

HD28
. M4 1

4

no.2.o>4f-

*^^

WORKING PAPER

ALFRED P. SLOAN SCHOOL OF MANAGEMENT

FINDING MINIMUM-COST FLOWS
HY DOUBLE SCALING

Ravindra K. Ahuja
Andrew V. Goldberg
James B. Orlin

Robert E. Tarjan

Sloan W.P. No. 2047-88 August, 1988

MASSACHUSETTS

INSTITUTE OF TECHNOLOGY
50 MEMORIAL DRIVE

CAMBRIDGE, MASSACHUSETTS 02139

FINDING MINIMUM-COST FLOWS
I$Y DOUBLE SCALING

Ravindra K. Ahuja
Andrew V. Goldberg
James B. Orlin

Robert E. Tarjan

Sloan W.P. No. 2047-88 August, 1988

Finding Minimum-Cost Flows by Double Scaling

Ravindra K. Ahuja '"^

Andrciv V. Goldberg
'

James B. Orlin
'

Robert E. Tarjan

June. 1988

ABSTRACT

Several researchers have recendy develof)ed new techniques that give fast

aJgorithms for the minimuin-cost flow problem. In this paper we combine

several of these techniques to yield an algorithm running in

0{nm log log U log(nC)) time on networks with n vertices, m arcs, ma.ximum

arc capacity U, and maximum arc cost magnitude C. TTie major techniques used

are the capacity-scaling approach of Edmonds and Karp, the excess-scaling

approach of Ahuja and Orlin, the cost-scaling approach of Goldberg and Tarjan,

and the dynamic tree data structure of Sleator and Tarjan. For nonsparse graphs

with large maximum arc capacity, we obtain a similar but slightly better bound.

We also obtain a slightly better bound for the (uncapaciiated) transportation

problem. In addition, we discuss a capacity-bounding approach to the

minimum-cost flow problem.

Son Scbool of Managemem, MJ.T., Cambridge, MA 02139. Reward) p»iti»Uy fupported by an NSF Presidcntia]

Yjxmg Irrvesiigaior FeUowihip. Cooiraa M51517ECS, gram AFORS-88-0088 from the Aii Force Office of Scientific

ReseanA, aixJ granu from Analog Devices, Apple Computer IiK, and Prirae Computer.

On leave from Ijylian Institute of Technology, Kanpur, India.

Department of Computer Science, Stanford University, Stanford, CA 94305 Research partially lupporled by NSF
Presidential Young Investigator Grant CCR-8g58097 and an IBM Faculty Development Award.

Department of Computer Science, Princeton University, Princeton, NJ 08544 and ATAT Bell Laboratories, Murray Hill,

NJ 07974. Research partially fupponed by National Science Foundabon Grant DCR-8605962 and Office of Naval

Research Coniraci N00014-87-K-0467.

Finding Minimum-Cost Flows by Double Scaling

1 2
Ravindra K. Ahuja '

Andrew V. Goldberg

James B. Orlin
'

Robert E. Tarjan

June. 1988

1. Introduction

The minimum-cost circulation problem calls for finding a circulation of minimum cost in a

network whose arcs have flow capacities and costs p)er unit of flow. Our framework for studying

this problem is as follows. See e.g. [9,1 1,13.18,22]. Let G = (V,£) be a directed graph with ver-

tex set V and arc set E. We require G to be symmetric, i.e. (v,>v) € E if and only if (w, v) € E. We

assume that G contains no multiple arcs; our algorithms easily extend to allow multiple arcs.

Graph G is a network if each arc (v.w) has a rwnnegative real-valued capacity u(v,w) and a real-

valued cost c(v,H'). We require that the cost function be antisymmetric, i.e. c(v,w) = —c(w,v) for

all arcs (v.w) e E. We denote by n, m, U, and C the number of vertices, number of arcs, max-

imum arc capacity, and maximum absolute value of an arc cost, respectively. Time bounds con-

taining t/ or C are subject to the assumption that all arc capacities, or all arc costs, respectively,

are integral. For ease in stating time bounds, we assume (without loss of generality) that C ^ 2

and f/ ^ 4. All logarithms in this paper are base two unless an explicit base is given.

A pseudoflowfon a network G is a real-valued function on the arcs satisfying the following

two constraints:

f(v,w) ^ u (v,w) for all (v.w) e E (capacity constiainl) (1)

Sloui School (rf MiiMjeraent, M.I.T., Cambridge, MA 02139. Rete*rcl) p»rti*lly fupported b)' ui NSF Pretidentiil

Young Invertig«x» FdJowihip, Contna 8451517ECS. grant AFCMiS 88-008S from the Air Force Of6oe of Scientific

Re»carcfi, and gTxnU from AnaJog Devica, Apple Computer Inc., aod Prime Compoier.

On lave from Indiui Institute of Technology, Kjuipur. India.

Department of Computer Science, Stanford University, Stanford, CA 94305. Research partially nipported by NSF
Presidential Young Investigator Grant CCR-8858097 and an IBM Faculty Development Award

Department of Computer Science, Princeton University, PriiKCtoo, NJ 08544 and AT4T BeU Laboratoiies. Murray Hill,

N3 07974. Research pairiaDy supported by National Science Foundation Grant DCR-8605962 and Office of Naval

Research Contract N00014-87-K-O467.

-2-

f(y,w) = -f(w,v) for all (v.h-) € £ (antisymmetry constraint). (2)

For a pseudoflow /and a vertex v, the balance bjiv) at v. is the net flow into v:

¥v)= I /(u.v). (3)

ii:(u,v)€ £

The cost of a pseudoflow /is defined as follows;

cost if) = £ C(V.H')/(V,H') (4)

/(v,»')>0

A pseudoflow /is a circulation if the foIJowing constraint is satisfied:

bf{\) = for every vertex v. (5)

The minimum-cost circulation problem is that of finding a circulation of minimum cost in a

given network..

The minimum-cost circulation problem has been intensively studied for over thirty years.

See e.g [9,11,13,18^2]. Among the known algorithms for this problem, there are three that have

the best worst-case time bounds. Each of these algorithms is best for a different range of the

parameters n. m, U, and C. The algorithms are the 0((,m log (/)(m +n logn))-time method of

Edmonds and Karp [6], the 0(,nm log(n^/m) log (nC))-time method of Goldberg and Tarjan [11],

and the (9((m log/i) (m -t-n logn))-time method of Oiiin [16]. The last of these methods is

strongly polynomial *.

One important idea is common to all three of these algorithms, that of scaling or successive

approximation. Scaling methods work by solving a sequence of more-and-more accurate approx-

imations to the original problem. The approximations are obtained either by relaxing some of the

numerical constraints or by igrxjring some of the precision of the numeric parameters. Scaling

was introduced by Edmonds and Karp, whose algorithm scales capacities. Oriin's algorithm is a

refinement of that of Edmonds and Karp that combines capacity scaling with repeated arc-

A network aJgorilhm is strongly polynomial if its running time is polynomia] in n and m, assuming arith-

metic oj>erations take unit lime, and also polynomial in /» , m, logt/, aixJ logC, assuming arithmetic operations

lake time polyiwmial in the number of bits of the operands. See [21).

shrinking. The algorithm of Goldberg and Tarjan scales costs. It relies cojcially on the notion of

e-optiraality, intnxluced by Tardos (21] and independently by Bertsekas [3,4].

Consideration of these algorithms suggests the question of whether capacity scaling and

cost scaling can be combined to yield an algorithm faster than any algorithm obtainable using

cither technique alone, at least for a suitable range of n, m, U, and C. A first result along these

lines was obtained by Gabow and Tarjan [8], who developed an 0(nm logn logt/ log(nC))-time

algorithm. Although this time bound is never less than that of Goldberg and Tarjan [11], the

algorithm does not require sophisticated data structures, whereas the Goldberg-Tarjan algorithm

uses both dynamic trees [19,20.22] and finger trees [14,23].

Our work is a continuation of efforts in this direction. We obtain an

0(nm log logt/ log (nC))-time algorithm for the minimum-cost circulation problem. Our result

combines four known ideas:

(1) Himinalion of arc capacities by transforming the minimum-cost ciroilation problem into a

transportation problem.

(2) Cost scaling within the e-optimality framework as proposed by Goldberg and Tarjaa

(3) A variant of the Edmonds-Kaip approach rel>'ing on excess scaling, as developed by Oriin.

(4) The dynamic tree data structure of Sleator and Tarjan.

A simpler version of our algorithm that does not use the dynamic tree data structure runs in

Oinm logt/ (1 + log(nC)/log logt/)) time. We obtain slightly better bounds for nonsparse graphs

with very large arc capacities. We also obtain improved bounds for the (uncapacitated) transpor-

tation problem.

The eliminauon of arc capacities is crucial to the efficiency of our algorithms. An alterna-

tive approach is to bound the arc capacities by adding an extra outer capadty-scaling loop, as

suggested by Gabow and Tarjan [8]. Our explorations of this approach lead to algorithms with

time bounds worse than those mentioned above, but the analytical methods we develop are of

independent interest. Our results using this approach are described toward the end of the paper.

For example, we obtain a polynomial-time algorithm for the problem that uses a classical net-

work simplex algorithm inside a scaling loc^.

This paper consists of six sections in addition to the introduction. In Section 2 we define

the transportation problem and discuss its relationship with the minimum-cost circulation prob-

lem. In Section 3 we develop a generic algorithm for the transportation problem based on cost

scaling and e-opUmality. In Section 4 we refine the generic algorithm to use excess scaling, and

we analyze the resulting method. In Section 5 we add the use of dynamic trees. In Section 6 we

4-

c»nsider the use of capacity bounding as an alternative way of dealing with arc capacities. In

Section 7 we summarize our results, comment on the possible practicality of our algorithms, and

mention some open problems.

2. The Transportation Problem

The minimum-cost circulation algorithms we develop in Sections 3-5 will be stated in terms

of a related problem, the transportation problem. In order to discuss this problem, we need some

terminology. We call G bipartite if V can be partitioned into two sets S and T

(5 u r = V, 5 n r = 4») such that every arc has exactly one vertex in 5 and one in T. We call ver-

tices in S sources and those in T sinix, we denote by n
i
and «2 ^^ sizes of S and T, respectively.

We call a bipartite network uncapacitated if «(v.h') = oo for each arc (y,w) with v e S and

u(v,w) = for each arc (v,w) with v € 7. A supply-demand vector d on a bipartite network is a

mapping from V to the real numbers such that div) < if v e 5 (-d(,v) is the supply at vertex v),

d(v) ^ if V € T (d(v) is the demand at vertex v), and J^ d(v) = (total supply equals total

V6 V

demand). Given an uncapacitated bipartite network G and a supply-demand vector d, the tran-

sportation problem is that of finding a minimum-cost pseudoflow /satisfying the following con-

straint:

bj (v) = d(y) for all V e V (supply-demand constraint) (6)

We call a pseudoflow /<?aj»fe/e if it satisfies (6). We call a transportation ptxMtm feasible if

it has some feasible pseudoflow. Checking the feasibility of a trarisportation problem can be done

using any maximum flow algorithm, e.g. [1,2,9,10].

There is a well-known, simple transformation that will convert any minimum-cost circula-

tion problem into an equivalent transportation problem [18^4]. Given a network G ={V,E) we

construct another network G' = (V u£,i4), where A contains arcs ((v,h'),v), ((v,h'),h') and their

reversals for every arc (v.w) e E. The arcs ((v,h'),v) and ((v,h'),h') have infinite capacity; their

reversals have zero capacity. Arc ((v,m'),v) has cost zerc> aiMl arc {(y,w),yv) has cost c(v,h'). We

define a supply-demand vector rf on G' by

<'((v,h')) = -u(v,h') for all (v.w) e E, (7)

diy) = 5^ u{v,w) for all V G V.

u:(v,w)i E

-5-

Any circulation /on G corresponds to a feasible pseudoflow f onG' such that cost{f) =

cost(f), given by f((.v,w),w) = f(v,w), f(iv,w),v) = u(y,w)-fiv,w) for each arc (v.w) g E.

This correspondence is invertible. TTius a solution to the transportation problem on G' gives a

solution to the minimum-cost circulation problem on G. Observe that if we regard E as being the

set of sources of G' and Vas being the set of sinks, G' has n\ = m, and 02 =n; arc set i4 has size

4m. (Each source has two incoming and two outgoing arcs.)

We shall derive time bounds for the transportation problem and translate them into time

bounds for the minimum-cost circulation problem based on the above transformation.

3. A Generic Algorithm for the Transportation Problem

We obtain a generic algorithm for the transportation problem by translating the minimum-

cost circulation algorithm of Goldberg and Tarjan [9.11] into the setting of the transportation

problem. We modify the algorithm to be an augmenting path method; the time bounds we derive

depend on this modification. We omit proofs of many of the basic results, since they are direct

translations of the proofs of Goldberg and Tarjan.

Let G=(V = 5ur, i4)bean uncapacitated bipartite network with source set S of size n 1

,

sink set 7" of size n2, arc set A of size m, and supply-demand \tciOT d. We denote the total size of

V, i.e., nj + «2. by n, and rain [rtx.ni) by riQ. We denote by U the maximum supply, i.e., U =

max [-d(.v) I V e 5), and by C the maximum absolute value of an arc cost Note that U and C are

defined so that the transformation of Section 2 from a minimum-cost circulation problem to a

transportation problem preserves the values of U and C.

For a pseudoflow /on G, we define the excess ey(y) of a vertex v by

e/(v) = fr/v)^(v). (8)

Thus a pseudoflow is feasible if every vertex has zero excess. We shall assume that the transpor-

tation problem to be solved is feasible, i.e., there is some feasible pseudoflow.

Given a pseudoflow /. the residual capacity of an arc (v.h') with respect to /is

«/(v,w) = u(v,w) -f(y,w). (9)

Arc (y,w) is unsaturated if Uf(v,w) > and jafura/erf otherwise.

A price function /? on G is a real-valued function on the vertices. Given a price function p,

the reduced cost of an arc (v,^) is

-6

Cp(v,w) = c(v,w)+p(,v)-p(w). (10)

Let e > 0, let /be a pseudoflow, and let p be a price function. Pseudoflow /is e-optimal

with respect to price function p if

Cp (v,w) ^ -e for every unsaturated arc (v,w) (e-oplimality constraint). (1 1)

Pseudoflow fis cptimal with re^ct to p if it is e-optimal for e = 0. The following theorem is a

classical result of iietwork flow theory and follows from flie duality theorem of linear program-

ming.

Theorem 3.1 [11]. A feasible pseudoflow is of minimum cost if and only if it is optimal with

respect to some price function p.

As Bertsekas [4] discovered, a weaker condition suffices if all arc costs are integers:

Theorem 32. If all arc costs are integers and e < -— , then a feasible flow is of minimum cost if
IriQ

and only if it is e-optimal with respea to some price furKtionp.

Proof. Analogous to the proof of Theorem 2.3 of [1 1], using the faa that G is bipartite and hence

any simple cycle contains at most 2«o vertices. D

In the remainder of this paper (except in some of the concluding remarks of Section 7), we

shall assume that all arc costs are integers; thus TTieorem 3.2 applies.

Our algorithm applies cost scaling based on Theorem 3.2. It uses a cost-scaling factor

k'Z.l. It maintains a price function p and an error parameter e. Irutially t-C and p is identi-

cally zero. The algorithm consists of repeating the following step until the termination condition

is satisfied.

Cost-Scaling Step. Let /be the identically zero pseudoflow. By modifying /and p, find a feasi-

ble pseudoflow f and a price function p' such that f is e-optimal with respect to p'. If

e<-— .stop. Otherwise, let p be defined by p(v)=p'(v) + e if V G 5, p(v) = p'(v) if v e 7";

2/1

replace e by tik.

-7

Note that only the price function p is carried over from iteration to iteration; the j)seudoflow

is reset to zero after each iteration.

Lemma 33. At the beginning of a cost-scaling step, /(the zero pseudoflow) is e-oplimum with

respect to p.

Proof. Any arc (v.h-) that is unsaturated with respect to /has v e S and w e T. Suppose thai the

cunent cost-scaling step is the first. Then Cp(y,w) = c(y,w)'^-C = -t. SuRX)se on the other

hand that the cost scaling step is not the first Ixif be the pseudoflow and p' the price function

computed in the previous step. Then (v.w) is unsaturated with respect lo f , since u(y,M') = <=°,

but any pseudoflow has all arc flows finite. Thus CpCv.w) = Cp-{v,M>) + jte ^ -kt ^-kttO, since /
is /te optimal with resf)ecttop',andp(v)=p'(v) + /te,p(>v)=p'(H'). D

Theorem 3.4. TTie transportation algorithm is correct and terminates after O (1 + logi(no C))

iterations.

Proof. Correctness follows from TTieorem 3.2. The bound on the number of iterations is obvi-

ous. D

The heart of the algorithm is the conversion of an e-optimal pseudoflow into an e-opiimal

feasible p)seudoflow and the corresponding modification of the price function. We call this the

refinement computation. Our generic refinement algorithm consists of a sequence of two kinds of

local transformations, one of which modifies the pseudoflow and the other of which modifies the

price function. To define the transformations, we use the following terminology. A vertex v is

active if cj (v) > 0. An unsaturated arc (v.h-) is eligible if Cp (v.w) < 0. The refinement algorithm

consists of repjeating the following steps, in any order, until no vertex is active, and then defining

push (y,w):

Applicability: Vertex v is active, u/ (v.w) > 0, and Cp (v,^) £ e.

Action: Push up lo 5 = min { e/ (v), m^ (v.w) } units of flow fiom v to w by increasing / (v.w)

by an amount up to 6.

relabel (v).

Applicability: Vertex v is reachable from some active vertex by a path of eligible arcs, and

there is no eligible arc (v.w).

Action: Replace p(v) by max {
p(w) -c(v,w) -e).

Lemma 3.5. Any pushing or relabeling step preserves e-optimality. A relabeling of a vertex v

decreasesp(v) by at least e.

Proof. Analogous to the pnx)fs of Lemmas 5.2 and 5.3 of [11]. D

Lemma 3.6. The price of a vertex v decreases by O {biQC) during refinement. Hence v is rela-

beled Oikno) times.

Proof. Analogous to the proof of Lemmas 5.7, 5.8, and 5.9 of [11). The bound on price changes

in Lemma 5.7 of [11] is O (ne), where the cost scaling is by a factor of two. Revising the argu-

ment to include a cost scaling factor of k yields an O {knt) bound. Observing that G is bipartite,

and hence that any simple path in G contains at most 2«o ^cs, reduces the bound to O (hjoz). D

Now we describe a version of the refinement algorithm that is based on the idea of finding

augmenting paths. The algorithm uses a fixed incidence list /(v) for each vertex v. This list con-

tains each arc (v.h-). One such are is designated the current arc out of v. Initially the current arc

out of V is the first arc on /(v). The algorithm repeatedly attempts to find a path of eligible arcs

from an active vertex to a vertex of negative excess. When such a path is found, flow is pushed

along it. To find such paths, the algorithm uses depth-first search, implemented using a stack S.

During a search, vertices are relabeled as necessary to extend the path. The algorithm consists of

initializing 5 to be empty and repeating the following steps until termination occurs in Step 1.

Step } (start new path). If there are tk) active vertices, stop. Otherwise, select some active vertex

V and push it onto 5. Go to Step 2.

Step 2 (extend path). Let v be the top vertex on S. While the current arc of v is not eligible,

replace the current arc by the next arc on /(v). If the end of /(v) is reached without finding an eli-

gible arc, go to Step 3. If an eligible arc (v,w) is found, test whether e/yv) 1 0. If so, push w

onto S and repeat Step 2; if not, go to Step 4.

Step 3 (relabel). Relabel v, the top vertex on 5. Reset the current arc of v to be the first arc on

/(v). If V is not the only vertex on 5, pop it from S. Go to Step 2.

Step 4 (augment). Let 6 be any positive quantity not more than the minimum of ej (v)

and min [uj{x,y) I at is on S, and {x,y) is the current arc out of x). For each current arc {x,y) such

that X is on 5, increase /(j.y) by 5. Empty 5 and go to Step 1.

We cal] this method the augmenting path version of the refinement algorithm, or the aug-

menting path algorithm for short. We caU an execution of Step 4 an augmentation.

Lemma 3.7. The augmenting path algorithm maintains the invariant that there is no cycle of eli-

gible arcs.

Proof. Analogous to the proof of Corollary 5.6 of [11]. D

Remark. The proof ofLemma 3.7 uses the fact that pushes take place only along eligible arcs. D

Lemma 3.8. The maximum size of S is at most 2no.

Proof. The vertices on S always define a path of eligible arcs. By Lemma 3.7 such a path is sim-

ple. The fact that G is bipartite gives the claimed bound on the size of 5. D

Theorem 3.9. The augmenting path algorithm is correct and runs in O(knom) time plus 0(«o)

time per augmentation.

Proof. Correctness follows from Lemma 3.5. We bound the running time as follows. The

number of additions to S equals the number of pops from 5. The number of pops from S is O(nQ)

pcT augmentation by Lemma 3.8 plus at most one per relabeling. The time to relabel a vertex v is

0(I /(v) I), which is also the time spent in Step 2 changing current arcs of v between relabelings.

By Lemma 3.6, the relabeling time and time spent changing current arcs, summed over all ver-

tices, is Oiknom). An execution of Step 2 that does not change the current arc of v causes an

addition to S. The time to do an augmentation is 0(no). The claimed time bound follows. D

4. Bounds for (he Augmenting Path Algorithm

In this secti'on we derive time bounds for various versions of the augmenting path algo-

rithm. Observe that there are two kinds of freedom in this algorithm, in ihe choice of starting ver-

tices for augmenting paths in Step 1, and in the amount by which the flow is augmented in Step 4.

Let us first analyze the simple method in which each augmentation is by an amount that is

as large as possible; that is, in Step 4, S is selected as follows: 5 = min { ej(,v), min {uj{x,y) I x is

-\0-

onS,x * w, and (x,y) is a current arc)). With this method, each augmentation either reduces the

number of active vertices by one, reduces the number of vertices of negative excess by one, or

saturates an arc. Lemma 3.6 implies that the total number of arc saturations is O(knQm) (see

Lemma 5.10 of [1 1]); hence the total running time of the augmenting path algorithm is O(knlm),

or 0{nlm) if k is chosen equal to two. TTiis bound is analogous to Dinic's bound of O (n^m) for

the maximum flovt' problem [5]; indeed, the augmenting path algorithm itself can be viewed as an

analogue of Ahuja and Orlin's variant [17] of Dinic's algorithm.

We obtain a better bound (if all arc capacities are integral and not loo large) by using excess

scaling. This method is based on Orlin's variant [16] of the capacity-scaling algorithm of

Edmonds and Karp [6] for the minimum-cost circulation problem and is also analogous to the

maximum flow algorithm of Gabow [7]. Henceforth (except in Section 7) we shall assume that

all arc capacities are integral.

The excess-scaling algorithm maintains an estimate A of the maximum excess. Initially A

is the largest power of two not exceeding U. The algorithm maintains two invariants:

0) The sum of all positive excesses is at most 2nA;

(ii) The residual capacity of any arc is either infinity or an integer (possibly zero) multiple of

A.

In Step 1 , the algorithm always chooses a starting vertex v with ej (v) ^ A; if no such vertex

exists, the algorithm replaces A by A/2 and tries again. In Step 4, the algorithm always pushes A

units of flow along the augmenting path. The choice of starling vertices guarantees that invariant

(i) is maintained; immediately after A changes, the sum of all positive excesses is at most 2nA.

Augmenting by A preserves invariant (ii), which in turn guarantees that A units of flow can actu-

ally be puslied each time an augmentation occurs. When A = 1 /2, all excesses are zero, and the

algorithm terminates. We call a maximal period of time during which A slays constant i phase of

the algorithm.

Lemma 4.1. The total number of augmentations done by the excess-scaling algorithm is

0{n log U).

Proof. Each augmentation either reduces the number of vertices with negative excess by one or

reduces the sum of positive excesses by A. By (i), the latter case can occur only 0(n) limes dur-

ing a phase. The number of phases is 0(log U). The bound follows. D

-11-

Theorem 42. The excess-scaling version of the augmenting path algorithm runs in

0{nQ{hn + nlog IJ)) time. Using this method in the transportation algorithm gives a bound for

the transportation problem of O(no(hn + n log U) logi (nC)) time for any k such that l^k^nC.

Choosing k = min {2+ — log U, nC)
yields the following time bounds for the transportationm

problem:

O(nom log (nC)) if log U <2mln\

O(non]ogU (1 + log (/jC)/log (— log U))) if log Vtlmln.
m

Proof. Immediate from Lemma 4.1 and Theorem 3.4. D

Corollary 43. The excess-scaling version of the transportation algorithm combined with the

transformation of Section 2 will solve a minimum-cost circtilation problem in

0(wj log t/ (l-H log (nC)/log log U)) time.

By changing the excess-scaling algorithm slightly, we can obtain a bound of

0{nQ \ogU ¥ n log min{ n,t/)) on the number of augmentations. This is an improvement on the

bound of Lemma 4.1 only if log (/= (o((/j/«o)'og/i), which only holds if {/grows nonpolynomi-

ally with n. Nevertheless, we shall present the result, since it suggests the possibility of obtaining

an O (n logn) bound on the number of augmentations for some suitable modification of the algo-

rithm. We shall assume that /ij tni, i.e. «o = "2. which is without loss of generality: ifn\ < ni,

exchange the source set and the sink set and negate the supply-demand vector.

We modify the excess-scaling algorithm by changing Step 1 to the following:

Step 1 '. If there are no active vertices, stop. Otherwise, if some active vertex v e 5 has an outgo-

ing arc (v.H-) such thai f(y,w) > 7nA, increase the flow on (v.w) by ey (v) and repeat Step 1
'.

(We call this a special push.) Otherwise, if some active vertex v has ey (v) k A, push vertex v

onto S and go to Step 2. Otherwise, replace A by A/2 and repeat Step 1
'.

Before analyzing the modified algorithm in detail, we make several observations. A special

push is actually a push, since ilf(v,w) > then Uf(w,v) > 0, which implies by e-optimality that

Cp (h'.v) S -£ and by cost antisymmetry that Cp (v,^) <e. A special push maintains the invariant

12

that there is no cycle of eligible arcs. Once a vertex v € 5 has zero excess, ils excess remains

zero until the end of the algorithm. The excess on any vertex v e 5 is strictly less than 2A. The

total flow moved by special pushes is thus less than 2nA. The total flow moved during augmen-

tations that decrease the number of vertices with negative excess is at most nA. The total flow

moved by other augmentations during a single phase is at most the sum of the positive excesses,

which is at most 2nA. Thus the total flow moved from a given time until the end of the algorithm

is at most 3nA + J^ 2nA/2' = InA. It follows that once an arc (y,w) has flow exceeding In A, its

1-0

flow remains positive until the end of the algorithm, and (w.v) can never be saturated. We call an

arc (v.w) that can never be saturated open. The modified algorithm maintains invariant (i) (the

sum of all positive excesses is at most 2nA) and, in place of invariant (ii), the following:

(ii) ' Every arc (v,h') is either open or has a residual capacity that is an integer (possibly zero)

multiple of A.

We can verify invariant (ii) ' by induction on the number of steps taken by the algorithm,

simultaneously showing that every augmentation in Step 4 can actually move A units of flow.

Lemma 4.4. The total number of augmentations made by the modified excess-scaling algorithm

i&O (/Jo log f/ + n logmin{ n,U]).

Proof. Corisider a vertex v e S. TTiere is at most one augmentation starting from v per phase.

Suppose that the first augmentation from v is during phase /. This augmentation moves A units of

flow. Henceforth until the end of the algorithm there is always an arc (v.w) with /(v,w) ^ AIn.

After 2 log « + 3 more phases, the current value of the excess estimate is A' = A/8«^, and there is

some arc (v.w) with fiv,w) t%n A' . When such an arc exists, if not before, the excess at v is

reduced to zero by a special push. Hence v can have positive excess only during

O Oogmin{ n,U]) phases, and there are 0(n log min{ n,U]) augmentations starting from ver-

tices in 5.

Now consider a vertex v e 7. If v does not receive additional flow from special pushes dur-

ing a phase, there can be at most one augmentation starting from v during the phase. A special

push to v moves less than 2A units of flow to v, which can account for at most two augmentations

starting from v during the phase. We charge such augmentations to the corresponding special

push. Since there are only n special pushes, the number of augmentations starting from vertices

in r, summed over all phases, is O (n + no log U). This gives the desired bound. D

13

In presenting time bounds for the modified method, we assume that

log U = n((n/no) log /i), since otherwise the bounds are the same as those in Theorem 4.2 and

CoroUary 4.3.

Theorem 4.5. Assume that log U = n((n/«o) 'og^). Then the modified excess-scaling version

of the augmenting path algorithm runs in 0(nQ (km + /Iq 'og U)) time. Using this method in

the transportation algorithm gives a time bound for the transportation problem of

0(nQ(km + no]ogU)logt(noC)) for any * such that l^k^rtoC. The choice of

"0
k = min { 2 +— log U, noC] yields the following time bounds for the transportation problem:

m

Oinom log (noC)) if log U < 2m/no\

Oinl log 1/ (1 + log (noC)/ log (— log U))) if log U ^ 2m/ no.m

Corollary' 4.6. U log U = CI (— logn), the modified excess-scaling version of the transportation
n

algorithm combined with the transfonmation of Section 2 will solve a minimum-cost circulation

problem in O (n^ log U{\ -^ log (nC)/ log logt/)) time.

Remark. Every bound derived in this Section remains valid if each occurrence of the parameter U

is replaced by aixjther smaller parameter U' . For the transportation problem,

U* =4+ Y, (-^(v))/n. For the minimum-cost circulation problem, U* =4+ ^ u(v,w)/m.
V € S (v,»')« £

The bound on the number of augmentations in Lemma 4.1 can be reduced to O (n \ogU') by

observing that the sum of positive excesses is initially at most nU', which implies that the

number of augmentations during phases in which A> U* is O (n). Similarly, the bound in

Lemma 4.4 can be reduced to O («o logl7* + n log min [n.U*)). Corresponding improvements

in the bounds of Theorem 4.2, Corollary 4.3, Theorem 4.5, and Corollary 4.6 follow. These

improved bounds are analogous to the bound EdmcHids and Karp obtained for their transportation

algorithm [6].

-14-

5. Use of Dynamic Trees

The algorithms discussed in Section 4 are quite simple and do not require the use of any

complicated data structures. By adding the use of dynamic trees [19^0,22], we can improve the

bounds derived in Section 4 by almost a logarithmic factor. Our use of dynamic trees is analo-

gous to their use in other networic flow algorithms [2,9,10,1], 12,19^2].

The dynamic tree data structure allows the maintenance of a collection of vertex-disjoint

rooted trees, each arc of which has an associated value. Each tree is an in-iree; that is, if vertex v

is a child of vertex w, there is a tree arc from v to w. Each vertex in a tree is regarded as being

both an ancestor and a descendant of itself. The data structure supports the following seven

operations:

fmd-root{y): Fmd and retiim the root of the tree containing vertex v.

find-size{v}: Find and return the number of vertices in the tree containing vertex v.

find-value(vy. Find and return the value of the tree arc leaving v. If v is a tree root, the

value returned is infinity.

fi.nd-Tnin{\): Fmd and return the ancestor w of v *i\\i\ find-\alue(yv) minimum. In case

of a tie, choose the vertex w closest to the tree root.

change-value(v,x)' Add real number x to the value of every arc along the path from v

to find-rootiv).

link(v,w,xy. Combine the trees containing v and w by making w the parent of v and gjving

the arc (v.w) the value x. This operation does nothing if v and w are in the same tree or

if V is not a tree root

cutiv): Break the tree containing v into two trees by deleting the edge joining v to its

parent; return the value of the deleted edge. This operation breaks no edge and returns

infinity if v is a tree root

A sequence of / tree operations, starting with an initial collection of singleton trees, takes

C>(/log(z + 1)) time ifr is the maximum tree size [10,19,20,22].

We use this data structure to represent a subset of the eligible current arcs. The value of an

arc is its residual capacity. The data structure allows flow to be moved along an entire path at

15-

once, rather than along one arc at a time.

In applying this data structure to the transportation problem, we can improve the resulting

time bounds if we take advantage of the special structure of the problem, specifically the fact that

G is bipartite, and hence so is every dynamic tree. Let us assume that n\ ^ ^2, i.e. I S I ^ I T I.

We redefine the size of a dynamic tree to be the number of vertices of T it contains. This changes

the semantics of \hc find size operation, but does not aiTect its implementation significantly. We

also modify the data structure so that any dynamic tree contains at most twice as many vertices as

its size. To do this we introduce an extra layer of abstraction. We represent each of the actual

dynamic trees (the ones manipulated by the operations) by a virtual dynamic tree, which consists

of the actual tree with all leaves in S deleted. Each of the deleted leaves has a pointer to its parent

in the actual tree, and has stored with it the value of the outgoing tree arc. Every virtual tree con-

tains a number of vertices at most twice its size, since every virtual tree vertex in S has a virtual

tree child in T. Every operation on actual trees translates into 0(1) operations on virtual trees. It

follows that a sequence of / operations on actual dynamic trees lakes 0(1 log (2 + 1)) time, where

2 is the maximum tree size according to the new definition of size.

The following version of the excess-scaling algorithm uses these modified dynamic trees.

In addition to an excess estimate A, the algorithm uses a fixed bound z, 1 Sr $no, on the max-

imum size of a dynamic tree. The algorithm maintains a stack S that defines a path of eligible

current arcs as follows: if vertex v appears just below vertex w on 5, then the tree path from v to

find-root(y) followed by the arc (find-rootiy),w) is a path of eligible current arcs. Initially 5 is

empty and each vertex forms a one-vertex dynamic tree. The algorithm consists of repeating the

following steps until termination occurs in Step 1.

Step 1 (start new path). If no vertex has positive excess, stop. Otherwise, if no vertex has excess

at least A, replace A by A/2 and repeat Step 1. Otherwise, let v be a vertex of excess at least A.

Push V onto S and go to Step 2.

Step 2 (extend path). Let v be the top vertex on 5. Compute w = find root{v). If ej (w) < 0, go to

Step 4. Otherwise, while the current arc of w is not eligible, replace the cunent arc of w by the

next arc on / {w). If the end of / (w) is reached without finding an eligible arc, go to Step 3. If an

eligible arc (h',x) is found, test whether find-siieiy) + find-sizeix) < z. If so. perform

link(w,x, u(y,w)-f(v,w)). If not. push x onto 5. Repeat Step 2.

Step 3 (relabel). Relabel w. For each tree arc (y,w), perform cut(y). If v = w and v is not the

only vertex on S, pop v from S. Go to Step 2.

16

Step 4 (augment). Add A to ^/w).

Slep 4a. Perform change-value(v, -A). While find-value(find-min(v)) = 0, perform

cut (find-min(v)). Go to Step 4b.

Step 4b. Pop V from S. If 5 is empty, subtract A from ej (v) and go to Step 1. Otherwise,

let X = V and replace v by the new top vertex on 5. Let w = frnd-rootiy). Add A to / (w.x)

and go to Step 4a.

This algorithm stores flow explicitly for arcs that are not in dynamic trees and implicitly for

tree arcs. Whenever a cut is performed, the arc cut must have its flow restored lo its correct

current value. When the algorithm terminates, every arc still in a dynamic tree must have its

correa flow computed. These compulations have been omitted from the description above.

The analysis of this algorithm is similar lo the analysis of other r^twork flow algorithms

that use dynamic trees, e.g. [2,9,10,11,12,19,22]. Since with this method the time bound for the

transportation problem is not improved by using a non-constant cost-scaling factor, we shall

choose k=2. The total number of links and cuts performed in the dynamic tree version of the

excess-scaling algorithm is 0(.,nQm) (see e.g. Lemma 7.2 of [11]), taking time

Oinom log (z + 1)). The proof of Lemma 4.1 is valid for this version of the excess-scaling algo-

rithm, which means that there are 0(.n logU) augmentations. The definition of the algorithm

guarantees that if v and w are consecutive vertices on S, and w is not the top vertex on S , then

findsizeiv) + find-sizeiyv) > z. Thus either the tree containing v or the tre« containing >v has size

exceeding zll. Since every vertex on 5 is in a different dynamic tree, the maximum height of S is

O(no/z), and the time per augmentation is Oi(nofz) log (z + 1)). Thus we obtain the following

result.

Theorem 5.1. The dynamic tree vereion of the excess-scaling algorithm runs in

0(no {m-¥ — \ogU) log (z + 1)) time, for any z satisfying 1 ^ z^ no. With this method, the tran-

sportation algorithm runs in C>(fio (m + — logt/)log(z + l)log(/zoC)) time. Choosing

2 = min { 1 + — \ogU, no)
gives the follovting time bounds for the transportation problem:

m

O(nom log (2 + -^ logt/) log (noC)) if log U <nom/n:
m

17

0(n]ogU logno log (noC)) if log U S rtom/n.

Remark. The bound in Theorem 5.1 for the case log U ^riQm/nis not an interesting one, since a

better bound of O(nom log no log ("oC)) can be obtained by implementing the generic augment-

ing path algorithm (without excess scaling) using dynamic trees. D

Corollary 52. The dynamic tree implemenution of excess scaling can be used to solve the

minimum-cost circulation problem in Oijvn log logf/ log (jiqC)) time if log U <n. If log t/ > n,

a bound of 0(jim \ogn log (jiqC)) is obtainable with a dynamic tre« implementation of the aug-

menting path algorithm without excess scaling.

We can reduce the bound on the number of augmentations to

OiriQlogU -^ n logmin{n,t/)} by modifying the excess-scaling method as in Section 4. This

leads to the following results.

Theorem S3. Assume that \ogU = 0. (in/ no) logn). Then the dynamic tree implementation of

no
the modified excess scaling algorithm runs in O(no (m +— log U) log (z -^ 1)) time, for any z

satisfying l<z<no- With this method, the transportation algorithm runs in

Oino (m +— log U) log (z + 1) log (noC)) time. Choos

the following Ume bounds for the transportation problem:

«o "0
OiriQ (m +— log U) log (z + 1) log (noC)) time. Choosing z = min { 1 -^— log U, no] gives

2 m

O(nom log (2 ^-— log U) log (/loC)) if log t/ < m;
m

0{no log U log «o log (/»oC)) if log 1/ ^ m.

Corollary 5.4. If log t/ = n (— k)gn), the minimum-cost circulation problem can be solved in

n

0{nm log (2 -•- -^ log V) log (nC)) time,
m

Remark. Every bound derived in this Section remains valid if each occurrence of V is replaced

by I/*, where U' is as defined in the remark at the end of Section 4. This follows from the

corresponding improvements in the bounds of Lemmas 4.1 and 4.4 discussed in that remaiic. D

- 18-

6, The Capacity Bounding Technique

TT»e results derived in Sections 3-5 depend cnjcially on the elimination of arc capacities via

the transformation to a transporution problem discussed in Section 2. One may ask whether

there is some more direct, or at least alternative, way to deal with arc capacities. A question that

turns out to be related is whether the Ahuja-Orlin excess-scaling algorithm for the maximum flow

problem [1,2] generalizes in a natural way to the minimum-cost flow problem via cost scaling, in

analogy wih the generalization of other maximum Bow algorithms to this problem [9,10].

In this section we show that the answer to both of these questions is a qualified "yes." We

consider the minimum-cost circulation problem as defined in Section 1, with integer capacities

and costs. We propose a way of solving this problem using an outer capacity-scaling loop whose

effect is to convert the original problem into a sequence of OQog U) problems in each of which

the arc capacities are integers bounded by m. This idea was used by Gabow and Taijan [8]. The

method requires a standard "vertex-splitting" transformation. To solve the resulting capacity-

bounded problems, we propose a modification of the Ahuja-Oriin excess-scaling maximum flow

algorithm nested inside an e-scaling loop. The resulting triple scaling algorithm mns in

Oi{n^\ogm +nm) \ogU log(nC)) time using no fancy data stnictures. Although this algorithm

has an inferior complexity bound as compared to the bounds obtained in previous sections, the

method and its analysis have independent interest

Now we give details. The outer capacity-scaling loop constructs two minimum-cost circu-

lation problems at each iteration, a target problem and a restricted (capacity-bounded) problem.

These are obtained from the current network as follows. First, the next bit of precision is added

to the arc capacities by doubling the current capacity and adding one to the capacity of each arc

(v,w) such that the current bit of u(v,w) is 1. We denote the restilting capacity function by «'.

The target problem is (Cu'.c), where G is the original graph and c is the original cost function.

The restricted problem is obtained from the target problem by bounding the flow through

every vertex of the target problem by m. More formally, the restriaed problem is obtained by

splitting each vertex v ofG = (V.£) into two to obtain the graphC = (V',£'), where V contains

vertices vj and V2 for each v e V, and £' contains an arc (vj.vj) of capacity «(vi,V2) = m and

cost c(vi,V2) = for each V € Vand an arc (v2,h'i) of capacity «"(v2,h'i) = m'(v,h') and cost

c'(v2,wi) = c(y,w) for each arc (v.w) e £. Networic G' also contains opposite-direaed arcs of

capacity zero. The restricted problem is (G',m",c')- We call a vertex v; in the restricted prob-

lem inner and a vertex V2 outer, we call an arc (vi,V2) a split arc.

Observe that every ciroilation /* in the restricted netwoiic corresponds to a circulation /in

the target network given by /(v.w) =/'(v2,h'i). By construction, the costs of /and /* are the

same. Conversely, for every circulation /in the target network, there is a corresponding arc func-

tion/ given by /(v2,h',)=/(v,w), /'(v,,V2)= £ /(x.v). Function/is a circulation if and

(X.V)6£

-19

only if /'(v
i

, V2) < /n for every split arc (v
i
,V2).

We assume (without loss of generality) that the original problem has no negative capacities;

i.e.. the identically zero arc function is a circulatioa At a high level, the algorithm consists of

initializing /aixl u" to be zero on all arcs and repeating the following steps for each bit of preci-

sion in the capacities, proceeding left-to-right through the bits:

Step I. (Construct the new target problem by introducing the next capacity bit.) For each

(v.H')e E. replace «'(v.h') by 2u'(v,h') if the current bit of tt(v,H') is zero, by 2u'(y,w)+ 1 if the

current bit of «(v,h') is one.

Step 2. Construct the restricted problem {G\u" ,c').

Step 3. Find an optimal solution /* to the problem {G',u" ,c').

Step4. Construct the circulation /in (G,«',c') corresponding to /*.

Step 5. (Modify the target problem so that the zero circulation is optimal.) For each (v,^) e £,

replace u\v,yv) by m'(v,h') -/(v.w).

The algorithm maintains the invariant that on entry to Step 1, the zero circulation is optimal

for the old target problem (as modified in Step 5). The following result is similar to a lemma of

Gabow and Tarjan [8].

Lemma 6.1. The circulation /computed in Step 4 is an optimal solution to the target problem

(G.m'.c').

Proof. By induction on the number of iterations. On the most recent entry to Step 1 , the zero cir-

culation is optimal for the old target problem. This is true for the initial entry because of the ini-

tialization, and true for each subsequent entry by the induction hypothesis. Thus there is some

price function p for which the reduced costs of all positive-capadty arcs are non-negative in the

old target problem. By the construction in Step 1. all negative-reduced-cost arcs in the new target

problem have capacity one or zero. Let/* be an optimal solution to the new target problem such

that/* contains no zero-cost cycle of positive flow (any such cycle can be eliminated by reducing

its flow). Grculation /* can be decomposed into at most m simple cycles, each of flow value one.

(There is at most one such cycle for each negative reduced-cost arc). The arc function f on the

restricted network that corresponds to/* thus hdsf(y\,V2)<m for each split arc (vi,v2). x.t.f

-20-

is a circulation. Since f is optimal for the target problem, f is optimal for the restricted prob-

lem. It follows that any optimal solution to the rcstriaed problem corresponds to an optimal

solution to the target problem, and the lemma is true. D

We shall describe an implementation of Step 4 that uses the e-scaling approach of Goldberg

and Tarjan [9,11] (already discussed in Section 3 in the context of the transportation problem)

with an inner loop thai is a modification of the Ahuja-Oriin maximum flow algorithm [1,2]. The

£-scaIing loop starts with a zero circulation and a zero price function; the zero circulation is e-

optimal with respect to the zero price function for e = C. Then the method iteratively applies a

refinement subroutine that halves e and pnoduces a circtilation f and a price function p such that

f is e-optimal with respect top. When e <— , the method terminates with an optimal solution.

(Recall that the restriaed network has In vertices.) The formal definition of the e-scaling loop is

as follows:

Step 4.1. Let/=0. e = C. and p=0.

Step42. Foreachoutervertex V2.1etp(v2) = max {c'(v2.h'j) I (v2,h',)€ £').

Step 43. While E t— . perform (t,f,p) <- refine {t,f ,p).
2n

The special structure of the restriaed network allows the maintenance of the following

invariant in Step 4.3: for any residual arc (v.w) having negative reduced cost, v is an inner vertex.

We say that a pseudoflow/has the inner vertex property with respect to a price function p if this

invariant holds. Step 4.2 guarantees that this invariant holds on entry to Step 4.3.

The correctness of the e-scaling loop and the fact that it terminates after OOog(nC)) itera-

tions of refine follow from the results of Goldberg and Tarjan [9,11].

The following implementation of refine is based on the generic implementation of refine

described by Goldberg and Tarjan [9,1 1], specialized to use excess scaling as in the Ahuja-Orlin

maximum flow algorithm [1^].

refine it,f.p).

Step R.l. (Saturate negative-cost arcs.) For each split arc (v,,V2) such that

C';,(^1,V2)<0, let/(Vi,V2) = «"(Vl.V2).

-21-

SiepR.2. Gnitialize A,e.) Let A = 2* where it = flog ml . Replace e by e/2.

Step R.3. (Inner loop.) While A 1 1 repeat the following steps:

Step R.3.1. While there is a push or relabel operatiOT that applies, perform such an

operation.

Step RJ.2. Replace A by A/2.

Step R.4. (Restore the inner vertex property.) For each inner vertex vi. replace p(vi) by

p(vi)-€/2.

Step RJ. Return (cf ,p).

The push and relabel operations are defined as follows:

push(v,w).

ApplicabiliTy: Cfiv) > A/2. <^'(h')< A/2, u'/' (v.w) > 0, and Cp(v,w) < -e/4.

Action: Send min {A/2.uy-'' (v.w)) units of flow from v to w.

relabel(v).

Applicability: C/'(v) > arxl Cp(v,w) t -e/4 for each residual arc (v.w).

Action: Replace p(v) by max {p(w)-c'(v,w)-e/2].

Some remarks are in order here. Step R.1 saturates all negative reduced-cost arcs, thereby

making f into an optimal pseudoflow but introducing excesses and deficits at vertices. Step R.3

moves the excess flow amounts to the vertices with deficits while maintaining e/2-optimality (for

the new value of e). Step R.4 restores the inner vertex property by changing p; after this step, f
is no longer E/2-optijna] but only £-optimal.

Step 4.3 maintains a value A that is an upper bouiyJ on the largest excess. When no excess

exceeds A/2. A is halved. All excesses are integers; by the time A < 1, aD deficits have been can-

celed.

Each pushing step moves excess from a vertex with excess exceeding A/2 to a vertex with

excess not exceeding A/2, and through an edge of cost between -e/2 and -e/4. Thus each push

is either saturating or it moves at least A/2 units of flow; in the latter case it reduces the cost off

by at least Ae/8. We shall use this cost reduction to bound the number of nonsaturating pushes.

22

We have omitted a description of how to determine push and relabel operations that can be

implied. These details can be found in [2]; the implementation uses the analogue to the stack-

push/relabel step described there. The total time spent in such overhead in a single execution of

refine is 0(nm).

The proofs of the following lemmas are easy modifications of proofs of analogous lemmas

in[9,!0]:

Lemma 62. The push and re/a^e/ operations preserve e-optimality.

Lemma 63. 0) Each op»eration relabel(v) decreases p(v) by at least e/4. (ii) During an execu-

tion of refine, the maximum amount by which p{v) can decrease is 6en, for every vertex v. (iii)

The total number of relabel operations during an execution of refine is O(n^), taking 0(nm)

time, (iv) The number of saturating pushes during an execution of refine is 0(nm).

Lemma 6.3 implies that the running time of refine is 0(nm) plus 0(1) per nonsaturating

push. We shall establish a bound of 0(n^ log m + nm) on the number of nonsaturating pushes,

thereby obtaining an Oi(n^ logm + nm) log U log(nC)) bound on the triple scaling algorithm.

To bound the number of nonsaturating pushes, we define the cost of a pseudoflow f with

respect to a price function p to be

costp(f')= X c;(v,w)/'(v,w)= £ c'(v.>v)/(v,w)- X ef'(y)p(y).
/'(>,»')> /'(v,w)>0 v€V

Observe that if/ is a circulation its cost does not depend on p, i.e. cost^C/") = cost(/') where

costif) - 21 c'(y,w) f(y,w) (as defined in Section 1).

/'(v,>»')>0

As noted above, a nonsaturating push decreases costpif) by at least Ae/8. A relabeling of a

vertex V that decreases p»(v) by an amounts increases cost^CT) by «/'(v).

We want to study how much costp(f) can vary during an execution of refine. We do this

by relating cosXpif) to the cost of an optimal circulation. This requires the following lemma,

which states a general result about circulations and pseudoflows.

Lemma 6.4. Let / be a circulation, f a pseudoflow, and p a price function on a network with

capacity and cost functions u and c, respectively. Then

-23

C0Stp(f)-COSl(f)< 5; -Cp(v,H')Uy'(v,H').

(v.w): Cf(y,w) <

Proof. Leif be the pseudoflow obtained from f by saturating all negauve reduced-cost arcs.

Then

costp(f) = costp(f')+ £ -Cp(y,w)uf'(v,w).
(v.w): e,(v,H') <

But /can be obtained from /" by increasing flow along a coUeciion of paths and cycles of arcs in

Cf„, each of which has nonnegative reduced cost Thus cost(f) ^ costp(f"), and the lemma fol-

lows. D

Consider a time during the execution of refine. For the current pseudoflow f and price

function p, we define a potential <!> by <I> = (cosipif) - cost (/*)) /(Ae), where f is any optimal

circulation. The following lemma bounding <I> is the heart of the analysis of nonsaturating

pushes.

Lemma 65. -^Sn^ <'^<6nm/A.

Proof. We shall prove that -48A£/»^ < cosip(f) - cost(/*) ^ 6cnm. To obtain the upper bound,

we note first that f is e/2-optimal with respect to p. By decreasing prices on inner vertices by

e/2, we obtain a price function p' with respect to whichf is e-opiimal and such that f has the

inner vertex property with respect top'. Since no vertex has excess exceeding A < 2m, cosip- if)

^cosip(f) + tnm. By Lemma 6.4,

COStp'(f)- cost(/)< £ -C^' (V,H')U/'(V.H').

(y,w):<:^'(v,w) <0

The sura of all positive excesses is at most 2nA ^ 4nm; hence so is the negative of the sum

of all negative excesses. For any inner vertex v, the total residual capacity of all arcs leaving is

m-€f(v). Hence the total residual capacity of all arcs leaving inner vertices is at most

nm + 4nm = 5nm. By the inner vertex property, every negative reduced-cost arc leaves an inner

vertex. Hence

24

J^ -c'p- (v.w) uf (v.w) < Sam.
(v,w): c^' (y.w) <

Combining inequalities gives costp {f) - cost(J*) < 6tnm.

To obtain the lower bound, we note first thai we can assume that there is a price function p*

with respect to which/* is optimal and such that lp(v) -f *(v) I < \2tn for every vertex v. This is

since the repeated executions of refine in Step 4.3 of the e-scaLng method will produce an

optimal circulation /* and a final price function p* such that/* is optimal with respect to p*; the

total price change of any vertex over all the iterations of refine is at most ^ 6nt/2' = Men. We

have costif) -costp-i/) <0, since /* can be converted into / by increasing flow on residual

arcs of Gy , all of which have nonnegative reduced cost. But

costp-if) - costp(f) < X Ip'(v) -p(v) 1 1 e/(v) I ^ 48 Aen^
vev

since the sum of the positive excesses is at most 2nA, as is the negative of the stmi of the negative

excesses. Combining inequalities gives cost(f*) — costp(f) ^ 48A£«^. D

Lemma 6.7. The number of nonsaturating pushes during an execution of refine is

0(ji} log/« + nm).

Proof. Each nonsaturating push decreases <I> by at least 1/8. Any saturating push also decreases

<I>. A relabeling that decreases the price of a vertex by x increases <I> by at most x.

There are at most log m + 1 iterations of Step R.3 in refine. Consider the j'* iteration. Sup-

pose that during this iteration the total decrease in vertex prices is x,. If p, is the number of non-

saturating pushes during this iteration, then the iteration causes a net decrease in <1) of at least

Pil%-Xi. Changing A between two iterations can increase <I> by at most n^. Summing over all

phases and applying Lemma 6.5, we have

5;(p,/8-Xi) <, tnm + 48n^ + n^Oog m + 1).

Since ^ J^i = Oin\ it follows that J^p, = 0(n^ log m + nm). D

-25-

Theorem 6.8. The triple scaling algorithm for finding a minimum-cost circulation runs in

0((n^ log m + nm) logt/ log(nC)) time.

Using dynamic trees in the inner loop of the triple scaling algorithm, analogously to the

way they are used in [2], reduces the time bound to 0(nm log (1 + — log/n) \ogU log (nC)).
m

Further minor improvemenls might be possible using additional id&as in [2]. We shall not pursue

this possibility further, however, since in any case the approach of Sections 3-5 produces better

bounds.

We conclude this section by noting that there is an alternative way to solve the sequence of

restricted problems generated in the outer capacity-scaling loop. Namely, we can use a simple

version of the network simplex rule, specifically DanLzig's minimum reduced-cost pivot rule with

lexicography to avoid cycling. This rule was studied by Oriin [15], who obtained a bound of

0(nmU log (mUC)) on the number of pivot steps. In a restriaed problem, U = m, and the

capacity-scaling method with Step 3 implemented using the network simplex method runs in

0{nm^ log U log (mC)) time, if the time to do one pivot step is 0(jn). In this algorithm, it is not

necessary to transform the graph by splitting vertices; it suffices to impose a capacity bound ofm

on every arc in G. This time bound is not noteworthy; more interesting is the mere fact that com-

bining one scaling loop with a standard version of the network simplex algorithm gives a

polynomial-time algorithm. Without the scaling loop, the same version of the r^rwork simplex

algorithm can take exponentially many pivot steps [24].

7. Remarks

We have shown that the minimum-cost circulation problem can be solved in

0(jnm log log U log («C)) time, and even in 0(nm log (2 -• — log U) log (/»C)) time if
m

log 1/ = n (— log n). We have derived analogous bounds for the transportation problem. Our
n

algorithms use scaling of both costs and capacities, combined with an augmenting path method

and an implementation based on d>Tiamic trees. If dynamic trees are not used, the time bourxl for

the minimum-cost circulation problem is 0{nm log t/ (1 + log (nC)/ log log (/)). or

Oin^ log t/ (1 » log (rtC)/ log log t/)) if log£/ = fJ(— logn). Under the similarity assumption
n

(7], namely \o%U = 0(\o%n) and log C = 0(log«), our time bound with dynamic trees is

n}
0{nm log/j loglogn), which beats the best previous bound of 0(,nm logn log(—)) [11] except

m

for very dense graphs (/n = Q (,-)).

logn

26

We expect that some version of our algorithm, probably without dynamic trees, will in prac-

tice be competitive with or superior to previously existing algorithms. We have no{ yet done the

required experiments to confirm or refute this hypothesis. Our experiments with similar algo-

rithms (see e.g. [9]) suggest thai periodic scans to tighten prices may increase the practical,

though not the theoretical, speed of the algorithm.

We have discussed a capacity-bounding technique, which allows us to use a modification of

the Ahuja-Orlin maximum flow algorithm in the inner loop of the Goldberg-Tarjan minimum-

cost flow method. The analysis of this technique uses the cost of the current jjseudoflow as a

measure of its quality. This makes the analysis very intuitive.

A tantalizing open question is whether there is an O (nm log logn log (r»C))-time algorithm

for the minimum-cost circulation problem. We believe that the answer is yes and that a

modification of our methods will lead to such a bound. Such a result would probably give a time

bound of (.run log logn) for the maximum flow problem, which would also be an improvement

over known results. (See [2,10].)

8. References

[1] R. K. Ahuja and J. B. Orlin, "A fast and simple algorithm for the maximum flow prob-

lem." Technical Report 1905-87. Sloan School of Management. M.I.T., Cambridge. MA,

1987; Operations Research, to appear.

12] R.K. Ahuja, J.B. Oriin. and R.E. Taijan, "Improved time bounds for the maximum flow

problem." to ^pear.

[3] D.P. Bertsekas, "A distributed algorithm for the assignment problem." unpublished

working paper. Laboratory for Information and EJecision Sciences, M.I.T., Cambridge,

MA, 1979.

[4] D.P. Bertsekas, "Distributed asynchrorwus relaxation methods for linear network flow

problems," Technical Repon LIDS-P-1606, Laboratory for Information and Decision Sci-

ences. M.I.T.. 1986.

[5] E.A. Dinic, "Algorithm for solution of a problem of maximum flow in networlcs with

l)OweT estimation," Soviet Math. Dokl. 11 (1970). 1277-1280.

[6] J. Edmonds and R.M. Karp. "Theoretical improvements in algorithmic efficiency for net-

woric flow problems." y. Assoc. Comput. Mack. 19 (1972). 248-264.

I?] H.N. Gabow. "Scaling algorithms for network problems." J. Comput. System Sci. 31

(1985). 148-168.

27-

[8] H.N. Gabow and R.E. Tarjan. "Faster scaling algorithms fornetworic problems," SIAM J.

Comput., submitted.

[9] A.V. Goldberg, "Efficient graph algorithms for sequential and parallel computers," Ph.D.

Thesis, M.I.T.. 1987.

[10] A.V. Goldberg and R.E. Tarjan, "A new approach to the maximum flow problem," J.

Assoc. Comput. Mach., to appear.

[11] A.V. Goldberg and R.E. Tarjan, "Fmding minimum-cost circulations by successive

approximation," A/ar/i. qfOper. Res., to appear.

[12] A.V. Goldberg and R.E. Tarjan, "Finding minimum-cost circulations by canceling nega-

tive cycles," J. Assoc. Comput. Mach., submitted; also Proc. Twentieth Annual ACM
Symp. on Theory of Computing (1988), 388-397.

[13] E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Reinhart, and

Winston. New Yorlc, NY, 1976.

[14] R. Mehlhom, Data Structures and Algorithms. Volume 1: Sorting and Searching,

Springer- Veriag, Berlin, 1984.

[15] J. B. Orlin, "On the simplex algorithm for networks and generalized networks," Math.

Programming 24 (1985), 166-178.

[16] J. B. Orlin, "A faster strongly polynomial minimum cost flow algorithm," Proc. Twen-

tieth Annual ACM Symp. on Theory of Computing (1988), 377-387.

[17] J. B. Orlin and R. K. Ahuja, "New distance-directed algorithms for maximum flow and

parametric maximum flow problems," Technical Report No. 192, Operations Research

Center, M.I.T., Cambridge, MA, 1988.

[18] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Com-

plexity, Prentice-Hall. Englewood Oiffs, NJ. 1982.

[19] D.D. Sleator and R.E. Tarjan, "A data structure for dynamic trees," J. Comput. System

5ci. 26 (1983). 362-391.

[20] D.D. Sleator and R.E. Tarjan, "Self-adjusting binary search trees," J. Assoc. Comput.

Mach. 32 (1985), 652-686.

[21] E. Tardos, "A strongly polynomial minimum cost circulation algorithm," Combinator-

ica. 5 (1985), 247-255.

[22] R.E. Tarjan, Data Structures and Network Algorithms, Society for Industrial and Applied

Mathematics, Philadelphia, PA 1983.

28-

[23] R.E. Tarjan and C.J. van Wyk. "An O (n loglogn)-time algorithm for triangulating a

simple polygon." SIAMJ. Comput., 17 (1988). 143-178.

[24] H.M. Wagner, "On a class of capacitated transportation problems." Management Science

5(1959). 304-318.

(25] N. Zadeh. "A bad network flow problem for the simplex method and other minimum cost

flow algorithms." Math. Programming 5 (1973). 255-266.

b / ob Ubb

Date Due

Ub-26-67

3 TDflQ DOS 37t. bST

