels unless otherwise noted) were

acquired with an Olympus (Melville, NY, USA) FluoView 300 laser-scanning confocal

microscope and FluoView 500 acquisition software using appropriate filter sets and

excitation lasers. An Olympus 4x UPLanFI objedctive (NA=o.13) was used to acquire

low-magnification images of visual cortex, with the confocal aperture (CA) set to 3

to maximize sensitivity. When acquiring images for morphometric analyses, we used

Olympus lox UPLanFl (NA=o.3o) air objectives for the dLGN. For these images, the

CA was set to reduce noise and minimize colledction of signal outside the excitation

plane (CA=1 for lox; CA=2 for 2ox). In order to obtain adequate signal for delineating

dLGN regions containing contralateral- or ipsilateral-eye afferents, four to five optical

sedtions (1.o pm step size) were acquired by scanning + 2-2.5 pm from the brightest

focal plane.

Cortical Slice Preparation: Following an overdose of barbiturates (i.p.), mice were

decapitated upon disappearance of corneal reflexes in compliance with the U.S.

Department of Health and Human Services. The brain was rapidly removed and

immersed in ice-cold dissedion buffer (composition: 87 mM NaC1, 2.5 mM KC1, 1.25

mM NaH 2PO 4, 25 mM NaHCO,, 75 mM sucrose, to mM dextrose, 1.3 mM ascorbic
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acid, 7 mM MgCl 2, 0.5 mM and CaCI2) bubbled with 95% 02 and 5% CO 2 .The visual

cortex was rapidly removed and 350 am coronal slices were cut using a vibrating

microtome (Leica VTlooS). Slices recovered for 15 min in a submersion chamber

at 32 oC filled with warmed artificial cerebral @inal fluid (ACSF; 124 mM NaCI, 5

mM KC1, 1.25 mM Na2PO 4, 26 mM NaHCO 3, 1 mM MgCI2, 2 mM CaCI 2, and to mM

dextrose, saturated with 95% 02 and 5% CO2) and then cooled gradually to room

temperature until use. At the completion of the recording session, the recording

eledctrode was lifted along the z-plane and its tip immersed in FluoSpheres polytyrene

micro@heres and returned to its recording site to verify layer IV localization. The

sedtion was then mounted on gelatin-coated slides and fluorescently stained for Nissl

subtance (Neurotrace, Molecular Probes).

Visual Stimuli: For the drug cocktail infusion experiments, visual stimuli consited

of full-field sine wave gratings (o.o5 cycles/deg) of loo% contrast, square-reversing

at 1 Hz. For the SRP experiments, visual stimuli consited of full-field sine wave

gratings (o.o5 cycles/deg) of varying contrast (o%-loo%); VEPs were elicited by either

horizontal, vertical of oblique (450 or 135 °) bars. Stimuli were generated by a VSG2/2

card (Cambridge Research Sytem, Cheshire, UK) and presented on a CRT computer

monitor suitably linearized by gamma correction. The display was positioned 20 cm

in front of the mouse and centered on the midline, thereby occupying 920 x 660 of

the visual field. Mean luminance, determined by a photodiode placed in front of the

computer screen, was 27 cd/m2.

In Vivo Eledrophysiology: VEP recordings were conducted in awake mice as

described previously (Frenkel et al., 2006). Mice were anesthetized with so mg/kg

ketamine and to mg/kg xylazine i.p. Tungsten microeledrodes (FHC, Bowdoinham,

ME) were chronically implanted into binocular visual cortex at P26. Reference

eledctrodes were placed bilaterally into prefrontal cortex. A small craniotomy (-1

mm) was made over binocular visual cortex (3 mm lateral to lambda), and tungten
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microeleArodes (FHC, Bowdoinham, ME) were inserted 450 m below the cortical

surface. For the drug cocktail infusion experiments, a second small craniotomy was

made 0.5 mm lateral and 0.5 mm posterior to the eledctrode placement. A guide

cannula (Platics One, Roanoke, VA) was inserted 150 om below the cortical surface

at -45 ° angle to the plane of electrode placement, thereby minimizing the distance

between the tip of the electrode and the tip of the cannula. All eledrodes were

secured in place with cyanoacrylate and the entire exposure was covered with dental

cement. Animals were monitored postoperatively and were allowed at leat 24 hour

recovery period before habituation to the restraint apparatus.

Infusion: On the day of infusion, the dummy cannula was removed and replaced with

a 33 GA infusion cannula, attached with tubing to a loo L Hamilton syringe (VWR,

West Chester, PA). The drug cocktail of muscimol (4 mM) and SCH50911 (6 mM),

or artificial cerebro~Sinal fluid (ACSF), was infused with an infusion pump (VWR,

West Chester, PA) over a 5 minute period at a rate of 6 L/hr. VEPs were recorded

throughout the infusion and after the infusion for an additional 1 hour or until the

effect of the drug was observed.

Current Source-Density Analysis: In vivo CSD analysis was performed in order

to determine the satiotemporal pattern of current sinks and sources evoked in the

visual cortex by pattern grating stimulation. In these experiments in addition to a

reference recording eledrode positioned at dural surface, a second roving eledrode

was tracked down through the visual cortex in loo lrm steps. At each recording

depth > 300 VEPs were colleded for contralateral, ipsilateral, and binocular viewing

conditions. Roving electrode penetrations were performed perpendicular to the

cortical surface to a depth of 1.4-1.6 mm from the dural surface. The recording

eledrode was then withdrawn in loo lm teps and the recording and atimulating

procedure repeated. Dorso-ventral tracking of the roving electrode had no observable
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effect on the magnitude or location of current sinks and sources. At the completion

of each recording session small eledctrolytic lesions were made at various depths along the

recording track to allow for verification of the location and track of the roving eledrode.

In vitro CSD analysis was performed to determine the *satiotemporal pattern

of current sinks and sources evoked in layer IV by biphasic stimulation at the white

matter/VI boundary of primary visual cortex. The glass recording eledrode (-1

MQ) filled with ACSF was tracked down through the layers in ioo rm steps. At each

recording depth, ten 200o jsec pulses were delivered by biphasic stimulation (A-M

Sytems Isolated Pulse Stimulator Model 21oo) and the re sonses were averaged.

From the FPs colleded both in vivo and in vitro, the corregonding one-

dimensional (depth) CSD profile was construdcted according to the method described

by Mitzdorf (Mitzdorf, 1985), using a 4atial differentiation grid of 200 IPm. A full

account of the theoretical basis of CSD analysis has previously been presented

(Freeman and Nicholson, 1975; Mitzdorf, 1985).

Extracellular Eledrophysiology: Slices were transferred to an interface recording

chamber maintained at 30 oC and perfused with ACSF at a rate of 2.5 mL/min. A

Stimulation electrode (concentric bipolar tungSten) was positioned in white matter,

and a glass recording elecrode (-1 MQ) filled with ACSF was positioned in layer

IV. The magnitude of regonses evoked by a 200 [sec pulse was monitored by the

amplitude of the field potential. Stimulation intensity was adjuted to elicit half the

maximal resonse, and Stable baseline reSfonses were elicited every 30 sec. For the

SRP ex vivo experiments, once a Stable baseline of 15 minutes was colleded, slices were

Stimulated with a theta burst Stimulation protocol and field excitatory potsynaptic

potential (FP) amplitudes were recorded every 30 seconds for 45 minutes following

the cessation of the stimulation protocol. Control and experimental subjedcts were run

in an interleaved fashion. Objedctive criteria (baseline drifts no greater than 5% and

proper waveform alignment) were applied as inclusion criteria for further analysis.

The data were normalized, averaged, and reported as means + SEM. Changes in
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synaptic strength were measured by comparing the average re sonse amplitude 35-45

minutes after conditioning timulation to the pre-conditioning baseline response. For

the drug cocktail experiments, re sonses were recorded every 20 sec. The resulting

signals were filtered between o.1 Hz and 3 kHz, amplified looo times, and captured

at io kHz on an IBM-compatible computer using pCLAMP 9.2 software (Molecular

Devices).

Current-Clamp Recordings: The internal solution consisted of: 130 mM

K-gluconate, 4 mM KC1, 2 mM NaCI, to mM HEPES, o.2 mM EGTA, 4 mM Mg-ATP,

0.3 mM Na-GTP, 14 mM phofhocreatine, 0.2% biocytin, with pH adjuted to 7.26,

and osmolarity adjuted to 296 mOsm using ddH20. Pipette resistances were =6

M( when filled with internal solution. For current-clamp recordings, stimuli (o.2

msec) were delivered at o.o5 Hz. Recordings were considered acceptable if membrane

potentials were maintained between -55 and -70 mV. At least s stable responses were

colleded before and after infusion of SCH50911, muscimol, and CNQX. EPSPs and

IPSPs were acquired and analyzed via pClamp and Clampfit software. The reversal

potential of chloride of these solutions is -82 mV.

Data Analysis: As a control, ACSF infusion does not significantly alter VEP amplitude

(data not shown) in the in vivo drug cocktail experiments. In the muscimol +

SCH50911 experiments, all resonses over an hour of recording were summed and

the mean was reported. All tatistical analyses were performed using StatView 5.o.1

(Abacus Concepts, Berkeley, CA). A Student's paired t-teft or global ANOVA was

always performed where appropriate, and relevant poSt-hoc comparisons were made

using Fisher's protedcted least square difference analysis. In all cases, significance was

set at p < 0.05.

Drugs: Unless otherwise noted, drugs were purchased from Sigma (St. Louis, MO).
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Distribution of anterograde and retrograde connections in the mouse visual system.

(a) Schematic of the visual pathway in mouse. The widths of the triangles and lines in the

cartoon reflect the relative magnitude of the contralateral and ipsilateral (green) retinogeniculate

and geniculocortical projedions. The dl.GN afferents serving each eye converge onto a subset of

binocular cortical neurons in visual cortex (red). Adapted from Coleman et al., 200oo9.

(b) Example confocal image showing the ditribution of retinal ganglion cell axon termination

zones from both contralateral and ipsilateral retinas labeled by intraocular injection of 0.5%

cholera toxin-B conjugated with Alexa-488 (green). An outline of dLGN is indicated in white.

(c) Example confocal image showing the central location of the injection site in the dLGN of o.5%

cholera toxin-B conjugated with Alexa-555 (red). (d-e) The panels contain example confocal

images of retrograde and anterograde tracing experiments with cholera toxin-B that were used to

anatomically define the location of LGN inputs to and from cortex. The distribution of thalamic

afferents in visual cortex is motly in layer IV; cell bodies in layer VI send feedback to the LGN.

Scale bars: 200 [m.
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Comparison of in vivo and in vitro CSD analyses/Laminar activation profiles produced by

patterned visual stimulation in vivo or WM stimulation in vitro

The left column in (a) and (b) shows field potentials (FPs) recorded at different cortical depths in

re sonse to patterned visual stimulation in vivo or WM stimulation in vitro, respedively. Cortical

layers and depths are indicated at the left of each panel. The right column of (a) and (b) presents

CSD profiles obtained from the FPs using a spatial differentiation grid of 200 pm. Current

sinks are downward and shaded, and current sources are upward going. The bottom trace (E)

is summation of all CSD traces across depth. In both preparations, the maximal current sink

is in layer IV. (a) Adapted from Sawtell et al., 2003. (c) Nissl-stained coronal sedion showing

fluorescent yellow beads in layer IV, indicating position of recording eledrode tip at layer IV.

Scale bar: 200 pm.
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Isolation of the thalamocortical component of the VEP in vivo.

(a) VEP amplitude recorded before (gray circles) and immediately after (black circles) infusion

of the muscimol + SCH50911 cocktail. The binocular VEPs were recorded continuously for 2

hours. (b) The amplitude of the responses decreased following drug infusion to about 30-40%

of the baseline value, the same as was reported by Zhang and colleagues (Nature Neuroscience,

2007). (c) Following drug infusion the amplitude of the resonses decreased, but remained

stable and measurable (arrows indicate time of stimulus reversal). A negative component

remained, reflecting a current sink in layer IV (the input layer for the thalamocortical axons) and

representing the synaptic activation of layer IV neurons. Adapted from Khibnik et al., 2009 (in

preparation).
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Isolation of the thalamocortical component to layer IV field potential and whole-cell

resonses evoked by WM stimulation in vitro.

(al) Overlay of averaged FP waveforms before (black) and after bath application of SCH50911

(dark grey), muscimol (grey), and CNQX (light grey). FPs were recorded simultaneously in

the same slices as the whole-cell recordings maintained at -90 mV (n = 5-9 slices). Following

SCH50911 + muscimol, the potsynaptic response becomes of thalamic origin and reduces

in amplitude. (bl and cl) Overlay of averaged PSP waveforms before (black) and after bath

application of SCH50911 (dark grey), muscimol (grey), and CNQX (light grey). Following

SCH50911 + muscimol, the potsynaptic response loses its polysynatic activity and reflects

monosynaptic events which are reduced in amplitude. (bl) Current-clamp recordings of
potsynaptic potentials evoked by WM stimulation. Cells are recorded at -90 mV to reveal all

polysynaptic adivity, including depolarizing IPSPs (n = 5-9). (cl) Whole-cell current-clamp

recordings of excitatory (indicated by black arrowhead) and inhibitory (indicated by white

arrowhead) potsynaptic potentials evoked by WM stimulation. Cells are recorded at -40 mV
to reveal both EPSP and IPSP (n = 11). Following application of SCH50911, the late onset of
GABAergic inhibition is blocked. (a2 , b2 , and c2 ) Normalized amplitudes as a percentage of
baseline (± SEM) before and after drug cocktail application. All experiments ended with CNQX
infusion to block synaptic adctivity. (a3 , b3 , and c3 ) Averaged time to peak (± SEM) latencies

before and after cocktail application.
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CHAPTER V
Implications and Future Directions

Our findings provide experimental support that both experience and NMDAR subunit

composition regulate the sliding modification threshold of synaptic plasticity as

outlined by the BCM theory. The BCM theory is an influential model that proposes a

mechanism by which neurons can acquire seledctivity for such properties as ocularity

and orientation preference (BienenStock et al., 1982). The model suggests that

stimulus seledivity and synaptic stability arise due to two neuronal properties: (1)

synapses are bidiredionally modifiable, and (2) the ability to strengthen or weaken

a synapse is a fundction of the adctivation hitory of the neuron, a process termed

metaplasticity. That is, periods of low adivity alter the regulation of synaptic platicity

such that the atrengthening of synapses is favored, and periods of great adctivity will

alter the modification threshold to favor the weakening of synapses. But how do these

changes in synaptic strength vary as a fundction of the integrated postsynaptic adivity

of a neuron? The experiments described in this thesis were aimed at determining: (1)

how the modification threshold shifts, and (2) a cellular mechanism by which visual

experience modifies the modification threshold.

In support of the BCM theory, previous atudies have demonstrated that

the threshold for synaptic modifications can be modified by visual experience; the

induction of LTP is favored in the visual cortex of animals reared in the dark as



IMPLICATIONS AND FUTURE DIRECTIONS

compared to that of light-reared controls (Kirkwood et al., 1996; Philpot et al., 2007),

suggesting that low adctivity in dark-reared animas shifts the modification threshold

to the left (Figure 2-5a). Subsequent biochemical findings have shed further light

on the synaptic mechanisms underlying experience-dependent modifications in the

properties of synaptic plasticity. For instance, visual experience increases the levels of

NR2A protein in visual cortex whereas the absence of visual experience maintains high

levels of NR2B-containing NMDARs (Quinlan et al., 1999a). Thus, the effed of prior

rearing shifts the modification threshold; molecularly, the modification threshold

shifts to the left if the subunit composition favors NR2B expression, and shifts to the

right when the NR2A subunit dominates. In addition, Philpot et al. demongtrated

that visual experience increases the relative contribution of NR2A NMDAR-mediated

kinetics to the response by shortening NMDA receptor current durations, while visual

deprivation has an opposite effed (Philpot et al., 2oola). These data raise the exciting

possibility that a change in NMDA receptor subunit composition might regulate

experience-dependent modifications in synaptic platicity.

While the biochemical and elecrophysiological data cited above present

a Strong correlation between visual experience and the properties of synaptic

plagticity, it has not established causality. To study the functional significance of either

NMDAR subunit, it was important to truly fix the NR2A/NR2B ratio. Thus, transgenic

and gene-targeting technologies have increased our understanding of cellular

mechanisms governing plaaticity in juvenile mouse visual cortex. As described in

Chapter II, we took advantage of a genetically-modified mouse in which the NR2A

subunit is not fundctionally expressed and examined its effedc on NMDAR function

and the properties of synaptic plasticity. By employing in vitro slice physiology, we

demontrated that visual deprivation from birth lengthens NMDAR EPSC duration

and enhances temporal summation in visual cortical layers II/III pyramidal cells of

juvenile wild-type mice. Remarkably, the consequences of dark-rearing on NMDAR
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current duration and temporal summation were mimicked and occluded in mice

deficient in the NR2A NMDAR subunit. While the data demontrate that a loss of

NR2A does not impair the expression of fundctional NMDARs at the synapse, the

data also suggests that NR2A is required for experience-dependent modifications in

NMDAR current duration during the period of juvenile receptive field development.

We performed a genetic test of the hypothesis that the regulation of the NR2A

NMDA receptor subunits is required for experience-dependent modifications in

the properties of synaptic platicity by recording extracellular field potentials. Since

previous tudies have looked at the consequence of altering rearing conditions in rats,

we first replicated this work in mouse visual cortex and demontrated that there is an

effed of rearing in layers II/III whereby dark-rearing allows for greater potentiation

than in light-reared animals. Although NR2A KO mice do not have a deficit in LTP

indudction as previously suggested (Liu et al., 2004, Massey et al., 2004), there was

no effed of dark-rearing on the level of LTP induced by 4o Hz stimulation compared

with light-reared NR2A KO mice. These data suggest that NR2A is not obligatory

for LTP, but is a requirement for metaplasticity. We then tested the consequences

of low-frequency Stimulation (1 Hz), and similar to observations in rats, LTD is

attenuated in WT dark-reared mouse visual cortex compared with WT light-reared

cortex. Surprisingly, we found that low-frequency stimulation produced potentiation

of responses rather than depression in the light-reared NR2A KO mice. That is, a

low NR2A/NR2B ratio (i.e. the absence of NR2A) reduces the synaptic modification

threshold such that stimulation protocols that normally induce LTD now induce

LTP (Figure 2-5b). ConsiStent with the hypothesis that a switch in NMDAR subunit

composition is required for metaplaticity, we observed that the consequences of 1 Hz

timulation were similar in the cortex of light-reared and dark-reared NR2A KO mice.

However, there is no deficit in LTD indudction since a lower frequency Stimulation

such as o.5 Hz produces LTD in NR2A KO mouse visual cortex. These data indicate
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that the NR2A subunit does not only mediate experience-dependent modifications,

but is also essential for modifications in the threshold of synaptic plasticity.

We were also interested in studying the properties of OD plasticity in vivo, and

this was assayed by recording visually evoked potentials (VEPs) from the binocular

region of primary visual cortex. According to the BCM theory, eyelid suture will first

lead to a depression of deprived-eye reSonses, followed by a leftward shift in the

modification threshold caused by the reduction in cortical acivity. This shift in the

modification threshold is permissive for the strengthening of non-deprived eye inputs

(Frenkel and Bear, 2004). However, little is known about the molecular mechanism

that underlies the bidirectional synaptic modification of ocular dominance. Our

data in Chapter II demonstrated that the molecular subunit composition of the

NMDA receptor provides a powerful means for regulating the receptor's funcion in

metaplasticity. In addition, biochemical studies of the OD shift have shown that the

rapid deprivation-induced depression of contralateral-eye responses after a period

of 3 days of MD correlates with an increase in NR2B levels (Chen and Bear, 2007).

Furthermore, the subsequent potentiation of ipsilateral-eye regponses beginning

after 5-7 days of MD correlates with a decrease in NR2A protein levels. Our in vivo

OD studies employ recordings of local field potentials in layer IV of visual cortex

where cells receive diredct thalamic input as a result of patterned visual stimulation.

Therefore, in Chapter III, we recorded field potentials both in vitro and in vivo in layer

IV of binocular cortex of the NR2A KO mouse, in order to study how the redudtion in

the NR2A/NR2B ratio affeds synaptic and OD plasticity

Similar to recordings performed in layers II/III, recording extracellular field

potentials in layer IV in vitro also demonstrated that lower frequencies that typically

elicit LTD in WT mice now elicit LTP in NR2A KO mice, demonstrating a shift in

the threshold for synaptic plasticity. The low NR2A/NR2B ratio also appears to

adjust the plasticity threshold in vivo, since in the NR2A KO mice, no deprived-eye
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depression was observed following 3 days of MD, however a precocious potentiation

of nondeprived-eye re sonses typically seen following 5-7 days of MD was (Frenkel

and Bear, 2004). It has been proposed that synaptic scaling might contribute to this

phenotype. Therefore, we invetigated whether a global upward scaling of resonses

occurs following 3 days of binocular deprivation. The changes observed following

3 days of MD cannot be explained by synaptic scaling, since 3 days of binocular

deprivation fail to modify the absolute amplitudes of contralateral- and ipsilateral-eye

regsonses. These experiments also determined the effed of gene dosage by studying

heterozygote subjeds that have half the normal levels of NR2A protein typically

present in WT control animals. The NR2A heterozygote mice exhibited a shift in the

modification threshold that was intermediate between NR2A KO and WT mice both

in vitro and in vivo. Thus, a graded redudion of the NR2A subunit expression can

dramatically shift the modification threshold to the left, resulting in an alteration of

subsequent plasticity in vivo. Taken together, these results indicate that the NR2A

subunit is important for adjusting the modification threshold of metaplasticity

following monocular deprivation.

Can the mechanisms of LTP and LTD account for key aeeds of experience-

dependent plasticity? Thus, it was important to determine the physiological relevance

of linking these artificially induced forms of synaptic plasticity to naturally occurring

platicity. Many studies have suggested a role for LTP and LTD mechanisms in

mediating naturally occurring synaptic platicity in both hippocampus and visual

cortex. For example, using a transgenic mouse approach, Silva et al. tested the

relationship between the expression of LTP and LTD and the ability to perform

*satial memory tasks. With the use of an aCaMKII KO mouse, Silva and colleagues

demonStrated a deficiency in hippocampal LTP, in addition to an impairment in

*satial learning memory tasks (Silva et al., 1992a; Silva et al., 1992b). These data

atrengthened the notion that tetanus-induced changes in synaptic trength in vitro

can corroborate with memory formation in vivo.
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Similarly, in mouse visual cortex, artificially induced synaptic plasticity in

layer IV in vitro correlates with layer IV OD Studies in vivo. For example, Chapter III

demonsArates that the threshold for LTP induction is shifted to the left in the NR2A

KO mice in vitro, parallel to that observed in vivo. In vitro, the resultant plaSticity

threshold for LTP indudion is so low that low-frequency Stimulation that normally

elicits LTD now induces LTP in vitro. Likewise, a precocious potentiation of non-

deprived eye reSonses occurs within a short 3 day period of MD in the NR2A KO mice

in vivo. Therefore, there is a Strong correlation of mechanisms at play between the

properties of synaptic plasticity and OD plaSticity.

The in vitro Studies were performed by recording reSponses in layer IV in

reSonse to timulation of WM, which contains axons originating from LGN. This

preparation serves to simulate the adivity of the LGN, which is intad in OD Studies

in vivo, receiving and relaying patterned visual Stimulation to cortex. Surprisingly,

however, the basis for Stimulation of WM as a substitute for LGN has not been

fully characderized. Chapter IV demonstrates the validity of comparing layer IV

recordings in vitro and in vivo using a number of methods. The first method traces

the retinogeniculocortical pathway in the mouse visual system and shows that

most thalamic afferents innervate layer IV of visual cortex. The second method is a

comparison of current source-density analyses that establishes that layer IV receives

the greatest source of LGN input as assayed both in vitro and in vivo. The third

method uses a pharmacological approach which preserves thalamocortical input to

cortex, and confirms that both field potential and whole-cell reSponses in layer IV

evoked by WM Stimulation largely reflecd monosynaptic, thalamic input. Therefore,

both our anatomical and eledrophysiological findings confirm that layer IV cells in

vitro and in vivo are thalamorecipient and are adivated by WM eledctrical stimulation

or patterned visual stimulation via the LGN.
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We were next interested to determine whether changes in naturally occurring

plasticity in vivo can be observed in vitro. An example of this is described in Chapter

II, which demonstrates that visual experience can result in differences in synaptic

atrength measured in vitro. Dark-rearing, a condition that produces periods of low

visual acivity in vivo (Czepita et al., 1994; Maffei et al., 2006), results in a greater

magnitude of potentiation in vitro, compared to light-reared animals that receive the

same frequency of stimulation. Conversely, low-frequency stimulation performed

in vitro results in attenuated LTD in dark-reared animals compared to light-reared

animals. Therefore, the effec of rearing conditions confers salient changes in synaptic

plasticity in vitro.

In OD studies, it has already been established that a brief period of monocular

deprivation induces LTD in visual cortex (Heynen et al., 2003). In the same vein,

can certain forms of visual experience induce LTP in visual cortex? Chapter IV aims

to characterize the mechanism(s) underlying a naturally occurring potentiation of

responses (i.e. LTP) in mouse visual cortex that results in vivo following repeated

exposure to a stimulus of a particular orientation (Frenkel et al., 200oo6). To test if

plastic changes incorporated in vivo can occlude subsequent plastic changes induced

in vitro, slices were prepared from animals undergoing timulus-seledive reSonse

potentiation (SRP) as well as control animals (presented with a grey screen only) and

the consequences of LTP-inducing theta burst atimulation was tested. In the control

animals, theta burst stimulation elicits a significant potentiation of responses in layer

IV of visual cortex. Excitingly, this novel form of perceptual learning can occlude LTP

ex vivo in a slice preparation. Therefore, not only does this phenomenon demonstrate

the same eledrophysiological charaderitics as LTP, but it also suggests that WM

stimulation recruits the same pathways which subserve patterned visual stimulation

in vitro.
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THE ROLE OF NMDARS IN SYNAPTIC PLASTICITY AND METAPLASTICITY

Chapters II and III describe numerous lines of evidence that explain how changes

in NMDA receptor subunit composition are a molecular substrate for the sliding

modification threshold. The NMDAR itself has shown to be very important in

mediating the inducion of synaptic plasticity. For inatance, the NMDAR antagonit

APV can prevent changes in synaptic strength in layer IV of mouse visual cortex

(Chapter III). In studies of OD plasticity, Sato and Stryker demonstrated that the

depression of deprived-eye resonses is mediated by NMDARs in juvenile mice

(Sato and Stryker, 2oo8) . In Chapter III, we also showed that the potentiation

of nondeprived-eye reponses following 7 days of MD is mediated by NMDARs.

Therefore, both temporal phases of the juvenile OD shift are blocked following the

application of NMDAR antagonit CPP. Thus, the NMDA receptor is essential for

bidirectional, experience-dependent modifications in synaptic strength within the

visual cortex.

SPECULATIONS ON POSSIBLE MECHANISMS MEDIATING SYNAPTIC

PLASTICITY AND METAPLASTICITY

Although NMDAR-mediated signaling seems to be required for experience-dependent

plasticity, it - as well as the molecules downstream of it - appears necessary for stable

maintenance of the changes that occur (Mataga et al., 2oo2; Quinlan et al., 2004; Taha

and Stryker, 2005). Invariably, it is the influx of calcium that is important to initiate

changes, and other cellular mechanisms acivated by calcium entry that run in parallel

to NMDARs might underlie the maintenance phase of platicity (Castellani et al.,

2005). In rat visual cortex, LTP and LTD mechanisms have been shown to vary across

layers (Wang and Daw, 2003; Rao and Daw, 2004). For instance, the conventional

flow of information across the layers of neocortex can contribute to different types of

plasticity with varying time courses. In the mouse, the direct activation of thalamic

afferents in layer IV subsequently relays information to layers II/III and then to layers

V/VI (Liu et al., 2008). Thus, it is possible that other cellular mechanisms running
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in parallel to NMDAR adctivation can affedct plaSticity in diStinc layers. For instance,

while LTD underlies the depression of deprived-eye responses following monocular

deprivation (Heynen et al., 2003), blocking the NMDAR-dependent endocytosis

of AMPARs in layer IV during MD seledctively occludes depression of deprived-eye

re sonses without altering the potentiation of non-deprived eye inputs (Yoon et al.,

in press). Interestingly, the OD shift is not affedcted in layer II/III, indicating varied and

perhaps distind plasticity mechanisms across cortical layers. Furthermore, it has been

demonstrated that the responses of cells in infra- and supragranular layers exhibit

platicity in response to sensory experience beyond juvenile development, even after

layer IV cells are no longer plastic (Jiang et al., 2007). Other candidates that might

regulate subsequent plasticity in supragranular layers include metabotropic glutamate

receptors (mGluRs), cannabinoid receptors, and voltage-gated calcium channels

(VGCCs). These mechanisms are discussed below, as well as illutrated in Figure 5-1, p.

125.

THE ROLE OF METABOTROPIC RECEPTORS

In hippocampus, mGluR adctivation can indiredly enhance NMDAR-mediated

plasticity by depressing inhibitory transmission via GABAR-mediated inhibitory

poatsynaptic potentials (IPSPs) (Liu et al., 1993). However, Huemmeke and colleagues

were able to parse out an NMDAR-independent form of LTP that required mGluR

adctivation (Huemmeke et al., 2002). In addition, in GAD67-GFP mice where

GABAergic neurons were labeled with GFP for identification, Sarihi et al. sought to

undertand layer II/III plasticity in visual cortex by recording excitatory responses

from fat-*iking and non fat-@iking GABAergic neurons. By applying theta burst

stimulation paired with poStsynaptic depolarization, they found that the LTP that

could be elicited at excitatory synapses onto fat-*siking GABAergic neurons was

calcium-dependent. Calcium entry did not occur through NMDAR, L- or T-type

channels, but rather was elevated intracellularly through mGluR5 receptor adtivation

(Sarihi et al., 2008). Therefore, mGluR adivation can work synergiStically with

NMDARs in experience-dependent plasticity.
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THE ROLE OF CANNABINOID RECEPTORS

Cannabinoid receptors, in particular cannabinoid receptor type 1 (CBIR), have

recently been identified as a mechanism that affedcts synaptic plasticity and OD

plasticity. CBIRs are located on either excitatory or inhibitory neurons (Azad et al.,

2008). Endocannabinoids interac with cannabinoid receptors and are retrograde

messengers that can modulate synaptic fundion. Although bath application of APV

can block LTD in layers IV and II/III, it became evident that mouse layer IV platicity

was different than layer II/III plasticity. For example, loading cells in layer IV with

PKA and inhibitors of AMPAR endocytosis blocked LTD in layer IV but not in layer II/

III neurons. Only with the application of CB1R antagonist AM 251 were Crozier et al.

able to significantly reduce LTD in layer II/III without affecting the plasticity in layer

IV (Crozier et al., 2007). The most parsimonious explanation for these observations

is the abundance of CBIRs within layer II/III and its relative absence within layer IV

(Deshmukh et al., 2007). The differences in plasticity between cortical layers as well

as the time course of plaSticity became even more evident following OD plasticity

experiments performed by Liu and colleagues. A brief 1 day period of MD produces

an OD shift that consists of depression of deprived-eye re sonses in both layers IV

and II/III. Sytemic administration of AM 251 left the OD shift intad in layer IV, but

in layer II/III its expression was blocked. Therefore, plasticity in layer IV is not CBIR-

dependent (Liu et al., 2008). These CBIR studies demonstrate that plasticity in layers

II/III might bypass the requirement of NMDAR adivation in layers II/III.

THE ROLE OF VOLTAGE-GATED CALCIUM CHANNELS

Another major source of calcium influx is through voltage-gated calcium channels.

In juvenile rat visual cortex, Ohmura and colleagues were able to elicit LTP in

the presence of APV using a stimulation protocol that was more intense than

normally used. This form of LTP was blocked by nickel, which seledively blocks
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T- and R-type calcium channels (Ohmura et al., 2003). The effed of dark-rearing

the animals extended this type of plasticity into adulthood (Ohmura et al., 2003).

Hence, metaplaticity can occur in the absence of NMDAR acivation. Several types

of voltage-gated calcium channels have been implicated in synaptic plasticity. For

instance, in layer II/III of rat visual cortex, it was found that using P-type calcium

channel blocker w-agatoxin IVA (in low dose) following the indudion of LTP returned

responses to baseline. The same was observed following high doses of o-agatoxin

IVA that blocks Q-type calcium channels as well as for w-conotoxin GVIA that blocks

N-type calcium channels. However, this was not seen following the blockade of L-, T-

or R-type calcium channels (Liu et al., 2004). To relate the necessity of T-type calcium

channels from in vitro tudies to in vivo studies, the Komatsu group tested the effects

of T-type calcium channel blocker mibefradil during a 6 day monocular deprivation

in juvenile rat. They showed that the depression of deprived-eye resonses was

unaffeded, but the potentiation of non-deprived eye re sonses was blocked

(Yoshimura et al., 2008). This result also shows the necessary but not sufficient

requirement for both NMDARs (Cho et al., 2oo9) and VGCCs in OD plaSticity.

THE ROLE OF THE EXCITATORY-INHIBITORY BALANCE

Over the course of postnatal development, inhibitory GABAergic transmission

Steadily increases (Morales et al., 2002). This increase in the Strength of local

inhibitory circuits also corresonds to the developmental decrease in plasticity

(Luhmann and Prince, 1991; Guo et al., 1997). The balance of excitation and inhibition

in OD plasticity was explored with the use of the GAD65 KO mouse, in which GABA

release is significantly reduced. GAD65, localized to synaptic terminals, is an isoform

of a GABA-producing enzyme (Hensch et al., 1998a). This disruption in inhibitory

signaling in the GAD65 KO mouse did not affed ontaneous adctivity, habituation,

retinotopic organization, orientation and direcion selectivity, receptive field size, or

LTP and LTD in visual cortex. However, following MD, there was no OD shift in the
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GAD65 KO mice compared to their WT littermates. With infusion of diazepam to

enhance inhibition, OD plasticity was retored (Hensch et al., 1998a). Thus, a causal

role for inhibition in experience-dependent plasticity has been implicated. In effed,

there is a loss of the closure of juvenile plasticity: OD platicity could even be induced

in adult GAD65 KO mice via brief MD and application of diazepam. Unlike the

minimal OD shift observed after long-term MD in WT adult mice, in adult GAD65 KO

mice, a period of 15 days of MD yielded a robust OD shift - leading to the hypothesis

that the lack of inhibition plays a key role in extending juvenile-like forms of plasticity

into adulthood (Steele and Mauk, 1999). It simply takes a longer period of deprivation

for the changes to express themselves. With the infusion of diazepam earlier in life,

however, this plasticity is not observed. Therefore, it seems that inhibition presented

at a critical time point in the animal's life (i.e. during development) is enough to

restore a normal time course of plasticity (Fagiolini and Hensch, 2000). To further

pinpoint the locus of plasticity in mouse visual cortex, the use of knockins of various

GABAAR subunits and their insensitivity to the application of diazepam revealed that

the axl subunit is important for OD plasticity (Fagiolini et al., 2004). The importance of

inhibition in metaplasticity is that once it is mature, it gates changes in the magnitude

of subsequent acdivity-dependent plasticity.

To investigate the effeds of altering the excitatory-inhibitory balance in

juvenile WT mice, Iwai and colleagues infused diazepam in P16 mice and then had

the animals undergo MD at the peak of juvenile plasticity. They found that the OD

shift was significantly attenuated; increasing the inhibitory to excitatory balance

prematurely closed juvenile plasticity. In addition, dark-rearing animals until

adulthood (> P50) prolonged juvenile plasticity and allowed for a robust OD shift,

but a 2 day treatment of diazepam at P30 blocked the OD shift when these animals

became adults (Huang et al., 1999; Iwai et al., 2003). Consequently, enhancing

inhibition will close the period of juvenile plasticity even in the dark.
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The results above lead one to ask: is GABAergic transmission bidiredionally

modifiable (a la NR2A/NR2B protein levels) following experience? Morales et al.

observed that the peak of GABAergic transmission overlapped with the peak of

juvenile platicity and, corre sondingly, the decline of GABAergic transmission with

the end of juvenile platicity in rat visual cortex. By tudying IPSCs in layer II/III in

dark-reared and light-reared animals, they found that dark-rearing can decrease the

maximal IPSC. Placing the animals in the light for 2 days is sufficient to reverse the

IPSC to normal levels. Consistent with these findings, dark-rearing both juvenile

and adult rat visual cortex resulted in a decrease in GABAAR expression (He et al.,

2oo6). Thus, visual deprivation delays the maturation of inhibition. However, 3

weeks of normal rearing and subsequent dark exposure for 2 weeks does not alter

the maximal I PSC, indicating that further sensory perturbations cannot alter the

excitation/inhibition balance once it is in place. Therefore, this mechanism is likely

not bidirecional or dynamic, which undermines the role of the excitatory-inhibitory

balance as a mechanism underlying metaplasticity. These changes are manifested in

the release probability of GABA onto synapses and the number of GABAergic synapses

onto pyramidal neurons, not the strength of synapses (Morales et al., 2002).

Chattopadhyaya and colleagues examined the morphology of GABAergic

synapses onto pyramidal neurons in visual cortex. The use of the badcterial artificial

chromosome (BAC) mice that express GFP only in inhibitory parvalbumin-containing

basket interneurons have shown that in the absence of visual experience, these cells

are still able to target and surround pyramidal neurons in visual cortical slice cultures.

Visual experience can also alter the extension and innervations of interneuron

processes; for instance, dark-rearing will retard the maturation of perisomatic

innervation of pyramidal neurons (Chattopadhyaya et al., 2004). As in the previously

mentioned studies, once the maturation of inhibition occurs, the sytem is resistant

to change. Moreover, the maturation of perisomatic innervation was disrupted only in
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GAD67 heterozygote mice (GAD67 KO mice are lethal (Asada et al., 1997), but not in

GAD65 KO mice, allocating the role of GAD67 for axonal and synaptic morphogenesis

(Chattopadhyaya et al., 2oo7). Perisomatic innervation of pyramidal neurons is

thus important for modulating excitatory firing, and the extent of innervation is

experience-dependent.

To elucidate changes in inhibition following monocular deprivation, Gandhi

et al. used two-photon microscopy with single-cell resolution to identify labeled

inhibitory (GFP under GAD67 promoter) and excitatory (GFP-negative) neurons

and observed regonses by imaging calcium transients at different timepoints of

a 4 day MD in mice. Initially, excitatory and inhibitory responses were equal, both

showing the typical contralateral-eye bias to visual stimulation that is seen in rodents.

However, following 2 days of MD, excitatory resonses switch their favor from the

contralateral- (deprived-eye) to the non-deprived eye. In contrat, the responses

of the labeled inhibitory neurons are still driven by the contralateral, deprived eye.

Given 2 more days of MD, the inhibitory resonses finally switch their favor to the

non-deprived eye and exhibit equal levels of strength for the non-deprived eye as do

the excitatory cells (Gandhi et al., 20o8). The delay in the modification of inhibitory

neurons demonstrates how resonses can refled the absence of excitatory re sonses

and show immediate depression of responses. Therefore, the metaplastic changes

underlying MD can result from changes in the excitatory-inhibitory balance.

NEUROTROPHINS

A potential link between the developmental regulation of both excitatory

glutamatergic and inhibitory GABAergic transmission in visual cortex are

neurotrophins (Cotrufo et al., 2oo3; Gianfranceschi et al., 2003; Margottil and

Domenici, 2oo3). Neurotrophins, in particular brain-derived neurotrophic fador

(BDNF), are highly sensitive to adivity-dependent manipulations. For example,

nerve growth fador (NGF) infused into visual cortical slices of dark-reared animals
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result in NR2A protein levels similar to those that were light-reared (Cotrufo et al.,

2003). The expression of BDNF can modulate the acdivity and expression of NMDAR

subunit composition *Secifically by increasing NR2A subunit levels in mouse visual

cortex (Levine et al., 1998; Margotti et al., 2002). For intance, in patients with

epileptic glioneuronal tumors and thus, increased excitability, there is co-localization

of increased levels of BDNF and NMDARs (Aronica et al., 2001). In addition, BDNF

can induce elevations of intracellular calcium, which are reduced by application

of NMDAR and mGluR antagonists (Mizoguchi and Nabekura, 2003; Yang and Gu,

2005). Therefore, BDNF interadcts with excitatory glutamatergic receptors in visual

cortical platicity. BDNF also shows a pattern for adivity-dependent regulation

(Castren et al., 1992): overexpression of BDNF leads to early closure of the period of

juvenile plasticity (Hanover et al., 1999), whereas visual deprivation results in down-

regulated levels of BDNF (Gianfranceschi et al., 2003). In terms of OD plasticity,

decreased expression of BDNF follows monocular deprivation (Rossi et al., 1999). It

was already undertood that dark-rearing delays maturation of inhibition and the end

of juvenile platicity in visual cortex. The demonstration of the interaction between

inhibition and BDNF results from studies comparing dark-reared and light-reared

BDNF overexpressing mice. De site rearing conditions that would, in normal mice,

elicit opposite extensions of juvenile plasticity, the overexpression of BDNF in dark-

reared mice showed similarly mature GABAergic inhibition as in light-reared mice

(Gianfranceschi et al., 2003). Therefore, neutrophins interact with the maturation

of NMDARs and inhibition in an experience-dependent manner, and show a link

between metaplaticity mechanisms that might work in the absence of the other.
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FUTURE EXPERIMENTS

UNDERSTANDING THE LINK BETWEEN MECHANISMS FOR SYNAPTIC
PLASTICITY AND METAPLASTICITY

As discussed above, it appears that multiple mechanisms may underlie metaplaticity

in rodent visual cortex. Fagiolini and colleagues looked at the NR2A KO mouse and

teted the importance of the NR2A subunit in OD plasticity (Fagiolini et al., 2003).

They observed that NR2A KO animals had longer NMDAR EPSCS, indicative of

NR2B-containing NMDARs, which persisted into adulthood. They performed acute

recordings in layer V of binocular cortex in vivo (as in Gordon and Stryker, 1996),

before and after monocular deprivation, and found that the OD shift was significantly

smaller than in WT littermates due to a loss of depression of deprived-eye inputs

(Fagiolini et al., 2003). However, in this atudy of the NR2A KO mice, the infusion of

diazepam, a GABAA receptor agoniSt, rescued the OD shift. Other molecules such as

BDNF have been shown to increase GABA receptor-dependent inhibition, which has

led to a premature close of juvenile platicity (Hanover et al., 1999; Gianfranceschi

et al., 2003). Is this maturation of inhibition caused by a modification of the NMDAR

subunit composition to favor NR2A? An experiment to address these concerns may

ask the following: (1) What is the level of basal inhibition in the NR2A KO mouse?

Experiment 1: Determining the link between the NR2A subunit and inhibition. It

has been shown that inhibitory interneurons express more NR2A protein compared

to excitatory pyramidal neurons (Kinney et al., 2oo6). Therefore, it is possible

that the role of NR2A is to recruit the activity of inhibitory cells. In the absence of

NR2A, inhibition may not increase. Thus, increasing inhibition via diazepam can

rescue the smaller OD shift observed in the Fagiolini study of the NR2A KO mouse.

To undertand if plasticity observed in the NR2A KO mice is due to NR2A's role in

increasing inhibition, it is necessary to determine the basal level of inhibition in these
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mice. To do so, one can prepare visual cortical slices of the NR2A KO animals and

compare layer IV input-output resonse curves of inhibitory postsynaptic potentials

or currents to that of wild-type mice. If the animals do demontrate less inhibition,

it is possible that inhibition is recruited by the adctivation of NR2A. Furthermore, it is

possible that overexpressing NR2A protein in the NR2A KO mouse during the period

of juvenile plasticity will lead to normal levels of inhibition and amelioration of the

plasticity phenotype, thus demonstrating a role of NR2A protein in the excitatory-

inhibitory balance.

DETERMINING THE FUNCTIONAL SIGNIFICANCE OF THE NR2A SUBUNIT IN

AN ACUTE PREPARATION

Studies using genetic manipulations have proven invaluable in determining possible

mechanisms that underlie behavioral processes. Most of the studies described in this

thesis have taken advantage of knockout technology that engineers a targeted gene

mutation in mice resulting in inadctivation of that gene's expression. Often, a targeted

gene is vital for embryonic development and cannot be studied during the postnatal

life of the mouse. Although the NR2A KO mouse is not lethal, it is possible that

global elimination of this protein might result in related or unrelated developmental

aberrations that can affect how ensuing plasticity studies are interpreted. We tested

for the possibility of compensatory mechanisms in this knockout by confirming that

the levels of NR1, NR2B and GluR protein were not affeded, but one cannot be too

careful to exclude underlying developmental defedcts. Therefore, conditional knockout

or knockdown technology has provided a tool to overcome this restridion and has

been used to study gene inadivation in *Secific regions, cell types, and time points

in the life of the mouse. Therefore, the next set of experiments re-ask the questions

of this thesis: (1) During the period of juvenile plasticity, will a conditional NR2A

knockout or knockdown in visual cortex exhibit the same shift in the modification

threshold as the NR2A KO? (2) Does overexpression of NR2A didate the shift in the
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modification threshold? and (3) Does introdudion of NR2A in the NR2A KO mouse

result in a rescue of the altered synaptic plasticity and OD plasticity observed?

Experiment i: Conditional NR2A knockdown and re-expression of NR2A during

the period of juvenile plasticity. The use of a conditional knockdown of NR2A would

clearly show that the properties of synaptic plasticity as well as metaplaticity are

affeded acutely by the redudion in NR2A during the period of juvenile plasticity.

Experiments described in Chapters II and III would be repeated under these

conditions. Concurrently, if the resultant change in NMDAR subunit composition

modulates the modification threshold, the re-expression of NR2A levels should be

able to rescue the altered platicity exhibited. Since there are different mechanisms

re~sonsible for plasticity according to layer, it would be advantageous if NR2A can be

secifically absent in layer IV of visual cortex as this layer is thalamorecipient.

Experiment 2: Overexpression of the NR2A subunit - Do the levels of NR2A didate/

alter the modification threshold? Although Philpot et al. showed that overexpression

of NR2B did not promote plastic changes as seen in the hippocampus, a valid concern

from the paper is that while there was overexpression of NR2B mRNA, the protein

itself was not translated in visual cortex (Philpot et al., 200oolb). Since we have seen

that exposing dark-reared animals to light can induce an elevation in NR2A protein

levels, is it possible that in dark-reared animals, forcing an increase in NR2A protein

levels alters changes in synaptic plasticity in vitro? To test this idea, overexpression of

NR2A in the visual cortex would be conditional and region-*secific. Wild-type mice

would be raised in the dark until they are juveniles, thus delaying maturation of visual

re@onse properties (Carmignoto and Vicini, 1992), and conditional overexpression

of NR2A would be induced in dark-reared visual cortex. Quantitative assessment of

NR2A protein from synaptoneurosome or biotinylation preparations would confirm



IMPLICATIONS AND FUTURE DIRECTIONS

overexpression of NR2A protein in visual cortex. Then, in vitro visual cortical slices

would be prepared, and the effedcts of stimulation protocols such as 40 Hz or 1 Hz will

be determined on responses colleded in either layers II/III or IV. Even though it has

been demonstrated that Stimulation frequencies such as lo Hz do not produce any

synaptic change (Dudek and Bear, 1992), it is possible that overexpression of NR2A

may result in the modification threshold to dramatically shift to the right, such that

LTD may be induced. However, if the shift is not as dramatic, overexpression of NR2A

levels (levels similar to those in light-reared WT mice) will result in a magnitude of

potentiation or depression following 4o Hz or 1 Hz stimulation to be comparable to

light-reared WT mice.

Experiment 3: Expression of the NR2A subunit in the NR2A KO mouse. Can

expression of NR2A result in a rescue of synaptic and OD plasticity? This experiment

tests the requirement of NR2A protein in obtaining WT plasticity. Using the

eledrophysiological assays described in Chapters II and III, an expression of the NR2A

subunit (a level similar compared to that of light-reared WT mice) would be induced

during the period of juvenile plasticity in either the dark-reared or light-reared NR2A

KO mouse. If the NR2A subunit is sufficient, it should be able to corred the leftward

shift in the modification threshold in both synaptic plasticity and OD plasticity

studies.

FUNCTIONAL WM ASSAYS AND THE IMPACT OF THALAMOCORTICAL INPUT

Over the years, it is becoming increasingly apparent that the thalamus has a role in

the ongoing moment-by-moment processing of sensory input. This occurs via the

massive feedback pathway from the cortex and via nonsecific modulatory inputs

from the braintem and other areas (Sherman and Guillery, 2006). For instance, it

has been shown in the cat visual system that corticofugal feedback is important for

finely tuning receptive field properties (Andolina et al., 2007). While we discussed

ways in which we validated the comparison between WM stimulation and patterned
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visual stimulation in mouse visual cortex, it would be helpful to understand the

impad of thalamocortical input alone in mouse visual processing. The use of

channelrhodopsin-2 and the novel pharmacological method described in Chapter

IV will help to address these questions: (1) Does *secific adivation of LGN afferents

result in activation of cells in layer IV of mouse visual cortex? (2) How much of

thalamocortical input underlies synaptic platicity in layer IV in vitro? and (3) How

much of thalamocortical input underlies visual processing in vivo?

Experiment 1: Demonstrating fundional WM stimulation. In addition to the

assays performed in Chapter IV, another way to validate functional thalamocortical

connedions in vitro is to use the visual thalamocortical slice preparation, where LGN

is in the same plane as visual cortex (MacLean et al., 2oo6). It would be intereting

to timulate LGN and compare resonses evoked in layer IV of visual cortex with

the regonses evoked in a slice that has been bath-applied with the muscimol +

SCH50911 drug cocktail. Also, the advent of channelrhodopsin-2, a light-gated, cation-

selecitive channel, can be used as a tool for selecive noninvasive control of neuronal

excitability along the thalamocortical pathway (Zhang and Oertner, 2007). Packaging

channelrhodopsin-2 into an HSV vector will allow for anterograde expression of

channelrhodopsin-2 along a particular pathway. Thus, injeding this virus into LGN

will propagate expression of this receptor along thalamocortical axons. By shining

light onto WM, it would be possible to seledively adivate thalamocortical axons, and

determine if re~sonses can be evoked from layer IV cells from normally-prepared

visual cortical slices. In addition, fundional plasticity studies such as studying the

properties of synaptic plasticity by providing noninvasive high- or low-frequency

light stimulation to channelrhodopsin-2-positive afferents will also prove that WM

stimulation is pradical despite the absence of an intact LGN. These assays will

contribute to our undertanding of how much information is preserved following

decussation of LGN in a visual cortical slice preparation.
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Experiment 2: Plasticity Studies using the thalamocortical (TC) drug cocktail. Since

we know in vitro that a large portion of the regsonse evoked by WM Stimulation

is monosynaptic and of thalamic origin, it would be interesting to use the TC drug

cocktail (muscimol + SCH50911) and then observe how much of the thalamic re sonse

following high- or low-frequency stimulation that would typically elicit LTP or LTD

changes without adivation of intracortical input. To teSt this, we would prepare

mouse visual cortical slices and bath apply the TC drug cocktail, and colled a baseline

of responses (either field potentials or PSPs) from cells in layer IV of visual cortex. In

another group of animals, we would induce theta burst or 1 Hz Stimulation to WM,

bath apply the TC drug cocktail, and then observe the consequences of these

protocols. These experiments would demontrate the role of intracortical adivity in

synaptic platicity mechanisms.

Experiment 3: Isolating thalamocortical input in vivo and testing alterations in

plaSticity ex vivo. By using the TC drug cocktail, it is possible to determine that

the changes induced by SRP or OD plaSticity is based on thalamocortical input.

Furthermore, one can undertand the impacd of intracortical adivity in visual cortical

processing by testing if changes in thalamic input itself can occlude plaSticity changes

in vitro either in the presence or absence of the drug cocktail. This can be done

by infusing the TC drug cocktail described in Chapter IV in vivo after SRP training

sessions or after a brief i day of MD, which is sufficient to observe depression of

deprived-eye responses (Liu et al., 200oo8). Measurable responses can be compared

to resonses of experimental animals that have not received TC drug cocktail

infusion. Then, visual cortical slices will be prepared and theta burat Aimulation or

low-frequency Stimulation can teS the significance of thalamic input or the lack of

intracortical adcivity in animals that underwent SRP or 1 day MD, reSpedively. Slices

may be bath-applied with the TC drug cocktail before and after the Stimulation
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protocol to demonstrate how thalamic input changes ex vivo. Alternatively, slice

preparations that allow the recruitment of intracortical adctivity may show different

results, suggesting the importance of cortical activity ex vivo.

CONCLUDING REMARKS

Criteria to be considered as a mechanism for metaplasticity include correlative

expression of molecules over the course of development, altered plasticity if the

molecule's actions are disrupted, and amelioration of altered plasticity if the molecule

is functionally reintroduced into the system. The introdudion and discussion have

mapped various mechanisms that mediate metaplastic changes in visual cortex

that include NMDARs, their downstream effectors, as well as mGluRs, VGCCs,

CB1 receptors, and the excitatory-inhibitory balance. However, controversy over

interpretation of results is rooted in the difference of experimental protocols,

paradigms, *Secies and analysis. The clamor to support an overly simplistic view

of an absolute mechanism underlying experience-dependent plasticity can cloud

objedivity. Individual mechanisms do not have to be the only ones underlying

platicity, but may likely work together when intad and compensate when one is

lacking. For example, it is not legitimate to rule out a mechanism underlying OD

plasticity if the OD shift survives in Site of genetic deletion of that mechanism.

While studying the mechanisms that might underlie plasticity in other regions of the

brain and reassigning them to be important in visual cortex has proved beneficial,

novel mechanisms can be overlooked. The use of DNA microarray analysis has also

identified a number of candidate genes otherwise unsuSeded that might regulate

juvenile plasticity and metaplasticity in the visual cortex. Scientists in Mriganka

Sur's lab are individually and combinatorially assessing these genes, including

insulin-like growth fadctor binding protein-5 (IGFBP5), which has proven to be
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important in OD plasticity (Tropea et al., 200o6; Lyckman et al., 2008). The discovery

of platicity differences found in layers of cortex is also an interesting venture to

pursue. Investigations into the time course at which rapid indudction of platicity

takes places by a particular mechanism in a particular layer versus later and more

sutained versions of plasticity in other layers is just starting to take form. There is

much that needs to be resolved in terms of how the loss of one mechanism might

start the compensatory activation of another mechanism. MoSt importantly, it would

be of considerable value to determine the link between mechanisms intead of trying

to discover one sole mechanism that is necessary and sufficient. The experiments

described in this thesis focus on underStanding one molecular mechanism and to this

end, provide Strong support that the NR2A subunit plays an important role in both

synaptic platicity and metaplaticity. 4
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