
i^^i3^ii"iry)Jf.,iy ^i' -^

'^^''^^^T^

\w -^ Of Tt^l/^

HD28
.M414

/Vv. . 'hoM-Si

AUG 181988

iRie^
^DEW^y

WORKING PAPER

ALFRED P. SLOAN SCHOOL OF MANAGEMENT

Fujitsu Software;

Process Control and Automated Customization

by

Michael Cusumano

WP 2044-88 Aug, 1988

MASSACHUSETTS

INSTITUTE OF TECHNOLOGY
50 MEMORIAL DRIVE

CAMBRIDGE, MASSACHUSETTS 02139

Fujitsu Software:

Process Control and Automated Customization

by

Michael Cusumano

WP 2044-88 Aug, 1988

FUJITSU SOFTAVARE: PROCESS CONTROL AND AUTOMATED CUSTOMIZAT IO

N

Contents:
Introduction
The Corporate Setting

Systems Software Development
Applications Software Development
Conclusions

INTRODUCTION

Fujitsu followed Hitachi, NEC, and Toshiba in adopting factory-type

approaches and organizations for software development, beginning with extensive

controls over project management and product inspection for systems software

during the early and mid-1970s. This culminated in the centralization of

systems software development at Fujitsu's Numazu Works in Shizuoka prefecture

during 1982-1983. Fujitsu also began centralizing applications programming in

1970, and then issued a set of standardized methods and tools before

establishing a Software Factory Department in Kamata, Tokyo, in 1979, which

performed detailed design, coding, and testing for specifications done in system

engineering departments outside the factory.

The first section of this case discusses the background of Fujitsu as a

company, its entrance into the computer business from a basis in telephone

switching and electro-mechanical equipment, and elements of the software

strategy in place by the 1970s. This included product-market objectives such as

IBM-compatibility, and technical goals such as improving software development

and control technology, cultivating specialized skills and subsidiaries, and

building tools with mechanization and automation capabilities. The next two

sections focus on development experiences, tools, methods, products, and

performance in the systems and applications software divisions. Systems

1 Fujitsu

software development resembled Hitachi and NEC, and was characterized by a

gradual refinement and integration of manual systems and automated support

tools for process control, product registration and inspection, and quality

assurance and testing. In the applications area, Fujitsu again resembled its

Japanese competitors, responding to large demand for customized programs with

extensive investment in program-automation tools and software reuse, especially

packaged subsystems, to facilitate the efficient production of semi-customized

and new programs.

THE CORPORATE SETTING

Company Outline and Organization

Fujitsu was established in 1935 when F' ji Electric, Ltd., spun off its

telephone equipment division as a separate company. The new firm developed

Japan's first digital calculator in 1935 and expanded into switching systems and

other electric and electro-mechanical equipment, before introducing a primitive

non-programmable computer in 1954. Fujitsu gradually expanded product

development and marketing for a range of telecommunications equipment, office

equipment, computers and computer peripherals, and data processing services.

In the year ending March 1987, Fujitsu had over 50,000 employees in the

parent corporation, with approximately 11,000 personnel involved in software

operations. Consolidated sales (including some 70 subsidiaries) totalled over $12

billion, and were divided among computers and data processing systems (67''o of

total revenues), communications systems (15°o), semiconductors and electronics

components (12°6), and car audio and other electronics equipment (S'o).

Software accounted for at least 10% of these revenues, and was expected to rise

to 14% by 1990."^ Fujitsu managed these areas through 13 operating or

2 Fujitsu

marketing and service groups. Two contained factory-type facilities for

software development: one for systems software (operating systems, control

programs, network software, data base systems, language processors, Japanese

language and graphics or voice processing software, and automatic translation

programs); and another for customized applications software (Table 7.1).

Table 7.1: FUJITSU ORGANIZATION AN D SOFTWARE FACTORIES

Operating Groups Software Factories

Computers (mainframes, minicomputers) Numazu Works, Software Division
Printed-Circuit Board Products
Information Equipment (peripherals)
Transmission Systems
Switching Systems
Telecommunications Systems
Semiconductors
Electronic Devices
NT&T Division

Marketing and Service Groups
Hardware Systems Sales
Office Automation Sales

Hardware Maintenance
Systems Group Software Factory Department

Systems software was developed in the computer groups's software division,

which Fujitsu separated from other divisions for hardware design and

manufacturing, integrated systems development, medical systems, and factory

automation. Both systems software and hardware manufacturing operations were

located in the Numazu Works, a factory located near Mt. Fuji in Shizuoka

prefecture that Fujitsu established in 1974 to produce tiie FACOM-M series

mainframes and minicomputers, designed to compete with IBM's 370 models.

The software division was iioused in a separate building (connected to the

hardware building) constructed in 1981.

Fujitsu management did not publicize Numazu as a software factory.-^

3 Fujitsu

Nonetheless, centralization of most systems software development at this facility

by 1984 made it possible to institute a level of standardization and control that

clearly resembled factory-like organizations in other Japanese firms. The

software division in 1987 consisted of two software engineering departments,

eight development departments, an inspection department, and a Field Support

Center. Of the approximately 3000 software personnel, about GO*?, were college

Q
graduates and the rest high-school graduates.

°

For applications programming, Fujitsu opened a Software Factory

Department in 1977 at the Information Processing Systems Laboratory in

Kamata, Tokyo, continuing a decade-long effort to centralize system engineering

and programming for software required by banks, securities firms, and

manufacturing and distribution companies. Fujitsu had established the

laboratory in 1970 to house the Systems Group, which, in the mid-19B0s,

consisted of separate departments for system engineering, software package

planning, and applications development.

The implementation sections in the Software Factory Department had

approximately 1500 programmers in 1987, including some employees of

subsidiaries and subcontractors working full time in the factory. Nearly all

were college graduates and performed detailed design, coding, and testing, based

on specifications received from approximately 3000 system engineers and other

staff in the Systems Group. In addition to these in-house employees, 53

software subsidiaries employed nearly 11,000 programmers, and affiliated

software houses added several thousand more, bringing total staff resources for

the Systems Group to about 20,000 (Table 7.2).^^ As of 1986, Fujitsu was also

adding personnel at the rate of about 1000 college graduates per year in the

Systems Group, while its subsidiaries were adding 1500 to 2000 people per

12year.

Fujitsu

13Table 7.2: FUJITSU SOFTWARE SUBSIDIARIES AND EMPLOYEES (1985-1986)

Software Area Companies Employees Major Compa nies

System Engineering 34 7,000 Fujitsu AIB

Basic Software 9 1,800 BIG

Communications 7 1,300 Fujitsu Dai-lchi

Microprocessors and 3 700 Fujitsu Micon
Personal Computers

TOTAL 53 10,800

Note: Employee figures for 38 subsidiaries are based on Fujitsu data; other
figures are author estimates, based on average company size in each
category.

Entry into Computers

Fujitsu entered the computer business in 1954 with a dedicated accounting

machine, the FACOM 100. This was not a programmable computer but was

hardwired, using electro-magnetic relay switches adapted from telephone

switchboards. Fujitsu introduced several other relay computers before adopting

parametron circuits in 1958, following the lead of Hitachi and NEC. Fujitsu's

parametron computers also were primarily dedicated calculating machines. Again

following Hitachi and NEC, Fujitsu began working on a transistor-based

computer in 1958, and introduced its first programmable commercial models in

1961, for business applications. Management also signaled a firm commitment to

the new industry by establishing a computer division in 1963.

While Hitachi, NEC, and Toshiba during the 1960s relied heavily on U.S.

firms (RCA, Honeywell, and General Electric, respectively) for computer

hardware and much software technology, Fujitsu management tried to link up

with IBM. When this initiative failed, management had little choice but to

pursue independent development. Prospects for Fujitsu seemed dim, since it was

already behind Hitachi, NEC, and Toshiba due to a late switch to transistors

5 Fujitsu

and the assistance U.S. firms were providing Japanese competitors But the flow

of new models from the U.S. largely stopped during the later IQGOs, as GE and

RCA prepared to exit the computer business, and as Honeywell reduced its

product development efforts. This created market opportunities.

Fujitsu in 1965 introduced its 230 series of small, medium, and large

mainframes, using transistors initially and integrated circuits (ICs) from 1968.

These attracted many Japanese customers, especially in the banking industry and

at universities, due to low prices and powerful processors. The Japanese

government also aided these sales by placing restrictions on purchases of non-

Japanese computers. Due to the popularity of the 230 models, Fujitsu became

Japan's largest computer manufacturer in 1968, surpassing Hitachi and NEC. In

1970, for the first time, computer revenues exceeded SO^o of sales and became

1 "^

the largest part of Fujitsu s business.

A critical factor in Fujitsu's ability to develop computers independently

was the skill of Ikeda Toshio (1923-1974), a graduate of the Tokyo Institute of

Technology who had entered Fujitsu in 1946. After designing telephone

switching equipment, he moved into R&D and computer development, quickly

gaining recognition as perhaps Japan's most talented computer engineer. In

1969 Ikeda also met Gene Amdahl, who had designed IBM's 360 family and then

left IBM in 1970 to found the Amdahl Corporation, to produce IBM-compatible

mainframes. This meeting began a relationship with the Amdahl Corporation that

greatly strengthened Fujitsu's efforts in computer development during the 1970s.

One reason for pursuing ties with Amdahl was that Ikeda and other Fujitsu

managers were concerned that Fujitsu could not export the 230 machines

because they were not compatible with IBM. This issue prompted Fujitsu in

1972 to adopt IBM compatibility for all mainframes developed during the 1970s.

Fujitsu made this decision in conjunction with Hitachi, and both firms agreed to

6 Fujitsu

standardize their mainframe architectures, although without jointly developing

hardware or software. The IBM-compatible strategy for both Fujitsu and

Hitachi thus began with the M-series, announced in 1974 and designed to

compete with IBM's 370 family.

To support this move, Fujitsu again approached IBM to license its

operating system. After IBM declined, Fujitsu made its first investment in

Amdahl in 1972. The premature death of Ikeda in 1974 then persuaded Fujitsu

executives to become the majority investor in Amdahl and seek design

assistance. Assisted by Amdahl in developing IBM-compatible logic circuits,

using large-scale semiconductor integration technology (LSI), Fujitsu by the

mid-1970s was able to deliver hardware comparable to IBM in performance at

given price ranges. Fujitsu also managed to increase exports after the mid-

1970s by manufacturing mainframe central processing units for Amdahl in the

U.S. and ICL in Great Britain, based on their specifications, and selling Fujitsu

mainframes to Siemens for marketing in Europe under the Siemens label.

Software Strategy: Products and Production

The decision in the 1960s not to import American computer technology

forced Fujitsu to develop independently not only hardware designs but also

systems and applications software. This provided important challenges and

learning experiences for company engineers, particularly since Amdahl, with the

exception of its version of UNIX, did not provide softwai-e to Fujitsu. ° Major

systems software and packages developed at Fujitsu between 1962 and 1984,

listed in Table 7.3, indicate that the company was able to produce a wide range

of software, at least after 1970.

MONITOR V, completed in 1968-1971 for the larger 230 series models, was

Fujitsu's first modern operating system. Problems in finishing this led to a

7 Fujitsu

revamping of the structure to manage systems software development, although

not until the M-series operating system in the mid-197ns did Fujitsu undertake

the type of systematic data collection and integrated tool and methodology

development that has characterized Hitachi, Toshiba, and NEC. However, to

improve control over released products, Fujitsu did introduce a series of

inspection and quality assurance procedures in the early 1970s, initially to meet

NT&T's software procurement requirements, and then transferred these

procedures to other divisions.

Table 7.3: FUJITSU SYSTEMS SOFTWARE AND PACKAGES. 1962-1984^ ^

1960 ALGOL compiler

1961 ASSEMBLER
FORTRAN compiler

1963 Data communications software

1965 FORTRAN IV
MCP (control program for the FACOM 230-20/30 mainframes
MONITOR II (proto-operating system for the FACOM 230-50)

1966 KEMPF (econometrics modeling and analysis system)

1968 MONITOR V (large-scale mainframe operating system)
STAT (statistical package)

1969 BOS (medium-size mainframe batch operating system)
ROS (medium-size mainframe real-time processing operating system)
PL/I (programming language version)
EPOCS (medium-size mainframe data control program)
ADSL (continuous simulation system)

1970 RAPID (data base system)

1971 MONITOR V TSS (time-sharing function added to MONITOR V)
BOS II (successor to BOS and ROS operating systems)
OS II (operating system for FACOM 230-45/S and /.^f) mainframes
ASTRA (structural analysis program)

1972 UMOS (mini-computer operating system)
TIMS (time series analysis program)

1973 MDS (management decision-making support tool)

MPS (mathematical planning tool)

8 Fujitsu

1974 BOS/VS and OS ll/VS (medium-size operating systems with virtnai

memory control function)
MONITOR VI/VII (large-scale mainframe operating system)

1975 OS IV/F4 (operating system for largest M-series mainframp)
FEM (finite element analysis program)

1977 AIM (on-line data base system)
FNA (Fujitsu Network Architecture system)
OS IV/X8 (medium-size operating system for FACOM M series)

OS IV/F2 (small-size operating system for FACOM M series)

PDL/PDA (performance measurement and analysis tool)

1978 OS/UAS (mini-computer operating system)
FAIRS-I (document search system)
KING (Japanese-language line printer support program)
EPG (executive planning guide)
C-NAP (customer needs analysis program)

1979 JEF (Japanese language text and information processing system)
INTERACT (end-user support system)
FAIRS-II (management information search system)
FDMS (document control system)
GEM (library control program)
SSOPTRAN (FORTRAN source program optimizer)

1980 FORTRAN77 (scientific- and technical-use language)
AOF (computer center operations support tool)

ARIS (Japanese language information system)
HOPE (hospital administration system)
SDSS (software development support tool)

1981 OS IV/F2 ESP (small-scale operating system for FACOM M-series)
CADAM (computer design support system)
ICAD (computer design support system)
HYPER COBOL (high-productivity version of COBOL)
DOCK/FORTRAN77 (FORTRAN debugger for system displays)
ANALYST (statistical data processing package)
PLANNER (planning and control information system)
ESTIMA (business forecasting system)
AXEL (conversational language data analysis system)

1982 OS IV/F4 MSP (large-scale operating system for FACOM M-series)

AIM/RDB (relational data base system)
DRESSY/P (simplified graphics system)
ADAMS (application software development system)
LIMS (books control system)

1983 FOS (Fujitsu Office System Concept)
OS IV/X8 FSP (medium-size operating system for FACOM M-series)

UNICUS (minicomputer operating system)
JEF II (Fujitsu Japanese language processing system)
MACCS/REACCS (information analysis and search system)

9 Fujitsu

ODM (documents processing system)
ELF (electronic file system)

1984 OS IV/ESP III (small-scale operating system for FACOM M-series)

IMPRESS (image information system)

IPS (small-scale printing control system)

UPLINK Ill/PS (personal computer network system)

FCAD-11 (personal computer CAD system)
ATLAS (automatic translation system)

A critical element shaping the software strategies of Fujitsu and Hitachi

was this commitment to IBM compatibility. This was especially true for Fujitsu,

which intended to follow IBM standards for its domestic and export mainframes,

whereas Hitachi allowed the architecture for its domestic computers to depart

slightly from IBM compatibility. Both- Japanese companies proceeded on the

assumption that, since IBM's 360 operating system had been in the public

domain, they could duplicate the 370 software freely, without provoking legal

action from IBM. This strategy worked in the 1970s, but brought on several

challenges from IBM in the 1980s. 20

After charges from IBM that Japanese firms were stealing IBM code, and

the arrest of several Hitachi and Mitsubishi Electric engineers in 1982, it

became imperative for Fujitsu to maintain compatibility without rlirectly copying

IBM code. While Japanese companies reached agreements with IBM that allowed

them to market IBM-compatible software, IBM in 1984 again challenged the

originality of Fujitsu s operating system. This delayed Fujitsu s delivery of a

large-scale mainframe, the M-780, competing with IBM's 3090 machine, and

prompted Siemens to stop purchasing Fujitsu s operating system for the Fujitsu

mainframes it marketed in Europe. In response to these events, FnjitsLi

management reorganized and expanded software operations at Numazu, and

shifted the division s focus to producing new operating systems with more

original designs. These efforts as of 1988 have avoided expensive patont-

10 Fujitsu

infringement suits and licensing fees with IBM, and appear to have created

within Fujitsu the capability to design operating systems independently and

7 1

move away from IBM compatibility, should this prove necessary. '

In the applications area, Fujitsu s history resembled that of its major

Japanese competitors. In the mid-1960s, it began developing large-scale

customized programs for industrial and government customers. Rapid growth in

demand led to greater emphasis on reusability and "semi -customization ' of

programs rather than full customization, and the introduction of numerous

automated tools. Fujitsu was distinctive for achieving a major success in

package sales with the introduction of JEF (Japanese Processing Extended

Feature) in 1979. This quickly became the market leader in Japanese-language

word processing packages, and was followed by an equally popular program in

1983, JEFII, which added integrated text, image, and voice processing

7T
capabilities .

On the production side, the stated concerns of Fujitsu managers resembled

those of counterparts elsewhere: to improve control over development costs

while maximizing product functionality, performance, reliability, and

maintainability, and delivering products on time to customers. To accomplish

these goals with demand for software rising faster than Fujitsu s ability to train

programmers, management encouraged efforts to "accumulate and improve

technology, " both individual and organizational, in three main areas (Table 7.4) .

Furthermore, to encourage users to design their own software and spread the

burden of programming, Fujitsu sold a large number of support tools and

provided instruction in software engineering methodologies to buyers of Fujitsu

hardware as well as to subsidiaries and affiliated software houses.

11 Fujitsu

Table 7.4: FUJITSU PRODUCTIVITY IMPROVEMENT STRATFGIES

Development Technology Specialization Mechanization/Automation
Joint Development Organization Software Tools and other

Modularization Computer- Aided Systems
High-Level Languages Subsidiaries for Planning, Development,

Reuse Testing, Maintenance

Review Procedures Packages
Structured Design
Structured Programming

Support and Control Technology
Project Management Standardization

Development Planning and Phase Quality Control Activities

Completion Reporting System (High- Reliability Program)

Management Objectives Training

To improve productivity, the first area of focus was development

technology . This included more emphasis on higher-level languages and, to

reduce the volume of new code that had to be written, reuse of designs and

code, as well as what Fujitsu called joint development." Joint development

referred to software where there were multiple, interdependent components.

Fujitsu's philosophy was to make sure managers in different areas developed

these components once and reused them across different systems, by

standardizing system description languages and then requiring tfiat the software

be modularized, designed to be reused, and catalogued. In addition, to reduce

product complexity, Fujitsu stressed modularization, structured methods for

design and programming, as well as the use of standardized in-house design and

coding languages. Careful and quantified review, quality control, and inspection

procedures also served to improve product reliability and marketability, and

maximize manpower efforts by reducing time spent on fixing or altering

25programs .

"^"^

A second area was specialization . This included the ostablishment of

12 Fujitsu

development organizations dedicated to different types of software and

functions, in particular the Numazu Works Software Division and the Kamata

Software Factory, smaller development facilities linked by on-line networks,

as well as 53 subsidiaries specializing in var-ious areas or providing regional

system-engineering services throughout Japan (see Table 7.2). These

subsidiaries, supplemented by long-term arrangements with independent software

houses, provided not only regional service and specific skills, but allowed

Fujitsu to add less expensive and temporary capacity for programming

operations. Another strategy building on the concept of specialization was to

have development facilities gradually place greater emphasis on writing software

packages, especially for personal and office computers, and integrating these

packages with new software to produce semi-customized systems.

A third area of emphasis was mechanization and automation, particularly

the use of computer-aided tools to support design, coding, testing, and

maintenance. These included automated program generators and reuse-support

systems, which management emphasized to improve productivity and quality

simultaneously. Supporting all three emphases was the application of automation

and mechanization to control technology, in the form of tools for planning,

project management, testing, and quality evaluation, integrated with standards,

manual procedures, and practices such as quality circles.

Also of long-term relevance to Fujitsu's plans to continue using

subsidiaries and software houses was the SIGMA project, initiated in 1985 by

Japan's Ministry of International Trade and Industry (MITI1. The project

involved 128 companies in 1986, including Fujitsu, Hitachi, Toshiba, NEC, and

Mitsubishi, as well as 8 foreign firms, and was attempting to increase the level

of tool and library support for small software producers by developing a

modified version of the UNIX operating system and an on-line data base of

13 Fujitsu

tools and subroutines accessible from specially developed engineering work

stations. Fujitsu and other major Japanese software producers were

interested both in improving tool standardization and general r-puse capabilities

at the smaller software houses, as well as in selling software tools, particularly

•JO
software engineering work stations.

SYSTEMS SOFTWARE DEVELOPMENT

Early Experiences

Fujitsu's relay and parametron computers either did not employ software

or required only minimal programming. As a result, Fujitsu's experience with

software development did not really begin until the early 19605, with the

introduction of several transistorized computers. Yet even these machines, as

well as the FONTAC, delivered in 1964 to the Electronics Industry Promotion

Association of Japan, still did not have 'modern " operating systems but only

performed simple batch-processing operations.

The FONTAC project nonetheless initiated a new e.r^, by requiring Fujitsu

to develop a large-scale computer roughly equivalent to IBM's 7090 machine

(introduced in 1960), and exposing company engineers to various types of

programs and computer languages. MITI subsidized the project in an effort to

get Japanese manufacturers to develop domestic computers comparable to IBM's.

Fujitsu designed the main processor and the card punch equipment, while NEC

and Oki Electric made the sub-processors and input/output devices. Fujitsu also

took charge of programming, with assistance from NEC and Oki engineers,

several Japanese professors, and several U.S. consultants.

The FONTAC software consisted of a "monitor, " based on earlier control

programs introduced by IBM and available in Japan. The FONTAC also used

14 Fujitsu

other software which the monitor program controlled directly: ALGOL, COBOL,

FORTRAN, and ASSEMBLER compilers; a library editor; a sort generator; an

executable coded tape editor; utility programs; and several object (applications)

programs. Fujitsu later modified the FONTAC monitor and introduced this in

1965 as MONITOR II with the 230-50 mainframe, Fujitsu's commercial version of

the FONTAC. 29

Operating Systems Development

The first serious challenge Fujitsu engineers faced in systems software was

to develop an operating system comparable to the IBM 360. Fujitsu needed this

for the upgraded 230-series models, wWch incorporated integrated circuits and

had, for the time, extensive processing capabilities. This was particularly true

for the large-scale 230-60 model, because it utilized two central processing

units. Fujitsu started planning for the 230-60 in 1966 and established a

software development department to oversee the 100 employees who worked on

the software. Fujitsu completed both the hardware and the operating system,

MONITOR V, in 1968.30

The manager who headed the new software department was Fujitsu s

president in 1988, Yamamoto Takuma, a 1949 graduate of Tokyo University s

electrical engineering department. Like Ikeda Toshio, Yamamoto first worked in

telephone switching equipment design, and in 1952-1953 briefly worked on relay

computers. From the mid-1950s through 1966, Yamamoto concentrated mainly on

switching and communications data-processing equipment, before heading the

MONITOR V effort. The success of Yamamoto's group contributed to his

promotion in 1968 as director of software development for systems and

n
1

applications, and to a subsequent as company president.

According to several Fujitsu engineers, MONITOR V was extremely

15 Fujitsu

difficult to develop due to the dual-processor architecture, then available only

in U.S. military computers ."^"^ Furthermore, as Yamamoto recalled, Fujitsu had

not yet designed a sophisticated operating system even for one processor, let

alone two. Yamamoto, Ikeda, and other engineers made several trips to the

U.S. to seek assistance from U.S. software houses and computer manufacturers.

This was typical of Fujitsu, where management encouraged engineers to travel

abroad frequently, especially to the U.S., to visit consultants, suppliers, and

competitors."^"^

Fujitsu ended up using IBM's SGO-series operating system as a basic model,

with modifications to accommodate two processors, and delivered a first version

of the system in January 1969 to the Kyoto University Computer Center. Due

to numerous bugs, the system was late as well as incomplete, although Kyoto

University personnel worked with Fujitsu engineers to correct existing problems

and finish the programming. Based on this experience, Fujitsu had an easier

time producing a successor operating system, MONITOR VII, completed in 1974

and also patterned on the IBM 360 software."^

The major task of the 1970s was to develop an operating system for the

M-series, which incorporated large-scale integrated circuits (LSI) and competed

directly with IBM's 370 series. The new system thus had to offer features

comparable to IBM and remain compatible with IBM and Fujitsu s earlier 230

series. To minimize development, Fujitsu produced three operating systems to

cover the small, medium, and large M-series mainframes, in contrast to the five

separate operating systems IBM offered for its 370 series models. The first

version of the operating system for its largest mainframes, OS IV/F4, Fujitsu

delivered in 1975, and versions for mid-size and small mainframes followed in

1977. But problems completing the software delayed deliveries of the

hardware and convinced management of the need for another reorganization and

16 Fujitsu

a more serious commitment to developing procedures and tools for software

production, testing, and quality control. '

One of the key managers responsible for M-series systems software, as

well as for the systematization of process and quality control in general, was

Miyoshi Mamoru, in 1988 a Fujitsu executive director and head of the Systems

Group. Miyoshi began his career in systems software management in 1973,

taking charge of inspection for operating systems. Prior to this, he had learned

a great deal about programming and quality control by inspecting software for

DIPS (Distributed Information Processing System), telephone switching systems

produced for NT&T. Not only was NTC-T a leader in introducing software

technology into Japan in the early 1970s, but developing the DIPS software in

cooperation with Hitachi and NEC required Fujitsu, as well as the other

Japanese contractors, to adopt rigorous standards and controls. Miyoshi would

later make sure Fujitsu's systems and applications divisions adopted similar

practices, although when he first moved to commercial software, simply trying

to keep up with demand was preventing Fujitsu from instituting tighter

standards for process and product, standardization, control, and documentation:

At the time, NT&T was very advanced in its thinking. The DIPS
software was really a large system. Since three companies, including
us, had to develop the software, standardization was essential. My
impression was that NT&T was able to devote more effort to software
phase divisions and carrying out work standardization than we were
able to do in the private sector. Of course, we influenced that
thinking, too, since there was an interchange among us, an exchange
of information ... This was a period of rapid growth, and demand for

software was increasing rapidly too. We had to write programs
quickly to meet this demand, and worried about preparing
documentation later. In other words, we gave top priority to writing

programs. This tended to defeat documentation and program
conformance. In the long run this is self-defeating, and, like NT&T,
it is better to review and inspect every phase, and get rid of as

many bugs as possible in each phase. But, in the private sector,

since software development must have more constraints on time and
costs, even though we were aware of this problem, there was not

much we could do.

17 Fujitsu

Systematizing Process and Quality Contro l

Direction of Fujitsu's efforts in process and quality control in systems

programming came from the inspection department in the Numazu Works's

software division, which Miyoshi headed before becoming divisioti manager in

1974. Yoshida Tadashi, in 1988 the deputy general manager of the division's

quality assurance department, prepared for internal use an historical outline

describing the evolution of these efforts (Table 7.5). An electrical engineer

educated at Yamagata University, he joined Fujitsu in 1965 and worked in

telephone switching systems inspection before moving to systems softwar-e

inspection in 1969.^^

Yoshida divided this history into three main phases: prior to 1970, when

Fujitsu had no system for inspection and quality control, and allowed

programmers to test software at their own discretion; 1970-1978, when Fujitsu

set up its first systems for product and process standardization, as well as

inspection and quality control; and the period from 1979, when Fujitsu

introduced structured programming techniques, which assisted in design

standardization, and established the procedures that formed the basis for

inspection and quality control in the 1980s. Distinguishing the last phase was a

broadening of inspection to include not simply testing and documentation

conformance, or product evaluation, but analysis of the development process.

18 Fujitsu

Table 7.5: SYSTEMS SOFTWARE PRODUCT-PROCESS CONTROL^"

1968 Software Engineering Department established, including a Program
Testing Section, which assisted in debugging.

1970 "Strengthen Inspection" effort begun (1970-1973). Concept of testing

extended from merely debugging to inspecting software from the user s

perspective, comparing performance to specifications stated in manuals.

Software Administration Department established.

1971 Software Product Registration System established, requiring new
software to undergo inspection and receive product numbers before
being released. Product Handling Regulations formalized procedures for

software products, manuals, and documentation. Required all these
product components to be brought in simultaneously, not one-by-one, to

the inspection department for testing and evaluation.

1972 Planning Department established.

1973 Preliminary version of Development Planning Report System launched.

"Application of QC Techniques" effort begun (1973-1978). First serious
attempt to forecast bugs, reduce them through consistent procedures,
and thereby produce "bug-free" software.

1974 "Product and Process Standardization" effort for begun. Involved
estimating what the phases would be for the life cycle of individual

software products, and then determining what to design in a given
period of time, as well as what programming techniques to use.

Bar charts instituted for project control, replacing PERT charts.

Development started of BSMS (Basic Software Project Management
Support System) .

Inspection procedures and forms standardized (Main Factor Analysis).

MTS (Multi-Terminal Simulator) and HTS (Hardware Trouble Simulator)
tools developed for testing.

1975 SWN (Software Normen) Standards effort launched.

Process (phase) divisions formalized.

Procedures for bug analysis and data gathering formalized. OC Data
Accumulation" effort formally begun. BSMS data base started.

Estimates Handbook drawn up, with actual data on past projects to aid

managers in estimating project requirements, from BSMS database.

1976 Development Planning Report System (Version No. I) instituted,

software products delivery procedures formalized, and BSMS required
for in-house use.

19 Fujitsu

1977 "Inspection of Quality and Evaluation Indicators" (1977-1978) program.

1978 Structured programming techniques introduced for utility programs and
similar types of software.

1979 "Consolidation of Inspection Ideology" -- Concept of software inspection

formally promoted as extending beyond testing, to evaluation of final

products and the development process.

"Quality Assurance through Organization" effort launched. Formalization

of QA as an organizational function not restricted to inspection

but extending to design and planning.

Phase Completion Reporting System instituted.

1980 Development Planning Report System (Version No. 2) instituted, adding
productivity data and review data reporting.

Campaign started to increase quality three-fold and productivity 30"6 by
1982.

Software Division establishes QC circles, as part of the company-wide
High- Reliability Program.

Software Division Quality Objectives established -- formalization of

procedures for establishing project estimates and standard times.

"Diffusion of Inspection Ideology through Horizontal Development"
effort begun to spread knowledge and "good practices" horizontally, i.e.

beyond one's own department.

1981 "Advancement of Quality Concepts" movement begun, including ease of

use evaluations (ESP) and QAL (Quality Assurance Liaison) initiated to

facilitate inter-departmental sharing of data on bugs.

1982 "Performance checking" begun under direction of the inspection
department.

Quality Objectives control system instituted and Software Quality
Subcommittee established.

Six program development departments established at Nuinazu Works and
located in new software building.

1983 New Software Engineering Division established, centralizing all systems
software development in the Numazu Works.

1984 Software Division extends quality assurance and quality circle activities

to software subcontractors, as part of the second company-wide High-
Reliability Program.

20 Fujitsu

According to this chronology and Yoshida's explanations, based on the

MONITOR V experience, Fujitsu decided in 1068 to establish a program testing

section, following the lead of IBM. Assisting designers in debugging was the

group's primary function. At this time Fujitsu had approximately 800 people

developing software, and was experiencing a growing shortage. During 1969-

1971, Fujitsu management also increased the burden on programmers by trying

to make them more sensitive to customer responses. This involved expanding

the mission of testing to evaluate software for conformance to documentation in

the customer manuals, to make sure programs performed as manuals said they

would

.

The next step was to create specific product-inspection procedures, as

opposed to simple debugging. The most important measures required completed

software to go through a formal inspection process before release to the

customer. To manage this, Fujitsu established a software administration

department and instituted specific procedures for product handling, evaluation,

and registration. The product handling procedures covered the software itself,

as well as manuals and other documentation, requiring all to be in conformance

and brought to the inspection department together. Previously, software was

sometimes completed and released without proper documentation. From 1971,

however, no product received a registration number, which was necessary for

release to customers, without meeting these requirements and gaining the formal

approval of the inspection department.

During 1973-1978, Fujitsu made its first serious attempts to control bugs in

software through three interrelated efforts: applying quality control techniques,

standardizing software product controls and development practices, and

collecting quality and performance data. A planning department organized in

1972 oversaw these initiatives for the first few years. This contained sections

21 Fujitsu

for operating systems, linear programs, and DIPS, and thus facilitated a transfer

of controls already required for NT&T to commercial software.

In 1975 Fujitsu started a development planning report system, which set up

formal work-estimation procedures for project managers to use in estimating

man-power needs, quality objectives , product objects , and schedules. Table 7.6

lists the development planning system documentation and groups responsible for

checking. This system was characterized not by divisions of authority or tasks,

but by sharing of responsibility for quality and planning control in all

development and testing phases.

In addition, to automate part of this system, especially data collection on

quality and budget control, Fujitsu introduced BSMS (Basic Software Project

Management Support System) in 1975, after two years of research and trials.

The new procedures, supported by BSMS, introduced not only standards but also

a tool for estimating schedules for different development phases and managing

the development process, as well as testing and inspection.

BSMS, which continued to be the centerpiece of Fujitsu's production-

management system for basic software in the 1980s, worked as follows. First,

managers had to submit a product number application to begin a project. If

this was approved, they submitted a budget. The control system then centered

on the development plan documents and monthly reports of actual work hours,

computer time, and phase completions, which BSMS tracked and compared to the

initial estimates. ^^ Fujitsu had used PERT charts for developing MONITOR VII

but they did not work well. The development planning system called for the

use of bar charts for project control, which Fujitsu later combined with the

on-line BSMS system. "^ The introduction of BSMS also allowed the software

engineering department to begin compiling an 'Estimation handbook" containing

actual data on past projects to aid managers in their estimates.

22 Fujitsu

Table 7.6: DEVELOPMENT PLANNING ITEMS AND RESPONSIBILITIES43

Key: C = Control, P = Planning, E = Engineering, D = Development,
T = Integration Testing, I = Inspection, o = Included in Activities,

X = Major Responsibility

Items Check Points
QUALITY OBJECTIVES:

Development Program positioning.

Objectives development results,

marketability

Grou PS Responsible for Checking
C P E D T I

X

Desired
Functions

User needs and
program functionality

X X X

Performance Objectives, measures,
comparative analyses,
appropriateness of the
measurements

X X

Compatibility Objectives, appropriate-
ness and completeness
of the objectives

X X

Reliability Appropriateness of the
objectives, likelihood

of implementation

X

PLANNING IMPLEMENTATION
Development Appropriateness of

Size, Language size given functions,
modularization/ reuse

X X

Development
Process

Appropriateness of

delivery time to user,
feasibility

X X X X

Man-Power
Machine Time

Match of productivity
and budget, man-power
allocations, subcontract-
ing percentage, progress

X

Review & Test
Plans

Amount of reviews & test,

appropriateness of bug
detection (compared to

phase standards)

X X

Work Objectives Sufficiency of measures
for improving quality

and efficiency

X o

Development
Structure

Organization, work
distribution

o o

Fujitsu divided the development process into seven phases, following

conventional life-cycle models: basic design; structural and functional design;

detailed design and coding; unit and combined test; component and system test;

product inspection; delivery and maintenance. Personnel in each phase were

responsible for standardized documentation and reports. At the initial phases,

the development and planning documents included a market survey report and a

basic design document, which listed functional, performance, and reliability

objectives, as well as estimates of manpower and machine time.

Completion of functional and structural design required documents detailing

the function of each system component, module structure, and interfaces

between each module, plus a testing plan. Detailed design required flow-chart

and tabular documentation on the internal structure of each module, and input

and output structure. At the completion of unit and combined test, Fujitsu

required a programming report, which included the detailed design

documentation, review reports, test specifications and results, as well as the

source modules. After system test, the testing report documentation included

the inspection specifications, test specifications and results, and the test set,

while final inspection generated another set of results. "^

The most important quality measures Fujitsu initially focused on were

reliability in component test, conformance to documentation, number of bugs

detected, and mean time between failures. Main-factor analysis techniques,

introduced in 1974 and influenced by practices at Hitachi, required testers to

sort through intermediate test data to identify sources of bugs, before final

testing. Standardizing testing and review procedures was particularly important,

because Fujitsu had no consistent approach for predicting and eliminating bugs.

Individual programmers decided which tests to run, without formal planning or

supervision. Better control in this area then allowed Fujitsu in the later 1970s

24 Fujitsu

to track other measures, such as software functionality and portabihty.

The period from 1979 Yoshida characterized by three themes: quahty

assurance through organization, diffusion of inspection ideas throiigii horizontal

development, and advancement of quality concepts. The central notion in

assuring quality through organization was to make quality assurance activities

part of the formal organizational and job structure, especially in design and

planning, rather than a function restricted to the inspection department. Fujitsu

implemented this new emphasis by instituting in 1979-1980 a "phase completion

reporting system," resembling the design- review systems used at other firms,

and then a new version of its development planning report system. The new

reporting system required, for the flnst time, programmers and managers to

collect productivity data. Standardized productivity data then allowed Fujitsu

to introduce in 1980 standard times for worker performance, based on actual

previous data for different types of software, and incorporating quality

objectives. Although Fujitsu was several years behind Hitachi, NEC, and

Toshiba in instituting standard times as well as structured programming

techniques, these became a major feature of pr-oject control and tool

development. Like other Japanese companies, Fujitsu also adopted the practice

of revising standard times annually.

Other measures included in the quality assurance effort were the

institution of practices to check for bugs introduced in one part of a program

when fixing bugs in another part; and participation of the division in the

company-wide "High- Reliability Program." Fujitsu managers also set a goal of

raising productivity 30% by reducing bugs one-third; even though the division

did not meet this objective, this established the policy of connecting

productivity to quality control, and setting specific goals to motivate employees.

To support this initiative, in 1982-1984, Fujitsu introduced new testing tools and

25 Fujitsu

techniques to help select test items, and purchased additional equipment to

insure that testing could proceed 24 hours a day, if necessary.

What Yoshida called "horizontal diffusion of inspection ideas" referred to

deliberate efforts to spread good thinking and practices regarding quality

control beyond one's small group. This involved institution of a formal "quality

assurance liaison" (QAL) structure, which set up meetings for different

departments and projects to share information on bugs and other quality- related

data. As part of this initiative, Fujitsu also established other quality control

activities and meetings, including quality circles, initiated for software in 1980.

The software division also participated in the second High- Reliability Program,

which promoted the teaching of quality control techniques to subsidiaries and

subcontractors. "Advancement of quality concepts" centered on expanding

interpretations of product quality beyond "zero bugs" to other characteristics,

such as product design, function, performance, ease of use, and maintainability,

as encouraged by U.S. experts like Barry Boehm.

Also in the early 1980s, Fujitsu began applying to software the term "TQC '

or "Total Quality Control," a term coined in the 1950s in the U.S. and applied

widely by Japanese firms since the 1960s, including Fujitsu, to comprehensive

quality assurance efforts covering product planning, design, manufacturing, and

service, rather than simply inspection after production. Software TQC goals in

Fujitsu focused on improving control over bugs, delivery dates, and costs, which

management hoped to achieve through division-level committees coordinating

lower-level activities in all areas affecting software products, from planning

through maintenance (Figure 7.1). A series of committees for product and

process planning, field quality evaluations, quality circles, technology,

standardization, training, and high - reliability promotion set policies and

supported the efforts of line and staff departments for planning, development,

26 Fujitsu

software engineering, control, inspection, and field-support. Procedures for

project and budget control, work and product standards, product evaluation,

registration, and maintenance completed the TQC system.

The High- Reliability Program presents an example of how the software

division in Fujitsu, like other Japanese firms with software factories,

participated with conventional factor-ies in company and group efforts to

improve quality and productivity. Fujitsu started this program in 1966, initially

in hardware development and manufacturing divisions, in an attempt to institute

a comprehensive TQC system covering research, design, manufacturing, and

service. The program gradually expanded the use of quality circles, which met

once or more a month to discuss a range of issues related to productivity and

quality, as well as work conditions. Managers also used the circles to

supplement formal training required of new company employees.

The software division did not actively participate in the program until

1980, when Numazu organized its first software quality circles (a year before

NEC). By 1985, the software division had approximately 300, averaging 7

members and meeting once per month. The quality assurance group within the

inspection department oversaw circle activities, while section chiefs organized

and managed them. The most frequently discussed themes in 1985 were software

maintenance problems and techniques (301s) and testing (IS*?,), followed by

programming, bug analysis and correction, design, reviews, manuals, planning,

and inspection. Management also encouraged the circles and individuals to

submit suggestions, which in 1985 dealt mainly with maintenance, programming,

control (quality, process, cost), testing, computer usage, and bug analysis and

correction. Under the influence of the second High-Reliability Program, the

software division in 1984 also began working with subsidiaries and contractors

to establish similar TQC systems, including quality circles.

27 Fujitsu

•s.

-3

< -J-

Quantifying Control Measures

Similar to other Japanese factories, Fujitsu's Numazu Works attempted to

quantify and analyze basic measures of performance in a standardized manner,

and then institute standardized procedures and tools. One reason was to reduce

individual variability and thus dependency on high-levels of experience and skill,

much as conventional factory organizations have attempted. Another, related

objective was to "build in " quality at each phase of development, rather than

trying to "inspect in" quality at the end of the process. Yoshida reflected this

thinking in a recent article describing the software division's program for

quality assurance:

The prevailing opinions that high-quality software products can be
produced readily by using certain methods, that quality can be
ensured by sufficient testing, and that quality control can be
achieved through the diligent work of a single control section are

mistaken. Better development methods, appropriate standards, and
various control activities must be applied throughout the entire

software life cycle, and quality can be assured only if all the above
are carried out under an integrated management system throughout
the life cycle. "

To institute this type of management system, Fujitsu staff in inspection

and quality assurance worked on four approaches. First, were a series of

activities to quantify and analyze information on project progress and quality.

Second, was the introduction of methods for predicting error occurrence in the

programming phase, and institution of a "management by objectives" system

aimed at error correction. Third, to determine test items, was the use of

statistical "Design of Experiment" techniques, often referred to as the "Taguchi

method" in the U.S. and generally applied only to product development and

processing of conventional hard products such as automobiles. Fourth, was an

attempt to evaluate quantitatively the concept of "user friendliness " of software

through a variety of tests. ^^

29 Fujitsu

Measuring design progress was problematic mainly because the most

common way to evaluate schedules was to compare actual progress, such as the

number of completed modules, or in Fujitsu's case, completed "design sheets
"

and "work items," with estimates made prior to starting work. Accuracy of the

measure thus depended on the accuracy of the prediction, which managers could

not fully determine until completion of a project. To maximize the accuracy of

estimates, Hitachi kept extensive data on previous projects and the performance

and experiences of individual personnel. Fujitsu chose not to keep such

detailed data, but used two similar indices for project evaluations. One

measured quality, based on points received in reviews, and another quantity, by

how well predicted amounts of work fit actual results. This data helped

managers define tasks in small, realistic segments, to minimize estimation errors.

The system worked as followed: In the planning stage, managers

determined work items and entered these on work item sheets, which then were

entered into the BSMS data base. Work items were segments of design or other

activities that could be done in about two weeks. Projects were organized in

groups, and each group leader was responsible for one work item at a time.

Each member then had to fill out a "review trust sheet, ' as well as receive

reviews from several other people, including a chief reviewer. Reviewers used a

check-list to evaluate work, and members had to make changes until the chief

reviewer was satisfied. At weekly progress meetings, managers and group leaders

checked the progress of each work item. The quality index compared the

number of quality points received in reviews with the number of predicted

quality points, assigned through a simple scheme: Completion of materials for

reviews received 50 points; completion of all reviews and changes required

brought 100 points. Actual quality points were assigned by giving 50 points for

completion of materials for reviews, and 50 or more points depending on the

30 Fujitsu

review evaluations.

Using these formulae, Fujitsu arrived at "comprehensive quantity figures

for each member and project, " as well as made an initial tracking of proriuct

quality. In addition, as part of its quantitative measurement efforts, Fujitsu

regularly used statistical regressions and factor analysis to identify probable

causes of errors, as well as to estimate numbers of bugs and man-power

requirements, and to test the accuracy of estimates. Progress evaluations still

depended on the accuracy of the predicted values, which sometimes were far

from actual values. Overall, however, Fujitsu managers claimed to have solved

the major problems with the system and, reported significant improvements in

progress control as well as quality.

Testing Techniques

Fujitsu's objectives in testing were to detect 65% of the bugs in a new

program by the end of the coding phase review, 95''6 by the end of system test,

and 99% by the end of the inspection process. "^ A problem encountered in

meeting these goals, however, was that, as in the design of any complex

product or process, large programs contained too many combinations of factors

and conditions to test completely. Furthermore, company data showed

significant improvement in the ability of personnel to detect errors in software

as their experience increased, with a leveling off after about six years. As a

result of these observations, Fujitsu managers decided to employ a method for

selecting test cases that less experienced could understand, as discussed in a

1987 article by an engineer in the quality assurance department:

In tests involving many inspectors, a means is essential to standardize
the quality of testing conducted by each inspector, but there is a

limit as to the extent to which one can share the knowledge and
skill through training ... The omission of test cases during test factor

31 Fujitsu

analysis is often associated with problems relating to the scope of

knowledge and insight of the testing personnel. . . The omission of test

cases during test case generation is often caused by omissions or

careless errors. . . [T]he number of test factors [selected] increases in

proportion to employed years up to 6 years and stays constant after

that. Therefore, to improve the quality of test factor analysis as a

whole, it is a significant importance [sic] to transfer knowledge to

less experienced testing personnel.

Two approaches appeared most useful in capturing and transferring

knowledge regarding software testing. One was to develop tools that automated

as much of the testing process as possible, particularly the generation of initial

tests based on a program's external specifications or input characteristics. Such

tools often could identify critical factors that were the source of most errors in

a program. The conventional way of generating initial test cases was to use

cause-effect graphs, but these required a great deal of knowledge to use

effectively. A second approach was to create a data base on test-factor analysis

methods and conditions, complete with an editing support function to help

personnel utilize the data base to create test cases for new programs. As part

of this latter technique Fujitsu introduced, beginning in the early 1980s, Design

of Experiments methodology.

The Design of Experiments techniques relied on educated guesses of where

problems were likely to exist (which could be listed for easy reference), and

then specific tests selected and evaluated r-elying on tables of "orthogonal

arrays" (statistically independent groups of factors). These made it possible to

control the number of combinations that existed between any two factors and

minimize measurement errors and other conditions, and identify correctable

defects more quickly than conventional techniques such as cause-effect graphs.

In fact, Fujitsu data indicated that the DE methods could actually detect 5 to

10 times or more the number of errors usually found with conventional methods,

with fewer test cases. '^'^

32 Fujitsu

To quantify "ease of use" measures, Fujitsu employed manual reviews and

inspections, and validation of accuracy by surveying users through

questionnaires. The surveys indicated that users grouped features relating to

ease of use into three categories: major (such as friendliness, efficiency,

understandability) , intermediate (such as productivity, ease of learning,

maintainability), and minor (such as syntax flexibility, speed of operation).

Scoring a product on various items, using simple "yes" or "no" responses and

more points for major as opposed to minor items, led to quantified scores.

Fujitsu claimed its evaluations covered all the basic characteristics of a

software products (performance, reliability, operability, compatibility,

coordination, ease of maintenance, quality of information , price and delivery) , as

well as design quality and consistency (defined as the "degree to which software

targets and specifications meet user needs," and the "degree to which the

finished software meets the design targets and specifications'), and sufficiency

and attractiveness ("the extent to which products are acceptable to users').

r tr

Fujitsu also claimed to use 113 items merely to evaluate ease of use.

Tool Support

Similar to Hitachi, Toshiba, and NEC, in the mid-197ns Fujitsu began

developing numerous support and management tools; major ones (for systems

software primarily) are listed in Table 7.7. Numazu was the center of tool

development, with Kamata importing tools such as ADAMS and GEM. During

the 1980s, however, Kamata and the central research facility, Fujitsu

Laboratories, have become more involved in tool development, such as those

directed at automating system design and construction."^"

33 Fujitsu

Tablfi 7.7: MAJOR SYSTEMS SOFTWARE DEVELOPMENT TOOLS f1983) ^^

DESIGN
YAC II (new version 1987) (Yet Another Control Chart). Detailed design
language, combining aspects of conventional flow charts and pseudo code.

PROGRAM EDITING/CODE GENERATION
GEM (1979) (Generalized Program Editing and Management Facilities).

Automatically maintains a development history of a program. Linked to PRISM.

PRISM (1982) (Problem and Repair Interrelated System Management Extended).
Maintains a data base of the program source and automatically tracks
maintenance changes. Linked to GEM.

COMPACT (1982) (Compact Print-out Utility) . Compacts and prints out compiled
and assembled code.

TOOL 2 (1983) Allows on-line search, from time-sharing terminals, of program
source code and lists.

YPS (1987) (YACII Programming System). Allowed the user to edit YACII
diagrams and then automatically generated code in several languages.

TESTING
SAT/ART (1980) (Systematic and Automatic Testing/Automatic Regression
Testing). Automated regression testing tool for operating system development.

TDQS (1977) (Test Tool for DQS). Automated regression testing tool for on-line
display operations.

INDS (1983) . (Interactive NCP Debugging System) . Allows checking and analysis

of NCP test results from time-sharing terminals.

MTS (1971, 1977) (Multi-Terminal Simulator). Simulates remote terminals for

host load testing.

TIOS (1977). (Time-Sharing System Input/Output Simulator). Simulates remote
terminals for host load testing.

HTS (1977) (Hardware Trouble Simulator). Simulators hardware bugs for

functional test evaluations of software responses.

DOCK/FORT77 (1981). Debugging system for FORTRAN, using a "slow video
display. "

PIC (1984) Program Information Control System. Allows inspection and analysis
of memory-dump lists from time-sharing terminals. Linked to the Kamata-
Numazu Dump Transfer system.

ATOS (1982) AIM Test Oriented System. Automatically records on computer
data base results from testing and inspection.

34 Fujitsu

DOCUMENTATION
ODM (1983) (Office Document Manager) Document lianrJIing <;ystem for

Japanese language.

MANUAL COMPILATION AUTOMATION SYSTEM (1979). Automated editing of

electronic documentation files.

EGRET-4 (1983) (Easy Graphic Report Generator).

ATLAS (1982). Automatic translation of Japanese documents into English.

English to Japanese system added in 1986.

MAINTENANCE
TDP II (1980) (Total System for Difficulties Information Processing). Data base
for software report information.

ITS (1981) (Incident Tracking System). Control system for questions from
customers

.

KAMATA-NUMAZU DUMP TRANSFER (1982). On-line transfer of data and
reports on bugs. Linked to PIC testing tool.

PDE (1983) (PTF Document Editor). Automatically edits documents on program
corrections, based on TDP II data.

CONTROL
BSMS (1976) (Basic Software Project Management Support System). Data base
and control tool for software project management.

NOA (1978) (Numazu Office Automation). Employment data control system.

IN-HOUSE TRAINING DATABASE SYSTEM (1982). Relational database system for

in-house training administration.

Fujitsu's tools closely resembled those in use elsewhere in Japan, though

they operated separately and were less integrated than the work-bench systems

at Hitachi and Toshiba. There were, however-, data-base links among TDPil,

ITS, and the Dump Transfer system (maintenance), BSMS and TDP II (control),

and GEM and PRISM (program construction).^"

Particularly important among these tools were BSMS, described earlier, and

GEM (Generalized Program Editing and Management Facilities), a library-

35 Fujitsu

management and data-collection tool that automatically generated graphic

reports, for groups and individuals, on productivity f lines of code developed),

progress status (by month and week) , and quality (bug levels per module) . The

library functions included version control of modules and completed programs.

Tin

as well as compressed data to reduce the volume of stor-ed files. "^

Another important tool set was YAC-II (Yet Another Control Chart), which

Fujitsu used for functional design, and VPS (YACII Programming System), which

automatically generated code. The VAC diagr-ams, first introduced by Fujitsu in

the 1970s, resembled other flow-chart or problem-analysis diagrams used in

Japanese firms since the early 1970s, after NT&T began developing an internal

system and requiring its use by subcontractors. The current version, introduced

in 1987 along with YPS, enhanced productivity in two ways. One was to

eliminate the need for detailed documentation. Another was to reduce coding

and debugging time. The YPS system contained an editor, compiler, debugger,

and documentor, and received inputs in structured but conversational Japanese

on work stations. A host computer then translated the inputs into machine-

readable YACII charts and then executable, "bug-free" code in C, Fortran,

Cobol, or SPL (System Programming Language, a PL/I derivative developed at

Fujitsu). ^0

Performance Improvement

Fujitsu data indicated steady improvements in the decade after 1975 in

quality (reliability), productivity (development costs), and project schedule

control (lateness). Available data summarized in Table 7.8 cover systems

software, where the average program ca. 1986-1987 was about 170,000 lines of

code with comments (125,000 lines without comments), with a maximum of about

800,000 lines. These programs were primarily written in SPL or C."

36 Fujitsu

For all code in the field (new code plus maintained software), between

1977 and 1979, bugs reported by users dropped by one-third, and then another

one-third between 1979 and 1982. By 1985, bug levels for outstanding rode liad

fallen to practically zero (0.01 and below). For newly written code (annual data

for which is confidential), Fujitsu showed similar gains. Bugs per 1000 lines of

new code reported by users (generally about 10 times the level for all code) fell

four-fold between 1980 and 1981 alone. Improvement since 1981 has leveled off,

as bugs dropped to approximately 0.1 and below.

Table 7.8: SYSTEMS SOFTWARE DEVELOPMENT PERFORMANCE MEASURES^^

Note: All data are estimates based on graphs, and therefore are approximate
figures only. 1983-1985 is based on internal Fujitsu data. Bugs/1000 LOG
refers to all bugs reported by users per 1000 lines of code over 6-

month periods (averaged in the table below) in the field, i.e. newly
delivered code plus supported outstanding code.

Bugs/ Bug Detection Method (Estimates) Development Costs
1000 Test Source Code Design Sheet per 1000 LOC
LOC Review Review (Index)

100

87
61

5 54

1975

1978, this has gradually become the major method for detecting bugs, r-ising

from 5% to approximately 40% in 1982.

Fujitsu measured productivity by lines of code (steps) produced per man-

month, number of documents per man-month, and total development costs per

1000 lines. Two other related indices were machine time divided by man-

months, and pages of documentation per 1000 lines of code."^ The data on

development costs indicated a three-fold productivity improvement between 1975

and 1983, not adjusting for inflation or use of outside contractors to reduce

expenses. The most dramatic improvements came with the opening of the

Numazu Works in 1976, and then the centralization of system development in

the Numazu Works after 1981. Lines-of-code data also suggested that, between

1975 and 1985, including reused code, Fujitsu experienced roughly a 5-fold

increase in output per worker. In-house studies indicated that factors most

strongly affecting productivity on the positive side were programmer ability,

followed by product complexity and software tools. On the negative side were

reliability requirements.

Improvements in quality and productivity corresponded to significant

progress in scheduling accuracy. In the late 1970s, according to Yoshida, about

40°6 of projects were typically late, with "late" defined as reaching the

inspection department after the scheduled time. By the early 1980s, Fujitsu had

reduced this to about 15%, a level comparable to Hitachi. Delays most

frequently came in the transition from functional design to coding, with coding

too often taking more time than estimated.^

38 Fujitsu

APPLICATIONS SOFTWARE DEVELOPMENT

Factory Origins and Organization

Fujitsu s decision to establish a software factory for applications

programming stemmed from the need to produce a variety of nominally different

programs for different customers. In the early and mid-1960s, users performed

much of their own applications programming, with assistance from a service

department Fujitsu set up with its computer division in 1963. Several large

system orders, however, led Fujitsu to organize a systems department in 1964

(later expanded into the Systems Group). These orders consisted mainly of

integrated hardware and software systems, such as on-line programs for

securities firms and banks (first deli vnr ed to Nikko Securities in 1964 and the

Norin Chuo Bank in 1965), and data processing software for Fujitsu mainframes

delivered to government customers (such as the Ministry of Labor in 1965) and

NT&T (beginning in 1967). ^7

Rapid increases in sales of Fujitsu computers brought continued demand

for customized applications software, prompting Fujitsu management to establish

in 1970 the Information Processing System Laboratory in Kamata, Tokyo." The

Laboratory was divided into a systems development area and an education area.

An initial staff of 700 allowed Fujitsu to centralize program development for a

variety of industrial, engineering, and scientific applications, as well as for

computer-aided design
, pattern recognition, and computer-aided instruction . By

the 1980s, Fujitsu was using the Kamata facility to produce software for nearly

all its mainframes, minicomputers, and super-computers, as well as for office

computers, terminals (banking, postal), and personal computers.

Although the U.S. software market shifted gradually toward software

packages and away from fully customized systems, Japanese customers continued

to prefer tailored software systems. In response, according to Fujitsu director

39 Fujitsu

Yoshiro Nakamura, Fujitsu created a Systems Group, centered on the Kamata

facility, that not only offered specialized engineering and programming

departments, but also facilitated the development and reuse of software

packages, which could be integrated with new code as necessary. The mission

of the Software Factory and subsidiaries or software houses connected to the

Systems Group was primarily to use these packages, as well as a factory-type

methodology and tool set, to produce semi-customized systems rather than

standardized products (packages) or fully customized products.

As of 1986, the Systems Group consisted of three major areas, with a

separate Development Planning Office directing tool and methodology research

(Figure 7.2). The "joint development" area included the SE (System

Engineering) Technical Center, which housed the Software Factory and

departments such as for standardized technology promotion, office system and

other system engineering done in the center, and the SIGMA project; the

Package Planning and Control Division; and a research facility. A second

area was the industry-specific design departments, which performed system

engineering for companies in finance, insurance, securities, and manufacturing

and distribution, as well as for NT&T, scientific and technical applications, and

government users. The third area consisted of functionally specialized

departments, such as for management information systems, "value-added

networks" for offering different on-line services, personal computer systems,

and new telecommunication firms (NCCs).

40 Fujitsu

Figure 7.2: 1986 SYSTEMS GROUP AND SUBSIDIAR IES QRGA NIZATION '^ 2

SYSTEMS GROUP (ca. 9000 Employees in 1988)

Development Planning Office

JOINT DEVELOPMENT AREA

SE Technical Center
-- Software Factory Department
-- Information Center Dept.
-- Standardized Technology Promotion Dept.
-- System Engineering Dept.
-- Office Computer System Engineering Dept.
-- SIGMA Project Office

• Package Planning and Control Division
-- Package Planning Dept.
-- Software Distribution Dept.

Fujitsu Systems Research

INDUSTRY-RELATED DEPARTMENTS
--- Finance

Insurance/Securities
Manufacturing/Distribution
Scientific/Technical

--- NT&T— Government/Mass -Communication

FUNCTIONAL DEPARTMENTS
Management Information Systems
VAN (Value-Added Network) Systems— Information and Communications— Personal Computer Systems
NCC (New Common Carriers) Systems

SYSTEM ENGINEERING SUBSIDIARIES (ca. 53 firms and 11,000 Employees)
Industry and Functional
Regional

While Fujitsu made efforts to centralize applications development in the

1960s and early 1970s, only in the later 1970s did it adopt a factory-type

organization separating system design from program construction (Table 7.9).

41 Fujitsu

According to Murakami Noritoshi, one of the developers of the Kamata Software

Factory and in 1988 a manager in the Software Development Planning

Department, a preliminary step was the 1977 establishment of a Software

Conversion Factory Department. Fujitsu used this to revise applications

programs written for Hitachi and IBM computers and terminals to run on

Fujitsu machines. Next, in 1979, Fujitsu expanded the department into a small

software factory, with about 300 programmers charged with turning requirements

specifications received from system engineering into code.

The major reason for upgrading the conversion facility, according to

Murakami, was to centralize people and standardize process technology, with the

objective of accumulating knowledge regarding tools, standardization,

programming environments, and development techniques. The factory was able

to handle about 25% of all commercial applications programming in Fujitsu.

Most other programming work Fujitsu channeled to subsidiaries and affiliated

software houses. '^

Prior to establishing the factory, a group headed by Yoshiro Nakamura

began compiling the SDEM (Software Development Engineering Methodology)

standards in 1976, and introduced a version for in-house use in 1977. As

occurred with operating-system development, the larger programs needed for the

M series computers required Fujitsu to standardize and integrate software

74
engineering tools, methods, and management procedures. Fujitsu also issued a

tool set, SDSS (Software Development Support System), for programming in

Fortran. As more business programs were written in COBOL, Fujitsu replaced

SDSS with new tools, later integrated under the name SDAS (Systems

Development Architecture and Support Facilities). '^

42 Fujitsu

Table 7.9: APPLICATIONS SOFTWARE FACTORY ESTABLISHMENT

1964 Establishment of Systems Department, later expanded to Systems Group

1970 Centralization of applications systems development at Information

Processing Systems Laboratory in Kamata

1977 Establishment of Software Conversion Factory within the Laboratory to

convert IBM and Hitachi programs to Fujitsu machines

Introduction of SDEM standards

1978 Introduction of SDSS tool set

1979 Establishment of the Software Factory Department to perform detailed

design, coding, and integrated test of customized applications programs
specifications received from system engineering departments

Since specialized knowledge seemed essential for accurate system design,

Fujitsu maintained specialized system engineering departments outside the

software factory, covering manufacturing, distribution, financial systems,

government systems, and scientific and engineering programs. The SE

departments handed designs to subsidiaries and affiliated software houses, or

programming sections in the software factory, where programmers also

specialized in certain applications or industry areas.

The factory s (and subsidiaries) workers took system documentation and

produced detailed designs (flow charts) and code (if necessary), and continued

through integration test. System test was then done by the designers and

programmers together at the customer site. Prior to the factory organization,

system designers either did their own coding or worked in the same groups as

programmers, rather than handing off design documents.

The factory departments were organized in teams of 7 or 8 programmers

doing coding for 4 or 5 system engineers. The system engineers wrote design

specifications in a standardized format using conversational language (Japanese

mainly), but providing input/output diagrams and mathematical equations as

43 Fujitsu

necessary, to minimize the amount of skill required of the factory personnel.

Programmers who did not understand part of a design document would call the

responsible system engineer and discuss the problem. When programmers

finished a part of a system, they would send it back to the system engineers,

who would check it with the customer. Most problems in specifications were

thus ironed out during the design and coding process.' Fujitsu also minimized

the type of "matrix management" problems that had plagued the SDC Software

Factory by designating a chief system engineer and a chief programmer, and

then giving the system engineers the main responsibility for dealing with

customers and producing systems that correctly met customer specifications . '°

System engineering departments -m4ght send designs either- to the factory

or subsidiaries for implementation, hence there was not a strong distinction

between the type of programming these different organizations could handle. In

general, however, the factory provided capacity for systems that subsidiaries

might have a difficult time with, such as on-line banking software, which could

reach millions of lines of code. For these types of large programs, the factory

employed an "on-line" SDEM system that allowed up to a thousand people to

work on a single project simultaneously, with 200 to 300 terminals connected to

a single mainframe. (The Kamata factory maintained about one terminal for

every two employees, twice the number at Toshiba.) The largest projects done

in the factory might use 4 to 6 mainframes, and involve a thousand personnel

over a period of one or two years. The factory also did some programming for

packages designed in the system engineering area, if there was a work overflow

in the SE departments' new-code development groups. In addition, the factory

avoided jobs that required a great deal of expertise on the part of

programmers, such as artificial intelligence programs, which Fujitsu did in R&D

7Qdepartments .
'
^

44 Fujitsu

Software houses that worked on a long-term basis with Fujitsu were

particularly valuable when projects were running late. Fujitsu would often add

personnel from these firms, primarily to help in coding (although program

generators were gradually eliminating coding). As at other Japanese software

factories, Fujitsu appeared able to add people without delaying projects further

because of the standardized methods and tools, and training, even of

subcontractors' personnel. Another advantage of using subsidiaries and software

houses was that Fujitsu could meet demand peaks beyond its own capacity and

without adding too many full-time (and higher paid) employees to the ranks of

permanent employees.

Training and Career Paths

While most employees in the Kamata Software Factory were college

graduates, and usually had good backgrounds in science or mathematics, new

Q
1employees generally had no computer engineering or software training." This

required Fujitsu to invest heavily in training, but allowed the company to teach

workers, and managers, the factory methods and no others.

For example, after deciding on the SDEM standards, in 1977 Fujitsu

instituted a three-day training seminar, followed with periodic workshops, for

PI
project managers, and a lengthier education program for new employees. New

employees were considered trainees for the entire first year and attended full-

time classes for three months, learning Assembler, COBOL, machine I/O, and

other areas of basic programming and computer architectures. After the classes,

training continued on-the-job, through coding simple programs for commercial

customized systems, and through another two or three days of additional

instruction every month or two.^ Until they became managers, employees

continued to receive about eight days of training a year in workshops, in

45 Fujitsu

addition to self-study materials and quality-circle activities. '^

Career paths at Fujitsu resembled those at other software Factories,

though they were not as formally defined as at Hitachi and Toshiba. New

employees usually did coding for several years, and then moved on to module

design, and structural design. After 5 to 10 years, depending on an individual's

ability (as determined by managers, rather than formal testing), a programmer

might become a system engineer (designer). Programmers in the factory, like

system engineers, specialized by application or industry area for at least their

on:

first 3 years, but then might move to other areas.

There are some reports that lack of a formal training program for system

engineers, again in contrast to Hitachi and Toshiba, made it possible for

Fujitsu's competitors to provide better system-engineering services. To counter

these claims, in 1986 Fujitsu established Fujitsu Systems Research as an in-

house department for training personnel in system consultation and assisting

customers in system planning and problem solving. Fujitsu staffed the new

department with 30 experienced administrators and 70 experienced system

engineers . °"

The Factory Methodology: SDEM

Fujitsu introduced SDEM (Software Development Engineer's Methodology)

and SDSS (Software Development Support System) during 1977-1978 to serve as

standardized development and control procedures and automated support tools

aimed at improving customer-requirements definition and techniques for design,

programming, project control, and system maintenance. Managers were

particularly concerned with the constraints on productivity created by design

changes and documentation rewriting (usually 20 to 40°n by the final version)

and test-case generation.

46 Fujitsu

Fujitsu had standards prior to 1977, but they were only vaguely defined

and weakly enforced. Development was very much in a "craft" mode, with

programs more the property of individuals than the product of an organization.

Documentation and standardization were so lacking that, as recalled by the

engineers who developed SDEM and SDSS, it was difficult to understand a

program written by someone else:

We had software development standards before SDEM and SDSS were
developed but the standards had no clear definition of the
development phases. This lack of definition resulted in so much
freedom that software systems often became the products of

individuals. It was not easy for a person who had not designed a

program to understand how it worked. To improve on this situation,

we concluded that clear, reasonable definitions of the developing
phases and activities were required. The kinds of tasks performed
during each activity also needed standardization.

According to Nakamura, they considered two options: improvement and

standardization of procedures, techniques, and the overall development

environment; and automatic program generation, relying on standardized formats

for specifying user requirements and "state-of-the-art" tools. Due to the still-

emerging state of program generation, they focused initially on standardization,

and later on program generation. It was also their philosophy that, before

proceeding with automation, they had to establish a methodology and a

production system, and solve problems "rationally and systematically," relying on

feedback from developers:

There are two approaches to software engineering. One approach is

to upgrade current development methods by standardizing development
procedures and by improving both programming techniques and the
development environment. In the other approach, programs are
directly generated using formal specifications of user requirements,
and this approach involves the application program generator or
automatic programming. The latter approach is one way of
accomplishing our ultimate goal of software engineering, and if we
narrow the applied field this approach is feasible. However, it is

very difficult to realize these latter technologies at the present state
of the art, if we apply them generally. . . .Therefore, we addressed the

47 Fujitsu

following items based on the evolutionary approach: 1) clarification of

software development methods and standardization for development
activities, 2) utilization of tools to computerize development
activities .

We developed SDEM around the first item. For the second, we
developed SDSS as a set of tools to support the phases after system
design... Our basic attitude toward software development is that it is

more desirable to first clarify software development methods and a

software development system, then to approach these problems and
solutions rationally and systematicallv, depending heavily on feedback
from the actual system developers."^

The SDEM methodology was set down in four manuals. The SDEM Concept

Manua l outlined the basic standards and development approach. The SDEM

Standards Reference Card listed specific procedures and work items for each

development phase and project-team member. The Detailed SDEM Standards

Manua l presented more details of each work item and related documents, with

examples. The SDEM Introduction and Application Manual explained basic

management techniques and guidelines for introducing and using the SDEM

system. The development process as defined in these manuals divided the life

cycle into 6 stages and 12 specific phases, from survey and planning through

maintenance and evaluation. These included a series of work categories and

specific work steps, as shown in Figure 7.3. The documentation flow for the

major phases is shown in Figure 7.4. The Software Factory Department and

programming subsidiaries covered the bottom half of this process, and system

engineering departments the upper portion.

48 Fujitsu

u
Q

b
O
w
zM
l-JH
o

it

FIGURE SDEM DOCUMENTATION AND PROCESS FLOW

^urv

A major objective of SDEM was to clarify and separate system design from

program design, to facilitate division of labor as well as improve the

"flexibility" (portability or reusability) of the designs. System design consisted

of exterior specifications and logical designs that did not rely on specific

machines (computers) or languages, whereas program design consisted of the

physical program, which was machine and language dependent. Developing the

system designs separately created a risk that the entire implementation and

testing effort might have to be redone, if a finished program did not meet

customer requirements. On the other hand, use of SDEM and factory-support

tools in all phases, from requirements through coding and test, minimized

misunderstandings and errors. There was also extensive interaction between

system engineers and programmers in determining the accuracy and meaning of

design documents.

Two tools that grew out of the SDEM effort to standardize and simplify

the specification and design process were EPG (Executive Planning Guide) and

C-NAP (Customer-Needs Analysis).^' EPGII formalized a set of planning

procedures and work sheets for designing corporate information-management

systems, mapping out a customer's needs against infoi-mation-management

systems already existing in the company. To define more formally the

specifications necessary to write software, C-NAPII set forth another series of

procedures and work sheets.

SDEM procedures for quality control were similar to those used at Numazu

but called for negotiations with customers in determining targets -- "maximum

allowable number of errors per 1000 statements." If early tests indicated bug

levels were above target, procedures called for validating the target levels and

then instituting countermeasures such as more intensive debugging or program

J 93redesign

.

51 Fujitsu

The Factory Tools: From SPSS to SPAS

SDSS, which automated aspects of documentation compilation and file

editing and management, consisted of three elements: a project library for

source programs, designs, test data, documentation; a module description

language and analyzer containing information such as the name and module

function, interfaces with other modules, and syntax; and test-support tools for

module test, results analysis, module path tracing, and test-case selection.

Although SDSS was gradually supplanted, Fujitsu used this system to set

objectives for tool development.

One of the first tasks, taken on by Murakami and other engineers, was to

extend the system to handle languages other than FORTRAN; this became

essential as more and more applications programs came to be written in COBOL.

Another was to improve the module description language so that it could

describe more complicated data structures and be used from the beginning of

the program design phase, rather than from the module definition stage. Other

objectives were to develop some automatic or mechanized program-generation

capabilities, as well as reuse capabilities, and generate maintenance documents

from source code, using the module description analyzer.

Numazu provided solutions to some of these problems. Particularly

important were the adoption of YAC flow-charts and then YPS, for editing and

code generation. For program development and management, Kamata also

imported GEM from Numazu, to serve as a program library system and

production-control data base, and ADAMS, to serve as a project-development

data base, with an interface to other tools, the project library, and management

data bases. ^"^

Because its basic mission was to produce customized programs, the most

52 Fujitsu

significant tool-development efforts at Kamata, with assistance fiom Fujitsu's

central research labs, focused on automating aspects of program design and

coding, and supporting the reuse of designs and code in the form of libr-ary

routines and registered packages, which served as program parts for semi-

customized systems. Fujitsu called the new set of tools, which it also began

selling to its computer users in 1987, SDAS (Systems Development Architecture

and Support Facilities).

SDAS continued to rely on the SDEM methodology but incorporated all the

tools developed after 1980. In new-program development under SDAS, for

example, system engineers used EPGII and C-NAPII to define the customer

requirements, and then determined where they could reuse applications packages

from the program libraries, either as they were or with changes. Process

planning then centered on how much new code had to be developed, how much

existing software had to be modified, and how much could be reused as is.

SIA (Systems Integration Architecture) created a standard interface for

programming in COBOL, FORTRAN, C, LISP, and PROLOG, and for using the

different SDAS tools on Fujitsu mainframes, office computers, and work stations

(Figure 7.5). The SDAS methodology and tool set, along with the SIA

architecture, also facilitated division of labor by making it easier to break up

large programs into distinct units that could be done on different work stations

and then combined later.

53 Fujitsu

SDAS; Systems Development Architecture and Support Facilities

Systems Planning Techniqua

Corporal* Systems Planning Technique

(EPG II)

Systems Requirement Analysis Technique

(C-NAP II)

OperaUonal
Application Tool

The emphasis on packages reflected Fujitsu's attempt to improve

productivity, quality, and cost control simultaneously by reusing design and

coding know-how incorporated in previously written programs, and thereby

reducing the amount of new designs and code needed to satisfy new customers.

A major issue, however, was how to produce packages that could be easily

tailored to fit individual user needs, and easily modified as user needs changed

over time. Fujitsu s solution was to keep package design, and some coding,

in the specialized system engineering departments, to take advantage of specific

application-related or functional expertise. Engineers in the departments

reviewed systems registered in program libraries and, when it seemed

appropriate, modified some of these for genera! sale as packages or for use in

no
semi-customized systems built by Fujitsu or its subsidiaries. Two package

registration systems helped in this effort. The largest catalogued original

Fujitsu packages, totalling about 1000 in 1986 and increasing 40% to 50% per

year. Another library registered software developed by users or computer

dealers, and in 1986 totalled about 300.^9

Figure 7.6 summarizes Fujitsu data on how well these packages covered

user needs. Manufacturing systems extended over the broadest range, with

larger ones requiring total customization and some systems containing more than

40% existing code from packages. Small systems could often be covered almost

entirely by packages, such as in the case of hospitals and newspaper

companies .

^^^ Fujitsu estimated that SDAS-based applications packages,

covering financial, manufacturing, distribution, government, newspaper, and

medical applications, would account for 40% of applications systems delivered in

1988. Packages could not accommodate all demand, since many users continued

to require unique features, although Fujitsu estimated that the systematic

combination of packages and new code doubled overall productivity.'^ '

55 Fujitsu

FIGURE: PACKAGE COVERAGE RATIO

Coverage
Ratio (%)

100

80

HosaitalS Distributiort-^
r^^~>v. \ Newspaper

Finance \ '1

60-

40 i-

20

Insurance

0,1 l.U 10

System Size (million lines of code)

Automated Customization

Developers of the automated programming tools Fujitsu sold as part of the

SDAS set maintained that they were serving two groups: expert programmers,

and non-experts. On the one hand, the tools were supposed to "free software

engineers from the tedious and cumbersome job of writing run-of-the-mill

computer programs and turn their talent to more creative work. " This would

occur because programmers no longer had to compose in computer languages but

could focus on business problems and write programs "more finely attuned to

the requirements of the end-user." On the other hand, SDAS tools were

designed to "enable computer users to develop their own application software

without the help of expert programmers."'^'^ Hitachi and NEC provided similar

capabilities to their customers with EAGLE and SEA- 1, although Fujitsu offered

an even broader range of tools.

The motivation for selling this technology was simple: the high demand for

customized programs continuing to outstrip the ability of Japanese firms to hire

and train enough programmers. In fact, a Fujitsu survey of its large-systems

customers in 1986 indicated a back-log for systems development of

approximately 2.7 years per company -- which would have been far longer

without reuse of designs and code, and program-automation tools. '^"^

In its internal literature, Fujitsu presented an overview of automatic

programming that placed the company's efforts within a broader spectrum of

research and practice (Figure 7.7). In this interpretation, "classical automatic

programming" consisted of compilers that turned computer code into machine-

readable object languages. The "modern" technology -- represented by YPS in

Fujitsu, according to Murakami, as well as similar systems in Hitachi, NEC,

Toshiba, and NT&T -- focused on automating the transformation step from

program design specification to machine-readable code. These "program design

57 Fujitsu

specification compilers" thus read structured designs or diagrams (PAD at

Hitachi, SPD at NEC, and HCP at NT&T), and generated code more or less

automatically (module interfaces might have to be written manually), usually in

COBOL, FORTRAN, PL/I, or C. Two additional steps were to move autotnation

further back in the development life cycle, to automate part or all of the

system planning and design phases. Tools such as Fujitsu's Software CAD

attempted this through transformation rules defined by the user, and fell into

the category of a "partially automatic transformation tool." At the R&D level

in Fujitsu (and in many other firms) were tools that tried to automate the

transformation process through Al techniques.'^

PARADIGM, issued around 1980 for in-house use and sold since 1981, was

used for business applications software and supported module design, coding, and

testing, as well as software reuse and program maintenance. This relied on

the same concept as NEC's STEPS library routines and Hitachi's EAGLE

patterns. Users created program parts or patterns, consisting either of fully

coded modules or design specifications (program outlines, module functions,

detailed flow charts), in COBOL, using a standardized structured design

methodology, and then registered them in PARADIGM'S library data base, which

grew with each newly designed piece of software. The parts and patterns were

then accessible through a search program that used conversational language. ^

The library also contained utility programs for use on multiple operating

systems, referred to as "black box" components.

58 Fujitsu

Fujitsu claimed that PARADIGM simultaneously imptoved productivity and

quality in several ways. First, it reduced man-hours required in new program

development through reuse of designs and code. It also boosted productivity

due to minimal testing required of the reused components. Furthermore,

PARADIGM and similar tools "enabled even inexperienced programmers to write

high-quality programs," and "eliminated misunderstandings due to individual

differences," by making design documents and code easier to read and maintain

due to high levels of standardization. ^

ACS/APG (Application Control Support System/Application Program

Generator) was a refinement of PARADIGM that allowed users to write new

programs from menus that the tool translated into COBOL. ACS was actually a

package that eliminated the need to rewrite data-base and data-communications

(DB/DC) portions of a software system, although it only handled low to

moderate data-flow traffic. To deal with high-traffic programs, such as on-line

banking software, Fujitsu developed another version of ACS, called AIM

(Advanced Integrated Manager).'^"

Programming sections in the Software Factory used a similar tool, BAGLES

(Banking Application Generator Library for Extensive Support), to produce the

more complex software needed to control automated teller machines or to move

funds among different bank locations through on-line transfers. Fujitsu began

developing this tool in 1980 and introduced it for general use in Fujitsu in

1985, after several years of experimentation. The first version automatically

generated COBOL but the design process was so similar to actual programming

that it had to be done by skilled software personnel. In 1986, however, Fujitsu

simplified the tool and added computer-aided design capabilities.'^ These

allowed even non-software specialists to design new programs through menus

that contained nearly all the operations banks performed. Similar to Hitachi's

60 Fujitsu

EAGLE, NEC's SEA-I, and Toshiba's application generators, BAGLES translated

the menus into machine- readable design documents, and then into COBOL code.

The tool required factory-type hardware support, however, by occupying two

million lines of code and using 10 to 15 giga-bytes of mass storage to generate

software that covered 500 to 1400 terminals and 50,000 to 150,000 transactions

per hour.

Still another related tool, CASET (Computer-Aided Software Engineering

Tool), supported development of relatively simple business applications programs

written in COBOL, consisting largely of relational data-base subsystems and

information lists, such as for inventory or sales control. After the user defined

specifications by menu in Japanese, the tool produced a program design and

automatically coded the designs, while a debugging support subsystem and

document generator facilitated testing and maintenance.

Tools like PARADIGM, ACS/APG, CASET, and BAGLES were useful for

well-defined applications that could be served by menu-driven design sheets and

libraries of patterns or subroutines. To automate development of software for

new applications required tools that were not limited to pre-existing designs,

library routines, menus, or development methods. Software CAD was the most

advanced tool of this type used in Fujitsu's Software Factory.''"^

Fujitsu engineers described Software CAD as "a general tool for the

drawing, verification, and transformation activities of software

development. . .independent of any particular methods or development phases. . .

Software CAD is a general tool that developers can customize to fit particular

methods for their own circumstances." Fujitsu completed development during

1986-1987, and introduced the tool into Kamata in 1987, initially for writing

segments of business applications programs. Fujitsu was gradually extending its

use to other areas, such as development of operating systems, switching

61 Fujitsu

systems, communication software, and "firmware" (micro-code embedded in

semiconductor chips).

The 1987 version of Software CAD used generalize-purpose notations

combining text, tables, and diagrams, as well as an editor and compilers that

transformed standardized notations into modifiable design documents and then

different types of code. The notation system used six types of objects for

describing program structures: forms (graphic models of the program), tables,

nodes (graphic symbols specifying particular attributes of the program), edges

(symbols representing connections between nodes), inclusions (symbols

representing relationships between nodes and edges), and text fields (inputs of

data into any of the objects). The NS (Notation Specification) Compiler took

specifications written by program developers in the specified format, and

produced machine-readable notations. These became inputs to the Software

CAD editor for modification, and finished portions were deposited in the

Software CAD Document Database.

The Software CAD Editor allowed the user to access the Document

Database and modify any of the objects, relying on menus or templates, as well

as a "mouse" interface and a "multi-window environment." The Software CAD

Transformer used transformation rules specified by the tool user to transform

the documents stored in the database into either executable code or textual

documentation (Figure 7.8). The notation system, according to Fujitsu, was

relatively easy to learn, requiring a few hours for an experienced programmer

and a few days for a new employee. Describing the transformation rules was

not simple, although Fujitsu claimed that programs developed with Software

inCAD still came out faster than comparable systems done manually.

62 Fujitsu

FIGURE : OUTLINE OF SOFTWARE CAD

Softuare CAO Editor

Machine
Readab Is

Form

rs

Developer
Text

source codes, etc.

Transformer

Software CAD
Document Database

Notation Specification Transformation Rule

Tool Developer

Ongoing R&D in Fujitsu attempted to integrate artificial intelligence

techniques with Software CAD and apply Al in other support tools. Fujitsu's

approach was to use Al techniques to process design documents using a

"knowledge data base" for specific applications, a model of the desired design,

and a "knowledge transformation" algorithm. For example, based on inferences

made in processing the documentation, a tool would produce documents for a

subsequent phase -- planning inputs would produce a detailed system design,

which would be processed into a program design, which would be transformed

(compiled) into source code. Fujitsu engineers were especially interested in

applications to requirement specification and lexical (design-language) editors,

since Al appeared useful to help designers understand constraints in hardware,

the operating system, the computer language, or specific applications, and to

verify designs. Inference-search methods were being applied to identifying

software components for reuse. Other expected Al applications were in testing

support and maintenance, such as problem diagnosis.

Factory applications of Al consisted mainly of automatic translation

systems. In 1982, both Kamata and Numazu introduced ATLAS to translate

manuals and other technical documents from Japanese to English and vice-versa

(English to Japanese became available in 1986) .

'^ In addition, an experimental

Al system developed in Fujitsu Laboratories supported switching systems

software development. This was a "knowledge-based system" in the sense that

it withdrew information from flow charts and deposited this in a data base, in

the form of general and detailed state-transition diagram elements. The tool

then used inference rules to produce I/O transformations automatically and

generate computer code. Other tools in trial use in Fujitsu included an

1 1 fi
expert system for system-engineering consultation.

64 Fujitsu

Performance Improvement

Although productivity and quality were difficult to measure, Fujitsu data,

and summaries on unpublished in-house studies, indicated that these efforts

resulted in significant improvements. According to a 1981 article, adoption of

the SDEM standards alone brought roughly a 20*?, gain in productivity (lines of

code per month) over projects not using the new methodology. These gains

came mainly from the "absence of rework," achieved through better work

scheduling, early discovery of problems, standardization of work and

documentation, and use of formal planning and reviews to reduce differences

between user requirements and finished programs.'''

With SDEM in place and tool and methodology development continuing,

productivity, according to Murakami, doubled between 1980 and 1984, and after

1984 has continued to rise about ^b'h annually, due to increased use of

automated program generation and design, as well as automated testing tools.

ACS alone doubled productivity, while ACS/APG and PARADIGM doubled

productivity again. Directly connected with nominal measures of productivity

was reusability, which these tools supported. According to Murakami,

programming efforts using PARADIGM and related tools generally achieved a

reuse rate of about 40%, compared to about 10% in projects that did not. °

Specific cases reported in internal Fujitsu literature on ACS/APG cited reuse

rates between 63% and 86% for program parts such as graphics control software

and Japanese language processing access routines.

Productivity
Index

:

Estimated
Reuse%:

Manual ACS ACS-APG/PARADIGM

3-4

10% 40%

65 Fujitsu

On a factory basis, productivity by the mid-1980s was approximately 1500

to 2000 lines of COBOL code per month, including comments (about 10%).

These numbers, however, excluded system engineering, and included extensive

overtime. According to a former programmer, male employees often worked 70

or 80 hours per week, although women worked less because of legal restrictions.

In addition, managers did not emphasize the writing of short, "elegant"

programs, but stressed schedule deadlines and correctness. As a result of these

practices, programs tended to be long and lines-of-code productivity high. On

the other hand, Fujitsu hardware was so powerful that customers rarely noticed

if programs ran somewhat slow. ^^

Fujitsu provided one specific example of the effect SDAS tools and

packages had on productivity. For a particular banking customer, Fujitsu

replaced an old software system that consisted of 3.6 million lines of code.

Existing packages had covered 30% of the old system, and man-months required

for the complete system was 8000. Thus, there was a gross productivity rate of

450 lines of code per man-month, including an aver-age of 315 per month for

new code, including time to integrate the existing programs. The replacement

system was more than twice as large -- 8.3 million lines of code. But Fujitsu

was able to reuse 79% through SDAS packages for securities processing,

customer control, cost accounting, international transactions, foreign exchange

dealings, regional information control, and a general data base, as well as for

the outside network, store operations, accounting, and general operations. For

the other 21% that had to be newly developed, programmers used the YPS and

BAGLES tools, which automatically generated code. The resulting gross

productivity was 902 lines of code per man-month, although only 190 if one

only looks at the amount of new code developed (Table 7.10 and Figure 7.9).

66 Fujitsu

It is possible that reusing so many packages resulted in a total system

longer than would have occurred had the software been written from scratch.

Accordingly, a project with high reuse might produce higher lines-of-code

productivity than a fully customized program. This appeared to account for

some of the high productivity figures reported in Japanese firms, although some

tools appeared to reduce length. Fujitsu claimed, for example, that software

produced through BAGLES was actually much shorter than similar programs

written without the tool -- on average, merely 1/14th the size. This was

because, in developing BAGLES, engineers identified a large number of

repetitious functions that could be handled through subroutines, which could be

cited repeatedly in the program without being rewritten.

Table 7.10: BANKING SYSTEM DEVELOPMENT PRODUCTIVITY122

System Length

Reused Code

New Code

Total Productivity

New-Code Productivity

Old System

3,600,000 LOC

1,080,000 LOC (301,)

2,520,000 LOC

450 LOC/Man-Month

315 LOC/Man-Month

New System

8,300,000 LOC

6,550,000 LOC (79%)

1,750,000 LOC

902 LOC/Man-Month

190 LOC/Man-Month

67 Fujitsu

o
CO
h-

1

a;
<
PL,

ao
o
>-l

H
>M
H

Q
O
di
PM

SW
H
en
>-i

0:1

O
z
h-l

z
<c

w
Pi
1=1

o
I—

I

O
O

M
(U

ooo
oo

-n

Fujitsu also discovered, as did Toshiba and Hitachi, that there were Mmits

to the benefits of reusing designs and code, depending on liow much of the

component or subsystem had to be modified. In systems software, Fujitsu data

indicated there was a clear improvement in productivity as long as 70% to 80%

of a particular module or program part was reused without significant changes.

In a sample of 47 projects, median productivity, including man-power devoted to

maintenance, was approximately 60% higher with 20% new code and an 80%

reuse rate. In projects where there were attempts to reuse code but reuse

without significant changes proved to be less than 70%, the impact on

1 9Tproductivity tended to be negative. Studies in applications system

programming confirmed this tendency, showing a "break-even" point of about

60% for a given piece of software; if more than 60% had to be newly written,

then the impact on overall productivity of attempting to reuse code was slightly

negative. ^^

Software CAD appeared to improve productivity without necessarily

recycling existing code or designs, but through partially automating the

transformation of design specifications into code. The present tool was most

easily used for specific tasks, but results reported by Fujitsu in limited trials

were impressive. For example. Software CAD cut the time needed to convert a

job-control diagram to job-control language from 6 months to 1 month, and

total manpower from 9.3 man-months to 0.5 man-months. Programmers using

the tool also transformed a database logic structure diagram into programming

language (ADD in one-sixth the time (8.4 man-months to 0.5 man-months).

Other efforts showed similar improvements, usually cutting development time

one-fourth or one-third, with even larger gross productivity gains, compared to

conventional design and programming (Table 7.11).^^

69 Fujitsu

Table 7.11: USE OF SOFTWARE CAD FOR TOOL DEVELOPMENT ^ 26

Key: K-LOC = 1000 lines of cod
MM = Man-Months
MH = Man-Hours
mo.= month

Development
Time

Task Conventional Software CAD Improvement

Job-Flow Diagram to 9.3 MM/6 mo. 0.5 MM/1 mo. 6-fold
Job-Control Language
(7.5 K-LOC in C)

Database Structure 8.4 MM/6 mo. 0.5 MM/1 mo. 6-fold

Diagram to ADL
(6.7 K-LOC in C)

Screen Format to 2.3 MM 0.6 MM 4-fold
Definition Language
(100 screens)

Screen Transformation to 8.0 MM 2.0 MM 4-fold
Programming Language
(10/screen)

Database Structure 6.0 MH 2.0 MH 3-fold
Diagram to ADL

SUMMARY

While Fujitsu did not emphasize software process analysis, standardization,

or factory-type organization as early as Hitachi, NEC, or Toshiba, by the early

1980s it had clearly adopted factory-type practices in both systems and

applications software development. Huge demand for customized programs also

led Fujitsu to create Japan's largest network of software subsidiaries, as well as

to develop an impressive collection of reusable code and automated tools that

facilitated customization. Table 7.12 summarizes of Fujitsu's activities in areas

common to other software-factory efforts.

70 Fujitsu

Table 7.12: FUJITSU SUMMARY

FACTORY CONCEPT

Strategic Integration

Product-Process Focus

Scale and Scope

Improvement, Not Innovation

Process Analysis/Control

Quality Analysis/Control

Central Tool Support

Training

Reusability

Automated Customization

IMPLEMENTATION

Direction in systems software from the
inspection department and software
engineering departments, and in applications
software from the Development Planning
Office

Tool and methodology development and
standardization centered on two categories,

systems and applications

Systems software centralized in Numazu
Works, applications software in Kamata
Software Factory and subsidiaries

Focus on producing IBM-type operating
systems efficiently, and simplifying the
development of common applications programs
through tool worker specialization, tool

support, and reuse of packages

Systematic data collection, standardization
efforts, development planning report system,
and BSMS data base from mid-1970s

Systematic data collection from the late

1970s; quality circle activities; Design of

Experiment techniques

System software tool development centered in

Numazu Works and applications tools in

Kamata, with assistance from central labs

Laboratory for training established in 1970;
SDEM training program from 1978

Extensive investment in package libraries and
tools accessing reusable designs and code,
such as PARADIGM, ACS/APG, CASET, and
BAGLES

Reuse-support tools, as well as new systems
such as Software CAD

71 Fujitsu

REFERENCES

1. Fujitsu Limited, Annual Report . March 1987.

2. Nikkei Computer , 13 October 1986, p. 75.

3. Fujitsu, "Numazu kojo" (Numazu Works), undated brochure.

4. Nikkei Computer . 13 October 1986, pp. 70, 79.

5. Shimoda Hirotsugu, Sofutouea kojo (Software factories), Tokyo, Toyo Keizai

Shimposha, 1986, p. 82; interview with Yamaji Katsuro, Deputy General Manager,
Software Division, Fujitsu Ltd., 7/31/86.

6. Shimoda, pp. 81-82.

7. Fujitsu, "Kaihatsu taisei: Densanki Jigyo Honbu, Sofutouea Jigyobu"
(Organizational structure. Computer Group, Software Division), unpublished
company document, 1986.

8. Interviews with Yoshida Tadashi, Deputy General Manager, Quality Assurance
Department, Software Division (Numazu Works), Fujitsu, 7/31/86 and 9/7/87.

9. Interviews with Murakami Noritoshi, Manager, Software Development Planning
Office, Fujitsu Limited, 9/1/87 and 3/22/88.

10. Nikkei Computer , 13 October 1986, pp. 70, 79, and Sliimoda, p. 82.

11. Murakami interviews.

12. Nikkei Computer , 13 October 1986, p. 80.

13. Fujitsu Ltd., Nyusha no shiori (Guidebook for company entrance). Education
and Training Department, February 1986, pp. 30-32; and Kiriu Hiroshi, Sofutouea
sanqyo no jitsuzo (The state of the software industry), Tokyo, Nikkan Shobo,
1986, pp. 78-81.

14. Major sources for the corporate history are Usui Kenji, "FACOM kaihatsu
shi" (History of FACOM development), Computopia , April and May 1975;

Iwabuchi Akio; Fujitsu Kabushiki Kaisha, Fujitsu Kabushiki Kaisha shashi II

(History of Fujitsu, Ltd.), 1976, reprinted in Nihon Shashi Zenshu Kankokai,
Nihon shashi zenshu: Fujitsu shashi, Tokyo, 1977; "FACOM no ayumi" (FACOM
history), FACOM ianaru. Vol. 11, No. 1 (1985), pp. 20-47.

15. Minamisawa Noburo, Nihon konpyuta hattatsu-shi (History of the
development of Japanese computers) ,Tokyo, Nihon Keizai Shimbuns ha, 1978, p. 145.

16. Iwabuchi Akio, Fujitsu no chosen (Fujitsu's challenge), Tokyo, Yamate
Shobo, 1984, pp. 34-42, 128-129, 198-202; Ogino Yuji etal., "Fujitsu-Hitachi no
shin-konpyuta M shirizu' no senryaku o tettei kyumei" (A close look at the
strategy of the new Fujitsu-Hitachi M-series' computers), Computopia, February
1975, p. 17-18.

72 Fujitsu

17. Iwabuchi, p. 93; Nikkei Computer . 13 October 1986, p. 01.

18. Usui, Computopia , May 1975, pp. 17-18; Japan Economic Journal, 29 January
1985, p. 10.

19. "FACOM no ayumi" (FACOM development), FACOM ianaru . Vol. 11, No. 1

(1985), pp. 20-47; and Fujitsu Kabushiki Kaisha, "FACOM seino ichiran"

(Overview of FACOM performance) in Ikeda kinen robun shu (Anthology of

articles in memory of Ikeda), Tokyo, 1978, pp. 254-267.

20. Ogino, pp. 30-31.

21. Datamation , 1 June 1985, p. 60; The Wall Street Journa l, 12 November 1985,

p. 18; Japan Economic Journal , 7 June 1986, p. 15.

22. Interview with Fujitsu Managing Director Miyoshi Mamoru in "Sofutouea
bijinesu no mirai" (The future of the software business) , Computopia , April 1986,

pp. 85-87.

23. Fujitsu Limited, Annual Report 1983 and Annual Report 1984 .

24. Fujitsu, Information Processing Group, No. 1 Software Division, "Sofutouea
kaihatsu: hinshitsu-seisansei kojo ni tsuite" (Software development: quality and
productivity improvement) , unpublished company document, received 9/24/85, p.

3.

25. "Sofutouea kaihatsu," pp. 40-41.

26. Nihon Keizai Shimbun , 5 August 1987, p. 9.

27. David Lammers, "Sigma: Japan's Effort to Close the Software Productivity
Gap," Electronic Engineering Times , 21 July 1986, p. 9.

28. Murakami interviews.

29. Kawaguchi Izawa, "Shoki no shisutemu sofutouea: FONTAC 8040 MONITOR
no kaihatsu made o chushin to shite" (Early systems software: focus on period
through the FONTAC 8040 MONITOR development), Jolio shori . Vol. 24, No. 3,

March 1983, pp. 225-237; Usui (May 1975), pp. 20-21.

30. Okamoto Akira, "MONITOR-V shisutemu no omoide" (Recollections of the
MONITOR-V system), in Kyoto Daigaku Ogata Kensanki Sen ta 10-nen-shi , pp.
224-229; Fujitsu shashi II , p. 104; Usui (May 1975), p. 25.

31. Iwabuchi, pp. 44, 221-222.

32. Okamoto, pp. 224-229.

33. Yamamoto Takuma, "Opereteingu shisutemu kaihatsu no omoide"
(Recollections on operating system development), in Kyoto Daigaku Ogata
Keisanki Senta, ed., Kyoto Da igaku Ogata Kensanki Senta 10-nen-shi (A 10-year
history of the Kyoto University Ogata Computer Center), Kyoto, Kyoto
University, 1980, pp. 217-219.

73 Fujitsu

34. Uemura Mitsuo, "Sofutouea kaihatsu no omoide" (Recollections of software
development), in Kyoto Daiqaku Ogata Kensanki Senta 10-nen-shi , pp. 230-236.

35. Ogino, pp. 30-31.

36. Tabata Akira, "Kihon sofutouea no kaihatsu" (Basic software development),
FACOM ianaru . Vol. 11, No. 1 (1985), p. 54.

37. Shimoda, p. 73.

38. Shimoda, pp. 73-76.

39. This discussion is based on Yoshida interview, 9/24/85, and "Kensa-bu no
rekishi" (History of the inspection department), internal Fujitsu memo, prepared
by Yoshida.

40. Fujitsu Ltd., "Kensa-bu no rekishi" (History of the inspection department),
internal Fujitsu memo.

41. "Sofutouea kaihatsu"; and Yoshida interviews.

42. Yoshida interviews.

43. Morita Shoken and Kanda Shigeru (Fujitsu, Ltd., No. 1 Software Division,

Inspection Department), "Sofutouea hinshitsu no toraekata" (Ways of looking at

software quality), Hinshitsu . Vol. 14, No. 2 (April 1984), p. 91.

44. Tadashi Yoshida, "Attaining Higher Quality in Software Development--
Evaluation in Practice," Fujitsu Scientific and Technical Journal , Vol. 21, No. 3

(July 1985), p. 306.

45. "Sofutouea kaihatsu," especially pp. 7-10.

46. Yoshida interviews.

47. Fujitsu, Computer Group, Software Division, "Sofutouea no hinshitsu kanri"
(Software quality control) , unpublished company document, 11 September 1985, p.

6; and "Sofutouea kaihatsu," p. 6.

48. This discussion is based on Nihon Noritsu Kyokai (Japan Management
Association), Fujitsu no ko-shinraisei undo (Fujitsu's High-Reliability Movement)

,

Tokyo, Nihon Noritsu Kyokai, 1985, especially pp. 144-176.

49. Yoshida, "Attaining Higher Quality in Software Development -- Evaluation in

Practice," p. 305.

50. Yoshida, "Attaining Higher Quality in Software Development -- Evaluation in

Practice," p. 305.

51. Yoshida, "Attaining Higher Quality in Software Development - Evaluation in

Practice," pp. 308-309.

52. "Sofutouea kaihatsu," p. 15.

74 Fujitsu

53. Keizo Tatsumi (Quality Assurance Department, Computer Software
Development Group, Fujitsu Limited), "Test Case Design Support System,"
International Conference on Quality Control, Tokyo, October 1987, pp. 1-2.

54. Also, citing Taguchi's 1976 book in Japanese, is a more detailed article on
these methods used in Fujitsu. See Sato Shinobu and Shimokawa Haruki,
"Jikken keikau-ho o mochiita sofutouea no tesuto komoku settei-ho" (Software
test-case selection method based on experimental design methodology), Sofutouea
Seisan ni okeru Hinshitsu Kanri Shinpojium (Symposium on quality control in

software). No. 4, ca . 1983.

55. Yoshida, "Attaining Higher Quality in Software Development -- Evaluation in

Practice," pp. 314-315.

56. Murakami interviews.

57. "Sofutouea kaihatsu," pp. 37, 44.

58. Yoshida interviews.

59. Fujitsu Kabushiki Kaisha, "FACOM M-shirizu OSIV/X8 FSP," pp. 171-173.

60. "SDAS: Application Software Development Made Easy," Electronics News
from Fujitsu, July 1987, p. 2; Yoshida interviews; and "Sofutouea no hinshitsu

kanri," p. 16; and Yoshida's 2/8/87 written response to 1/20/87 Cusumano
questionnaire on "Large-Scale Systems Software." Yoshida believed that a major
reason U.S. firms have not refined flow chart systems to this extent was
because, for native speakers of English or similar languages, writing in a high-
level computer language is close to their native language. But, for Japanese
this was not the case, and YACII, PAD, or SPD diagrams could be written in

Japanese, making them easier for Japanese programmers to use.

61. Yoshida response to questionnaire.

62. Yoshida Tadashi, "Sofutouea no keiryo-ka" (Software quantification), Joho
shori (Information Processing) , Vol . 26, No. 1 (Januar-y 1985) , p. 49; and Yoshida
interviews.

63. "Sofutouea kaihatsu," p. 29.

64. Yoshida interviews.

65. "Sofutouea kaihatsu," p. 30.

66. Yoshida interviews.

67. "Fujitsu," Computopia , June 1975, p. 92.

68. Usui, Computopia , May 1975, pp. 25-26.

69. Fujitsu Kabushiki Kaisha shashi II . pp. 102-103.

70. Nikkei Computer . 13 October 1986, p. 82.

75 Fujitsu

71. Nikkei Computer , 13 October 1986, pp. 81-82.

72. Sources: for chart, Nikkei Computer , 13 October 1986, p. 79; for 1988

employee totals, author estimates based on 1986 data and 1988 Murakami interview.

73. Murakami interviews.

74. Shimoda, p. 74.

75. Murakami interviews.

76. Murakami interviews.

77. Interview with Sakurai Hiromi, former programmer (1981-1983), Distribution
Systems Group, Software Factory Department, Fujitsu Limited, 5/4/88.

78. Murakami and Sakurai interviews.

79. Murakami and Sakurai interviews.

80. Sakurai interview.

81. Sakurai and Murakami interviews.

82. Noritoshi Murakami, Isao Miyanari, and Kazuo Yabuta, "SDEM and SDSS:
Overall Approach to Improvement of the Software Development Process," in H

.

Hunke, ed.. Software Engineering Environments, Amsterdam, North-Holland,
1981, p. 288.

83. Sakurai interview.

84. Murakami interviews.

85. Murakami and Sakurai interviews.

86. Nikkei Computer . 13 October 1986, pp. 80-81.

87. Yoshiro Nakamura, Ryuzo Miyahara, and Hideshi Takeuchi, "Complementary
Approach to the Effective Software Development," Proceedings of Computer
Software and Applications Conference (COMPSAC78) , New York, Institute of

Electrical and Electronics Engineers (IEEE), November 1978, p. 236.

88. Nakamura et a!., p. 236.

89. Nakamura et al., pp. 235-236.

90. Murakami et al., pp. 284-286.

91. Murakami interviews.

92. Nagata Yuzuru, Mori Kuniaki, and Takahashi Tomio, "Shisutemu keikaku giho
EPGII to C-NAPII" (System Planning Methodologies EPGII and NAPII), Fujitsu.

Vol. 39, No. 1 (January 1988), pp. 13-20.

76 Fujitsu

93. Murakami etal., pp. 286-287; Watanuki Hisaslii, Hatta Makoto, andOkudaira
Hajime, "Apurikeshon puroguramu kaihatsu toki no hinshitsu kanri" (Quality
Control for Application Program Development, Fujitsu, Vol. 34, No. 6 (1983),

pp. 857-865.

94. Murakami et al., pp. 289-293.

95. Noritoshi Murakami and Tomio Takahashi, responses to Cusumano surveys on
"Large-Scale Applications Software" (1/19/87) and "Software Facilities" (9/87).

96. Akiyama Masayuki and Nishimura Shuji, "SDAS ni okeru pakkeji kaihatsu to

sono tekiyo gijutsu" (SDAS Improving Package Development and Its Application
Methods), Fujitsu, Vol. 39, No. 1 (January 1988), pp. 36-41.

97. Akiyama and Nishimura.

98. Murakami interviews.

99. Nikkei Computer , 13 October 1986, pp. 81-82.

100. Akiyama and Nishimura.

101. "SDAS; Application Software Development Made Easy," Electronics News
from Fujitsu , July 1987, p. 3.

102. "SDAS: Application Software Development Made Easy," pp. 1-2.

103. Fukuta Zenichi, Yoshihara Tadao, and Maruyama Takeshi, "SDAS sogo
kaihatsu shisutemu no teisho" (SDAS Systems Development Architecture and
Support Facilities), Fujitsu, Vol. 39, No. 1 (January 1988), p. 3.

104. Murakami and Takahashi survey responses; "SDAS: Application Software
Development Made Easy," p. 2; Murakami interviews.

105. Murakami interviews.

106. Fujitsu Kabushiki Kaisha, "FACOM M-shirizu 0SIV/X8 FSP," pp. 193-194.

107. "Sofutouea kaihatsu," p. 42.

108. "FACOM M-shirizu 0SIV/X8 FSP," pp. 193-194.

109. Murakami interviews.

110. Fujitsu Limited, "BAGLES kaihatsu no keiro" (The process of BAGLES
development), unpublished Fujitsu document, 20 March 1986.

111. Ueki Sadahiro, Miyauchi Kazuto, and Nakada Haruyoshi, "Koseisansei tsuru
CASET" (High-productivity tool CASET), Fujitsu, Vol. 39, No. 1 (January 1988),
pp. 21-28.

112. "Fujitsu Software: Banking to Realtime," Electronic Engineering Times, 11

February 1985, pp. 63-64.

77 Fujitsu

113. Kazuo Yabuta, Akihiro Yoshioka, and Noritoshi Murakami , "Software CAD'

:

A Generalized Environment for Graphical Software Development Techniques,"
COMPSAC87 . pp. 1-8.

114. Murakami interviews.

115. Fujitsu, "System for Supporting Software Development (for Switching
Systems Software)," internal document, 1977; Murakami interviews.

116. Murakami interviews.

117. Murakami et al., pp. 287-288.

118. Murakami interviews.

119. "Sofutouea kaihatsu," p. 43.

120. Sakurai interview.

121. "Fujitsu Software: Banking to Realtime," pp. G3-64.

122. Fukuta Zenichi, Yoshihara Tadao, and Maruyama Takeshi, "SDAS sogo
kaihatsu shisutemu no teisho" (SDAS Systems Development Architecture and
Support Facilities), Fujitsu, Vol. 39, No. 1 (January 1988), p. 11.

123. Yoshida, "Sofutouea no keiryo-ka," pp. 48-51.

124. Akiyama and Nishimura, p. 38.

125. Yabuta, Yoshioka, and Murakami, pp. 1-7.

126. Yabuta, Yoshioka, and Murakami, p. 7.

C I I 7 U 7 8
^s ''"''*^"

Date Due

f£B2o m]

Lib-26-67

Wn LIBHAHIt

3 ^DflQ DDS 351 D33

