

HD28
.M414 Oe '̂«cey

WORKING PAPER

ALFRED P. SLOAN SCHOOL OF MANAGEMENT

A FAST AND SIMPLE ALGORITHM
FOR THE MAXIMUM FLOW PROBLEM

R. K. Ahuja

and

James B. Orlin

Sloan W.P. No. 1905-87 June 1987

Revised: March 1988

MASSACHUSETTS

INSTITUTE OF TECHNOLOGY
50 MEMORIAL DRIVE

CAMBRIDGE, MASSACHUSETTS 02139

A FAST AND SIMPLE ALGORITHM
FOR THE MAXIMUM FLOW PROBLEM

R. K. Ahuja

and

James B. Orlin

Sloan W.P. No. 1905-87 June 1987

Revised: March 1988

M.I.T. LIBRARIES

A Fast and Simple

Algorithm for the Maximum Flow Problem

Ravindra K. Ahuja* and James B. Orlin

Sloan School of Management
Massachusetts Institute of Technology

Cambridge, MA. 02139 , USA

Abstract

We present a simple 0(nm + n log U) sequential algorithm for the maximum

flow problem on a network with n nodes, m arcs, and integer arc capacities

bounded by U. Under the practical assumption that U is polynomially bounded in

n , our algorithm runs in time 0(nm + n log n). This result improves the

previous best bound of 0(nm log {vr/m)), obtained by Goldberg and Tarjan , by a

factor of log n for networks that are both non-sparse and non-dense without using

any complex data structures.

Subject Classification

484. A Fast and Simple Algorithm for the Maximum Flow Problem

* On leave from Indian Institute of Technology, Kanpur - 208 016 , INDIA

The maximum flow problem is one of the most fundamental problems in

network flow theory and has been investigated extensively. This problem was first

formulated by Fulkerson and Dantzig [1955] and Dantzig and Fulkerson [1956], and

solved by Ford and Fulkerson [1956] using their well-known augmenting path

algorithm. Since then, a number of algorithms have been developed for this

problem; some of them are tabulated below. In the table, n is the number of nodes,

m is the number of arcs, and U is an upper bound on the integral arc capacities. The

algorithms whose time bounds involve U assume integral capacities, whereas

others run on arbitrary rational or real capacities.

Due to

1 Ford and Fulkerson [1956]

2 Edmonds and Karp [1972]

3 Dinic [1970]

4 Karzanov [1974]

5 Cherkasky[1977]

6 Malhotra. Kumar and Maheshwari [1978]

7 Galil[1980]

8 Galil and Naamad [1980]; Shiloach [1978]

9 Shiloach and Vishkin [1982]

10 Sleator and Taijan [1983]

11 Tarjan[1984]

12 Gabow [1985]

13 Goldberg [1985]

14 Goldberg and Tarjan [1986]

15 Cheriyan and Maheshwari [1987]

16 Ahuja and Oilin [1987]

17 Ahuja, Orlin and Tarjan [1987]

Running Time

O(nmU)

CXnm^)

0(n^)

0(n3)

CXn^^^)

CXn^)

0(nm log^ n)

0(n3)

0(nm log n)

CXn^)

0(nm log U)

0{n3)

0(nm log (n^An))

0(nm + n^ log U)

Table 1. Running times of the maximum flow algorithms.

Edmonds and Karp [1972] showed that the Ford and Fulkerson [1956]

algorithm runs in time O(nm^) if flows are augmented along shortest paths from

source to sink. Independently, Dinic [1970] introduced the concept of shortest path

networks, called layered networks, and obtained an O(n^m) algorithm. This bound

was improved to O(n^) by Karzanov [1974] who introduced the concept of preflows

in a layered network. A preflow is similar to a flow except that the amount flowing

into a node may exceed the amount flowing out of a node. Since then, researchers

have improved the complexity of Dinic's algorithm for sparse networks by devising

sophisticated data structures. Among these contributions, Sleator and Tarjan's [1983]

dynamic tree data structure is the most attractive from a worst case point of view.

The algorithms of Goldberg [1985] and of Goldberg and Tarjan [1986] were a

novel departure from these approaches in the sense that they do not construct

layered networks. Their method maintains a preflow, as per Karzanov, and

proceeds by pushing flows to nodes estimated to be closer to the sink. To estimate

which nodes are closer to the sink, it maintains a distance label for each node that is a

lower bound on the length of a shortest augmenting path to the sink. Distance labels

are a better computational device than layered networks because the labels are

simpler to understand, easier to manipulate, and easier to use in a parallel

algorithm. Moreover, by cleverly using the dynamic tree data structure, Goldberg

and Tarjan obtained the best computational complexity for sparse as well as dense

networks. (For applications of distance labels to augmenting path algorithms, see

Orlin and Ahuja [1987].)

For problems with arc capacities polynomially bounded in n , our maximum

flow algorithm is an improvement of Goldberg and Tarjan's algorithm and uses

concepts of scaling introduced by Edmonds and Karp [1972] for the minimum cost

flow problem and later extended by Gabow [1985] for other network optimization

problems. The bottleneck operation in the straightforward implementation of

Goldberg and Tarjan's algorithm is the number of non-saturating pushes which is

O(n^) . However, they reduce the computational time to 0(nm log (n^/m)) by a

clever application of the dynamic tree data structure. We show that the number of

non-saturating pushes can be reduced to 0(n^ log U) by using excess scaling. Our

algorithm modifies the Goldberg-Tarjan algorithm as follows. It performs log U

scaling iterations; each scaling iteration requires O(n^) non-saturating pushes if we

push flows from nodes with sufficiently large excesses to nodes with sufficiently small

excesses while never allowing the excesses to become too large. The computational

time of our algorithm is 0(nm + n'^ log U).

Under the reasonable assumption that U=0(n^^^b (i.e., it is polynomialin

n) , our algorithm runs in time 0(nm + n'^ log n). On networks that are both

non-dense and non-sparse, i.e., m = GCn'"*"^ for some e with < e < 1, our

algorithm runs in time 0(nm), which improves Goldberg and Tarjan's bound of

0(nm log (vr/m)) on such networks by a factor of log n. Moreover, our algorithm is

easier to implement and should be more efficient in practice, since it requires only

elementary data structures with little computational overheads.

1. Notation

Let G = W, A) be a directed network vdth a positive integer capacity Uj; for

every arc (i, j) e A. Let n = I N I and m = I A I . The source s and sink t are two

distinguished nodes of the network. We assume without loss of generality that the

network does not contain multiple arcs and that there are no arcs directed into the

source or directed from the sink. It is also assumed that for every arc (i, j) e A, an arc

(j, i) is also contained in A, possibly with zero capacity. We further assume that none

of the paths from source to sink has infinite capacity as such a path can be easily

detected in 0(m) time. Observe that if the network contains some infinite capacity

arcs but no infinite capacity path, then the capacity of such arcs can be replaced by

V Ujj . We therefore assume that all arcs have finite capacity,

{(i, j) e A: Uj; < ««)

Let U= "^a^ {"sjl

(s, j) e A

A flow is a function x : A —» R satisfying

I Xji - I X|j = , for aU i 6 N - (s, t), (1)

{j: (j, i) e A) (j: (i, j) e A)

I Xjf = v , (2)

{j: (j, t) € A)

< xjj < Ujj , for all (i, j) e A , (3)

for some v > . The maximum flow problem is to determine a flow x for which

V is maximized.

A preflow x is a function x : A —> R which satisfies (2) , (3), and the

following relaxation of (1):

I Xjj - I Xj| > , for all i e N - (s, t). (4)

(j: (), i) e A) (j: (i, j) e A}

The algorithms described in this paper maintain a preflow at each

intermediate stage.

For a given preflow x , we define for each node i e N - (s, t} , the excess

Cj = 2- Xjj - 2, Xjj

{j: (j,i)€ A) {j: aj)e A)

A node with positive excess is referred to as an active node . We define the

excess of the source and sink nodes to be zero; consequently, these nodes are never

active. The residual capacity of any arc (i, j) e A with respect to a given preflow x is

given by rjj = uj; - xj; + Xjj . The residual capacity of arc (i, j) represents the

maximum additional flow that can be sent from node i to node j using the arcs (i, j)

and (j, i). The network consisting only of arcs with positive residual capacities is

referred to as the residual network. Figure 1 illustrates these definitions.

We define the arc adjacency list A(i) of a node i e N as the set of arcs directed out of

the node i, i.e., A(i) : = {(i, k) € A : k € N}. Note that our adjacency list is a set of arcs rather

than the more conventional definition of the list as a set of nodes.

A distance function d : N^ Z"*" for a preflow x is a function from the set

of nodes to the non-negative integers . We say that a distance function d is valid if

it also satisfies the following two conditions:

CL d(t) = ;

CZ d(i) < d(j) + 1 , for every arc (i, j) € A vdth Tj; > .

a. Network with arc capacities.

Node 1 is the source and node 4 is the

sink. (Arcs with zero capacities are not

shown.)

b. Network with preflow x

c. The residual network with
residual arc capacities

Figure 1. Illustrations of a preflow and the residual network

Our algorithm maintains a valid distance function at each iteration. We also

refer to d(i) as the distance label of node i. It is easy to demonstrate using induction

that d(i) is a lower bound on the length of the shortest path from i to t in the

residual network. Let i = i-| - i2 - • • • -i^^ - i\^+i = t be any path of length k in the

residual network from node i to the sink. Then from condition C2 we have, d(i) =

d(i|) < d(i2) + 1, d(i2) < d(i3) + 1 dCij^) < dUi^^;,) + 1 = 1. This yields d(i) < k for

any path of length k in the residual network and, hence, must also hold for the

shortest path too. If for each i, the distance label d(i) equals the minimum length of

any path from i to t in the residual network, then we call the distance label exact.

For example, in Figure 1(c), d = (0, 0, 0, 0) is a valid distance label, though d = (3, 1, 2,

0) represents the exact distance labels.

An arc (i, j) in the residual network is called admissible if it satisfies

d(i) = d(j) + 1. An arc which is not admissible is called an inadmissible arc. The

algorithms discussed in this paper push flow only on admissible arcs.

All logarithms in this paper are assumed to be of base 2 unless stated

otherwise.

2. Preflow-Push Algorithms

The preflow-push algorithms for the maximum flow problem maintain a

preflow at every step and proceed by pushing the node excesses closer to the sink.

The first preflow-push algorithm is due to Karzanov [1974]. Tarjan [1984] has

suggested a simplified version of this algorithm. The recent algorithms of Goldberg

[1985] and Goldberg and Tarjan [1986] are based on ideas similar to those presented in

Tarjan [1984], but use distance labels to direct flows closer to the sink instead of

constructing layered networks. We refer to their algorithm as the (distance-directed)

preflow-push algorithm. In this section, we review the basic features of their

algorithm, which for the sake of brevity, we shall simply refer to as the preflow-push

algorithm. Here we describe the 1-phase version of the preflow-push algorithm

presented by Goldberg [1987]. The results in this section are due to Goldberg and

Tarjan [1986].

All operations of the preflow-push algorithm are performed using only local

information. At each iteration of the algorithm (except at the initialization and at

8

termination) the network contains at least one active node, i.e., a non-source and

non-sink node with positive excess. The goal of each iterative step is to choose some

active node and to send its excess "closer" to the sink, with closer being judged with

respect to the current distance labels. If excess flow at this node can not be sent to

nodes with smaller distance labels, then the distance label of the node is increased.

The algorithm terminates when the network contains no active nodes. The

preflow-push algorithm uses the following subroutines:

PRE-PROCESS. On each arc (s, j) e A(s) , send Ugj units of flow. Let d(s) = n

and d(t) = . Let d(i) = 1 for each i^ s or t . (Alternatively, any valid

labeling can be used, e.g., the distance label for each node i ^t s, t can be

determined by a backward breadth first search on the residual network

starting at node t.)

SELECT. Select an active node i

.

PUSH(i). Select an admissible arc (i, j) in A(i). Send 6 = min (e^ , rj:) units of

flow from node i to j.

We say that a push of flow on arc (i, j) is saturating if 6 = rj: , and

non-saturating otherwise.

RELABEL(i). Replace d(i) by nunf d(j) + 1 : (i , j) e A(i) and r^j >).

This step is called a relabel step. The result of the relabel step is to

create at least one admissible arc on which further pushes can be performed.

The generic version of the preflow-push algorithm is given below.

algorithm PREFLOW-PUSH;

begin

PRE-PROCESS;

while there is an active node do begin

SELECT {let i denote the node selected};

if there is an admissible arc in A(i) then PUSH(i)

else RELABEL(i);

end;

end;

d(3)=l

d(l) = 4 d(4) =

d(2) = 1

62 =2

(a) The residual network after the pre-processing step.

d(3) = 1

d(l) = 4 d(4) =

d(2) = l

Co = 1

(b) After the execution of step PUSH(2).

d(3) = 1

e3=4

d(l) = 4 (T d(4) =

(c) After the execution of step RELABEL(2).

Figure 2. Illustrations of Push and Relabel steps.

10

Figure 2 illustrates the steps PUSH(i) and RELABEL(i) as applied to the

network in Figure 1(a). The number beside each arc represents its residual capacity.

Figiire 2(a) specifies the residual network after the PRE-PROCESS step. The SELECT

step selects node 2 for examination. Since arc (2, 4) has residual capacity r24 = 1

and d(2) = d(4) + 1 , the algorithm performs a saturating push of value 5 =

min{ 2, 1} units. The push reduces the excess of node 2 to 1. Arc (2,4) is deleted

from the residual network and arc (4, 2) is added to the residual network. Since

node 2 is still an active node, it can be selected again for further pushes. The arcs (2,

3) and (2, 1) have positive residual capacities, but they do not satisfy the distance

condition. Hence the algorithm performs RELABEL(2), and gives node 2 a new

distance d'(2) = min {d(3) + 1 , d(l) + 1} = min {2, 5} = 2 .

The pre-process step accomplishes several important tasks. First, it causes the

nodes adjacent to s to have positive excess, so that we can subsequently execute the

select step. Second, by saturating arcs incident to s , the feasibility of setting d(s) = n

is immediate. Third, since the distance label d(s) = n is a lower bound on the

length of the minimum path from s to t , there is no path from s to t . Further,

since distance labels are non-decreasing (see Lemma 1 to follow), we are also

guaranteed that in subsequent iterations the residual network will never contain a

directed path from s to t, and so there can never be any need to push flow from s

again.

In our improvement of the preflow-push algorithm, we need a few of the

results given in Goldberg and Tarjan [1986]. We include some of their proofs in

order to make this presentation more self-contained.

Lemma 1. The generic preflow-push algorithm maintains valid distance labels at

each step. Moreover, at each relabel step the distance label of some node strictly

increases.

Proof. First note that the pre-process step constructs valid distance labels. Assume

inductively that the distance function is valid prior to an operation, i.e., it satisfies

the validity conditions Cl and C2 . A push operation on the arc (i, j) may create an

additional arc (j, i) with Tjj > , and an additional condition d(j) < d(i) + 1 needs

to be satisfied. This validity condition remains satisfied since d(i) = d(j) + 1 by the

property of the push operation. A push operation on arc (i, j) might delete this arc

1

1

from the residual network, but this does not affect the validity of the distance

function. During a relabel step, the new distance label of node i is

d'(i) = min{d(j) + 1: (i, j) e A(i) and r^: > 0) , which is again consistent with the

validity conditions. The relabel step is performed when there is no arc (i, j) € A(i)

with d(i) = d(j)+l and rj: > . Hence, d(i) < min{d(j) + l: (i, j) e A(i) and rj: >

0} = d'(i) , thereby proving the second part of the lemma.

Lemma 2. At any stage of the prefloiv-push algorithm, for each node i with

positive excess, there is a directed path from i to node s in the residual network.

Proof. By the flow decomposition theory of Ford and Fulkerson [1962] , any

preflow X can be decomposed with respect to the original network G into the sum

of non-negative flows along (i) paths from s to t, (ii) paths from s to active nodes,

and (iii) flows around directed cycles. Let i be an active node relative to the

preflow X in G. Then there must be a path P from s to i in the flow

decomposition of x , since paths from s to t and flows around cycles do not

contribute to the excess at node i. Then the reversal of P (P vAth the orientation of

each arc reversed) is in the residual network , and hence there is a path from i to

s in the residual network.

Corollary 1. For each node i e N , d(i) < 2n.

Proof. The last time node i was relabeled, it had a positive excess, and hence the

residual network contained a path of length at most n - 1 from i to s. The fact

that d(s) = n and condition C2 imply that d(i) < d(s) + n - 1 < 2n.

Lemma 2 also implies that a relabel step never minimizes over an empty set.

Corollary 2. The number of relabel steps is less than 2n^ .

Proof. Each relabel step increases the distance label of a node by at least one, and by

Corollary 1 no node can be relabeled more than 2n times.

Corollary 3. The number of saturating pushes is no more than nm .

Proof. Suppose that arc (i, j) becomes saturated at some iteration (at which d(i) =

d(j) +1). Then no more flow can be sent on (i, j) until flow is sent back from j to i, at

12

which time d'(j) = d'(i) + 1 ^ d(i) + 1 = d(j) + 2; this flow change cannot occur until

d(j) increases by at least 2. Thus by Corollary 1, arc (i, j) can become saturated at most

n times, and the total number of arc saturations is no more than nm. (Recall that

we assume that (i, j) and (j, i) are both in A , so the number of arcs in the residual

network is no more than m .)

Lemma 3. The number of non-saturating pushes is at most 2n^m.

Proof. See Goldberg and Tarjan [1986] .

Lemma 4. The algorithm terminates with a maximum flow.

Proof. When the algorithm terminates, each node in N - (s, t) has zero excess; so

the final preflow is a feasible flow. Further, since the distance labels satisfy

conditions CI and C2 and d(s) = n , it follows that upon termination, the

residual network contains no directed path from s to t . This condition is the

classical termination criterion for the maximum flow algorithm of Ford and

Fulkerson [1962] .

The bottleneck operation in many preflow based algorithms, such as the

algorithms due to Karzanov [1974] , Tarjan [1984], and Goldberg and Tarjan [1986], is

the number of non-saturating pushes. A partial explanation of why the number of

non-saturating pushes dominates the number of saturating pushes is as follows: The

saturating pushes cause structural changes — they delete saturated arcs from the

residual network. This observation leads to a bound of 0(nm) on the number of

saturating pushes -no matter in which order they are performed. The non-saturating

pushes do not change the structure of the residual network and seem more difficult to

bound. Goldberg [1985] showed that the number of non-saturating pushes is 0{t\^)

when nodes are examined in a first-in-first-out order. Goldberg and Tarjan [1986]

reduced the running time of their network flow algorithm by using dynamic trees to

reduce the average time per non-saturating push. Cheriyan and Maheshwari [1987]

showed that the number of non-saturating pushes can be decreased to 0(n^ m^' ^) if

flow is always pushed from a node with highest distance label, and they showed that

this bound is tight. In the next section, we show that by using scaling, we can

dramatically reduce the number of non-saturating pushes to ©(n-^ log U) . We have

13

recently discovered a new scaling algorithm which further reduces the number of

fr?- log U A
non-saturating pushes to O ^ iTT • ^^^^ result is presented in Ahuja, Orlin and

Tarjan [1987].

3. The Scaling Algorithm

Our maximum flow algorithm improves the generic preflow-push algorithm

of Section 2 by using "excess scaling" to reduce the number of non-saturating pushes

from O(n'^m) to 0(n^ log U) . The basic idea is to push flow from active nodes

with sufficiently large excesses to nodes with sufficiently small excesses while never

letting the excesses become too large.

The algorithm performs K = flog U1 + 1 scaling iterations. For a scaling

iteration, the excess-dominator is defined to be the least integer A that is a power of

2 and satisfies e^ < A for all i e N . Further , a new scaling iteration is considered

to have begun whenever A decreases by a factor of 2. In a scaling iteration we

guarantee that each non-saturating push sends at least A/2 units of flow and that the

excess-dominator does not increase. To ensure that each non-saturating push has

value at least A/2 , we consider only nodes with excess more than A/2 ; and among

these nodes with large excess, we select a node with minimum distance label. This

choice ensures that the flow will be sent to a node with small excess. We show that

after at most Srr- non-saturating pushes, the excess-dominator decreases by a factor

of at least 2, and a new scaling iteration begins. After at most K scaling iterations,

all node excesses drop to zero and we obtain a maximum flow.

In order to select an active node with excess more than A/2 and with a

minimum distance label among such nodes, we maintain the lists

LIST(r) = { i € N : ej > A/2 and d(i) = r) for each r = 1, . .
.

, 2n-l . These lists

can be maintained in the form of either linked stacks or linked queues (see, for

example, Aho, Hopcroft and Ullman [1974]), which enables insertion and deletion of

elements in 0(1) time. The variable level indicates the smallest index r for which

LIST(r) is non-empty.

As per Goldberg and Tarjan, we use the following data structure to efficiently

select the eligible arc for pushing flow out of a node. We maintain with each node i

the list, A(i) , of arcs directed out of it. Arcs in each list can be arranged arbitrarily.

1 4

but the order, once decided, remains unchanged throughout the algorithm. A special

arc named null is appended to the end of each list. Each node i has a current arc (i, j)

which is the current candidate for pushing flow out of i. Initially, the current arc of

node i is the first arc in its arc list. This list is examined sequentially, and whenever

the current arc is found to be inadmissible for pushing flow, the next arc in the arc

list is made the current arc. When the arc list has been completely examined, the

null arc is reached. At this time, the node is relabeled and the current arc is again set

to the first arc in the arc list.

The algorithm can be formally described as follows:

algorithm MAX-FLOW;

begin

PRE-PROCESS;

K : = 1 + riog U1 ;

for k : = 1 to K do begin

A = 2K-k

for each i€ N do if ei>A/2 then add i to LIST(d(i));

level : = 1 ;

while level < 2n do

if LIST(level) = then level : = level + 1

else begin

select a node i from LIST(level);

PUSH/RELABEL(i);

end;

end;

end;

15

procedure PUSH/RELABEL(i);

begin

found : = false ;

let (i, j) be the current arc of node i;

while found = false and (i, j) ^ null do

if d(i) = d(j) + 1 and Tj; > then found : = true

else replace the current arc of node i by the next arc (i, j);

if found = true then begin (found an admissible arc)

push min (ej , rj: , A - e;} units of flow on arc (i, j) ;

update the residual capacity r^: and the excesses ej and e;

;

if (the updated excess) ej<A/2 , then delete node i from LIST(d(i));

if j
?t s or t and (the ufxiated excess) e; > A /2 , then add node] to LIST(d(j))

and set level : = level - 1;

end

else begin (finished arc list of node i)

delete node i from LIST(d(i));

update d(i) : = min{d(j) + 1 ; (i, j) € A(i) and rj; > 0}

;

add node i to LlST(d(i)) and set the current arc of node i to the

first arc of A(i);

end;

end;

4. Complexity of the Algorithm

In this section , we show that the distance-directed preflow-push algorithm with

excess scaling correctly computes a maximum flow in 0(nm + n'^ log U) time.

Lemma 5. The scaling algorithm satisfies the following two conditions:

C3. Each non-saturating push from a node i to a node j sends at least

A/2 units of flow.

C4. hlo excess increases above A (i.e., the excess-dominator does not

increase subsequent to a push).

1 6

Proof. For every push on arc (i, j) we have e^ > A/2 and e; < A/2 , since node i is a

node with smallest distance label among nodes whose excess is more than A/2, and

d(j) = d(i) - 1 < d(i) by the property of the push operation. Hence , by sending min

(ej , rjj , A - e;) > min {A/2 , rj:) units of flow, we ensure that in a non-saturating

push the algorithm sends at least A/2 units of flow. Further, the push operation

increases the excess at node j only. Let e'; be the excess at node j after the push.

Then e'; = e: + min { ej , rj; , A - e;) < e; + A - e; < A . All node excesses thus

remain less than or equal to A .

While there are other ways of ensuring that the algorithm always satisfies the

properties stated in the conditions C3 and C4, pushing flow from a node with

excess greater than A/2 and with minimum distance among such nodes is a simple

and efficient way of enforcing these conditions.

With properties C3 and C4, the push operation may be viewed as a kind of

"restrained greedy approach." Property C3 ensures that the push from i to j is

sufficiently large to be effective. Property C4 ensures that the maximum excess

never exceeds A during an iteration. In particular, rather than greedily getting rid

of all its excess, node i shows some restraint so as to prevent e: from exceeding A.

Keeping the maximum excess lower may be very useful in practice as well as in

theory. Its major impact is to "encourage" flow excesses to be distributed fairly

equally in the network. This distribution of flows should make it easier for nodes to

send flow towards the sink. This may also be important because of the following

consideration: suppose several nodes send flow to a single node j creating a large

excess. It is likely that node j would not be able to send the accumulated flow closer

to the sink, in which case its distance label would increase and much of its excess

would have to be returned. This phenomenon is prevented by maintaining

condition C4.

Lemma 6. If each push satisfies conditions C3 and C4, then the number of

non-saturating pushes per scaling iteration is at most 8n^ .

Proof. Consider the potential function F = £ e^ d(i)/A. The initial value of F at the

ieN

1 7

beginning of A-scaling phase is bounded by Zn-^ because ej is bounded by A and

d(i) is bounded by 2n . When the algorithm examines node i, one of the following

two cases must apply:

Case 1. The algorithm is unable to find an arc along which flow can be

pushed. In this case no arc (i, j) satisfies d(i) = d(j) + 1 and rj: > and the distance

label of node i goes up by e > 1 units. This increases F by at most e units. Since

the total increase in d(i) throughout the running of the algorithm for each i is

bounded by 2n, the total increase in F due to relabelings of nodes is bounded by 2rr

in the scaling phase (Actually, the increase in F due to node relabelings is at most Irr-

over all scaling phases).

Case 2. The algorithm is able to identify an arc on which flow can be pushed

and so it performs either a saturating or a non-saturating push. In either case, F

decreases. A non-saturating push on arc (i, j) sends at least A/2 units of flow from

node i to node j and since d(j) = d(i) - 1, this decreases F by at least - units . As the

initial value of F for a scaling phase plus the increases in F sum to at most 4rr ,

this case can not occur more than Srr- times.

Theorem 1. The scaling algorithm performs Oirr- log U) non-saturating pushes.

Proof. The initial value of the excess-dominator A is 2' '°8 '-^
' < 2U . By Lemma

6 , the value of the excess-dominator decreases by a factor of 2 within 8n^

non-saturating pushes and a new scaling iteration begins. After 1 + flog U 1 such

scaling iterations, A < 1; and by the integrality of the flows e^ = for all

i e N - {s, t). The algorithm thus obtains a feasible flow, which by Lemma 4 must be

a maximum flow.

Theorem 2. The complexity of the maximum flow scaling algorithm is

Oinm + n^ log W .

18

Proof: The complexity of the algorithm depends upon the number of executions of

the while loop in the main program. In each such execution either a

PUSH/RELABEL(i) step is performed or the value of the variable level increases.

Each execution of the procedure PUSH/RELABEL(i) results in one of the following

outcomes:

Case 1. A push is performed. Since the number of saturating pushes is 0(nm) and

the number of non-saturating pushes is 0(n^ log U) , this case occurs

0(nm + n^ log U) times.

Case 2. The distance label of node i goes up. By Corollary!, this outcome can occur

0(n) times for each node i and OCn'^) in total.

Thus the algorithm calls the procedure PUSH/RELABEL(i) 0(nm + n^ log U) times.

The effort needed to find an arc to perform the push operation is 0(1) plus the

number of times the current arc of node i is replaced by the next arc in A(i). After

I A(i) I such replacements for node i. Case 2 occurs and distance label of node i goes

up. Thus, the total effort needed is V 2n I A(i) I = 0(nm) plus the number of

ie N
PUSH/RELABEL(i) operations. This is clearly 0(nm + n^ log U).

Now consider the time needed for relabel operations. Computing the new

distance label of node i requires examining arcs in A(i). This yields a total of

V 2n I A(i) I = 0(nm) time for all relabel operations. The lists LIST(r) are stored

i€ N
as linked stacks and queues, hence addition and deletion of any element takes 0(1)

time. Consequently, updating these lists is not a bottleneck operation.

Finally, we need to bound the number of increases of the variable level. In

each scaling iteration, level is bounded above by 2n - 1 and bounded below by 1.

Hence its number of increases per scaling iteration is bounded by the number of

decreases plus 2n . Further, level can decrease only when a push is performed and in

such a case it decreases by 1. Hence its increases over all scaling iterations are

bounded by the number of pushes plus 2n(l + riogUl), which is again

0(nm + n^ log U) .

1 9

5. Refinements

As a practical matter, several modifications of the algorithm might improve

its actual execution time without affecting its worst case complexity. We suggest

three modifications:

1. Modify the scale factor.

2. Allow some non-saturating pushes of small amount.

3. Try to locate nodes disconnected from the sink.

The first suggestion is to consider the scale factor. The algorithm in the

present form uses a scale factor of 2, i.e., it reduces the excess-dominator by a factor 2

in each scaling iteration. In practice, however, some other fixed integer scaling factor

P > 2 might yield better results. The excess-dominator will then be the least power of

P that is no less than the excess at any node, and property C3 becomes

C3'. Each non-saturating push from a node i to a node j sends at least A/p

units of flow.

The scaling algorithm presented earlier can easily be altered to incorporate the

p scale factor by letting LIST(r) = (i e N : ej >A/p and d(i) = r). The algorithm can be

shown to run in 0(nm + pn'^ logg U) time. From the worst case point of view any

fixed value of p is optimum; the best choice for the value of p in practice should be

determined empirically.

The second suggestion focuses on the non-saturating pushes. Our algorithm

as stated selects a node uith e^ > A/2 and performs a saturating or a non-saturating

push. We could, however, keep pushing the flow out of this node until either we

perform a non-saturating push of value at least A/2 or reduce its excess to zero. This

variation might produce many saturating pushes from the node and even allow

pushes after its excess has decreased below A/2. Also, the algorithm as stated sends at

least A/2 uruts of flow during every non-saturating push. The same complexity of

the algorithm is obtained if for some fixed r > 1 , one out of every r > 1

non-saturating pushes sends at least A/2 units of flow.

The third suggestion recognizes that one potential bottleneck in practice is the

number of relabels. In particular, the algorithm "recognizes" that the residual

network contains no path from node i to node t only when d(i) exceeds n - 2 .

20

Goldberg [1987] suggested that it may be desirable to occasionally perform a breadth

first search so as to make the distance labels exact. He discovered that a judicious use

of breadth first search could dramatically speed up the algorithm.

An alternative approach is to keep track of the number nj^ of nodes whose

distance is k. If nj^ decreases to after any relabel for some k, then each node

with distance greater than k is disconnected from the sink in the residual network.

(Once node j is disconnected from the sink, it stays disconnected since the shortest

path from j to t is nondecreasing in length.) We would avoid selecting such nodes

until all nodes vdth positive excess become disconnected from the sink. At this time,

the excesses of nodes are sent back to the source. This approach essentially yields the

two phase approach to solve the maximum flow problem as outined in Goldberg and

Tarjan [1986] . The first phase constructs a maximum preflow which is converted to a

maximum flow in the second phase.

6. Fuhire Directions

Our improvement of the distance directed preflow-push algorithm has

several advantages over other algorithms for the maximum flow problem. Our

algorithm is superior to all previous algorithms for the maximum flow problem

under the reasonable assumption that U is polynomially bounded in n. Further,

the algorithm utilizes very simple data structures which makes it attractive from an

implementation viewpoint.

Our algorithm is computationally attractive from a worst-case perspective

even if U is not 0(n^'^'); that is, if the arc capacities are exponentially large numbers.

In this case, the uniform model of computation, in which all arithmetic operations

take 0(1) steps, is arguably inappropriate. It is more realistic to adopt the logarithmic

model of computation (as described by Cook and Reckhow [1973]) which counts the

number of bit operations. In this model, most arithmetic operations take OQog U)

steps rather than 0(1) steps. Using the logarithmic model of computation and

modifying our algorithm slightly to speed up arithmetic operations on large integers,

we claim that our algorithm would run in 0(nm log n + n^ log n log U) time. The

corresponding time bound for the Goldberg-Tarjan algorithm is 0(nm log {vr/m)

log U). Hence, as U becomes exponentially large, our algorithm becomes more and

more attractive relative to the Goldberg-Tarjan algorithm. Our results in the

logarithmic model of computation will be presented in a future paper.

21

CXir algorithm is a novel approach to combinatorial scaling algorithms. In the

previous scaling algorithms developed by Edmonds and Karp [1972], Rock [1980] , and

Gabow [1985], scaling involved a sequential approximation of either the cost

coefficients or the capacities and right-hand-sides, (e.g., vs'e would first solve the

problem w^ith the costs approximated by C/2^ for some integer T. We v^ould then

reoptimize so as to solve the problem w^ith C approximated by C/2-^~^ , and then

reoptimize for the problem with C approximated by C/2^~^ , and so forth.) Our

scaling method does not fit into this standard framework. Rather, our algorithm

works with true data, relaxes the flow conservations constraints and scales the

maximum amount of relaxation. The recent cost scaling algorithm of Goldberg and

Tarjan [1987] for the minimum cost flow problem is similar in nature ~ this

algorithm scales the relaxation of the complementary slackness conditions.

The scaling algorithm for the maximum flow problem can be improved further

by using more clever rules to push flow or by using dynamic trees. We describe such

improvements in Ahuja, Orlin and Tarjan [1987]. We show that by using a larger scale

factor and pushing flow from a node with highest distance label among nodes having

V n^ log U A
sufficiently large excess, the algorithm runs in Q nm + |

—

-,
—tj time (Assume that

U > 4.). Use of the dynamic tree data structure further improves the complexity of this

/ f T\ log U \\
algorithm to Oj^nm logj^—

,^^-f^^+2jJ.

We have also undertaken an extensive empirical study to assess the

computational merits of the preflow-push algorithms versus the previous best

algorithms, those of Dinic and Karzanov. Our experiments so far suggest that

preflow-push algorithms are substantially faster than Dinic's and Karzanov's

algorithms.

Our algorithms and those due to Goldberg and Tarjan suggest the superiority

of distance label based approaches over the layered network based approaches. The

improvements we have obtained do not seem to be possible for the algorithms

utilizing layered networks. The distance labels implicitly store dynamically changing

layered networks and hence are more powerful. We show the use of distance labels

in augmenting path algorithms, capacity scaling algorithms and for unit capacity

networks in Orlin and Ahuja [1987].

22

The maximum flow problem on bipartite networks is an important class of the

maximum flow problem (see Gusfield, Martel and Fernandez-Baca [1985]). The

bipartite network is a network G = (N, A) such that N = N| u N2 and

A c N-j X N2 . Let n-j = I N-j I and n2 = I N2 I • For cases where n-j < < n2, our

2
maximum flow algorithm can be modified to run in 0(n|m + n, log U), thus

resulting in significant speedup over the original algorithm. Our results on bipartite

network flows will appear in a future paper jointly with C Stein and R. Tarjan.

Our maximum flow algorithm is difficult to make "massively parallel" since

we push flow from one node at a time. Nevertheless, with d = fm/nl parallel

processors we can obtain an 0(n^ log Ud) time bound. Under the assumption that U
= O(n^^^^0, the algorithms runs in 0(n^ log n) time, which is comparable to the best

available time bounds obtained by Shiloach and Vishkin [1982] and Goldberg and

Tarjan [1986] using n parallel processors. Thus, our algorithm has an advantage in

situations for which parallel processors are at a premium. Our work on the parallel

algorithms will also appear in a future paper.

Acknowledgements

We wish to thank John Bartholdi, Tom Magnanti, and Hershel Safer for their

suggestions which led to improvements in the presentation. This research was

supported in part by the Presidential Young Investigator Grant 8451517-ECS of the

National Science Foundation, by Grant AFOSR-88-0088 from the Air Force Office of

Scientific Research, and by Grants from Analog Devices, Apple Computer, Inc., and

Prime Computer.

23

REFERENCES

Aho, A.V. , J.E. Hopcroft and J.D. Ullman. 1974. The Design and Analysis of

Computer Algorithms. Addison-Wesley, Reading, MA.

Ahuja, R.K., J.B. Orlin, and R.E. Tarjan. 1987. Improved Time Bounds for

the Maximum Flow Problem. Research Report, Sloan School of

Management, M.I.T., Cambridge, MA. 02139.

Cheriyan, J., and S.N. Maheshwari. 1987. Analysis of Preflow Push

Algorithms for Maximum Network Flow. Technical Report, Dept. of

Computer Science and Engineering, Indian Institute of Technology, New

Delhi, INDIA.

Cherkasky, R.V. 1977 . Algorithm for Construction of Maximal Flow in

Networks with Complexity of OCV"^ VE) Operation, Mathematical Methods

of Solution of Economical Problems 7, 112-125 (in Russian).

Cook, S.A., and R.A. Reckhow. 1973. Time Bounded Random Access

Machines . /. of Comput. System Sci. 7 , 354 - 375 .

Dantzig, G.B., and D.R. Fulkerson. 1956. On the Max-Flow Min-Cut Theorem

of Networks. Linear Inequalities and Related Systems, edited by H.W. Kuhn

and A.W. Tucker, Annals of Mathematics Study 38, Princeton University

Press, 215-221.

Dinic, E.A. 1970. Algorithm for Solution of a Problem of Maximum Flow in

Networks with Power Estimation, Soviet Math. Dokl. 11 , 1277-1280.

Edmonds, J., and R.M. Karp. 1972. Theoretical Improvements in

Algorithmic Efficiency for Network Flow Problems. /. Assoc. Comput Mach.

19, 248-264.

Ford, L.R., and D.R. Fulkerson. 1956. Maximal Flow through a Network.

Can. J. Math. 8, 399-404.

24

Ford, L.R., and D.R. Fulkerson. 1962. Flows in Networks. Princeton

University Press, Princeton, New Jersey.

Fulkerson, D.R., and G.B. Dantzig. 1955. Computations of Maximum Flow in

Networks. Naval Res. Log. Quart. 2, 277-283.

Gabow, H.N. 1985. Scaling Algorithms for Network Problems. /. of

Comput. System Sci. 31, 148-168.

Gabow, H.N., and R.E. Tarjan. 1987. Faster Scaling Algorithms for Graph

Matching. Research Report, Computer Science Dept., Princeton University,

Princeton, New Jersey.

Galil, Z. 1980. An 0(v5/3 E^/S) Algorithm for the Maximal Row Problem,

Acta Informatica 14 , 221-242.

Galil, Z. and A. Naamad. 1980. An 0(VE log^ V^ Algorithm for the

Maximum Flow Problem. /. Comput. System Sci. 21 , 203-217.

Goldberg, A.V. 1985 . A New Max-Flow Algorithm. Technical Report

Mrr/LCS/TM-291 , Laboratory for Computer Science, M.I.T. , Cambridge, MA.

Goldberg, A.V. 1987. Efficient Graph Algorithms for Sequential and Parallel

Computers. Ph.D. Dissertation, Laboratory for Computer Science, M.I.T.,

Cambridge, MA. Available as Tech. Rep. MIT/LCS/TR-374.

Goldberg, A.V., and R.E. Tarjan. 1986. A New Approach to the Maximum

Flow Problem. Proceedings of the Eighteenth Annual ACM Symposium on

the Theory of Computing, 136-146. (to appear in J. of ACM.)

Goldberg, A.V., and R.E. Tarjan. 1987. Solving Minimum Cost Flow

Problem by Successive Approximation. Proceedings of the Nineteenth

Annual ACM Symposium on the Theory of Computing, 7-18.

Gusfield, D., C. Martel, and D. Femandez-Baca. 1985. Fast Algorithms for

Bipartite Network Flow. Technical Report No. YALEV/DCS/TR-356, Dept. of

Computer Science, Yale University, Yale.

25

Karzanov, A.V. 1974. Determining the Maximal Flow in a Network by the

Method of Preflows, Soviet Math. Dokl. 15 , 434-437.

Malhotra, V.M., M. Pramodh Kumar, and S.N. Maheshwari. 1978. An

O(IVI^) Algorithm for Finding Maximum Flows in Networks. Inform.

Process. Lett. 7 , 277-278.

Orlin, J.B., and R.K. Ahuja. 1987. New Distance-Directed Algorithms for

Maximum Flow and Parametric Maximum Flow Problems. Sloan W.P. No.

1908-87, Sloan School of Management, Massachusetts Institute of Technology,

Cambridge, MA. 02139.

Rock, H. 1980. Scaling Techniques for Minimal Cost Network Flows,

Discrete Structures and Algorithms, Ed. V. Page, Carl Hanser, Miinchen,

181-191.

Shiloach, Y., 1978. An 0(nl log^ (I)) Maximum Flow Algorithm. Technical

Report STAN-CS-78-702, Computer Science Dept., Stanford University, CA.

Shiloach, Y. , and U. Vishkin. 1982. An 0(n2 log n) Parallel Max-How

Algorithm. /. Algorithms 3 , 128-146.

Sleator, D.D., and R.E. Tarjan. 1983. A Data Structure for Dynamic Trees, /.

Comput. System Sci. 24, 362-391.

Tarjan, R.E. 1984. , A Simple Version of Karzanov's Blocking Flow

Algorithm, Oper. Res. Lett. 2 , 265-268.

/ V. J U 6

Date Due
\\f , I

SEP. 1 7 1992

Lib-26-6T

MIT LIBRARIES

3 TDfiD DD5 37b 72S

