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Abstract

A general method is developed for finding functions of a single complex variable s,

which approximates an assigned network characteristic, within the special class of

functions realizable as networks of linear lumped parameter elements. The method

is based upon an interpolation technique with a series of general rational functions on

the unit circle of the z-plane. A number of transformations that map the interval of

interest of the s-plane into the unit circle of the z-plane are discussed.

A great advantage of this method is that it allows one to preassign the pole location

of the desired rational function anywhere in the left-half of the s-plane. Following a

formal mathematical treatment, procedures are outlined for three cases of approxima-

tion in both the frequency and the time domain. A number of examples illustrate the

wide range of applicability.
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I. INTRODUCTION

Statement of the Problem. Effects of preassigning the pole location. Approximation

problems in the time domain and the complex-frequency domain.

In using the synthesis techniques of lumped parameter network theory, one is dealing,

essentially, with rational functions of a single complex variable s. The investigation

described in this report was undertaken in an effort to establish a general method for

determining transfer impedance or admittance functions with an arbitrary but finite

number of preassigned poles anywhere in the left-half of the s-plane; that is, a desired

functional characteristic will be effectively approximated by a rational function in s, the

location of the poles being preassigned.

Preassigning the pole location of a transfer function plays a very important role in

the final realization of the network. In particular, it determines: (a) the "character"

of the network. That is, whether the network will contain two types of elements (RC or

RL) or all three types (RLC); (b) the "general form" of the network; (c) the "Q" of the

elements to be used in the network. Clearly an approximation procedure of this type

enables one to design high-Q circuits with relatively low-Q elements.

This report provides separate sections for the mathematically-minded and for the

applied engineer. Thus, Section I contains a formal mathematical treatment of the

approximation problem leading to an analytic expansion by means of a complete set of

rational functions orthogonal on the unit circle. The coefficients of the expansion are

evaluated by interpolation; we use a recurrence formula to avoid complex integration.

Section II is intended especially for the applied engineer. Here all of the mathematical

developments of the previous section are summarized and presented in a case-study

manner to maximize their use in the design of linear lumped parameter networks.

A very important feature of the approximation method described in this report is

that it enables one to approximate on some contour of the complex plane the function

itself, rather than its modulus. Indeed, in some applications of electric circuitry, one

is interested in both the magnitude and phase characteristics of a network in a specified

frequency interval.

Dr. M. V. Cerrillo has established a number of very important relationships con-

cerning the parameter presentation of time- and frequency-domain functions. Of pri-

mary importance in his formulation, which unifies some problems of network synthesis

in the time and frequency domains, is the so-called density distribution function

U(y o , X) - that is, the real part of the complex transfer function on a contour character-

ized by yo, X. The method presented in this report can most easily be used to approxi-

mate the U(y o , X) function. Since very little is included in this report about the U(y o , X)

function, the reader interested in this topic is advised to acquaint himself with

Dr. M. V. Cerrillo's "On Basic Existence Theorems in Network Synthesis."
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II. MATHEMATICAL DEVELOPMENT

Functions of best approximation. Approximation through interpolation. Construc-

tion of rational functions of best approximation. Evaluation of the coefficients of inter-

polation.

2. 1 Preliminary Definitions

In the present analysis we shall be concerned entirely with functions of a single

complex variable. Frequent use will be made of the plane of the complex variable z =

x + jy or s = + j; thus, knowledge of the elementary definitions of limit, continuity,

and convergence is required.

An analytic function F(z) is said to be approximated by a sequence of rational func-

tions Rn(z) on an arc or curve C if

F(z) = Rn(z) as n - o (2. 1)

where z is on C. The effectiveness of an approximation for a fixed index n is meas-

ured: (a) in the sense of least squares; (b) in the sense of Chebyshev.

Lemma I. Let the function F(z) be analytic on a curve C. Then the function Rn(z)

is of best approximation to F(z) on C in the sense of least squares if the integral

es = JC IF(z) - Rn(z)12 Idz I z on C (2. 2)

is minimum.

Lemma II. The function Rn(z) is of best approximation to an analytic function F(z)

on C in the sense of Chebyshev if the value of the modulus

et = max IF(z) - Rn(z) I z on C (2. 3)

is minimized.

The concept of best approximation is somewhat generalized by the introduction of a

weight or norm function N(z) in the following manner:

es N(z) IF(z) - Rn(z) 2 dz z on C (2.4)

et = max [N(z) I F(z) - Rn(z) ] z on C (2. 5)

For the purpose of this analysis, we shall always use N(z) = 1.

A further extension of best approximation in the sense of least squares is that, in

the sense of least pth powers as measured by the integral,
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N(z) IF(z) - Rn(z)lP Idzl p> (2.4.1)

where z is on C.

2. 2 Orthogonality and Best Approximation

Let a finite or infinite set of functions Do(z), Dl(z), ... , be integrable, in the sense

of Lebesgue, on an arc or curve C of the complex plane z. The set of functions Di(z)

is said to be orthogonal on C if we have

Di(z) Dj(z) IdzI = 0 i j (2. 6)

If a function F(z) is equal on C to the series

oo

F(z) = X Ai Di() (2. 7)
i=O

then the coefficients Ai are uniquely determined by

fcF(z) Di(z) I dz 
A. = (2. 8)

C IDi(z) 12 d z I

and Eq. 2. 7 is called the formal expansion of F(z) on C in terms of the orthogonal func-

tions Di(z).

Theorem 1. If a function F(z) is analytic on a curve C and can be expressed by

means of a formal expansion on C in terms of a set of orthogonal functions Di(z), then

the linear combination

Fn(z) = Ao + A 1D (z) + A2 D2 (z) + ... + AnDn(z) (2. 9)

approximates F(z) best on C in the sense of least squares.

Let a linear combination

n

Z Xi Di(z) (2. 10)
i=O

be of best approximation to the function F(z) in the sense of least squares. Then k.i is

chosen to minimize the integral
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n

s= IF(z) - ki Di(z) ldzI (2. 11)

C i=O

But

es= F(z) - XkiDi(Z[F(z) -Z XiDi( i dz

or

es= f F(z) F(z) Idz i - 2AiI f iD(z)I I dzI
i=O

n

+ (Ai -) (i A - X.) J IDi(z) Idz I (2. 12)

i=O

Clearly, the foregoing expression is minimum when X. = A..

Corollary 1. In Theorem 1 the inequality known as Bessel's inequality is obvious.

JF(z) 2 dzI > Ai J I i(z)Idz (2. 13)
i=O

Corollary 2. In Theorem 1 the series

n

Z I Ai 12 I Di(z)12 1 dz (2. 14)
i=O C

is convergent.

Corollary 3. In Theorem 1 the difference F(z) - Fn(z) is orthogonal to each of the

functions Di(z); this property completely characterizes the function Fn(z).

The proof follows from Corollary 1.

2. 3 Approximation on the Unit Circle

It has been shown by a number of mathematicians that approximation is connected

intimately with interpolation on a specified contour of the complex plane. Before we

proceed in this direction, it is convenient to prove first:

Theorem 2. If a function E(z) analytic on and within C : Iz = 1 vanishes in the point

z = /a, then E(z) is orthogonal on C to the function

1 - Ia > 1 (2. 15)
z on C : = 1 we have

For z on C: Izi = 1 we have
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z = ej 0 and dz = jeJ dO

or

dO = -je- Jdz

But

de = dz |

thus

IdzI -jEdz (2. 16)

To completely prove the theorem, it is sufficient from the definition of orthogonality

that

E(z) IdzI = (2. 17)
JC Z-a

However, from this, since z equals 1 it is obvious that

Idz - J dz
z-a a z - /a

Thus

E(z) dz J - E(z) dz (2. 18)
Z- a z - 1/a

which vanishes by Cauchy's integral formula.

Corollary. If the function E(z) analytic on and within C: z I = 1 vanishes in the

origin, then E(z) is orthogonal on C to the function 1.

Clearly, this is the limiting case of Theorem 2 where a is infinite.

We are now in a position to consider the following:

Theorem 3. Let the function F(z) be analytic on and within C: |z = 1. Then a

rational function Rn(z) of the form

B zn+ B zn- 1 + .. + B
Rn(z) = n l Ia ai > 1 (2. 19)

n
In (z - a.)

i= 1

is unique and of best approximation to F(z) on C in the sense of least squares if it inter-

polates F(z) in the points 0, 1/ai where i = 1, 2, .... n.

If we let

F(z) - Rn(z) = E(z)

from Theorem 2, it is evident that if Rn(z) interpolates F(z) in the points 0, l/a i , then

-5-



E(z) is orthogonal to the set of functions

1 1 1
1,

z - a-, -1 a' z - a

However, from Corollary 3 of Theorem 1 in this section, this property completely

characterizes the function Rn(z) as a linear combination of a set of orthogonal functions

A A A
R (z) = A + 1+ + n (2.20)

n o z - a1 z - 2 Z a n

It is obvious that the expression given above is a partial fraction expansion of Eq. 2. 19;

thus, Rn(z) is indeed of best approximation to F(z) on C in the sense of least squares.

2.4 Sequences and Series of Interpolation

In the preceding paragraph it was shown that there exists a rational function Rn(z)

which by interpolation approximates a given analytic function F(z) best in the sense of

least squares on the unit circle of the complex plane. We shall now study the problem

of interpolation by a general sequence of rational functions whose poles are given.

From Theorem 3 it is obvious that the number of points of interpolation for approxi-

mation to F(z) on C: 1 z 1 depends on the number of poles used. Let

n

Rn(z) = E Di Ci(z) (2. 21)
i=O

where n is the number of poles and Ci(z) is a sequence of rational functions with poles

at al, a' .. . an. For approximation purposes, it is convenient to form the sequence

Ci(z) in the following manner:

Co(z) = 1

C (z) Q1 (z)
z - aI

Q2 (z)

C 2 (z) (z - a ) (z - aZ)

Q3(z)

C 3 (z) =(z - al) (z - a) (z - a 3 )

Qn ( Z )

Cn(z) = n

rI (z - a.i)

i=l

L , , '. "..L.J

-6-
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Furthermore, it is essential for the set given above that

Cj(z)| Z=/= 0 i = 0, 1, 2, ... , k
z= 1/a i

for j > k + 1; that is, the rational function Cj(z) vanishes at the points 0, 1/a1, 1/a 2,

1/a j 1. Thus

j-1

Qj(z) = z (1 i) (2.23)
i=l1

We have therefore established:

Theorem 4. The sequence of general rational functions

Co(Z) = 1

Cl(z)- z Z a

z(1 - alZ)

C 2 (z) = (z - al) ( - a)

z(l - alZ) (1 - az ) . . (1 - anlZ)
Cn() (z -=(Z - a2) ... (Z an)

(2. 24)

forms a complete set of interpolating functions of best approximation on C : Iz = 1 in

the sense of least squares.

Corollary. The functions

z Z(1 - alZ)
z a (z - a) (z - ) ...

are orthogonal on C : j z = 1.

The sum Sn(s) of the first n + 1 terms of the sequence given above interpolates F(z)

in the points 0, l/al, 1//a 2 , ... 1/an; hence, by Corollary 3 of Theorem 1, the func-

tion F(z) - Sn(s) is orthogonal to each of the functions given above.

Now we are in a position to state the following:

Theorem 5. Let the function F(z) be analytic on and within C: I z = 1. Then the

series

i-i

n z I (1- ajz)
j=l

Rn(Z ) = D + D.i i > j> 0 (2. 25)
ii=l H' (z - a.)

j=l

is of best approximation to F(z) on C in the sense of least squares.
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From the Corollary of Theorem 4, it is obvious that the series of Eq. 2. 25 as

n - oo is identical with the formal expansion of F(z) in a series of orthogonal func-

tions. Furthermore, Rn(z) in this form indeed interpolates F(z) on C in the points

0, 1/a 1, /a2, .... 1/a n . Thus the truth of the statement of Theorem 5 is obvious.

Corollary. For the conditions of Theorem 5, we have

a.a. -1 /
D. = 1 F(z)i 27rj

i-i
nI (z - k )

k= 1
i

z [ ( - akz )
k=l

dz

When ai equals oo, the factor a.ai - 1 is replaced by 1.

From the definition of approximation, it is evident that in the limit

F(z) = Rn(z) as n -oo

for z on C : I z = 1. Thus

0o

F(z) = ] Di Ci(z)

i=O

z on C

However, since Ci(z) is a set of orthogonal functions,

z( - Cl 1Z) ... (1 - 1 .)

( - l) * (- Iai) | dz = Di
( - ) d.. ( - i) 

( - al1 ) ... (1 - i_1 Z)

JC ~z- al)... (z ai)
Idz I

(2. 28)

Furthermore, since the contour of integration is the unit circle,

1
z = and Idz = -j dz

Evaluating the right-hand side of Eq. 2. 28, we have

Di (1 - ) ... (1 - ai) dzl = D. - 1
With Eq. 29, it can be easily shown that i i -

With Eq. 2.29, it can be easily shown that

( - l 1z) ... (1 f- 1 ) 1
(~-~) .<~-~i)=T

(z - a) ... (z - ai 1 )dz

F(z) z(1 - alz) .. . (1 - Uiz)
C1

Therefore, from Eqs. 2. 28, 2. 30, and 2. 31,

D 2r 1 j F(z) (z - lz) ... (z - ai)

...1

-8-
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2.5 Coefficients of Interpolation

In constructing a rational function Rn(z) of best approximation, in the sense of least
squares of the unit circle, to an analytic function F(z), we have used the series

z(l -alz)
R(z) = D+ + D + .
n =Do z - 2 ( z -al)(z - a2)

z(l - 1z) ... (1 - nl Z)
n-1

n (z - al) ... (z -an)

with Di being given by Eq. 2. 26. Since this equation involves complex integration, it

is apparent that the task of evaluating the interpolation coefficients D i through this direct

method is not an easy one. However, a much more convenient way by which this dif-

ficulty can be avoided is to observe that

(2. 32)Rn(O) = F(O)

and

Rn(1/ai) = F(1/ai) i= 1, 2, ... , n

These conditions are sufficient to determine all constants D.. Therefore
1

D = F(O)

D1 = [F(l/al) - Do] (1 - aldl)

D2 ={[F(l/a2 ) - D. ( - ) -

D3 = ({[F(I/3) - Do] (1 - L3)I

1 - a2a2
2a2

D2 2 -R1

1 - a2 a
D.

a3 - a1

A long table of the Di coefficients can be made easily. We proceed with this method of

evaluating the coefficients of interpolation by using a more elaborate system of nota-

tion. Let the Di as given by Eq. 2. 26 be functions of ,1' , ... , an. In particular

DI(al) = [F(l/al) - D] (1 -Do] ll)

Dl(a) = [F(1/d 2 ) - D] (1 - ln )

D(an) = [F(l/an) - Do](1 -lan)

-9-
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By direct application of this notation, one can easily rewrite Eq. 2. 34 in the form

D 1(al) = [F(1/&1 ) - Do] (1 - a1 a 1 )

D2 ( 2 ) = [Dl( 2 ) - D(l) ]

a2 - a

D(a=) D(a3 _- Dll) 2 D (a ) 3- (2.35)
3 /r3r1 1- a - a

D4(a 4 ) ({[Di1( 4 ) -1 1] D() - 4 _ D 2 2)} - - 3 () (- 44)
4 - a 14 -a 2 . 4 - a3

A study of these expressions will verify the following recurrence formula

Di+l(i+) = -ai+li+l [Di(i+l) - Di(ai)] i = 1, 2, 3, . .. n (2. 36)

ai+l - ai

2.6 Convergence

In representing or approximating a given function by means of a sequence of auxiliary

special functions, it is necessary that one study the convergence of functions of best

approximation. Of central importance in our study of convergence is a theorem of

Blaschke's.

Theorem 6. If the points p 1, P2 , ... lie interior to C: I z = 1, and if the product
N
1 I Pk I diverges, then the product

i=l

z- pi (2.37)

i=l lpil Piz - 1

also diverges interior to C. On every closed set interior to C, we have uniformly

N -

limlI Pi Pi - 0 (2. 38)
N-o i=l il - 1

The product of Eq. 2. 37 is called the Blaschke product corresponding to the numbers

pi. An infinite product, with only a number of its factors zero, is said to converge if

and only if the product obtained by omitting those factors converges. An infinite product,

-10-
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none of whose factors is zero, is said to converge if and only if the product of the first

N factors approaches a finite limit different from zero as N becomes infinite. The con-

vergence of an infinite product can be handled by the following corollary.

Corollary. A necessary and sufficient condition for the convergence of the product

o00

1i i Pi (2. 39)
i= 1

is the convergence of the series

00

(1 - Pi )
i=1

(2.40)

We are now in position to investigate

sider the nt h term

z(l - alz) (1 - a2Z) . .

Cn(Z) = (Z - al) ( - a2 ) (z - a3) ...

the convergence of the series of Eq. 2. 25. Con-

I ai > 1

or

Cn(Z) - z - an

n-1

i=l

1 - a.z
1

Z - ai

Now let pi equal l/ai; thus

Z

Cn(Z) z - an

or

Cn(Z) - a n

Pi i - z

i z i - 1

n-l

i=l

-2
pi pi z

I P zil - 1

We identify the Blaschke product corresponding to the sequence pi; since, inside the

unit circle, the function z/z - an is bounded, it is evident that

lim C (z) = (2.
n--0 0

provided that the product

n-l

i=l

diverges. Consequently, it has been proved that the series

41)

42)

-11-
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Z z(1 - alz) . . (1 - -a 1z)
R (z ) = D + D Z + .. + D (2.25)

o 1 z - n (z - l) ... ( - an)iz- 1

converges on the circumference of C if the points /ai lie interior to C: i z = 1, subject

to the condition stated in Eq. 2. 42.

The sequence of a i is not to be arbitrary. Further study of the product

1n

i=l

is required to establish the degree of convergence of the series in Eq. 2. 25.

III. APPLICATION TO NETWORK SYNTHESIS

Necessary and sufficient conditions for rational network functions. Conformal map-

ping. Cases of approximation. Approximation on the real part. General procedure.

3. 1 Realizability Conditions

In Section II, we developed a method of approximation on the unit circle with a set

of general rational functions of a complex variable z. Before we apply our results to

problems of network synthesis, we shall state a number of classical theorems and

results of network theory. The proof of these theorems will be omitted. However, for

further information the reader is referred to the excellent texts of Bode and Guillemin.

Given a four-terminal network, Fig. 3. 1, the ratio of Vl(s) to I(s) is defined as the

driving-point impedance Z 1 1 (s). Thus

V I(s)

Z1 (s) = I (s) (3. 1)

Similarly, the ratio of V 2 (s) to Il(s) is defined as the transfer impedance

V (s)
Z12(s) (5) (3. 2)

Alternatively, the driving-point admittance is defined as

Ii(s)
Y 1 (s) = V (s) (3. 3)

and the transfer admittance as

I2(s)
Y 1 2 (s) = V (s) (3.4)

-12-
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I(S) I 2(s)

V () Z () V2 (S) fi (t) h(t) f t)

Fig. 3. 1 Fig. 3.2

Characterization of a network in the Characterization of a network
complex frequency domain. in the real time domain.

It should be noted that the foregoing expressions for current and voltage are func-

tions of the complex frequency s = a + jw. In the time domain (that is, one is using only

functions of the real time variable t) input and output functions (Fig. 3. 2) are related

by the convolution integral

fo(t) = fi(t) h(t-T) dT (3. 5)

where h(t) is the unit impulse response of the system. Since convolution in the real

domain goes over into multiplication in the complex domain, taking the Laplace trans-

form of Eq. 3.5

Fo(s) = Fi(s) H(s)

and if Fi(s) = 1, then Fo(s) = H(s).

Theorem 1. The necessary and sufficient conditions that a rational function

m
Po + plS + ... + m s

Z1 (S) = n (3.6)
qo + q+ *- + qns

be a driving-point impedance function are: (a) Z(s) must be real for real s; (b) Z(s)

must be analytic in the right-half of the s-plane; (c) Re [Z(jw)] > 0. Any j-axis poles

must be simple with real and positive residues.

Theorem 2. The necessary and sufficient conditions that a rational function

m
1] (s - bi)

Z(s) = C i=l (3. 7)

I (s - a.)
i=l

be a transfer-point impedance function are: (a) Re [ai] < 0; (b) a i and b i , if not real,

occur in complex conjugate pairs; (c) upper bound on m :> n + 1.

The following theorem was proved by Cerrillo.

Theorem 3. Given a contour o on the complex plane of the type shown in Fig. 3. 3,

then, for a rational transfer function F(s), necessarily

-13-
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U(y, X) = Real F(s) ISer bounded

2(s - ) U(Y o X)
F(s) = dX

Y t 

f(t) = U(Yo, ) cos Xt dX

o J
where yo > c o , and c is the abscissa of convergence of F(s).

Consider the special case where yo equals 0. Let

(F(s) )
F(s) qn(s)

qn

Pm(s) qn (S )

qn(s) 2

and

I q(s) I =Q (S 2 )

Pm(S) qn(s) = M(s ) + s N(s 2)

However, since r coincides with the j-axis and s equals jX

M(Xk )

U(O, X) =

Q(x2)

From this expression it is evident that U(O, X) is an even function, which is true for any

yo' Thus, in general,

Real F(s)IsEr = U(, X2)
0

(3.9)

3.2 Transformations to the Unit Circle

In network theory dealing with real time functions, one is concerned mainly with the
real frequency variable . Thus, approximations should be based on the j-axis of the
complex plane s, rather than on the unit circle used in Section II. It is evident that
before one applies the results of Section II a conformal mapping should be made to relate
the unit circle of the z-plane to the contour of interest in the s-plane. However, in using
these types of transformation, care should be taken that the area inside the unit circle
of the z-plane coincide with an analytic area of the s-plane. (See Fig. 3. 31. )

-14-
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Fig. 3.3

The F contour.
0

jay

S- PLANE

Z -PLANE

0

Fig. 3.31

The s-plane.

jau

Fig. 3.4

A unit circle transformation (A).

S - PLANE

-JW2

-I j ,

--lrue
- -,

S =jw 22

Z- PLANIE

s = jwl

Fig. 3.5

A unit circle transformation (B).
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Consider the following relation

z Or s = l z (3. 10)
s+l or - z

To study the conformal maps of these functions, let s equal jw; then

jw - 1 (jw - 1)2
Zo - -- 2

or

2or

1 +c 1 +W2

which results in

(1+ 2)2

Furthermore, there exists the following set of corresponding points:

z-plane s-plane

-1 0

0 1

1 oo

Therefore, under the transformation of Eq. 3. 10, the right half-plane of the s-plane is

mapped upon the inside of the unit circle of the z-plane (Fig. 3. 4). Thus if a function

Z(s) possesses singularities in the points a i of the s-plane, the transformed function

F(z) =Z(+z\

possesses singularities in the points

a. - 1
=i a.+ (3. 11)i a. + 1

1

Notice that the real axis of the s-plane corresponds to the real axis of the z-plane in the

following segments:

-o0o z - -1 -1 s 0

-1 z 1 0< s +

1 < z +o0 -oo < s -1

Also, since Re [ai] is less than 0, then caiI is greater than 1 as required by Theorem 3

of Section II.

In some instances, one is concerned with approximating a given predescribed
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behavior of a network in a given interval rather than in the entire real frequency ()

range. With the following transformation from Darlington

2 2
2 2 + 2 (3. 12)

= -W1 4 W1 (·:z (3 12)

the segment w < < w2 of the j-axis of the s-plane is transformed into the unit circle of

the z-plane (Fig. 3. 5). Notice the following set of corresponding points.

s-plane z-plane

+ j 1 jl- w 1 +jl

± jZ2 + 1

These are only two of a number of possible transformations that enable one to map

any region of the s-plane upon the unit circle of the z-plane.

3. 3 Cases of Approximation

The problem of approximation for network synthesis could be defined as one of con-

structing a suitable function of a single complex variable Z(s) to approximate a given

predescribed characteristic f(s). For lumped parameter circuits Z(s) is required to

be a rational function. Depending on the data given for f(s), one encounters the following

cases.

Case 1. Z(s) is to be found from the predescribed behavior of either If(jw) or

Arg [f(j)] over the entire frequency range w.

Case 2. Z(s) is to approximate an explicitly given function f(s) on the j-axis or on

a specified interval of the j-axis.

For realizability conditions f(s) is required to be analytic over the entire right-half

of the s-plane. Clearly f(s) could be in the form of a (a) rational function; (b) transcen-

dental function.

Case 3. Z(s) is to be found from a given predescribed unit impulse response h(t) in

the time domain.

Of course, some means of measuring the effectiveness of the approximation in any

of the foregoing cases should be used. The question of measuring the approximation for

network synthesis purposes is a rather controversial one and has been considered by

many workers in the circuit theory field. For the present, and as long as no disconti-

nuities are included, the "mean square error" provides a sufficient criterion.

It is readily understood that the form of Z(s) will greatly affect the synthesis of the

final network. Thus two main problems exist in each of Cases 1, 2, and 3:

(a) Number of poles of Z(s) given, but their location arbitrary;

(b) Number of poles of Z(s) given and their location preassigned.

Case 1 is the one which is met most often in network synthesis problems, in filters,

-17-
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equalizers, and so on. In this type of problem I f(jw)l is given as a graphical plot of

an ideal magnitude.

However, in a number of applications the location of the poles is restricted in certain

regions of the s-plane. Thus, if the desired network must contain only resistors and

capacitors, the poles of the transfer function must be located on the negative real axis.

3.4 Procedures

Summarizing the results we have obtained thus far, we shall outline a procedure for

each of the three preceding cases of approximation.

Case 1. From the theorems of Section II, it is evident that the approximation method

presented here is applied to a function itself rather than to its modulus. However, if

If(jw)l is given as a graphical plot, one proceeds in the following manner:

(a) First approximate If(jw)I with an analytic expression of the variable . The

variable w2 is used since I f(jw)I is an even function of w. The approximating function

f( 2) need not be rational.

(b) Let X equal v.

(c) The approximation as outlined in Section II is to be used on a z-plane whose unit

circle corresponds to the positive real axis of the v-plane.

(d) Care should be taken that the chosen poles, if complex, form conjugate pairs in

the v-plane.

(e) Finally, let v equal -s . It should be recognized that the resulting function r(s2 )

is the modulus of the desired network function Z(s).

Although this is a double approximation procedure, very good results can be

achieved. Observe that there is little difficulty in obtaining the function f(2). For

finding f(w2) one can use almost any convenient function; for example, polynomials, a

series of transcendental functions, and so on; or, Lagrange's method of interpolation

could be used, with a sufficient number of equally spaced interpolating points. In any

event, f(jw) is easily approximated to any degree of accuracy.

Case 2. The results of Section II can be most easily applied in connection with this

case. As stated in Section III, 3. 3, the given function f(s) can be transcendental or

rational and must be approximated with a set of preassigned poles.

Let the points ai be the given poles in the s-plane. Since the interval of interest is

the entire j-axis, Eq. 3. 10 will be used for approximations in the z-plane.

The points a i correspond in the z-plane to the points ai. From Section II the inter-

polating points are, in the z-plane,

p i = /ai

which, in the s-plane, correspond to the points b i . In computing the coefficients Di, it

is more convenient to use

F(l/ai ) = f(b i) (3. 13)
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and to compute the interpolating coefficients in the following sequence with the recur-

rence formula of Eq. 2. 36

D
0

D(3(Pl) D1 (P 2 ) D1( P) ...

D2([32 ) D2 (P33 )...

D3 (3 3 ) · ..

Care should also be taken that if the a. are complex, they exist in conjugate pairs.
1

Case 3. It has been stated previously, that given a desired function in the time

domain, f(t), one can immediately compute the real part of the corresponding function

in the complex domain by means of the integral

U( o, X) = 
-y f(t cos t dt

e f(t) cos Xt dt

Let f(t) be a nonsymmetric pulse of length 26 and mean delay to as shown in Fig. 3. 6.

The area of the pulse is A. Then

to+ - t
U(¥o, X) = e 0

t -6

In the special case where f(t)

one obtains

f(t) cos Xt dt

is symmetric about to, after routine algebraic operations,

f(t)

ol Lto
~28_

Fig. 3.6

A nonsymmetric and a symmetric pulse.
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U(Y, X) = e t0 [M(yo, k) cos tX + N(yo, k) sin t] (3. 15)

where

6

M(Yo, k) = 2 f(x) cos h (ox) cos Xx dx

6

N( Oy, k) = 2 f(x) sin h (yox) sin Xx dx

o _J

(3. 16)

and

x =t - t
o

In general, U(y o , ) will be a bounded nonrational function of . Thus the problem is to

approximate U(y o , ) by a rational function. It should be recognized that in many

instances it may be more convenient to obtain a graphical plot of the function U(Yo, X)

instead of an analytic expression. In either case, one can easily locate the zeros of

U(Yo , X), if any, from a graphical plot of U(yo, K). Let these zeros be Ki. Since U(y o , X)

is an even function one can instantly write

n
K.

2 1 1
VO v) =U(Yo X = + 2 - .

i=l 1

U(Yo , h) = E 0 (. 18)If n equals oo, a sufficient upper bound must be decided. Let

2 2
K v and . v.

1 1

Thus

n K

i=l 1

For an appropriate transformation of the interval of interest into the unit circle of

the z-plane, the reader is referred to the excellent dictionary of conformal representa-

tions by Kober. Having solved the problem of approximation as outlined in Section II,

one can write

U (Y , 2 =+ B 1 2 (3. 18)

i=la -i

and
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m _Bi/A i

F(s) = B o+ s - (3. 19)
i=l

IV. EXAMPLES

The examples presented in this section sketch a general picture of the procedures

developed in the preceding sections. Of course, each case involves additional details

that are treated individually. However, the main pattern of the approximation procedure

remains the same.

4. 1 Approximation of a Driving-Point Impedance

Find a five-pole approximation of the driving-point impedance of a short-circuited

transmission line whose constants for the total length of the line are R, L, G, and C.

The impedance of a short-circuited line (Fig. 4. 1) is

Z = Z tan h r (4. 1)
0

where

Z 2 R + sL (4.2)o G + sC

and

r =(R + sL) (G + sC) (4. 3)

To decide the location of the poles in the s-plane, consider the admittance function

Y =1= Y ctn hr (4.4)

whose singularities are the zeros of Eq. 4. 1 and occur at

r = jrrk k = 0, 1, +2, ...

Therefore

r 2 = (R + sL) (G + sC) = -w k

whose roots are

ak = ak = -k + jwk

G R
fk 2C 2L

2kLC (G _ RL)21 (4. 5)

Wk LC~R 2C 2L)211/2
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I

R
LR L G C

*
Y(s) -

Fig. 4. 1

A short-circuited transmission line.

G R
2C 2L

Fig. 4.2

Poles of Y(s) in the s-plane.

as shown in Fig. 4. 2, with an additional pole at

R
a-=--
ao L

The necessity of dealing with actual numbers in the approximation procedure is

readily understood from the previous section. Let, for convenience and without loss

of generality,

R=L=G=C= 1

We, therefore, decide to perform the approximation with the poles

a = -1
o

al = a-l = -1 + jr

a 2 =- 2
= -1 + j2

To follow the notation of the previous sections, let

Z(s) = ctn h(l+s)

It should be noted that the approximation does not guarantee that the resulting function

Y(s) will be realizable as a driving-point admittance.

We shall perform the approximation on the unit circle of the z-plane as defined by

the transformation

1 - s
z + sl+s

The singularities a.
1

a = -1
0

a1 = - +jr

a_ = -1 - jr

a 2 = -1 + j2r

a_ 2 = -1 - j2Tr

correspond in the z-plane to the points ai as follows:

a = oo

= o1 2

a1 = 1 + j 

1
a 2 =l+j-

1
2=l-a 2 = 1 -j 
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We shall therefore interpolate at the points i = /ai, where

Po =o
0

2
IT

PI = 2
ir +4

2

I +2

(1 2)- i j = -1

-J) -2

Under the transformation, the function Z(s) becomes

F(z) = ctn h(1
2z) (4. 7)

It is apparent that, since both ai and Pi occur in conjugate pairs, the following series of

interpolation should be used:

Rn(z) = D z +n o (Z - a1 ) (Z - a 1l)
+

D2(P1 - z) (-1 - z)

(z z l) ) ( a2) ( -l) - a 2)

It was found that a more appropriate expression, computationally, is

Rn(Z) = (-z) N
+

N1

(Z - a) (Z - al )

+ (z -N2(1 - z) ( 1 - z) 1
(z - a l ) ( - al) (z - a) (z - a)

Proceeding in order we find

N 
o 2

2 =
N2 = ( )

and, finally, the driving-point admittance Y(s) is written in partial fraction expansion

form:
1 _2(l+s) 2(1+s)

(l+s)2 +2 + (l+s)2 + (r)
(4.9)

Rearranging terms, we obtain (Fig. 4. 3)

+

1/2 + 1/2s +

1

[1/( 1/zr2) + (1/2zfr2)s]

(4. 10)

(4. 8)

1 +
Y(s) 1 +s

1

1/2 + 1/2s + [1/(2/r2) + (2/r2)s]
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The equivalent network is shown in Fig. 4. 4.

4. 2 Approximation of a Transcendental Function

Consider the transfer function of a unit delay network

Z(s) = e (4. 11)

We will attempt to approximate the Z(s) on the j-axis with a two-pole RC network. Let

the poles be located in the points s = -1/2 and s = -2. Under the transformation

I +z
1-z

these points correspond in the z-plane to

s-plane

Z(s)

al = -1/2

a2 = -2

z -plane

F(s)

al = -3

a2=3

Thus, the interpolating points Pi = l/ai are

z-plane

P = -1/3

?= 1/3

s-plane

bl = 1/2

b2 = 2

In these points we have

F(-1/3) = Z(1/2) = 0. 606

F(1/3) = Z(2) = 0. 1353

The D. coefficients are computed by the recurrence formula in Eq. 2. 36
1

D =1

D 1 (-3) = 3. 15

D 1 (3) = 6. 9

D2 (3) = 5. 0

From Eq. 2.25

z(1 + 3z)
Rn(z) = 1 + 3. 15 + 5.0 (z+

(z+3) (z-3)
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or

R 19 15 z2 - 4.45z - 9 (4. 13
Rn(z) "(z+3) (z-3) (4. 13)

The corresponding function in the s-plane is

5. 70s2 - 46. 30s - 14.45
r(s) = (4s + 2) (s + 4) (4. 14)

The results are plotted in Fig. 4. 5. To improve the approximation, one simply adds

sufficient terms in Eq. 4. 12.

V. CONCLUDING REMARKS

As it is true of any kind of research problem, the work on this topic is by no means

complete. On the contrary, a number of rather interesting questions must arise in the

mind of the reader.

It has been shown that a given analytic function can be effectively approximated with

a rational function of preassigned poles. In some cases of approximation, the best

choice of poles is evident. However, a study of the best possible set of poles to approxi-

mate a given function in general is still needed. It is suggested that the convergence of

the series in Eq. 2.40 be investigated further. Also, we feel that a relation between

the upper bound of the error in the approximation procedure and the magnitude of the

preassigned poles can, in general, be found.

It is important that the reader realize the two general principles upon which this

method of approximation is based: (a) approximation with directly rational functions and

(b) approximation of the function rather than its modulus. Indeed, anyone who has

worked in the field of network synthesis has at some time or other, felt the need of such

an approximation procedure.
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