

X.^Kcac,^,^

-IBKAESS

t.f5-=.,0--

WORKING PAPER

ALFRED P. SLOAN SCHOOL OF MANAGEMENT

THE "FACTORY" APPROACH TO LARGE-SCALE SOFTWARE

DEVELOPMENT: IMPLICATIONS FOR STRATEGY,

TECHNOLOGY, AND STRUCTURE

Michael A. Cusumano

Revised
November 12, 1987 WP #1885-87

MASSACHUSETTS

INSTITUTE OF TECHNOLOGY
50 MEMORIAL DRIVE

CAMBRIDGE, MASSACHUSETTS 02139

THE "FACTORY" APPROACH TO LARGE-SCALE SOFTWARE
DEVELOPMENT: IMPLICATIONS FOR STRATEGY,

TECHNOLOGY, AND STRUCTURE

Michael A. Cusumano

Revised
November 12, 1987 WP #1885-87

FEB 5 1988

RECeiVED

Michael A. Cusumano 11/12/87
MIT Sloan School of Management Software Project Paper #1

Sloan WP#1885-87 (Revised)

THE "FACTORY" APPROACH TO LARGE-SCALE SOFTWARE DEVELOPMENT:
IMPLICATIONS FOR STRATEGY. TECHNOLOGY. AND STRUCTURE

The impact of technology on organizational structure is a concern

linking the fields of business history, strategy research, organizational

theory, production and technology management, and comparative international

studies. These diverse literatures have all treated a basic managerial

dilemma resulting from two opposing demands: the desire of consumers for

variety in product offerings; and the desire of managers responsible for

engineering and production for standardization and control over processes,

tools, and components as a way to reduce complexity and costs in product

development and manufacturing, as well as in testing and customer service.

Laboratory or "job-shop" organizations have traditionally been used to

construct new, highly complex, or "one-of-a-kind" products, but at high

expense, due to the absence of economies of scale and scope. It has also

been asserted that some product technologies "mature" stabilize oyer time,

creating opportunities for firms to move toward more efficient means of

engineering and production. The factory-type manufacturing organizations

that may eventually emerge in an industry provide maximum efficiency in

terms of costs per unit, but with little flexibility to introduce new products

or processes quickly.

The basic argument of this paper and a series of accompanying case

studies (Cusumano 1987b, c, d) is that organizational type and process

choices -- such as job shops versus more rationalized factory environments.

with standardized procedures, tools, and intermediate components -- may not

be determined by the supposed characteristics of a technology or specific

product types, or by the assumed level of industry "maturity." As firms

accumulate experience or as changes in product features grow less frequent,

managers may indeed build mass-production factories and compete on the

basis of low cost and standardized designs. Newer factory concepts and

computerized technologies also make it possible to create "flexible" factories

that combine mass-production efficiency with job-shop flexibility in product

variety.

Furthermore, some firms in an industry may choose to compete as job

shops, making, for example. Rolls Royces instead of Model T cars. The

passage of time may thus be important mainly in that experience or "industry

maturity" brings with it a rise in the options firms have for their production

strategies and organizations, with some moving from job shops to factories

with varying levels of flexibility. A challenge for managers of relatively

new and complex technologies that seem most approporate for job-shop

production might then be how to use strategy, technology, and organizational

structure to improve efficiency in product development and processing

operations

.

This paper treats large-scale software development environments for

mainframes and minicomputers -- a segment of a technology that, compared

to mass-produced products, is relatively new and highly complex due to the

number of ways of implementing even similar functions, and the potential

interactions among program components. The study asks a specific question:

If one tries to measure structure by some simple indicators of inputs and

process standardization and control, do producers of similar software

products follow different process strategies -- for example, corresponding to

job shops on one end of a hypothetical spectrum and more factory-like

organizations on the other? The survey evidence presented here of major

software facilities in the U.S. and Japan is that they do.

The conclusions follow that, if some firms create more factory-like

production organizations even for software, then strategy and implementation

are at least as important as the complexity of the technology in shaping the

organization; and the emergence of factories need not be seen as simply a

function of industry maturity. Both notions are consistent with Chandler's

basic dictum that structure should follow strategy (Chandler 1962). It was

hoped when designing this study that a set of criteria would make it possible

to identify which firms seem more committed to disciplining software

technology, and that studying these firms through detailed cases would then

provide insights into how to develop and implement strategies for managing

product and process development more effectively, especially for a relatively

new and complex technology.

THE PROBLEM FRAMED IN DIFFERENT LITERATURES

Business historians have long maintained that production organizations

evolved over time and with accumulations of product and process knowledge,

moving from craft-like job shops to mass-production factories. Most

prominent is Chandler, who has described the evolution of factories during

the 18th and 19th centuries in Britain, Europe and the United States,

initially in the textile industry and then gun-making. This historical view

has interpreted this movement as driven by managers attempting to raise

worker productivity and lower unit costs by standardizing and then

integrating production processes in a large, centralized facility; developing

interchangeable components; closely coordinating the flow of each process;

dividing and specializing labor; mechanizing or automating tasks; and

imposing rigid accounting controls (Chandler 1977; Skinner 1985).

In the area of industrial organization theory, a school of thought

rather complementary to Chandler has tended to see the characteristics of a

particular technology, including inputs, processing, and outputs, as

determining in large part how an organization evolves. Most important was

Woodward (1965, 1970), who identified three basic types of production

organizations, ranging from unit job shops and small-batch production, to

large-batch and mass production, to continuous processing operations as in

chemical manufacturing. The assumption here was that over time operations

tended to become larger in scale and more complex, making it necessary for

organizations to become larger and more complex, too, as they evolved from

unit or batch operations to mass producers or continuous-production

operations

.

Somewhat in contrast is the contingency theory school associated with

Lawrence and Lorsch (1967) as well as Galbraith (1973, 1977), which has

argued there is no one best way to design the structure of an organization

to manage a particular technology. What structure is most effective or

appropriate depends on "what environmental demands or conditions confront

the organization" (Scott, 1981: 208). A recent case study of medical-imaging

scanner introduction similarly concluded that identical technologies can result

in different structural outcomes, depending "on the specific historical process

in which they are embedded" (Barley 1986: 107).

Production and operations management specialists such as Abernathy

and Utterback (1975), Hayes and Wheelright (1979 and 1984), and Schmenner

(1984) have also focused on the range of product and process options open

to a firm as product technologies mature in a sort of life cycle. As with

Chandler and Woodward, the underlying notion is that, as product

innovations descrease over time, firms tend to take advantage of accumulated

experience and innovate to rationalize their process technology and

drastically reduce unit costs while standardizing quality, by moving from job-

shop modes of production to large-scale engineering and factory

manufacturing. The tradeoff in rigidity as a firm moved toward continuous

production used to be extensive, because designs and processes became

difficult and expensive to change. Indeed, the experience of Ford and its

Model T production facilities in the 1920s demonstrates how a company can

drive itself into near bankruptcy by pushing such strategic commitments too

far -- for example, assuming product technology or consumer tastes were

more stable than they were, and making factory systems so rigid they took

long periods of time to change to new product or process technologies

(Abernathy and Wayne 1974).

Recent developments in design and production technology have made it

necessary to revise traditionally accepted tradeoffs between process

flexibility and efficiency, as well as divisions between design and production.

Rationalizing development processes without simply producing standardized

goods or locking an organization into a single mode of production also

combine product differentiation with process efficiency -- a rare but

powerful combination of competitive skills (Porter 1980, 1985).

For example, during the 1950s and 1960s, Japanese auto firms pioneered

"small-lot production" techniques, standardizing methods and inputs but not

producing large lots of standardized final products due to machinery and

workers capable of quickly changing to perform different operations or jobs

(Schonberger 1982; Monden 1983; Cusumano 1985). Producers of machine

tools, textile equipment, and various metal components have also managed to

combine "small-lot" or job-shop flexibility in end-product variety with the

productivity, quality, and management control of large factories (Jaikumar

1984 and 1986; Piore and Sabel 1984; Sabel 1987; Palframan 1987). Group

technology concepts (putting together similar parts, problems, or tasks) have

facilitated scheduling of parts production or arranging factory layouts as

well as rationalizing product design and engineering, for small and large

firms (Hyer and Wemmerloc 1984). Producers of semiconductors, like their

counterparts in older industries like automobiles, routinely use standardized

components and add end-process customization, increasing productivity while

maintaining flexibility in design variety (Harvard Business School 1986).

Computer-aided design tools integrated with flexible manufacturing systems

(FMS) transfer digitalized designs automatically to manufacturing tools,

allowing firms to automate this combining of modularized designs with new

designs, with little or no penalty associated with low lot volumes (Skinner

1985; Jaikumar 1986; Meredith 1987).

Comparative international studies have observed the tendency of firms

in certain countries to develop similar sets of strategies and structures. As

noted, the small size of the domestic Japanese automobile market apparently

persuaded managers to develop low-automation, flexible manufacturing

systems during the 1950s and 1960s (Cusumano 1985). There appears to have

been a similar trend in the Japanese machine tool industry (Jaikumar 1986).

A survey of 55 U.S. and 51 Japanese manufacturing plants found that the

Japanese tended to establish similar types of manufacturing organizations,

oriented toward more efficient, continuous-type processing operations

(Lincoln, Hanada, and McBride 1986). Italy also seems to have produced a

large number of firms, many of them textile machinery producers,

emphasizing this combination of efficiency and specialization (Piore and Sabel

1984).

Difficult to separate are the effects of simply being from a certain

culture or nation from the tendency of managers in that country to respond

in kind to similar environmental conditions. Nonetheless, the question must

still be answered to what degree managers operating in the same industry at

the same time actually have and exercise options to manage product and

process development. It also is not clear to what extent the peculiar

characteristics of a technology might constrain the ability of managers to

rationalize operations. These questions can be examined at least in part by

seeing if firms producing similar software products do so with similar or

different strategies and production organizations.

Determining why managers make the choices they do, or whether

organizations evolve from deliberate decisions, is a complex subject of

frequent and conflicting debate (Scott 1981). But, certainly, in designing

new products and processes, there are options: Managers can refuse to

worry about parts and procedures standardization, and encourage their

engineers to design highly marketable products, which then might be mass-

marketed. These firms might even be insensitive to development costs, if

they could recoup large profits from mass sales, although, if they have a

shortage of personnel, they may still want to maximize individual

productivity. On the other hand, companies that choose to customize

products might have even greater incentives to exploit similarities in tools,

procedures, or parts across different product lines. Firms pursuing

standardization (package) or customizing strategies, but especially the latter,

might thus want to standardize the development process and major

components , to reduce costs and perhaps improve quality as well.

This can be illustrated as follows. If a customer needs a product,

whether it is an automobile, a machine tool, a semiconductor chip, or a

software program, there are basically three options: obtain a fully

customized product -- from a vendor or an in-house department; obtain a

standardized or "packaged" product; obtain a semi-customized product (from a

vendor or an in-house department that modifies a purchased standardized

product). It follows that vendors should have three corresponding options:

1) sell a customized product; 2) sell a standardized product; 3) customize a

semi-standardized product. Managers can adopt one of several strategies to

manage product and process development.' Based on the fact that job shops

continue to exist as factories appear, one can also draw a different type of

product-process life cycle (Figure 1). With flexible factory models such as

for machine tools or even software, moreover, it becomes difficult to

separate product development from process development.

A similar typology has recently been suggested independently by
Lampel and Mintzberg 1987.

8

Table 1: STRATEGIES FOR PRODUCT-PROCESS DEVELOPMFNT

MANUAL FULL CUSTOMIZATION:
Customize inputs and development
process for each product

Hardware Analogy : Job Shops
Software Analogy : Small Laboratory Environment

IMPLEMENTATION:
Maximize the capability of the
organization to produce a unique
product that will capture a high price
from at least one customer

MANUAL SEMI-CUSTOMIZATION:
Customize some inputs and processes
and sell more than one
of each product

IMPLEMENTATION:
Maximize the capability of the
organization to produce a unique
product that will capture a large
share of the market

Hardware Analogy : Batch Processing
Software Analogy : Large Development Center

AUTOMATED FULL STANDARDIZATION: IMPLEMENTATION:
Fully standardize inputs, processes
and final products

Hardware Analogy : Model-T Factory
Software Analogy : Undesirable?

Maximize the capability of the
organization to produce a product
with standard features at the lowest
possible price

MANUAL STANDARDIZED SEMI-CUSTOMIZATION: IMPLEMENTATION:

Standardize inputs and processes
but customize end products,
with large-factory efficiency

Maximize the capability of the
organization to produce semi-custom
products at a low price through
the use of as many standardized
procedures and inputs as possible

Hardware Analogy : Small-Lot Production, Group Technology
Software Analogy : Software Factory

AUTOMATED STANDARDIZED CUSTOMIZATION: IMPLEMENTATION

Standardize inputs and processes
but customize end products and
automate processing

Maximize the capability of the
organization to produce customized
products at a low price through the
use of highly flexible process
techniques and/or automation

Hardware Analogy : Automated Flexible Manufacturing Systems
Software Analogy: Program Generators, Used in Factories or Independently

FIGURE 1: REVISED PRODUCT PROCESS LIFE-CYCLE MATRIX

Rate of

Major

Innovation

Time

Process

nnovation

Innovation

Product-Process Development Organization

Job Shop
Batch

Automated Factory
Flexible Factory

-^

->

Flexible Manufacturing System

FACTORY APPROACHES TO LARGE-SCALE SOFTWARE DEVELOPMENT

Software production dates back to the 1950s, when computers were first

designed that could store in internal memory sets of instructions (programs)

controlling basic operations and a variety of applications. As it has become

refined over time, the series of phases followed in software development has

come to resemble that for "hard" products, consisting of planning, detailed

design, construction (coding), testing, and servicing (maintenance) phases. It

typically takes years and hundreds of employees to develop and test

programs such as operating systems for large mainframe computers or real-

time control systems for factories or electric power plants. Furthermore,

the clarity of designs, consistency of documentation, and lack or presence of

defects or inadequate designs requiring extensive future modifications could

impose enormous costs on software producers. Development costs for

software programs over their lifetimes were typically about 10% for planning

and design, less than 10% for coding, about 15% for testing, and as much as

70% for maintenance (Frank 1983).

As with hard manufacturing, it is difficult to generalize about software

because there are numerous types of products for a wide variety of

computers and applications. These fall into two basic categories: "systems"

software, including operating systems, database management systems,

telecommunications and other related programs designed to operate the basic

functions of the computer or computer system; and "applications" programs,

which operate a level above and implement specific functions like production

control, payroll analysis, or word processing. Applications include "packaged"

software -- products designed by producers for general sale --and customized

software -- programs tailored to meet the unique needs of an individual

11

customer.

Firms, or at least facilities, tend to specialize in particular types of

software products, making it possible, theoretically, for them to achieve

economies of scale or scope through standardization of tools, procedures, and

inputs. In other industries, the rigidity imposed by such "rationalization,"

resulting in a reduced ability to adapt to changes in product or process

technologies, or in market demands, has traditionally been seen as the major

tradeoff a firm accepts in moving toward design standardization or factory

mass-production. Software development may seem to be primarily a set of

design and engineering activities for one-of-a-kind products, in the sense

that companies make packages, systems software, or customized programs,

with reproduction involving a simple process of replicating code. Thus, it

might appear that software development organizations should all resemble job

shops. Reinforcing this notion is a continuing debate among many

programmers, managers, and academics over whether software development is

more like an art or craft than an activity suitable for engineering or

factory-like discipline and control (Brooks 1975; Shocman 1983; Hauptman

1986).

A problem with continuing to view a technology as a mere craft is that

such attitudes may impede progress in rationalizing the design and

production process. In software development, progress in improving

productivity continues to be agonizingly slow. One study concluding around

1980 estimated that increases in programming output per man-hour had risen

only about 5% annually since the 1960s, in contrast to improvements in

computer processing capacity averaging about 40% a year (Horowitz and

Munson 1984). Despite better computer languages, management methods.

12

design techniques, and tools such as program generators that automatically

produce code from high-level designs, demand for programmers in the mid-

1980s outstripped the supply of programmers by about 10% in Japan and more

than 20% in the U.S. (Zavala 1985; Aiso 1986). Observers began

referring to this supply-demand imbalance as the "software crisis" as far

back as 1969 (Hunke 1981; Frank 1983). !n fact, U.S. companies desiring to

buy fully customized applications programs typically had a 3- to 4-year wait

(U.S. Department of Commerce 1984). In Japan, the typical backlog was 26.4

months (Kamijo 1986). Further hardware development, in large and small

machines, continues to expand the demand for lengthy, complicated programs,

even for personal computers, delaying for years the full utilization of

microprocessors such as the Intel 80286 and 80386 (Businessweek 1987). In

addition, a serious impediment to improvements in individual productivity are

quality problems; data from IBM, TRW, and GTE indicate that fixing bugs in

a completed program during operation can cost 100 times that of detecting

errors in the design stage (Boehm 1976).

In short, the lack of programmers, rising demand for software,

increasing length of programs needed to utilize improved hardware capacity,

as well as the enormous impact of quality problems or product changes on

productivity, have created a need to raise efficiency levels for software

development. For a firm to increase its capability to produce a variety of

high-quality products at lower costs than other companies, or simply to

maximize its manpower and invested resources, should provide a potent

competitive advantage -- in the software marketplace, as in other industries.

The idea of creating "software factories" to produce a variety of

programs using standardized procedures, tools, and components reusable

13

across different projects appears to have been first proposed by a Honeywell

engineer at a 1968 NATO Science Conference on improving software

productivity. Conference members criticized the idea as unworkable, largely

due to three problems: One, it seemed too difficult to create program

modules that would be efficient and reliable for all types of systems and

which did not constrain the user. Two, it seemed impossible to write

software that did not depend on specific characteristics of particular

machines. And third, no method was then available to catalog program

modules so they could be easily found and reused. (Horowitz and Munson

1984, citing Mcllroy 1976; McNamara 1987).

These were and remain serious problems, although many large software

producers have made progress in facilitating design and overall development

efficiency, as well as reusability (Ramamoorthy 1984; Horowitz and Munson

1984; Goldberg 1986) . Several companies and even the University of

Southern California (Eliot and Scacchi 1986) even claim to have established

software factories, and others have launched less elaborate software

rationalization projects.

Of particular importance to this research project is an experiment that

occurred at System Development Corporation (SDC), a producer of real-time

software primarily for government contracts. By the mid-1970s, managers

had encountered several common problems they hoped a more factory-like

environment would solve: (1) Lack of discipline and repeatability or

standardized approaches to the development process, with the result that

SDC was continually reinventing products and processes, and not becoming as

proficient at development or project control as managers wanted. (2) Lack

of an effective way to visualize and control the production process, as well

14

as to measure before the project was completed how well code implemented

a design. 3) Difficulty in accurately specifying performance requirements

before detailed design and coding, and recurrence of disagreements on the

meaning of certain requirements, or changes demanded by the customer. 4)

Lack of standardized design, management, and verification tools, making it

necessary to reinvent these from project to project. 5) Little capability to

reuse components, despite the fact that many application areas used similar

logic and managers believed that extensive use of off-the-shelf software

modules would significantly shorten the time required for software

development. Several managers and development engineers decide to

integrate a set of tools (program library, project databases, on-line

interfaces between tools and databases, and automated support systems for

verification, documentation, etc.) with standardized procedures and

management policies for program design and implementation, and utilize this

system in a centralized facility of about 200 programmers in Santa Monica,

California. The concept and system of tools and methods SDC copyrighted

under the name "The Software Factory" (Bratman and Court 1975 and 1977).

The SDC experiment was not particularly successful. Scheduling and

budget accuracy improved dramatically, but the three problems raised at the

NATO conference surfaced as well. For example, it was extremely difficult

without portable computer languages to reuse code from one project on

different computers and for different applications. This led to other

problems. Most seriously, the tradition in SDC has been for project

managers to create programming groups that would work at individual

customer sites, in a sort of mobile job-shop mode of production. They did

not like giving up control of development efforts to a centralized facility.

15

and were not required by top management to use the Software Factory,

leading to a decline in the flow of work into the facility. Ultimately, the

company allowed project managers to remove programmers from the factory

and it faded out of existence after approximately 10 projects. Programmers

also tended to complain about unfamiliar, rigid standard, as well as the

difficulty and inelegance of reusing other people's code.

In retrospect, it seems that SDC managers attempted to impose the

factory infrastructure of standardized tools and methods, and reusability

goals, on both project managers and programmers before software technology

was refined enough to do this easily. Furthermore, architects of the factory

failed to solve the matrix-management problems necessary to maintain a

steady work flow into the new system. SDC gradually abandoned the effort

by 1978, although it continued to use many of the factory procedures and

some of the tools. The SDC model was also an important influence on the

software standards later developed by the U.S. Department of Defense

(Cusumano and Finnell 1987).

U.S. companies actively continued to develop better software tools,

methods, and programming environments (Stucki and Walker 1981; Willis 1981;

Boehm 1984; Howes 1984; Griffin 1984; Hoffnagle and Beregi 1986). This is

the case even though SDC and other American firms no longer use terms

such as "factories" and appear to prefer designations such as "laboratory" or

"systems development center," or no label at all, to refer to their software

organizations (McCue 1978; Hunke 1981). Some companies, such as IBM, also

appear to have been slow too recognize software as a major part of their

buisness, deserving of the same degree of attention, strategic planning, and

process rationalization as their hardware operations. But another question is

16

whether U.S. or software facilities in other countries have truly pursued a

level of integration and standardization among people, systems, functions,

tools, methods, and inputs sufficient to distinguish their operations from

other large facilities with minimal standardization and integration.

JAPANESE APPROACHES TO SOFTWARE ENGINEERING

Perhaps the most significant outcome of the SDC experiment was that

reports from this company encouraged several Japanese software managers to

pursue software factory organizations or at least greater efforts at process

control and reusability (Iwamoto and Okada 1979; Matsumoto 1981; Mizuno

1985; Sakata 1985; Shibata 1985 and 1986). SDC did not introduce the

factory concept into Japan, however. Japanese experimentation with

centralized and highly disciplined programming environments actually predates

the SDC experiment, going back to Hitachi's opening of the world's first

facility called a software factory in 1969. NEC, Toshiba, and Fujitsu followed

in 1976-1977, NT&T in 1985, and Mitsubishi Electric in 1987 (Table 2).

17

Table 2: 1987 MAJOR JAPANESE SOFTWARE FACTORIES

Key: OS = Operating Systems
App = General Business Applications

Ind = Industrial Real-Time Control Applications
Tel = Telecommunications Software

Note: All facilities develop software for mainframes or minicomputers,
Employee figures are 1987 estimates.

Est.

software tools and planning or reporting systems that facilitate group

programming and a teamwork methodology throughout the software life cycle.

Third are quality control techniques designed to catch bugs early, before

they become difficult to fix. And fourth are extensive efforts to improve

software quality and productivity through reusability of software modules and

automation of software production (code generation) (Kim 1983; U.S.

Department of Commerce 1984; Uttal 1984; Businessweek 1984; Johnson 1985;

Haavind 1986).

If software followed the historical product-process life cycle and

Japanese firms were advanced along these curves, this might explain why

software factories seem to be so popular in Jsnan -- if indeed the Japanese

facilities operated more like factories than large software facilities in

countries such as the U.S. But Japanese firms began writing software in the

late 1950s and early 1960s, several years behind U.S. counterparts, so more

experience does not seem to be the explanation.

One U.S. group touring Japan concluded that, while the Japanese were

not developing unique or more advanced software tools, they were using

them more systematically then U.S. firms (Zelkowitz 1984). This suggests

that the Japanese firms studied are simply more inclined than others toward

makiing their production operations more efficient. A 1984 U.S. Department

of Commerce report suggested that U.S. firms lag in software production

management because Americans tend to view this technology more as a

"craft" than the Japanese:

The Japanese have... made impressive gains in the development of

software tools and have encouraged their widespread use within their
software factories to boost productivity ... By contrast, while the United
States is developing software engineering technology, the use of tools

in U.S. firms is quite limited... Many U.S. software companies consider
programming a craft and believe the future strength of the industry lies

19

in its creativity rather than a disciplined approach to software

development as do the Japanese."

A 1985 study by the Electronic Engineering Times cited culture as an

explanation. It appeared to the writer in this journal that the Japanese

were more effectively utilizing their traditional team or group approaches, as

well as developing unique team-oriented software tools, in contrast to

Americans, who, as usual, were overly dependent on small groups and highly

skilled individuals:

"[T]he approach to software technology taken by major developers in

Japan, such as NEC, Fujitsu Ltd, and Hitachi Ltd., universally strive to

harness that tradition of excellent teamwork... Each of these developers

has automated versions of planning and reporting systems that enforce

a strict teamwork methodology through the complete life cycle of a

computer program -- from planning to design to maintenance, and

without coding, since high-level language-source codes are automatically

produced from the design documents. ... Until now, the Japanese have

been hampered in their software development efforts by a lack of team-

oriented tools. The tools borrowed from the United States simply do

not fit the Japanese culture because they put too much control in too

few hands.

In America, industrial software development is generally done in groups

that are as small as possible to minimize the communication problems

among people. That makes the knowledge of each individual

programmer a critical factor to the success of any software-

development project. But... that is just not tolerable in the Japanese

culture. As a consequence, the Japanese have had to perform basic

research into software tools that can be wielded by many hands at

once. Nobody else was going lo develop group-programming tools for

them.

"

If national differences do exist in the management of a particular

technology, the reasons are no doubt complex. One explanation might be

historical, such as a less prominent software craft culture ("hackers") in

Japan, as opposed to the U.S., or simply more emphasis of Japanese

companies on disciplined engineering and manufacturing practices. But a

clear difference between Japan and the U.S. is the composition of their

20

software markets, which might be encouraging certain Japanese firms to

focus on process innovations necessary to rationalize design and production

operations.

Although the figures are only approximate, in the U.S., about 60% of

software sales in the early 1980s were standardized packages. In contrast,

only about 5% of Japanese software sales were standardized packages; 95%

involved some degree of customization (Table 3). One reason for this

difference is that microcomputers accounted for only about 10% of Japanese

software sales, compared to about 50% in the U.S. But Japanese customers

also had a long history of preferring customized systems, placing tremendous

demands on Japanese software producers faced with a shortage of skilled

programmers and a backlog of orders, as indicated in Table 3.

Table 3: SOFTWARE MARKETS COMPARISON (1984-851

Japan USA
Overall Market Characteristics:
Total Market Revenues (Billion $) 2.5 11

Annual Demand Increases (%) 25 25
Annual Growth in Supply of Programmers (%) 13 4
Typical Wait for Customized Programs (Months) 26 40

Product/Market Breakdown:
Integrated Systems Software (%)

Package Software (%)

Custom Software (%)

Microcomputer Software/Total Market (%)

All Systems Software
All Applications Software

Computer Manufacturers as Suppliers of:

All Systems Software (%)

All Applications Software (%)

Sources: U.S. Department of Commerce 1984; Zavala 1985; Aiso 1986;

21

5

Kamijo 1986; Businessweek 1987.

Note: The figures cited are estimates by the author from data in the
listed sources. Systems software includes operating systems,
database management systems, telecommunications systems, and
related programs. The size of the Japanese software market is

underestimated because systems software is usually sold bundled
with hardware.

The preceding discussion of product and process strategies, and of the

large-scale software industry, raises several questions. One is do job shops,

batch organizations, and factory-like facilities exist simultaneously in the

software industry? A second question is which firms -- producing what

specific products, and in what markets -- appear to resemble factories? If

this is a Japanese trend, case studies of individual firms will be needed to

examine why managers have chosen this strategy, and how they have

implemented their factory systems. The final subject of this paper is to

present the results of a survey of major Japanese and U.S. software

producers.

THE SURVEY

The published descriptions and stated objectives for the SDC Software

Factory project (Bratman and Court 1975 and 1977) provided a basis for

drawing up eight criteria to compare software facilities along a spectrum

that should exist at least for large-scale engineering and manufacturing

operations: process standardization and control; tool standardization and

linkage; and inputs standardization and control (emphasis on reuse of

software modules).

The factory-tool infrastructure the SDC project suggested consisted of

22

a centralized program library to store modules, documentation, and completed

programs; a central database to track production-management data; a uniform

set of procedures for specification, design, coding, testing, and

documentation; standardized project databases for groups working on

different parts of a program; and an interface linking various tools and

databases. These five variables constituted the core process and tool

questions in the initial survey, which attempted to see if managers in the

U.S. and Japan were currently emphasizing a similar type of infrastructure.

In addition, since an objective of the factory strategy was to produce

standardized components for reuse, rather than "reinvent the wheel" with

every customer order, three questions were included about reusability.

Major software producers in Japan and the U.S. were identified through

literature surveys and lists of software producers, and sent a questionnaire

containing eight core questions plus more than a dozen others, many of an

experimental nature, to provide supplementary data.^ Optional questions also

requested performance measures such as actual rates of reused code in a

Additional questions were also sent to survey participants, although
comments from the respondees, site visits and interviews, as well as partial

correlation analysis, revealed that many of the non-core questions were not
particularly useful for measuring "rationalization" along large-scale
engineering and manufacturing lines. For example, three questions asked for

emphasis on standardization of languages for high-level design, module
description, and coding. It turned out that Japanese and English were
mainly used for high-level design, and many managers did not know how to

answer; Japanese tended to develop specialized languages for module
description because they were less comfortable than U.S. programmers in

using English-based languages for this purpose, which made it unfair to U.S.
firms to use this question; and coding languages were often determined by
customers. A question about top-down design was discarded because
emphasis on this tended to contrast with a more factory-type process of

combining new and old code in layers. Similarly, questions about emphasis
on high-level abstraction or layering were discarded because not everyone
knew how to interpret these.

23

recent sample year. For the core questions, managers either responsible for

overall software engineering management or with sufficient experience to

present an overview of practices for the entire facility were asked to rank

the emphasis of themselves and general managerial policy at their facilities

on a scale of to 4 (see Table 4), as well as to comment on each answer.

Questionnaires were directed to managers at the facility or product-area

level, since software practices usually differed significantly among divisions

in diversified or large firms, and some diversity seemed useful to meet

different market or internal needs.

The sample was limited to facilities or departments making products

that usually require large amounts of people, time, and tools to develop, and

which might therefore provide incentives for managers at least on the

facility level to seek similarities and common components or tools across

different projects: operating systems for mainframes or minicomputers

("systems" software); and real-time applications programs, such as for factory

control or reservations systems ("applications" software). These were further

broken down into telecommunications software (applications and systems were

combined because of the smallness of the sub-sample); commercial operating

systems; industrial operating systems; real-time control applications; and

general business applications.

All the Japanese firms contacted filled out the survey; about 75% of

U.S. firms contacted completed the survey. To check answers, two managers

at each firm or facility were asked to respond. About half the companies

returned two completed surveys for each type of facility; the answers were

extremely similar, usually differing by only a few percentage points, and

24

were averaged. Other answers represent single responses.

A factor analysis procedure with varimax rotation indicated that the

eight questions constituted three orthogonal factors with eigenvalues

rounding to approximately 1.0 (actual 2.91, 0.88, and 0.67); these explained

96.1% of the variance in survey answers. For each factor, the variables with

a strong loading (approximately 0.51 to 0.78) were summed and used to test

differences in the average Japanese and U.S. scores, as well as to test if

product type or country origin of the facility were significantly correlated

with the process and reuse scores.

The data reported in Table 5 reflects scores for each dimension and the

total for eight variables on a basis of 100%, with maximum scores of 4 for

each variable. Table 6 compares the average Japanese and U.S. responses to

the process, tools, and inputs dimensions. Table 7 summarizes the results of

one-way analysis of variance tests to determine the effects of product types

or country of origin on the scores reported for the three dimensions. Tables

8 through 10 compare actual reuse rates reported by the Japanese and U.S.

facilities, and analyze correlations with the three survey dimensions as well

as types of products and country of origin.

Since the sample size is relatively small in absolute numbers, the

results of this analysis must be considered as no more than suggestive of

"^ in the case of Toshiba, a single large facility (approximately 2500
programmers) had different departments producing both systems and
applications programs using identical procedures and tools, and the manager
responsible for technical development. Dr. Yoshihiro Matsumoto, submitted
one set of answers and asked that they be counted twice, under both
systems and applications facilities.

This procedure is recommended as a simple data reduction technique
by Comrey 1973 and Tabachnick and Fidell 1983. Comrey suggested that

loadings of .55 (explaining 30% of the variance) were "very good," and .63

(40% variance) or over "excellent."

25

patterns existing at software facilities in the U.S. and Japan. It should be

noted, however, that the surveyed Japanese firms account for the vast

majority of software written and sold in Japan, and the surveyed U.S. firms

include most of the largest producers of computer operating systems,

applications software, and related services such as data bases, which also

have a large software component.^

Table 4: SURVEY AND SAMPLE OUTLINE

SAMPLE: n = 44 (23 Japanese, 21 U.S.)

SURVEY PARTICIPANTS: Software Development Managers

ANSWERS KEY:
4 = Capabil
3 = Capabil
2 = Capabil
1 = Capabil

= Capabil

ty or policy is FULLY USED OR ENFORCED
ty or policy is FREQUENTLY USED OR ENFORCED
ty or policy is SOMETIMES USED OR ENFORCED
ty or policy is SELDOM USED OR ENFORCED
ty or policy is NOT USED

The top three Japanese firms ranked by software sales in 1986 were
NEC ($507 million), Fujitsu ($389 million), and Hitachi ($331 million). NEC
ranked fourth in the world, behind IBM ($5,514 million), Unisys ($861), and
DEC ($560). The Japanese sales figures considerably understate actual

software development, because Japanese firms included ("bundled") systems
software with mainframe and minicomputer hardware prices, although the size

of systems software operations corresponds roughly to hardware sales. The
largest Japanese producers of mainframes by 1986 sales were Fujitsu ($2,470
million), NEC ($2,275), Hitachi ($1,371), and Mitsubishi ($185); the largest

sellers of minicomputers were Toshiba ($766), Fujitsu ($620), and Mitsubishi

($475). On the U.S. side, IBM was by far the world's largest producer of

hardware and software; three of its facilities are represented in the survey.
Unisys, which ranked 2nd in world software sales, has two facilities in the
survey. In services, TRW ranked 1st and General Motors/EDS 3rd; Control
Data, Martin Marietta, and NT&T 6th, 7th, and 8th; Boeing and IBM 12th

and 13th (Datamation 1987). Other large Japanese producers of software
included in this survey were subsidiaries of Hitachi and NEC, including
Nippon Business Consultants and Hitachi Software Engineering (Hitachi), as

well as NEC Software, NEC Information Systems, and Nippon Electronics

Development (NEC) (Kiriu 1986).

26

SURVEY QUESTIONS:

Process Standardization and Control (Score of 12 = 100%)

1) A centralized program library system to store modules and
documentation

.

2) A central production or development data base connecting programming
groups working on a single product family to track information on

milestones, task completion, resources, and system components, to

facilitate overall project control and to serve as a data source for

statistics on programmer productivity, costs, scheduling accuracy, etc.

3) A uniform set of specification, design, coding, testing, and
documentation procedures used among project groups within a

centralized facility or across different sites working on the same
product family to facilitate standardization of practices and/or division

of labor for programming tasks and related activities.

Tool Standardization and Interface (Score of 8 = 100%!

4) Project data bases standardized for all groups working on the same
product components, to support consistency in building of program
modules, configuration management, documentation, maintenance, and
potential reusability of code.

5) A system interface providing the capability to link support tools,

project data bases, the centralized production data base and program
libraries .

Inputs Standardization and Control (Score of 12 = 1(X)%)

6) Formal management promotion (beyond the discretion of individual

project managers) that new code be written in modular form with the

intention that modules (in addition to common subroutines) will then

serve as reusable "units of production" in future projects

7) Formal management promotion (beyond the discretion of individual

project managers) that, if a module designed to perform a specific

function (in addition to common subroutines) is in the program library

system, rather than duplicating such a module, it should be reused.

8) Monitoring of how much code is being reused

Total for 8 Variables (Score of 32 = 100%)

27

Table 5: SUMMARY AND RANKING OF SURVEY SCORES f%l

Note: Japanese Facilities indicated by *

COMPANY/FACILITY Process Tools Inputs Total

Telecommunications Software

*NEC Switching Systems
*NT&T Applications
Mitsubishi Electric

AT&T Bell Labs Applications)
*Hitachi Totsuka Works
*NT&T Systems

100.0 93.8 100.0 98.4
75.0

Table 5 Continued

COMPANY/FACILITY

General Applications

*NEC Mita

*NEC Information Services

Control Data
*Nippon Systemware
Fujitsu Kamata Software Factory

Hitachi Omori Works
IBM (Office Products)
Martin Marietta/MD
Nippon Business Consultants
Cullinet
EDS/GM
Martin Marietta/Denver
Hitachi Software Engineering
Mitsubishi Electric

Nippon Electronics Development
Computervision

Process Tools Inputs Total

95.8

Table 6: COMPARISON OF AVERAGE JAPANESE AND U.S. SURVEY SCORES

Dimension

Process (Std. Dev.)

Tools (Std. Dev.)

Inputs (Std. Dev.)

Total (Std. Dev.)

n = 23

Table 8: COMPARISON OF REPORTED JAPANESE AND U.S. REUSE RATES

n = 13

Jaoanese (Std.

33.8% (14.5)

DISCUSSION

The survey results appear to support two hypotheses. One is that

there are clearly variations in emphasis among software managers, regarding

the strategies and structures of their organizations. Despite potential views

of software development as largely a craft, art, or "job-shop" type of

operation, some managers at facilities making similar types of products

clearly placed more emphasis on control and standardization of processes,

basic tools, and reusable inputs (modules of code).

Within the same product types, for example, total scores ranged from

56.3% to 98.4% in Telecommunications Software; 54.7% to 93.8% in Commercial

Operating Systems; 56.3% to 87.5% in Industrial Operating Systems; 23.4% to

90.6% in Real-Time Control Applications; and 28.1% to 91.4% in General

Business Applications (Table 5). It may be difficult to distinguish facilities

ranking within a few percentage points; but companies on opposite ends of

the spectrums that emerged from the survey rankings must be different and

in instructive ways. Moreover, the analysis of variance tests confirmed that

product types as defined in this paper had no significant impact on where

managers scored on either dimension studied.

A second hypothesis one might generate from the discussion of Japanese

approaches to software engineering is that there are some national

differences between the U.S. and Japan in management emphasis, at least as

far as was measurable in this limited survey. The data provide some support

for this. Among the three dimensions studied, the t-tests indicated that

only the average responses for the inputs variables -- 74.4% for the Japanese

and 47.8% for the U.S. -- and the total scores -- 73.7% for the Japanese and

63.1% for the U.S. -- were significantly different (Table 6). This does

32

suggest that factory-type approaches centering on process standardization

and control as well as reusability might be more commonly emphasized in

Japan. Reported Japanese reuse rates were also significantly higher than

U.S. rates (33.8% to 14.3%) (Table 8). Japanese scores also tended to be

higher on the process variables, and U.S. scores higher for the tools

variables, although neither averages by themselves were significantly

different at a confidence interval even of 90%.

The only dimension that correlated significantly with reported reuse

rates was emphasis on inputs reuse (Table 9). That standardization of

processes and tools were not significant suggests that reusability is a

complex phenomenon and probably has much to do with the similarity of

work flowing through a particular facility. Nonetheless, the analysis of

variance tests confirmed that product type was not significant, while country

of origin significantly correlated with the inputs scores and reported reuse

rates (Tables 7 and 10). This data suggests that Japanese applications

producers, who clearly are marketing customized products, as well as

Japanese systems producers, who sell basic software, both tend to emphasize

reusability. In the U.S., System Development Corp. /Unisys, and to a lesser

extent Martin Marietta/Maryland and TRW, also appeared to be following a

reusability or customizing strategy. But, as noted earlier, particular features

of the market in Japan, which almost universally has demanded customized

products, perhaps encouraged firms in this country more than in the U.S. to

pursue standardization and customization relying on the construction of

reusable components.

33

IMPLICATIONS

The survey was a "first cut" attempt to measure differences in

emphases among managers at major software facilities in the U.S. and Japan.

This identified firms across a spectrum resembling flexible factories on the

upper end and job shops on the lower end, for a variety of product types.

The real value from this research should come from detailed, historical case

studies of firms at the higher end of the spectrum, which should show how

it is possible to impose "factory" discipline over engineering and production

operations even for a relatively new and complex technology.

Over time, if not at the present, facilities at the upper end of the

spectrum may become able to produce customized (or semi-customized)

products similar in performance to those products (packaged or customized)

made by firms at the lower end of the spectrum but at a lower cost, due to

savings from process management or elimination of having to "reinvent"

components. This may provide an important competitive advantage, as it has

in industries such as semiconductors, machine tools, and even automobiles.

Managers of product development and production need to ask themselves if

they are doing all they can to improve their operations. If some firms

deemphasize standardization, integration of tools and processes, and reuse of

components, while focusing essentially on the individual engineer, the

individual tool, or the final product, then they may not be fully developing

-- that is, compared to some of their competitors -- orQanizational

capabilities to maximize the performance of their technical people and

invested resources.

All such "rationalization" of product and process development depends,

at least to some extent, on the nature of the marget segments a firm wishes

34

to serve. The question then becomes, within those segments, is it possible to

be more efficient -- for example, semi-customizing products from reused

components rather than building all programs from scratch, or simply investing

in tool and process development and then standardizing around technologies that

seem to work best. The scale of the facility should be less important than the

degree of standardization of processes and tools, integration, or reuse rates,

although scale may be important to justify the financial investment process

development.

For software, a lingering issue is to what extent the design complexity of

this technology can ever be reduced. Previous innovations leading to

improvements in programming productivity include high-level languages, time

sharing, integrated programming environments such as Unix work, new

programming techniques, expert systems and artificial intelligence-based tools,

graphics tools, automated programming, testing automation, high-powered

workstations, and rapid prototyping techniques (Brooks 1987). All of these are

being used and continually developed as basic tools in software factories

(Cusumano 1987b, 1987c, 1987d) , although these can probably be used with equal

effectiveness in job shops or laboratories -- if they are applied consistently.

A larger issue is technological change and managerial influence. A

shift in focus from the individual and individual tools and techniques, to the

organization and process management -- reflects a movement one might

expect with any product and process as firms accumulate experience in

design and production, and as market demands become better defined, at

least compared to the earliest days of an industry. But the software

example suggests this is not a movement necessarily constrained by the

35

nature of a technology or by the simple passage of time. The critical

variables may be managerial strategy and efforts at implementation, although

further discussion of this topic must await additional research on individual

firms

.

APPENDIX TABLES

VARIMAX ROTATED FACTOR MATRIX

Variable/Factor
library

central data base
uniformity
project data base
interface

design for reuse
reuse promotion
monitoring reuse

Inputs
-0.20667
0.27622
0.11185
0.17609
0.29765
0.70171
0.74770

0.51412

Process
0.51709
0.65561
0.65900
0.13763
0.23977
0.12273
0.08013

0.49757

Tools
0.35414
0.11498
0.13972
0.77652

0.62033
0.48046
0.16469

0.05278

EIGENVALUES AND PERCENT OF VARIANCE

Variable

library

central database
project database
interface

uniformity
design for reuse
reuse promotion
monitoring reuse

Factor

BIBLIOGRAPHY

ABERNATHY, William J. and James UTTERBACK, "Dynamic Model of Process

and Product Innovation," Omega , 3 (1975), 639-657.

ABERNATHY, William J. and Kenneth WAYNE, "Limits of the Learning
Curve," Harvard Business Review (September-October 1974), 109-119.

Also, H. (Keio University), "Overview of Japanese National Projects in

information Technology," International Symposium on Computer Architecture,

Lecture 1, 2 June 1986, Tokyo.

BARLEY, Stephen R., "Technology as an Occasion for Structuring: Evidence
from Observations of CT Scanners and the Social Order of Radiology
Departments," Administrative Science Quarterly , 31 (1986): 78-108.

BOEHM, Barry W. , "Software Engineering," IEEE Transactions on Computers,
C-25 (1976), 1126-1141.

, "A Software Development Environment for Improving Productivity,"

Computer (June 1984), 30-44.

BRATMAN, Harvey, and Terry COURT (System Development Corporation),
"The Software Factory," Computer (May 1975), 28-37.

., "Elements of the Software Factory: Standards, Procedures, and
Tools," in Infotech International Ltd., Software Engineering Techniques,
Berkshire, England, Infotech International Ltd. 1977, 117-143.

BROOKS, Frederick P. Jr., The Mythical Man-Month: Essays in Software
Engineering , Reading, Ma., Addison-Wesley, 1975.

BROOKS, Frederick P. Jr., "Essence and Accidents of Software Engineering,"
Computer . April 1987, 10-19.

BUSINESSWEEK, "Japan's Push to Write World-Class' Software," 27 February
1984, 96-98.

BUSINESSWEEK, "The Free-for-AII Has Begun," 11 May 1987, 148-159.

CHANDLER, Alfred D. Jr., Strategy and Structure: Chapters in the History
of American Industrial Enterprise , Cambridge, MA, MIT Press, 1962.

, The Visible Hand: The Managerial Revolution in American Business,
Cambridge, M.A., Harvard University Press, 1977.

COMREY, A. L., A First Course in Factor Analysis , New York, Academic
Press, 1973.

CUSUMANO, Michael A., The Japanese Automobile Industry: Technology and
Management at Nissan and Toyota, Cambridge, MA, Harvard University Press,

1985.

37

CUSUMANO, Michael A. and David E. FINNELL, "A U.S. "Software Factory"

Experiment: System Development Corporation" M.I.T Sloan School of

Management , Working Paper #1887-87, 1987.

CUSUMANO, Michael A., "Hitachi: Pioneering a 'Factory' Strategy and
Structure for Large-Scale Software Development," M.I.T Sloan School of

Management , Working Paper #1886-87, 1987b.

CUSUMANO, Michael A., "Toshiba's Fuchu Software Factory: Strategy,

Technology, and Organization," M.I.T Sloan School of Management . Working
Paper #1939-87, 1987c.

CUSUMANO, Michael A., "NEC: Standardization Strategy for a Distributed

Software Factory' Structure," M.I.T Sloan School of Management . Working
Paper, 1987d.

DATAMATION, 15 June 1987, 28-32.

ELIOT, Lance B., and Walt SCACCHI, "Towards a Knowledge-Based System
Factory," IEEE Expert. Winter 1986, pp. 51-58.

FRANK, Werner L., Critical Issues in Software , New York, John Wiley &

Sons, 1983.

FUJINO, Kiichi (Vice-President, NEC), "Software Development for Computers
and Communications at NEC," Computer (November 1984,

, Interviews, 7/28/86 and 9/8/87.

GALBREATH, Jay, Designing Complex Organizations , Reading, MA, Addison-

Wesley, 1973.

, Organization Design , Reading, MA, Addison-Wesley, 1977.

GOLDBERG, R., "Software Engineering: An Emerging Discipline," IBM
Systems Journal 25 (1986), 334-353.

GRIFFIN, William G., "Software Engineering in GTE," Computer (November
1984), 66-72.

HAAVIND, Robert, "Tools for Compatibility, " High Technology (August 1986),

34-42.

HARVARD BUSINESS SCHOOL, "VLSI Technology, Inc. (A)," Case Study 0-

686-128 (1986).

HAUPTMAN, Oscar, "Influence of Task Type on the Relationship Between
Communication and Performance: The Case of Software Development," R&D
Management 16 (1986), 127-139.

HAYES, Robert H. and Steven C. WHEELRIGHT, "Link Manufacturing Process

38

and Product Life Cycles," Harvard Business Review (January-February 1979),
133-140.

., Restoring Our Competitive Edge: Competing through Manufacturing.
New York, John Wiley & Sons, 1984.

HITACHI SEISAKUSHO KABUSHIKI KAISHA (Hitachi Ltd.), Kanagawa l<oio 15

nen no ayumi (15-year history of the Kanagawa Works), Hitachi Ltd.,
Kanagawa, 1979.

HOFFNAGLE, G.F., and W.E. BEREGI, "Automating the Software Development
Process," IBM Systems Journal , 24 (1985).

HOROWITZ, Ellis and John B. MUNSON, "An Expansive View of Reusable
Software," IEEE Transactions on Software Engineering . SE-10 (1984), 477-486.

HOWES, Norman R., "Managing Software Development Projects for Maximum
Productivity," IEEE Transactions on Software Engineering, SE-10 (1984), 27-

49.

HUNKE, H., ed.. Software Engineering Environments . Amsterdam, North-
Holland, 1981.

HYER, Nancy L. and Urban WEMMERLOC, "Group Technology and
Productivity, ' Harvard Business Review (July-August 1984), 140-149.

IWAMOTO, Kanji and Masashi OKADA (NEC), "Purojekuto kanri no tsuru"
(Project control tools), Joho shori (Information processing), 20 (1979).

JAIKUMAR, Ramchandran, "Flexible Manufacturing Systems: A Managerial
Perspective," Harvard Business School Working Paper #1-784-078 (January
1984).

, "Postindustrial Manufacturing," Harvard Business Review (November-
December 1986), 301-308.

JOHNSON, R. Colin, "Tools for Software Factory," Electronic Engineering
Times (11 February 1985), 1, 63.

KAMIJO, Fumihiko, "Information Technology Activities in the Japanese
Software Industry," Oxford Surveys in Information Technology . Vol. 3, 1-35
(1986).

KIM, K.H., "A Look at Japan's Development of Software Engineering
Technology," Computer (May 1983), 26-37.

KINNUKAN, Paul, "Flexible Systems Invade the Factory," Hioh Technologv
(July 1983), 32-43.

KIRIU, Hiroshi, Sofutouea sanyo no jitsuzo (The status of the software
industry), Tokyo, Nikkan Shobo, 1986.

39

LAMPEL, Joseph, and Henry MINTZBERG. "Customizing Strategies .. .and
Strategic Management," McGill University Working Paper, March 1987.

LAWRENCE, Paul R., and Jay W. LORSCH, Organization and Environment:
Managing Differentiation and Integration , Boston, Harvard Business School,

1967.

LINCOLN, James R., Mitsuyo HANADA, and Kerry MCBRIDE, "Organizational

Structures in Japanese and U.S. Manufacturing," Administrative Science
Quarterly, 31 (1986): 338-364.

MATSUMOTO Yoshihiro (Toshiba), "Management of Industrial Software
Production," Computer (February 1984), 59-71.

, "A Software Factory: An Overall Approach to Software Production"
in Peter Freeman, ed.. Software Reusability (IEEE Tutorial, 1987).

., et al., "SWB System: A Software Factory," in H. Hunke, ed..
Software Engineering Environments , Amsterdam, North-Holland, 1981.

McCUE, G.H. "IBM'S Santa Teresa Laboratory: Architectural Design for

Program Development," IBM Systems Journal , 17 (1978),

MclLROY, M.D., "Mass-Produced Software Components," in J.M. Buxton, P.

Naur, and B. Randell, Eds., Software Engineering Technigues: 1968 NATO
Conference on Software Engineering , 1976.

McNAMARA, Donald (General Electric), "Software Factories." Lecture, Wang
Institute of Graduate Studies, Lowell, MA, 2 February 1987.

MEREDITH, J., "The Strategic Advantages of New Manufacturing
Technologies for Small Firms," Strategic Management Journal , 8 (1987), 249-

258.

MIZUNO, Yukio (Senior Vice-President, NEC Corporation). Interview 9/26/85.

MONDEN, Yasuhiro, Toyota Production System , Norcross, Ga., Industrial

Engineering and Management Press, 1983.

MURAKAMI, Noritoshi, Manager, Software Development Planning Office,

Fujitsu, Ltd. Interview, 1 September 1987.

NATIONAL RESEARCH COUNCIL, The U.S. Machine Tool Industrv and the
Defense Industrial Base . Washington, D.C., National Academy Press, 1983.

PALFRAMAN, Diane, "FMS: Too Much, Too Soon," Manufacturing
Engineering (March 1987), 34-38.

PIORE, Michael J. and Charles F. SABEL, The Second Industrial Divide:

Possibilities for Prosperity , New York, Basic Books, 1984.

PORTER, Michael E., Competitive Strategy: Technigues for Analyzing

40

Industries and Competitors , New York, The Free Press, 1980.

_, Competitive Advantage: Creating and Sustaining Superior Perfor-

mance. New York, The Free Press, 1985.

RAMAMOORTHY, C.V., et al., "Software Engineering: Problems and Perspec-

tives," Computer (October 1984), 191-209.

SABEL, Charles, et al., "How to Keep Mature Industries Innovative,"

Technologv Review (April 1987), 27-35.

SAKATA, Kazushi (Former Deputy General Manager, Hitachi Software Works),
Interview 9/10/85.

SCHMENNER, Roger W. , Production/Operations Management: Concepts and
Situations , Chicago, Science Research Associates, 1984.

SCHONBERGER, Richard J., Japanese Manufacturing Technigues . New York,
The Free Press, 1982.

SCOTT, W. Richard, Organizations: Rational, Natural, and Open Systems,
Englewood Cliffs, NJ, Prentice-Hall, 1981.

SHIBATA, Kanji (Manager, Engineering Department, Hitachi Software Works)

,

Interview 9/19/85.

SHIMODA, Hirotsugu, Sofutouea kojo (Software factories), Tokyo, Toyo
Keizai Shimposha, 1986.

SHOOMAN, Martin, Software Engineering: Design. ReliabilitY. and
Management , New York, McGraw-Hill, 1983.

SKINNER, Wickham, Manufacturing: The Formidable Competitive Weapon ,

New York, John Wiley £• Sons, 1985.

STUCK!, Leon G., and Harry D. WALKER (Boeing Computer Services),

"Concepts and Prototypes of Argus," in HUNKE, H., ed
. , Software Engineer-

ing Environments , Amsterdam, North-Holland, 1981.

TABACHNICK, Barbara G., and Linda S. FIDELL, Using Multivariate
Statistics, New York, Harper and Row, 1983.

TOYOSAKI, Kenshiro, Manager, Videotex Department, Software Development
Division, Nippon Telephone & Telegraph, Interview 3 September 1987.

U.S. DEPARTMENT OF COMMERCE, A Competitive Assessment of the U.S.
Software Industry , Washington, D.C., International Trade Administration,

1984.

UTTAL, Bro, "Japan's Persistent Software Gap," Fortune (15 October 1984),

151-160.

41

WILLIS, R.R. (Hughes Aircraft), "AIDES: Computer Aided Design of Software
Systems II," in HUNKE, H., ed . , Software Engineering Environments .

Amsterdam, North-Holland, 1981.

WOODWARD, Joan, Industrial Organization: Theory and Practice. London,
Oxford University Press, 1965.

, ed.. Industrial Organization: Behavior and Contro l. London, Oxford
University Press, 1970.

YOSHIDA, Tadashi, Deputy Manager, Quality Assurance Dept., Software
Division, Numazu Factory, Fujitsu, Ltd. Interviews, 9/24/85, 7/31/86, 9/7/87.

ZAVALA, A., "Research on Factors that Influence the Productivity of

Software Development Workers," SRI International (June 1985).

ZELKOWITZ, Marvin et al., "Software Engineering Practices in the US and
Japan," Computer (June 1984),

V 42

Date Due

MIT LIBRARIES

3 TDflD DDM flSl MbE

