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Abstract

In this thesis I study r-differential posets and dual graded graphs. Differential posets
are partially ordered sets whose elements form the basis of a vector space that satisfies
DU-UD=rI, where U and D are certain order-raising and order-lowering operators.
New results are presented related to the growth and classification of differential posets.
In particular, we prove that the rank sequence of an r-differential poset is bounded
above by the Fibonacci sequence and that there is a unique poset with such a max-
imum rank sequence. We also prove that a 1l-differential lattice is either Young’s
lattice or the Fibonacci lattice. In the second part of the thesis, we present a series
of new examples of dual graded graphs that are not isomorphic to the ones presented
in Fomin’s original paper.
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Chapter 1

Introduction

Richard Stanley(1988) has defined and studied a class of partially ordered sets called
" differential posets,” In this thesis, we state and prove some basic properties of r-
differential posets and focus on two specific constructions of r-differential posets,
namely Y and Z(r). We follow the notation of [3] and refer to [3] for basic definitions
of partially ordered sets. In Chapter 2, we give one main result of this thesis that gives
upper bound on the rank sequences of r-differential posets. In Chapter 3 we settle the
conjecture that a 1-differential lattice is either Y or Z(1). Richard Stanley studied
properties of operators U and D which move up and down by one rank in the poset.
In Chapter 4 we present some of these properties and introduce dual graded graphs.
Dual graded graphs has been developed independently by Fomin(1992), which used a
similar approach of functions of U and D, in a more general context. We provide newly
found examples of dual graded graphs according to Fomin’s definition. In Chapter
5, we will discuss in detail the future research methods related to higher dimensional
differential lattices and lower bound on growth of rank sequences of 1-differential

posets.

1.1 Differential Posets

Let 1 be a positive integer. A poset P is called r-differential if it satisfies the following

three conditions [1]:
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1. (D1) P is locally finite and graded and has a 0 element,

2. (D2) If z # y in P and there are exactly & elements of P which are covered by

both = and y, then there are exactly k elements of P which cover both x and .

3. (D3) If z € P and x covers exactly k elements of P, then x is covered by exactly

k + 7 elements of P.

For x and y in a poset P, if x < p and y < p, then p is an upper bound of x and
y. If for all upper bounds of = and y, there exists an element 2 such that z < p for
all of them, then z is the least upper bound of x and y, denoted z Vy = z.
An interval [z, y] in a poset is subposet consists of the set of points z satisfying
r <z <9y. A chain is a totally ordered set. A finite chain of cardinality n + 1 has
rank n. A poset has rank(or height) n if the longest maximal chain is finite of rank
n. The rank of an interval is its rank as a poset. A poset is graded if every maximal
chain has the same finite rank.
If P is an r-differential poset for some r, then we call P a differential poset. If P has
a unique minimal element 0, the rank of x € P is the maximal length of a saturated
chain with largest element x. Thus, 0 is rank 0, every elements which covers an el-

ement of rank n has rank (n—1). A rank function p(x) maps each element to its rank.

1.2 Properties of r-Differential Posets
There are a number of properties concerning r-differential posets.

Proposition 1 (Stanley). If P is a poset satisfying (D1) and (D2), then for x # vy
in P the integer k of (D2) is equal to 0 or 1.

Proof. Suppose the contrary. Let x and y be elements of minimal rank for which
k> 1. Thus x and y both cover elements x, # y, of P. But then z; and y, are

elements of smaller rank with & > 1, a contradiction. ]

12



Proposition 2 (Stanley). In any differential poset P, The number of closed paths
of length 2n starting and ending at 0 is equal to n!. We will prove this in Chapter 4.

Let’s see some examples of differential posets. Oune type of 1-differential posets
is the poset of partition of integers, ordered by inclusion of diagrams. Given a non-
negative integer n, a partition of n is a finite, non increasing sequence of positive
integers, A = (A1, Az, ... Ag), such thatA; + Ay + ...\ = n. We denote this by A + n.
For example, there are five partitions of 4: (4), (3,1), (2,2), (2,1,1) and (1,1,1,1).
There is one partition of 1. We define an order on the partition as follows: given two
partitions A = (Ay, Ao, ... \g) and p = (1, 2, -.p1), A < p if and only if & < [ and
Ai < p; for 1 <4 < k. The poset whose elements are partition of integers, ordered by
this relation, is called Young’s lattice and denoted by Y. Below is the first few levels

of Young’s lattice.
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1111 211 22 31 4

111 21 3
11 2
1

0

Figure 1-1: Young’s lattice

Another type of 1-differential posets is denoted Z(r) and is constructed as follows.
Let A, be an alphabet of r 4- 1 letters. We will regard the letters as consisting of the
number 1 with r different “colors”, denoted 1y, 14, ...1, together with the number 2.
Thus A, = 14, 1,...1,,2. Let Ax, consists of all finite words ajayas...a; (including
the empty word @) of elements of A,.

Let r € N. Define a poset Z(r) as follows. As a set, Z(r) coincides with Ax,. If

w € Z(r), then define w’ to be covered by w in Z(r) if either:

1. (a) ' is obtained from w by changing a 2 to some 1;, provided that the onl
y

letters to the left of this 2 are also 2’s, or
2. (b) W’ is obtained from w by deleting the first letter of the form 1.

This defines the cover relations in Z(r), and hence by transitivity a partial ordering
of Z(r). We call Z(r) the Fibonacci r-differential poset. Below is the first few levels
of the Fibonacci lattice.

A lattice is a non-empty poset L such that, for all z,y € L, the least upper bound
TV y and the greatest lower bound = A y exists. A lattice is modular if, for all
Y.z € L such that v < 2. 2V (yAz) = (rVy Az If L has a minimal and a

maximal element. denoted 0 and 1, it is complemented if, for all x € L. there exists

14
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0

Figure 1-2: the Fibonacci latticg/

y € Lsuchthat zVy=1and z Ay =0.
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Chapter 2

Differential Posets

2.1 Statistics on the Growth of Differential Posets

This chapter focuses on the growth of rank numbers of differential posets. By def-
inition, every 1-differential poset has a unique minimal element. It is shown in 1]
that the number of elements of rank 0, 1, ,2... is non-decreasing. In fact, we prove
in this chapter that it is strictly increasing. More specifically, the rank number p; is
the number of elements of rank ¢ in P. The rank sequence is the infinite sequence
(Po, 1, pa..)- In this chapter we are going to show that the rank sequence is strictly
increasing. We prove that the rank sequences are bounded above by the Fibonacci
sequence. The proof also shows that there is a unique poset that realizes this tight
upper bound. It is conjectured in [1] that the rank sequence is bounded below by the
sequence of integer partitions. We will discuss this conjecture more in Chapter 5.
Let = be an element in the poset P. With P we associate a graph representation
of the poset called Hasse Diagram. In a Hasse Diagram, each vertex represents an
element of P. There is a vertical line segment between two vertices = and y, with =
below y, if and only if z < y in P, and there is no z such that z < z < y. In this
case, we say y covers r, and denote y N\, x or x /" y. Any such diagram (with labeled
vertices) uniquely determines a partial order.
Moreover. in the Hasse Diagram, each vertex mav have line segments between it-

self and elements that covers it , which are called up-edges. Likewise line segments
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between itself and elements covered by it are called down-edges. The number of up-
edges of x is denoted degq,(z) and is called up-degree, the number of down-edges
of z is denoted degig(x) and is called down-degree. If a vertex in Hasse diagram
has deg(q)(z) = 1, we call the vertex, as well as the corresponding poset element, a

singleton.

Lemma 1. If any element of rank i is a singleton, then p; > p;_y, fori > 1.

I

Proof. This is a straight forward observation. Suppose a is a singleton, p(a) = 4.

Then there exists a set of 6 elements such that (¢ \, b ¢\, d /eand b\, f 7 d)

as shown below.

f

Figure 2-1: A unit of a differential poset

If the Hasse diagram above contains all the elements of rank ¢ and i — 1 in P, then
p; > p;—1 and the proof is complete. Otherwise, other elements belong to one of the

following cases:

1. z covers b or x covers d. If = is a singleton, then p; > p;,_;. If x is not
a singleton, = covers a new element that is different from b or d, or else we

contradict Proposition 1.

2. r is covered by ¢ or z is covered by e. If x is covered by ¢, then at least two
other elements are force to cover x, See Figure 2-2. If x is covered by ¢, then at
least one other element is forced to cover x. simply by definition.

We can “trace out” the rest of the elements in these two cases. Applving (D2)

18



Figure 2-2: Case 2

and (D3) repeatedly, we get that each unit that we trace out add on at least as many

elements in rank i as in rank ¢ — 1. W
Lemma 2. There exists at least one singleton of rank ¢ for each v > 2.

Proof. By the definition of r-differential posets, the first few ranks of a 1-differential

poset are unique as shown:

Figure 2-3: First 5 ranks of 1-differential posets

Therefore, there exist at least one singleton of rank 3. We observe that in any
1-differential poset, such an element is always covered by an element of the same
property. i.e. a singleton that covers an element of up-degree 2. from which we

conclude that there is always a singleton of each rank. O
Lemma 1 and Lemuna 2 together give rise to the following result:

19



Theorem 1. The rank sequence of any 1-differential poset is strictly increasing, i.e.

Pi < Pigr- fori > 1.

Next, we give a partial order between two rank sequences a = (ay.as,a3...),3 =
(b1, b2, bs...) by o < 3 if any only if a; < b; for all i. We show now that the maximum
element of this poset of all rank sequences is the Fibonacci sequence, and Z(1) is the

poset uniquely corresponds with the sequence.

Theorem 2. The rank sequence of any 1-differential poset cannot grow faster than the
Fibonacci sequence, and there is only one poset with the rank sequence(1,1,2,3,5,8,...),

namely, the Fibonacci lattice.

Proof. Since the partial order is lexicographic order, i.e. for the smallest ¢ such
that a; > b;, 3 = (b1, b, b3..., by, ...) is eliminated from the set of candidates for the
maximum element, since § is either less than, or incomparable to «. Since we are
searching for a maximum element, if it exists, we then disregard j.

Any 1-differential poset up to rank 5 is uniquely determined. At rank 6, there are

two possibilities, shown as follows.

Figure 2-4: First 6 rank

By the previous principle we disregard the choice on the left. To develop the poset

upward to include as many elements as possible, we have the following three cases:
L. deguy(r) =2;
2. deggy(x) = 3

3. degpy(r) > 4.



When deg,y(z) > 4, we refer to Lemma 6 in Chapter 3. The lemma shows that
in this case x will be reflected as if in Z(l).‘ The case of degq(x) = 2 is trivial, the
element = will be reflected as well. Then we are left with the case of degq,(z) = 3.
When every other element is isomorphic to elements in Z(1),  will be a choice between
the following two. Since we are asking for the highest number of elements in each

rank, we choose Type II.

Type 1 Type 11

Figure 2-5:

g

It is conjectured that the rank sequence of a differential poset grows at least as
fast as the sequence of integer partition. Young’s lattice is an example of a poset with
such a rank sequence. It is unclear if there are other differential posets that also has

the same rank sequence. We will discuss more on this topic in Chapter 5.

21
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Chapter 3

Differential Lattices

3.1 1-Differential Lattices

A lattice is a partially ordered set in which every pair of elements has a least upper
bound, called their join, and a greatest lower bound, called their meet. The following

fact is easy to verify.

Proposition 3 (Stanley). The two types of 1-differential posets introduced in Chap-
ter 1,Y and Z(r), are both lattices.

Proposition 4 (Stanley). Let L be a lattice satisfying (D1) and (D3). Then L is

r-differential if and only if L is modular.

Proof. Tt is known that a locally finite lattice is modular if and only if the following

condition is satisfied:
For all z,y € L, x and y cover x Ay if and only if x V y covers z and .
But this condition is equivalent to (D2). O
We would like to settle the following conjecture by Richard Stanley:

Theorem 3. The only I-differential lattices are Young's lattice Y and the Fibonacei

lattice Z(1).

23



We start by defining two types of local orders of up-degree 3. Let x,vy and 2 be
three elements of a poset, p(x) = p(y) = p(z) = i and z,y and z all covers a same
fourth element of a rank i — 1. There are two possibilities for the join of 2,y and =z
of rank 2 +1. We will call them type I and II. In type I x; covers y, z, 3, covers r, z
zy covers x,y, and x; # y; # 21. In type 1L, s covers z,y and z. See the following

diagram:

Type 1 Type IT

Figure 3-1: Type I and Type II

We can quickly establish the following necessary condition:
Lemma 3. The three elements of type I has to have a common cover of the next rank.

Proof. The elements pairwise has meets at the lower rank, therefore they have joins
at the higher rank that is either one element covers all three of them or three element
each cover a pair of them. If it were the latter then we have a Hasse diagram of the
following case where element 24, ¥, does not have a meet, contradicting the fact that

P is a lattice. O

Next we again refer to the fact that there is only one 1-differential poset up
to rank 5, and only two non-isomorphic 1-differential posets up to rank 6. One of
them is isomorphic to Young’s lattice up to rank 6, the other is isomorphic to the
Young-Fibonacci lattice up to rank 6. Our main theorem is an inductive result of the

following two lemmas.

Lemma 4. If a I-differential lattice is isomorphic to Young's lattice up till rank n—1,

where n > 6, then it is isomorphic to Young’s lattice up to rank n.

24



X4 y, Z,
Z, X
X z

Figure 3-2: Not a lattice

Lemma 5. If a I-differential lattice is isomorphic to the Fibonacci lattice up till rank

n — 1, where n > 6, then it is isomorphic to the Fibonacci lattice up to rank n.

To prove Lemma 4, we need the following proposition.

Proposition 5. If L is isomorphic to Young’s lattice up to rank n, n > 6, then for
the elements of rank n, if a,b, ¢ covers the same element z, then a,b,c do NOT have

a same cover in rank n+ 1. v.e. it is a type I.

Proof. Since L is isomorphic to Young’s lattice up to rank n, elements of rank up
to n have a one-to-one bijection with elements of Young’s lattice, thus we can label
them with Young’s diagram, and use terms such as outer corner and inner corner.
The following diagram illustrates the proof. The Hasse Diagram with filled line
shows the lattice up till rank n, and the dashed line shows the lattice beyond rank n.
Since z has up-degree at least 3, then it has at least two outer corner. Since n > 5,
at least one of the the two outer corners does not belong to either the first or the last
row of the Young’s diagram. Then for b, ¢, they can each delete a same outer corner
to get v', ¢ which has a cover d. By Lemma 4, b, c,d has a common cover z, but a
and d does not cover an element by way of construction. therefore z cannot cover a,

which proves the statement.



X b’ C

Since P is a differential poset, every triple of y; V yo = =z, there is a unique

corresponding y; A ys = 2.

Yu Y2

X

Figure 3-3:

Since P is same at the Young’s lattice for ranks up to n, one of the following

occurs if P # Y at rank n + 1:

1. Three pairwise different joint in Young’s lattice versus a same joint in P.
In this case, since y1, ¥, ¥3 must cover a same element on a lower level, but if

they are covered by a same joint in P then they contradict Proposition 5.

2. A same joint of three elements in P versus three pairwise different joints in
Young’s lattice.
In this case, They must have three different meets which gives a contradiction

to Lemma 3.

Therefore, both cases are impossible which implies P =Y.
Next, we would like to prove Lemma 5. Assume that P is isomorphic to the Fibonacci
lattice up to rank n. there is a bijection between the elements of P and elements of

the Fibonacci lattice up to rank n. First, by way of construction, for any /. there

26



does not exists a set of 3 vertices of rank 2 in the Hasse diagram of the Fibonacci
lattice such that there are three different meet of rank 7 — 1 for the three two-element

subsets. See bellow Figure 3-3.

Figure 3-4:

Thus for any element = € Z(1), for every element covered by x, there is at least
one distinct element that covers x to satisfy (D2). Therefore, for every edge in the up-
degree of x, there is a unique edge in the down-degree of x that corresponds with it.
Since (D3), there can be two up-edges that correspond with at most one down-edge.

Therefore given an element x of rank ¢ — 1, let it have up-degree r,

a b c d

Figure 3-5: for each of a, b, ¢, d down edges, there can be at most 2 up edges that
(D2)-correspondence with each.

There can be at most two up-edges from each of {zy, zs, z5...}.

X, X, X, X,
X
Figure 3-6:
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Suppose x; has two up-edges that will be part of this part of the diagram, v, and
yo. The other elements {x, r3, 74...} are partitioned into two sets, one is covered by
y1, the other set covered by y,. Then an element that is covered by y;, say s, has
a distinct common cover with each of the elements in set 2. The covers has to be
distinct to not contradict Proposition 1. Therefore we conclude there are at most
1 element in set 2, likewise there is at most 1 element in set 1. Therefore if the
up-degree of z is greater than 3, we are force to have a reflection.

In fact what we just proved is not dependent upon the lattice condition. It can be

stated formally as following:

Lemma 6. If a I-differential poset is isomorphic to Z(1) up till rank n where n > 5,
then for an element x of rank n, if deguy(x) > 4, then there is ezactly one element

that will cover the covers of x.

Figure 3-7:

3.2 A Singular Case

If there exists an element of rank n, whose up-degree is exactly 3, and the 1-differential
lattice is the Fibonacci lattice up till rank n, it is impossible to continue to grow the
poset into a lattice beyond rank (n + 5). This will be illustrated as follows.
Throughout the rest of the proof, we will use a;; to denote elements of the "
level. For convenience, we start with the element of up-degree 3, and label it a;;. We
also assume that the l-differential lattice is isomorphic to Z(1) for elements of label

ay; and all elements below

28



1. If degquy(ar1) = 3. let asr, as0 and agy covers aqy. In the Fibonacci lattice, each
element is covered by exactly one singleton. Thus one of as;, a9 and ay; can
have down degree 1. By construction of the Fibonacci lattice, at least one of
a1, g and ayy will have down degree 3, so let ag3 covers aq1, ajs and ay3. By the
structure of the Fibonacci lattice, ay;, aj9 and a;3 have one cover in common,
thus again by definition only one of a1, a2 and a;3 can have up-degree 2, the
others have up-degree at least 3. Therefore let a5 be covered by ays, ass and

let a;3 be covered by ag3, ags and aqg. Likewise, we let agy and ayy covers apg

g by Ay Ay Ay Ay Ay

NN IX AT

alO a1 1 a12 a13
Figure 3-8:
2. Since we are interested in the case when as;, s and aq3 has three distinct covers.

We apply Lemma 3 and Proposition 5 to uniquely determine the left side of the

lattice

N ANXK

Figure 3-9:

3. Consider the up-degree of ass. degy(ass) = deg(ags) +1 = 4. There are

29



two elements a; and a;3 that needs elements to cover asz correspondingly to
satisfy (D2). Since a1 # ass # asg, the corresponding covers as; and ay, are

also distinct. ase, azs and aszg exist by (D3).

Figure 3-10:

4. Now consider the up-degree of as;3.

First we complete the fifth rank. In the diagram following, we use different line
styles for to distinguish between the different reasons that uniquely determines

the corresponding edge.

(a) The modularity of differential lattices. For cases that are relevant to this
section, whenever there is a sublattice isomorphic to the figure below, the

elements a, b, ¢, d have a common cover: dotted line.
(b) Lemma 3: filled line

(¢) (D2) and (D3):dashed line

30



Figure 3-11:

Figure 3-12:

5. We will show that the element a5y cannot have enough up-degrees to satisfy its

differential lattice definitions.

We start by complete some of the edges by Lemma 3.

e

Figure 3-13:
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Then add more edges according to (D2) and (D3)

Figure 3-14:

Figure 3-15:

We realize that even as already has maximal up-degree 5, it still does not have

covers with asy or ass, hence the contradiction.
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Figure 3-16:

3.3 Conclusion

We used enumerative methods to prove that a 1-differential lattice can only be either
Young’s lattice or the Fibonacci lattice. The one special case in last section does
not have to be an induced sublattice. There can be other covering relations between
these elements and other elements of the lattice. One can easily derive the higher
dimensional generalization of Lemma 6, however, that approach can leave many spe-
cial cases. In Chapter 5 we are going to discuss a different approach to study higher

dimensional differential lattices that uses edge labeling.
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Chapter 4

Dual Graded Graphs

4.1 Linear Operators on r-Differential Posets and

Dual Graded Graphs

Given a locally finite poset P and x € P, define

C™(xz) =y € P :x covers y

CH(z)=vy € P:ycovers x

Let P be a locally finite poset such that for all z € P the set C~(z), C*(x) are finite.

Define two linear transformations U, D by the condition that for z € P:

We are going to state and prove two most important results regarding the pair of

linear transformations:



Theorem 4 (Stanley). Let P be a locally finite graded poset with 0, with finitely
many elements of each rank. Let r be a positive integer. The following two conditions

are equivalent:

1. P is r-differential.

2. DU -UD =rl

Proof. Let x € P. Then DUz =3 c,y, where ¢, = #(C"(z) N C*(y)). Moreover,
UDx =3 dyy, where dy = #(C™ (x) N C(y)). Hence DU — UD = r[ if and only
if for all z,y € P,

#(CT(@)NCT(y) = #(C () NC(y), fz #y

#(CT(2)NCT(y)) = #(C™(x)NC(y)), f 2 £y

and

#(CH(x) =7+ #(C ()

which are precisely the conditions for P to be r-differential. O

Another fundamental result states:

Proposition 6 (Stanley). For a differential poset P, we have DU" = nU" ' +U" D

forall n > 1.
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Proof. The case n = 1 follows immediately. In general, if DU* = kU* '+ U*D. then

DUttt = (pUuUt
= (I+UD)U*
= UM+ U(DU")
= UF 4+ UkU*' +U*D)
= UF+ kU + UMD

= (k+1U*+UM'D

Now we can state and prove the result mentioned in the last section.

Proposition 7. In any differential poset P, The number of closed paths of length 2n

starting and ending at O is equal to n!.

Proof. The number of such closed paths exactly euqals to the coefficient of 0 in

D"U™0. We have trivially D°U%0 = 0, so the claim is valid for n = 0. Inductively,

DMy*tlo = D*(DU*0 = (k + 1) DFU*0)

And the result follows. O

There are many directions in which one can generalize the concept of a graded
poset such that DU — UD = [. One way is to have the D and U operate on two

different set of edges. which results in the studv of dual graded graphs.
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4.2 Dual Graded Graphs

Defined by Fomin in [5], an r-dual graded graph is a pair of graded graphs (G|, Gs)

such that

1. G, and G, have the same vertex set and rank function p

2. G, has edge set E;. Edges in F; are directed upward, i.e. in the direction of
increasing rank, and G edges downward. We introduce the U and D operator

as before. and the relations hold that:
anJrlUnr = Un—an + TnIn

where r = r, is a sequence of constants, i.e. 7, € K.

An r-differential poset is an r-dual graded graph where E), = Ey andr = 7,7, 7,... We
refer to [5] [4] and [6] for studies on graded algebras. We will focus on enumerative
properties of these dual grades graphs. We will present graphs that satisfy one of the

following commutation relations [5]:
DU =qUD +rl

where q = {¢,} and r = {r,} are elements of K. Differential posets are dual
graded graphs with q = {1,1,1,...} and r = {1,1,1,...} It is shown that if a pair
of dual graded graphs satisfies the above relation, then we have the following path

enumeration [5]:

Theorem 5. Assume the up and down operators in an oriented graded graph G with

zero satisfy the above relations. Then for any x € P :

s—1

A . y k+l1 Tr8—1 .

E e(0 =y — ) =e(x)T, E rlli2 g
YEP 4 i=0

Where e(x — y) denotes the number of paths between z and y. In a graph with

zero, let ¢(y) = e(0 — y). The studies of enumerative properties of dual graded
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graphs give rise to combinatorial identities involving e(x). A typical example is the

Young-Frobenius identity

Z e(z)? = n!

rEP,

We will present new examples of dual graded graphs that are not analyzed in [5].

4.2.1 Example 1: The Catalan Tree

Let the vertex set be number string of the form x = ajasasay...a,, with 1 = a; <
az <az < ...a, <nandp(r)=n

U-edges: = " y if and only if y can be obtained from x by adding a number to the
right end of z.

D-edges: x ™\, vy if and only if ¥ can be obtained from z = by deleting a; from
a1 a9a3a4...a, only if a;_1 = a;

These are the first few ranks:

gr 1112 13 14 822 123 124 ﬁ‘l% g22 223 1224 Vﬂ
12 113 122 123

111 1

0
U graph

Figure 4-1: U graph
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33 1634

i 12 13 122 123
‘\w\:\.I ‘
: 12
I
0

D graph

Figure 4-2: D graph

It can be checked that this is a pair of dual graded graphs with DU — UD = I.
By Theorem 5,

s—1

A _ k41 T78—1 )

E e(0 =y =) =e(x)L Z rdli2i1)
Y€ Py =0

Because in this case we have q = {1,1,1,...} and r = {1,1,1, ...}, we have

Z e(0 =y — x) = e(z)r'(k + DI/k!

YEP 4

In the case of a Catalan tree, e(x) = 1for all z, so we have for any z € P;:

Y el0 =y — )= (k+ /!

ye Py

Let k=1, ZyeP,H (0 — y — 1) = zyEPz+| e(0— 4y —0)=(+1)
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4.2.2 Example 2: Binary Trees

Let the vertex set be a strings of 1s and Os of finite length. The length of the string
is the rank of the element.

U edges: © "y if and only if y can be obtained from z by adding a number to the
right end of .

the D edges: = ™\ y if and only if y can be obtained from x by the following process:
1. If x ends with 1, delete 1

2. If z ends with 0, find the right most 1, i.e. = = ajay...a;100...0, then y can be

any vertex that starts with ajas...q

11 1110 L1101 noovo 1000 0111 OIOWO 11 0010 w
e e e

A
~ "

Figure 4-3: U graph

Proposition 8. This is a pair of dual graded graphs with DU —UD = [

Z e(0 =y — ) = e(z)r' (k+ D)/k!

YE Py 4

Again we have e(2) = 1 and Lqu,H e(0—y— )= (I+1).
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Figure 4-4: D graph

4.2.3 Example 3: Graph Coverings

Let G be a graph,define a covering of G to be a graded graph such that
1. At each level, the vertex set is the vertex set of G
2. z /" yif and only if z is adjacent to y in G

3. x \, vy if and only if z is adjacent to y in G

A

B C

E D
Figure 4-5: G

Proposition 9. The covering of G is a self-dual graph with DU — UD = 0, where
self-dual means G = Gy in the definition of dual graded graphs.

This is an example of a pair of dual graded graphs that is infinite in both the
positive and and the negative direction. Locally it satisfies the condition DU —UD =

0, and any interval of this subset is graded.
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A B C D E

Figure 4-6: U graph and D graph

4.2.4 Example 4: Hex Variation

The Hex graph is presented in [5]. It is interesting because its e(z) for ranks 2n and
2n + 1 are the ordinary binomial coefficients (Z), 1 <k < n. One can substitute the
"wall” of the hexagon for a finite chain of n elements for any n. Here is an example

when n = 1:

U graph D graph

Figure 4-7: Hex Variation

4.2.5 Example 5: The Path-Sum

We learned that differential posets are dual graded graphs with q = {1,1.1,...} and

r={Ll.1.1,..}. Inevery differential poset. there are exactly two paths in which every
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element has deg(,) = 2. We can take any two differential posets, and identify such a
path, and then path-sum them into a bigger dual graded graph. We take an example

of the following two differential posets:

Figure 4-8: Examples of two posets

In the following figure, the filled lines are both up-edges and down edges, the dash

lines are only down edges:

Figure 4-9: Path-Sum

4.3 Conclusion

The dual graded graphs are tools to study one of the most important algorithm in

algebraic combinatorics. the Robinson-Schensted correspondence, as well as a variety
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of algebras. We mainly search for examples that either has interesting enumerative
properties, or ones whose vertex set as the Weyl group of algebras. This chapter
listed some of the non trial examples found, of which the Catalan tree is the most

interesting and is worth further study.
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Chapter 5

Higher Dimensional Lattices and
Lower bounds on Rank Sequences

of Differential Posets

In this chapter we discuss the next step in this research. The directions of future
research will concentrate on two topics: searching for a lower bound for rank sequence
of 1-differential posets and generalizing the result of Chapter 3 to higher dimensional

lattices.

5.1 A Lower Bound for Differential Posets

The minimal growth of a differential poset is conjectured to be the integer partition
sequence. To studying this conjecture. Let’s first relax (D3). In the definition of
differential posets, if we only consider (D1), (D2) and develop the poset along the
two side edges, together with Proposition 1, we get Figure 5-1.

Each time we add a singleton to satisfy (D3), we introduce another copy of Figure
5-1. As we start to add them into the diagram, some of the new elements coincide
with others. The Fibonacci lattice is the arrangement in which such coincidence
happens least. It will be helpful to show that Young's lattice is the arrangements in

which the coincidence happens most.
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X

Figure 5-1:
5.2 Higher Dimensional Lattices

To study r-dimensional lattices where r > 1, we introduce the concept of comple-
mented interval. let’s remind us from Chapter 1 that an interval [z, y/ in a poset is
a subposet consists of the set of points z satisfying x < z < y. It contains at least
the points z and y. A lattice L with 0 and 1 is complemented if for all € L there
isay € Lsuch taht z Ay =0and 2Vy = 1. If every interval [x,y] of L is itself
complemented, then L is relatively complemented. We present two propositions on

complemented intervals in differential lattices. The proofs are found in [1].

Proposition 10 (Stanley). Let L be a lattice satisfying (D1) and (D3). Then L is

r-differential iof and only if L is modular.

Proposition 11 (Stanley). Let r be a positive integer. The following two conditions

on a poset P are equivalent.

1. Pis an r-differential lattice (necessarily modular) such that every complemented

interval has length < 2.
2. P is isomorphic to Z(r).

If a 2-differential lattice is such that every complemented interval has length <
2, then it is isomorphic to Z(r). If not, then suppose P is a 2-differential lattice in
which there is at least one complemented interval of length 3 or higher. Let’s assign
such complemented intervals a rank of its minimal element. Since there is at least
one complemented interval of length 3 or higher, let o be such an interval with the
smallest rank. By definition, there exists a sub-lattice of . denoted 3. that satisfies

the following two properties:
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I. Oea = 66;3
2. length(3) = 3

Thus /3 is isomorphic to:

Figure 5-2: The smallest, lowest complemented interval

Given a 2-differential lattice, if two complemented interval base at rank 1 are both of
length > 3, we introduce an algorithm that labels the edges of the lattice r(red) or
b(blue), such that the r-labeled edges consist a differential lattice of lower dimension,
likewise for the b-labeled edges. Moreover, they are put together such that the lattice
is a product of the two lattices of lower dimension. For higher dimensional lattices,
we recursively apply the decomposition through labeling until the resulting lattices

are of dimension 1, or one such that all its complemented intervals are of length < 2.

5.3 A Lattice Decomposition Algorithm on a 2-
differential Lattice

Let 2 and y that both cover 0. label the respective edges  and b. Since x A y=0,z
and y are covered by a same element of rank 2, which will give a set of four elements
with a diamond relations:

For everv diamond relation with a pair of adjacent edges labeled. we have one of

the two following ways of developing it:
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Figure 5-3:

1. If the labeled edges are of a same label, then label the rest two edges with the

same label.

2. If the labeled edges are different labels, then label the opposite edges the same

way.

Figure 5-4:

Figure 5-5:

In the next stage of this research, we aim at studying and refining such a labeling,

so that it becomes well defined, i.e., each edge is assigned to exactly one kind of
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labeling, and can be generalized to other type of 2-differential lattices. More over, we

hope to prove that the labeling has some if not all of the following characteristics:

deg(w) = deg(dT,r) +1
degeuy = degap + 1.

If such a labeling exists, consider the sublattice that consists of all r-edges and
the set of elements A incident to these edges. For z,y € A, then it will be helpful to

show:
rxAy€Aifandonlyifz Ay € A

To sum up, these kinds of labeling are aiming at to prove or disprove the following

conjecture of Richard Stanley:

An r-differential lattice P where r > 1 is a product of Young’s lattices and the

Fibonacci lattices.

If P and @ are posets, then the direct (or Cartesian) product of P and @ is the
poset P x () on the set {(z,y) : z € P,y € Q} such that (z,y) < (2/,9/) in P x Q if

z<z'in Pand y < in Q.
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