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Generalized Picard-Lindelof Theory

Abstract; In this paper, a constraint algorithm is developed for the

purpose of obtaining conditions for the existence and unidueness of

solutions to systems of differential/algebraic eouations. The

underlying onnople of our constraint theory is to conceptually reduce

3 system of differential/algebraic equations to a form so that we can

prove the existence and uniqueness of its solution similar in manner

to that done via utilizing the Picard-Lindelof theory for ordinary

differential equations.

Key Words: Picard-Lindelof theory, differential/algebraic equations,

reduction technique, constraint, Lagrangian dynamics.

INTRODUCTION

The theory developed in this paper, which we will call our

constraint theory, will be utilized to obtain conditions for the

existence and uniqueness of the solution to a system of

differential/algebraic equations as is done for ordinary differential

equations. Recall that the Picard-Lindelof theory (or the method of

successive approximations) is used to investigate the conditions

under which an initial valued ordinary differential equation has a

solution and that that solution is unique. The underlying principle of

our constraint theor7 is to conceptually reduce a system of



differentiai/algeDraic equations to a form so that we can prove

existence and uniqueness of its solution in a manner similar to that

done via utilizing the Picard-Lindelof theory for ODE's.

Our constraint algorithm can De summarized as follows,

differentiate the system of differential/algebraic equations with

respect to the independent vanaDle x, study row spaces of certain

JacoDian matrices, perform various algebraic manipulations to

attempt to reduce the ill-posed system of differential/algebraic

equations to a well-posea, overdetermined system; then invoke

theorems such as The Fredholm Alternative Theorem, The implicit

Function Theorem, and The Picard-Lindeldf Theorem, to obtain

conditions for the existence and uniqueness of the solution to the

system of differential/algebraic equations.

Now we will Dnefly summarize what is to appear m the remainder

of this paper Section one will contain a discussion of concepts from

Lagrangian Dynamics, some of which will be utilized in our constraint

theory in section two we will introduce our constraint theory and

present several important theorems - which will be utilized in our

analysis Sections three and four will contain a derivation of our

constraint algorithm for nonlinear systems of differential/algebraic

equations. In section five we will present an application of our

constraint algorithm. Finally, in section six, we will present a

discussion of an extension of our local results to semi-local results.



I. Motivation from Lagrangian Dynamics

Our constraint theory is motivated by concepts from laqrangian

dynamics. For more details related to our snort digression on Lagrangian

dynamics, the interested reader is referred to [3] and [8]. The Lagrangian

equations of motion for conservative mechanical systems can be written as.

dt

<3L

^q,-

such tnat L := L(t, a(t), £'(t)) is the Lagrangian, and

contains the k dynamical coordinates, Qj
= q,(t), for I 1 1 i k.

The second order system (1,1) represents a mechanical system of the

standard case if it can be solved for the accelerations q", (1 i i i k) that

is, if q"j can be expressed in terms of q^ and q'j, for 1 i u k, in such a case,

if the initial dynamical coordinates and velocities are prescribed, the

accelerations can be obtained, and hence the motion of the mechanical

system can be determined via integration But if the mechanical system

(1 1 ) is such that we are not able to solve for all k components of the

acceleration q"j ( 1 i i i k), this is a nonstandard case ^ud^ the

mechanical system is said to be subject to constraints This means



ir>3i '.ne ayr.amicdi coorainares ana velocities are riot indepenoent Tuncnon'i

of time that is, a functional relationship exists between g_ and g'

Now suppose we consider systems with k degrees of freedom {^v

independent generalized coordinates). Given the Lagranqian Lit,4(t),^'(t)),

we define the following matrix of partial derivatives with respect to the

velocities:

w(t4(t)4'(t))= [w,

2

a L

^q,^q,

(1

such that 1 1 ij 1 k

By expanding the first term of the Lagrangian equations of motion (ID

and using the matrix defined by ( 1 ,2) we obtain equations of the form

2W,jqj =a,(t,a(t)4(t)),
j-t

1 T\
' J)

such that 1 i U k. The accelerations can be uniquely solved for that is, the

Lagrangian is standard, if and only if the matrix W is of maximal rank But

if W is rank-deficient, the Lagrangian equations of motion do not yield all

the accelerations as functions of the dynamical coordinates and velocities



.n [d] trie 3'.:^.^o''z exar^'ine m some aeiaii ihe -aara.ngian eqoaticr'S :"' "'cvvp

for the nonstandard case to understand tne nature of tne solution to tr,e

equations of motion

Let us now examine the case where W in ( 12) is rank-deficient, that is,

Its ^ank ? is less than k Therefore, there exist k-R iinearly indeoenoent

null eigenvectors

V(m)(t4(t),4(t)) := iv,(m)(t,g(t),^'(t)), ... ,Vk(m)(t,g(t)4(t))jT

for tne matrix w, such t.hat

2 v,('^v)(t,(^(t)4Xt)) W,,(t4(t)4(t)) = 0, (14)

for I < m 1 k-R and M j i k. Equations (1.3) and (1.4) yield the following k-R

relations involving the Qj and q'j:

k

2v,(f"Ht4(t),q'(t))a,(t4(t)4(t)) = 0,
'

(15)

for 1 < m i k-R, The relations defined in (1.5) are called constraints m

the Lagrangian sense. They are consequences of the equations of motion, and

place restrictions on the choice of the initial values of the dynamical

coordinates and velocities.



2. Introduction to Constraint Algorithm

Suppose we consider general nonlinear overdetermined systems of

differential/algebraic equations of tne form:

E(x,y(x),it(x)) = 0, xe [xo.Vir.j. (2.1)

suDject to the initial conditions

such that

and

m 2 n.

To utilize our constraint theory to obtain conditions for the existence

and uniqueness of solutions to systems of the form (2. 1 ), we will find it

necessary to assume certain algebraic and smoothness properties for (2. l ),

which will be valid m some neighborhood around a specified point m the

domain of our problem Given these algebraic and smoothness assumptions,

we will obtain a local solution to a certain class of systems of the form

(2. 1 ). These local results will then be extended to semi-local results over

larger subdomains of the domain of our problem - for which our algebraic

and smoothness assumptions also hold.



Given ce^iain proDiem-aeDendent matcninq or interface conc-Jcns, we

may also oe aole to extend our semi-local results to glooal results for

systems of differential/algeoraic equations with discontinuities t)y

"piecewise patching" our semi-local results together at the discontinuous

interfaces of our domain if system (2^ 1 ) is such that dF/ay undergoes a

rank change, it is a system with turning points (which is analogous to a

system with discontinuities ) The extension of our semi-local results to

handle systems of differential/algeDraic equations with turning points will

not be discussed in any detail, in part because our motivating problems are

decoupled systems of differential/algebraic equations without turning

points.



2.1 Theoretical Tools

important tools, whicn we wiil utilize in our constraint analysis, 2'"e

tne Fredholm Alternative Tneorem [7], tne imDlicit Function Theorem [5], and

tne ^Mcara-L'.noeiof theorem [i]. Recall The Fredholm Alternative Theorem

!S 3 too] used ;n descr'oing the solution to rectangular systems of I'near

eouations of the form

Ax = D, (2 2)

such that

A G R^^'<^

and

D 6 R^

Theorem 2.1: Fredholm Alternative Theorem

For any A and H, one and only one of the following systems has a solution'

(1) Ax = &

(11) z1a = o^, zi*o D

The general version of the Implicit Function Theorem can De stated as

follows:

Theorem 2.2: Implicit Function Theorem

Let a c Rq+r t5e an open set. Consider a general nonlinear system of

equations of the form



F(w,z) = Few,, ,Wq,2,, ,2^) = 0, (23:

such that

FA -> Rr

we Ra,

and

ZG Rr

Let F be a function of class 6"p(A). Suppose (w^.Zo^ e A and F(w^,2o) " ^

Suppose aF/az. - evaluated at (w^,z^) - is of maximal rank Then there is a

neignDorhood U c Rq of wq, and a neighborhood V c R^ of Zo, and a unique

function ^;Li -* V, such that

£(w,^(w)) = 0, (2.4)

for all w e U Furthermore, ^ is of class 6'P.n

Once we have utilized the implicit Function Theorem to reduce an

implicit system of differential equations to an explicit system, we can

invoke the Ptcard-Lindelof Theorem to prove existence and uniqueness of a

solution to the system of implicit differential equations. The following

definition is needed to understand the Picard-Lindeldf Theorem,

Definition 2.1: Suppose f is defined in a domain A" c [xg.Xfin] x R" ''

there exists a constant L > such that, for every (x,yi), {x,^) e R"

llf(x.yi)-I(x.y2)liiUly, - ^l (/S)



triHn 1 ]i rdid to xati :.:y .3 Lipschiiz condition [--h'X^ re'E.pHrt :c £; ;r; J?,",

This tact wil; by cer;:.*?^ jy fe Lip In Jl" The :jr;;.tar;t L i? called '.ne

Lipschitz constant if, wi addition ^ is 0; Ciass C%, K) vve can vvnte

fe (z:o, Lip) in R G

if the domain K vi convex then an apDii cation of the General" zed

Derivative Mean-Value Theorem [6] shows that the e:<istence and

joundedness of iicif/^ivjl m % are sufficient for != Lip in R" The Lipscn;;-

constant L can be defined as

L .= sup ii^f(>i,ii)/dv||.

The results of the Picard-Lindelof Thecrerri can be deduced for all (x v ) in

a region ft c Rr^+i
, vvhich is defined as foliows:

% Ix -
:<,;)1 i a i!v - v^ll < b'

wnere a .> 0, b ; But vve will only be interested in the application of the

Picard-Lindelof Theorem when applied to an antisyrnmietnc interval on the

j<-axis: that is, the results of applying the Picard-Lindelof Theorem will be

deduced for all (x,v) in a region % c [xQ,Xfjf,] x R", which is defined as

follows:

R: (xo,Xo+a] ilv -yo'l ^ ^

where a > 0, b > 0. if f. is of class r'3(Jl), then lis bounded there. Let

M .= sup llfJL



11

and

€ .: rmnia.lj/h)

vv'e dfi? novv prepared to state the Ficard-Lindel.:!' theorern fGr an

antiiyrnrnetncal interval [xn^Xn+e]

Theorem 2.3: Picard-Lindelof Theorem

Suppose le Cr'^iip) on Jl Conoidsrthe ccntinucus successive

approKimations ^ which exist on [xr,,Xo-*-e], and are oefined as

$q(XJ = V£), (2.6^

*k+1^^^)= '/£ * f'V3,lk('5))dS.

for

r.; -.4.-1

r9 71

k s [01 '^-^^ N.

The successive approxinnations ^ converge uniformly on [xQ,Xo+e] to the

unique solution $, such that ^Cxq) = v^.D

Thus if le ro(Jl) and satisfies a Lipschitz condition with respect to v on 'R,

the Picard-Lindelof Theorem asserts that there exists a unique local

solution to (2.1)

.



3. Derivation of Constraint Algorithnri

iDur constraint t.heoru wdu dh .spplieu tj variable ano constant coHff^:;^nt

I'BQ u 1 3 r s y s 1 1?

f

'n s o f d i f
?' ?

r

p n t -5 i
,• a i g t- b r a i c ^ a u a t ; o n s . h o vv e v i? r , vv e vv 1 1 i o n ] y

Drespnt cur ccnstraint thporu for rpctanquiar noniinpar sust^rns of the •'orrn

(.2.1.) But for a derivation of our algorithm applied to constant and variable

coefficient systems, see [4].

Suppose we consider a nonlinear function F_, V'/hich is defined on an open

set Dq c R-ri+i
, and takes on values in Ri^- that is, a function of the form

such that

and

m > n.

The open set Dn contains the convex set

D .= [.:<n.x^^,] X Rn X R^'.

Now suppose we temporarily assume that there exists a smooth function.

1^ such that

and the following is true:

F(x.i^(x),z(x)) = 0, (.5 2)

subiect to the initial conditions



.
,- .-. * i t

m ^ n.

y/e are interested in nonlinear systems of the form (3 2), such that one

of the lollovv'ing three situations is true:

(i) rn = n. and the Jacobian IdF/.?z] is rank-deficient and of constant ranK

on ti c D, such th.^t

:= vv,,. X Wv A 'rt'r,

vi.f c Rri IS a neighborhood of v.-, and VV, c R^ is a neighborhood of Zq.

(n) m > n, ana the Jacobian IdF/.izj is of maximal rank on n.

(lii) m > n. and the Jacobian [dF/'^zJ i^ rank-deficient and of constant

rank on n.



3.1 Definition of Constraints

The following definiticn is made for notational convenience.

Definition 3. 1: The zeroth order constraints for the system (3 2)

are defined as

FtOkxxZ) =F(xx2) = 0. (3,3)

cuch that

(xxD e D,

and

\ n f fprAOtiai'inn '=:V'=;'''='m
("^ '^) W^t^h rP'^nert- fn v N/ipldQ

dPfoVdx = [aFioi/azJr * [dPtoi/aj^z * [dPtoi/ax] = o. (34)

The system (3.4), along with the substitution z = ^', can be written as

aF
[0]

az

[0]
a

(3.5)

such that

fttoi := a'o'(xxz) = -([aEioi/ayJz * [aF(oi/ax]). (3.6!



we Win aenote tr^e rank and nuility of [dFloi/dzj on n as the constants

/?([dF:o;/a2j)= R2.0

and

//([aF!o]/az]) = No.o = ^-^2,0
•

respectively Also, let us denote the nullity of [dROi/aTjT on n as the

constant

A/(iaFfOI/azJ^) = N2,o = rri[0] - R2,o,

where m[0] := m.

Because the matrix [dFj^l^dzJ^ is rank-oef icient on n and/or m > n,

N2,o > on n. The matrix [aFto'/azJ^ has N2,o linearly independent null

vectors of the form

= [vo/'UxxZ). . , Vo.m('HxxZ)F. (3.7)

cweh that

[y^u)]T[^Ft01/a2] = 0^, (3 8)

for 1 < 1 < N2.0, and (x,y,z) e n.D

Definition 3.2: The f/rst order constraints of the nonlinear

system (3 2) are defined as

Fm*,:=Fm*,(xxz):=[V'^ra[01 =0, (3.9)

f or 1
i

)
i N2.0

, and (x^Z) e tt.



D

Definition 3.3: VVh rn]] lyt
£'*' uenote the overdeterrrnriHij s^HtHm of

ijiffprential/dlgpbrau: equations which oonsists of the zeroth order

constraints (3.3), and the first ofinr constraints (3.9): that is, an

overdetermined system o: the form

i.'> (I

such that

and

mil] := rnlO] + N2o.n

To further Ciassify our first order constraints, we vYill need to define

the following Jacobian matrices:

ji '^ = J1 ^:<:ti) = [i^Fj-'l' dvj (3. 1 1 a)

J2,0 - J2.,0(^ ^^2) := li^FfOj/dZJ (3. i 1 &)

and

J3,0 3 J3,0(v^v^z) = [.J1 .0!J2,0) (3. 1 1 c)

for (xil) s n We will also assume tnat Ri ,o
•= mJ^'°) and Rzfi .- aTj^.o)

are constants on ti.

We will now define the three types of first order constraints of the

nonlinear system (3.2). Because the matrices defined in (3.1 1) are functions

of (xxz), our definitions of the three types of first order constraints will

be pointwise: that is, will be for each h<:i^z) e n.



Definition 34: First Order Consirdints of Type A

It «!iFm+i /az.is not v:\ Vne .-c.vv ipace d*' J^-'^ , Fm+i v-. j :'ir;t order

constraint of type AD

Definition 3.5; First Order Constraints of Type B

if dFm+1 idz}^ -n the row ipacs of J-'*^, uut [oFrn+i /^vj^Fm-M /cizlis not in

the row space of ^^'^
, Fm+i is a first order constraint of type B n

Definition 3.6: First Order Constraints of Type C

if i'3Fm+i /fX'kiFrn+i I'h-A i^ in the row soace of ^'''^
• Fm+i is a nrjt 'jT'LcV

constraint of type CD

Let there be

first order constraints of type A,

of type u. and

of type C, for all \:a}j_,z) e n We will assume that the function defined Dy

(3.1) IS such that n.y^^'^, n^^^^_. and /?,tciare constants on n. with

Although we have ^\\'[iX order constraints of type L(for L = A,B) on n

they nnay not be linearly independent. Also, some of the first order

constraints of type L may be linearly dependent on the zeroth order



rorrr.t.raint.i. Thyn?iorc'. int triHre be rii^i •'I'J-iii nearly indepenijent fir;!

order cunstraints of type L on J\ .vTnch are ai?o linearly mdepenijenl of t.ne

zeroth order constraints, fort = A and B^ Also, let ,•?)•'-
1 i/:ii'-i denote the

number of linearly independent first order constraints of type C. These

first order constraints are such that

n^ + n^ + f!^ ^

. lit i

w.

and n, (L = A,E;:) are constants on n.

Vve vvlll not discard any of our redundant or linearly dependent first ordei

constraints because our classification is pointwise. Decuase it may be

difficult to numiencally detect \\:,\i^'^ dependence, and because there is a

notational advantage in perservinq the size of f.^iJ.



i^Jow y^/8 will dsiine higher of-dsr cnnstrsmts, ,2ncl tor;

constraint theory Consider tne overdetermmed system

?f.j|?ipct to the mitia) conditions

^^^'^o^ = iii:..

•J |.< i 1 J 1
1 :

, n ; ij
I

uch that

'i 3. 1 3-3)

(3.13b)

No „ := No - IX,V 2,) ;= NiS-fi ) = n - Ro ^

= m[/?]-R2^,

1 < s < n,

p 6 {0} U M,

1 < r< ml/?).



''lV r ] - "l

m for i.7 =

r

m[^-ij + N2^-i for :f >

Also, for noldt.ional convenience, we define the followlnqJacotiidn

matr'x:

-' "^ - '-' '^ '
' ...i_'.s.' - ''-'rj; 1 - I '-i "^

1
-' ^ 1, V-'. I •-L/

1 1 s i n..

•and

(x.V Z^' e D.

We n]]] .alio aviurne that R,^. ^i^^'h^^f^z^^ '^z^> ^--^ ^re constants on

n

V'/e see that the overdeternriined system (3.12) is obtained fronn the

zeroth to (/?-l)3t order constraints - that is, fronn Ft-^-H - and from the

;7th order constraints F^[^.,]+, (I i i < ^2^). Differentiating the nonlinear

system (3.12) with respect to x yields

dF^ 1/dx := .J2^ z' + J' ^ Z + aFU^ l/ax = (3 1 4)



The system (3.14), i3long wit.n the .-.ubstitution z ^ v , can De written as

i

= !,.>]

;.uch that

i'7 i=;i

o ic,

if [J^'..^F is rank-deficient and/or mix?] > n on n, [J^^F has N-. , >

linearly independent null vectors of the form

1
"7

I f

for 1 i 1 i ^2^, i? :: 1, and (xxi) « ** The first ^2^-1 null basis vectors in

(3.17) can be chosen to be isomorphic to the vectors

(3.18)

for 1 1
J

i ^2^,-1 , jp >
1 , and (x,v,2,^ e tt By definition of (3. 1 7), V'/e nave

[yjW]Tj2^ ; qT, (3 19)

for 1 i 1 i N-. ,, , and (x,y,z) « n. From systems (3 15) and (3.19) we obtain

the following N2^ expressions:

for 1 < 1 < J^2Jf , and (xxi) « **

i'"^ "Of

Now we are prepared to pointwise define the three types of higher order

constraints for rectangular nonlinear systems of differential/algebraic



Hquatiins of thH form (3 2): tnat ]i. (//-^n^t orcer constraint:; of typps A, S,

and C for (3.2), such that ^:<:tz) ^ ^

Definition 3.7: {p* I)st Order Constraints of Type A

if jFr^f^^ ]+,/ jz. li not in the ror/ jpacd oi J-^v^, F^.r,, i+, i:. a (^ + Dit order

constraint of typii a.H!

Definition 3.8; (p+ })st Order Constraints of Type B

'1" ^'^rnti']+!''^Iis ifi *''S '"''vv space of J2y?, but [JF^f_^i+,/^y.l dF^,.,^^ ]+,/3zJ is

not in the row space of J-v^ F^^f,, 1+, is a (x' + Dst order constraint of type 3Z

Definition 3.9: (p* })st Order Constraints of Type C

If (aFr„(_^]+,/3y.! dFn^(^]+,/3zj is in the row space of J^^, Fn,(^]+, is a

{p^'-Vn'': order constraint of type C iH

Let there be

U7 + i)st order constraints of type A,

of type B, and

of type C, for all (xxz) e n V/e will assume that tne function defined oy

(3.1) is such that >7^+i^*l '^p^\^^\. ^^d -'/p^]^^^' are constants on n, vvith



Thsre rTidij e:-:i':.t 'mpar deDHrnJence amongit 'he v/^ +
1 )st ordt'r

constrairit:. of tupn l ,:ri n. for L = A and B. Also, some of tne (/"+! )i-.

order constraints of type L may be linearly dependent on some of tne zero'.r;

through /'th order constraints. Therefore, vve nave ru+,^ i ''i^+i^ linearly

independent (/7 + 1)st order constraints of type L on tl, which ctrf; also

linearly independent of the 2eroth through /'th order constraint;, such :nai

L = A, B. Also, let n.,+,['^l denote the number of linearly independent

(> + Dst order constraints of type C on 9\

These linearly independent (/7 + i )st order constraints are such tnat

n,,r^Uu^^^{B].n,,,l^Un2^, (3.21b)

and n^^+/iJ (L - A, B, is constant on n. By construction, for L = A and B,

if /7ji^ > 0, we have

U n,IU < sj^,

and if //Ji^ - 0, then n^^ = on n.

We vvill not discard any of our redundant or linearly dependent

(/":• + Dst order constraints because our classification is pointwise,

because it may be difficult to numerically detect linear dependence, and

because there is a notational advantage in preserving the size of F.U''+1j.
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4. Termination of Recursive Process

Our recursive croce.r.j - Dnrridnly involvinq diii'erentidtjnns and

inspections of row spaces - terminates if all the u' + Dst order constraints

are of type C for ('a;i,z) s n. The proof of tne f olloning lemma verifies that

our recursive process terminates at some finite stage.

Lemma 4.1:

There exists a nonnegative integer k. such that all the (k + 1 )st order

constraints are of type C on w ;= Vv. ;< p/' x p"
, or equivalently, there

exists a nonnegative integer k, such that P>jk = '-'j.k+i cm W. Also, if the

nonnegative integer ^ is such that R?.k= i^3,k+' then k > kD

Proof of Lemma 4.1:

Because ..i^v? has only 2n columns, ^3^-' is bounded aoove by 2n: that is.

R?^ ^ 2n

Information about the number of type A and B constraints on W can be

utliiized to express as follows:

Ri^ ,Rz,u* Z'/'i *^^ I (4 )a)
1=1

Because ni^'^l and ni^^l are nonnegative sequences, we can conclude from

(41a) that

R3^ < R3/>+i, (4. lb)

unless we have reached a stage in our recursive process where all the

constraints are of type C. that is,



Sirica r'?/-*! IS bouncJed irom above by 2n, vve know that Ihers Hxiit j ,3

nonneqative intPQer k, ;ijch tnat f,= k. and

5y DOinVvVise invoMng Lprnrna 4.1 , we knovv t.hat our rHCursive Df"0Ci?ss

IstTninatt'S at some stage i'= k. When our process terminates vve mi.jst

determine 11 the initial conditions are consistent, and also must c;';ecK for

one of the following four situations on M:

(1) R2,k = n, andR3k-^2,k<'^2..k•

(il) R2
)<. < n, and R? j,

- i^2.k ^ 1^2 ,k-

(iii) R2 k = '"' '3fid R^jr - R2,k = 1^2 k-

(iv) Ryy < n, and R^
i^

- R2 k = R2.k-

Situations (i) and (ii), which will be referred to as our primary

categorizations, are the most likely ones to occur. If our primary

categorizations occur, we will have utilized our constraint theory to

transform (3 2) to an explicit ordinary differential equations initial value

problem. Situations (lii) and (iv), which will be referred to as our secondary

categorizations, are desirable, but special cases If these secondary

categorizations occur, we will have utilized our constraint theory to

transform (3.2) to a nonlinear algebraic system.

We will utilize the necessary conditions for a solution to systems of the

form (3 2), which were obtained via our nonlinear constraint analysis, to



cerive iuflirient conijitions lor j :.oiutiori to \Z l) 'rirt .varf' ieo oy cur

coriflraint .anal

y

si? as to how wy snouid define ij^l on a traiectury ;n L that

is, £^1^] as defined in (3 12.) We have assumed that :.ne fjnr.i.Min defined oy

i!3 12) IS well-defined on n. This assumption is exp'icitiy stated in the

following definition:

Definition 4.1: The function F'''^^, defined in i.3. 12), is well-defined on

M. if the following is true:

(i) For >.7 = k, the vector [^F^i^l/.^x] is a smiooth function of x.

(ii) For/' = k, the Jacobian matrices defined in (3.13) are smooth, and of

constant rank and nullity on tt,

(iii) For L - A, B, C and < p ^ k +
1

, n^^ is a constant, on n

Let us extend the definition of Fl''- for arbitrary x. % and z on the open

domain Dq c R^n+i. mat is, let us consider a function of the form

Fji<](x,v.2). (4-2)

such that

and mik] > n. The corresponding Jacobian matrices are as previously defined

in (3. 13)



4.1 Termination of Process: Maximal Rank Differential

Equations Case

rirsT vvP vvili ijiscusi nrin!iri9ar systarns of the 'orm (3.2) and (3. '2). ''or

wni ch cur" rscuriive procesi terminates with 9.2 ^^
- n ariu

-'
k

~ ^-2 k -2 k
^'""1 ^ ''''''t' '''iii 'See that 11 in addition to having consistent

initial conditions, vve also nave R2 ^ = n, R3 j^
- R2 k

'
'^2,k..

^'"''^ certain

smoothness properties hold, then we vviii be able to obtain a unique '.ocai

solution to nonlinear syst.?ms of differential/algebraic liquations of the

formi (3 2). The criteria, which give us conditions for the existence and

uniQueness of a local solution to rectangular nonlinear systems of

differential/algebraic equations of the form (3.2), are stated in the ne^t

two theorems.

Theorem 4.1:

Let W„ c i:<Q,Xvi„] and V/^ c Rf^ be neighborhoods of Xn and Vj^,

respectively Suppose there exists a Zq s w. c R", such that

R2.k = ^[^'^^^o,)b'Zo^^ - f"' L^^ ^ = '''':< '^ '^i'^ '^'^'l

'- ^^^^ neighborhood of

(xo,^,2o) G D. Suppose the function L defined by (3.1), and the corresponding

well-defined function Ft'<l, defined by (4.2), exist on n and are of class



ji'J

Then Zq can be un'.que'wj i'.'.pfiHiC ir": lerrr.i of Xo and
;ifj G

Proof of Theorem 4 1

C:.nsMjrr the follov'/inq bai; abuut Zj-, of raaiuj p, ruch that p > o that i;

We claim tnat Ff^'CxQ^i^j.z) s 0, for z s B(Zri,p) - \Zq}, or equival^ntly,

i!Ft^'(Xo.^.z)ll > 0. for z ^ P(Zo.p) - iZol

Utilizing the fact that the function F^^'J is of class r^lrt), and taking the

Taylor's expansion of L-^-J(xri..Vch^ about the point (xq^Vj^.z^i) yields

Et^'(xo.^..z) = F[i<Kxo.Vo.=o3 * [3F5^Kxo.yo.=o)/^lI(i-io^ ' 0(||z-ZolF).

Taking norms of the previous expansion, utilizing the reverse triangle

inequality, and utilizing the definitions of the order syrnbol and singular

values, yield?

!!£^'^Kxo.,Vo.z)|i , ;l[aF[k](xo.,iJ3.,Zo)/^zi(z-Zo;ii - Gdiz-Zoii^)

^ i|[aF[M(xo,xo.Zo)/az](z-Zo -il
- c||z-Zoi!2

2 sJIz-Zoll - c||z-Zol|2

= llz-Zol|{s, * c(-liz-zcil)}

V'/e know that !|z-Zul! > for z s 5(z,j,,p) - {Zj:,}. We also know that

K * c(-llzrZoll)} > if !|z-Zoll < s^/c: that is, if p <; s^^/c.

Thus, we have proven that iiE^''^(xQ,i!:o,z)|| > 0, for all ze 3 r- ^"i '- ^

iuch that.



/.-'I

••//here $„ > is the smi3i lest E.ingu'.ar value of V^l}^My.rj,)i^j,ZQ)/dZj, and c > i5

defined via the Taylor's evpansion of E^^^i'<o.';lo-^' ^^^^'-^^^
'''Vi.'&'iij'' i^

Thus, if the hypothesis of Theorem 4. i is satisfied, vve can prove that a

'ocaliy unique set of consistent initial conditions for the initial value

proDlem (3 2) exists. We will now obtain conditions for the existence of a

unique local solution to system (3.2) by integrating the system (3 15),

subject to the initial conditions

Let us define £:W., —^ V/,j_x W^as follows:

i := [^,z7r. (4.4)

By definition of our (k+ Dst order constraints (that is, (3.20) with /? = k),

and the Fredholrn Alternative Theorem, v/e can express z in the system

(3.15) as a function of x and r. More explicitly, because certain consistency

conditions are satisfied at each (x,v.,z) en- that is, the (k+1)st order

constraints (3.20) hold at each {x;iz) e n, the Fredholrn Alternative

Theorem can be invoked to prove the existence of a solution to the innplicit

system (3.15) at each (x,ii^2) e n.

Thus, we can rewrite the implicit system (3.15) as the follov-/ing exDl'Mii'

system

subiect to the initial conditions



Vi ill ±jj •' - ••'•0'i---'0- ±.---ij-

such that

11.., rr,. ,\ 11;,

•aPij

h n -^
'i

is defined as

2,k

[J^'^(xxi)
,[^:]

The results of the following existence and uniqueness theorem for the

initial value problem (4.5) will be deduced for all (;<, z) in a region

P c n, which is defined as follows;

such that

\a/ . - fv. v.+f»1

W^ := UlU-ZoiUbl, •

Where a > 0, b > 0, W^- c W^, and W^ c w^^x w^. !f h is of class CHP)

then h is bounded there. Let

/V;= sup llhIL
; i

^-f.

and



::• I

t- = rnirua, ib///)). 14 3).

Theorem 4.2:

Suppose the hypothes):-: of Theorprn 4 i j? x.st.isiied Suppose fne initial

v^lue Drcbiem (4.5) is such that He (r-. Hd) m :7, rn\'r\ the LiDSch'tz

constant

L := sup II t(xx:) II,.

(x.j:)6i>

where

!4Qi

tCxiZj ;=

I.I

r -k
-jj ',X,V.,Z,ii J i. V '.t 7 i

for all (y..t'V « >*

"i"hen, there exists a unique solution

$.:= ^(X), X s (Xq, Xy + e^l (4.10)

of (4.5), sucn that ^(xq) = Jq '^l^'^. ^-^e unique solution to the nonlinear

sustern (3.2) is the first n components of ^: that is, the solution to (3 2) is

**:=**(x):=[*i(x), .. ., *n(.x)F.D (4.11)

Proof of Theorem 4.2:

Invoke the Picard-Lindelof Theorem.

D



4.2 Termination of Process: Rank-Deficient Differential

Equations Case

Next we will discLiss ncnunear systems of the form i,Z-2) and [Z.]2) for

vv'h^ch cur recursive process tarrni nates wun P; j, < n, and

Rt (,- R2
[:

; r<2 k
'^'''' ^- '''^ •''''' -'^^^ ^-"'^^ '•" ''' ^dd'ti jn to fiavlrg consistert

initial conditions for tne problem (3.2), we also have R2
1,

< n. and certain

smoothness properties hold on Jt, then we will only le atle to prove

existence of a solution to (3.2). This particular situation is summarized in

the following two theorems.

Theorenrj 4.3;

Let Vv'., c [xQ.XfmJ snd 'fi,^ c R""' be neignnorhoods of Xq and Vq,

respectively. Suppose there exists a Zn s R^, such that

rfklr.. .. ^ '1 - n i''4
^'"'"'^

j_^ •'-•••O'ZiO'iJD' - ^ '^ "-

r = R2 k ;= ^^[J^''^(:<o.&.iO''J < ^- ^^^ ** = '^'x ^ '^^'i ^ '^'r
'^ D be a neighbornood

of (xo,yo.Zj-j). Suppose the function L defined by (3.1), and the corresponding

well-defined function £t'<l, defined by (4.2). exist on n and are of class

run).

Without loss of generality, we will assume locally that r components of

2,3 can be uniquely expressed in terms of Xq, '^, and the remaining n-r

components of Tq. More explicitly, let us relabel the components of z. Then

z^Q^^irir components of z^) can be uniquely expressed in terms of Xq, 'Jfj,

and ^-r ^ R""^ (remaining n-r components of Zo).D
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Proof of Theorem 4.3

Let u? relabel the system i3 12) with /? = k as follovv's:

iuch that

^'^^'(xq, abj, 2p-r,o, ^,q) = ^ and ^tf-'I/a? - evaluated at ;:<,-,, jp. ^.,. ,-,, ^ r,)
-

is of rank r.

T h e n u y t h e implicit F u n c 1 1 o n T h e orem, w e k n o vv t h at there e x i s t s a

neighuurhood U c R2n-r+i r,f (v^^
j|^^ 5i-r,o). and a neighborhooa v c R'' of

5- n, and a unique fundi on ;^:'J -^ V, such that

f^M.K, jt 5,-.. iZ^x, SL ^-r)) = ^ (4.14)

for al; (x, 5t 5i-r) ^ iJ Furthermore, ;i^is of class CVD

Thus if the hypothesis of Theorem 4.3 is satisfied we can obtain an

entire surface r c R-n+i of consistent initial conditions for the initial

value problem (3 2). Now we will obtain conditions for the existence of a

local solution to the initial value problemi (3.2) by inteyratmo the system

(3. i5), subject to any point on the surface r.

Because certain consistency conditions are satisfied - that is, the

(k + l)st order constraints ((3.20) with ^7 = k) hold, the Fredholrn

Alternative Theorem can be invoked to prove the existence of a solution to

the implicit system (3.15). Suppose we can choose a smooth function

3.: n —
^ R", such that g is in the null space of J^'^ on n. and the initial

conditions on r are consistent for the following explicit system:



u

- ;k,-, ^

f 2 W

(4 15;

:v.v,zjj cv^^K.^ZJ ^g

where

g: n ^ Rr',

z: \l, -^ R-^.

and

h: n ^ R2n.

The local results of the foiiowing existence theorem for the initial value

problem (4.15) will be deduced for all (x,^) in a region D -- n, which is

defined bu (4.7), (4.3), and (4.9).

Theorem 4.4:

Suppose the hypothesis of theorem 4.3 is satisfied. Suppose the initial

value problem (4.15) is such that he {c^. Lip) \k\ D , with the Lipschitz

constant (4.9).

Then, there exists a unique solution

$1 ;= $a(x), X e [Xo, Xo+£^] (4. 1 1 •

of (4.15), such that $a(xo) = Tq. The notation ^i denotes that the solution is

unique once a smooth g has been chosen for which the initial conditions h\'\i



CGrri-i starit. AiS.o a i-jluticin to thn nonlinear syst.jm (3 2) QiVc-': 'hp t'r::t

comDonents of $i: that, is, a nonunique i.olutinn to (3,2) is

$» := $*(x) := [$a, (;;), , . , $9„(x)r.G (4
'

Proof of Theorem 4.4

invoke the Picard-Lindelof Theorem.

D



4.3 Termination of Process: Algebraic Systems Case

Now thai vvp have discussed our primary cateqonzations, 'vve wish to

move on to our iHcondary categorizations- It can be point vvise proven, that

the Jacotian rriatrix J^>(x,v^i can be transformed, via Gaussian elimination

with pivotinq, to a block matrix of the form

1 .k

3
(

1 ,k

{^:ll>

2.k.

'"'\'lLii.'

such that

J^M, J2M n^ Rm(k]-rxn

and 3'>' has rank r on VV.. x 'tl-^. The criteria, v/hich gives us conditions for the

exi silence, and in some instances, the uniqueness of a local solution to

rectangular nonlinear systems of differential/algebraic equations of the

form (3.2), for which (4 16) holds, are stated in the following theorem.

Theorem 4.5:

Let W>< c [xo,Xf„] and W^ c R" be neighborhoods of Xq and j/o,

respectively. Suppose there exists a Zq e Wj c R", such that

^^'"dO'Zo^ e n := W^ X Wy X Wj C D.

f:f'^'(xo,i!o,2o) = 0, (4 19)



and r = R^^. - Fs (, Suppose the lunct'iun F^ defined ty (31), jnd tne

correspondinq vvell-deiinHi] lunction F-'-^l, defined Dy (43), exist cm M. and

are of class Pin).

The system (3.12). with /• = k, can De transformed to the foiiOvvinq

decoupled sustem:

,*-''[t''](y \! z) -
m[k]-r.

,^ l' Sr- '..' 7 'l

A Ofi..I 1

sucn tnat

(xxZJ' ^ ^

/rr.[ki-r- ^ -* Rm[kl-r

Then at each (x,;£.,z) s M-, we can solve the first r equations of the

nonlinear system (4 20) for r components of v in terms of x D

Proof of Theorem 4.5:

Suppose vve relabel the components of % Let U := W^ x V/^,_r x w^ be an

open set in R"»+V Suppose we extend the definition of ;^ for arbitrary

('<,an-r..Slr) = ^ ^hat IS, let us consider a function of the form

l!'(x,an-r,Ur), (4.21)

and



is 01 rank r.

Then by the implicit F...n::t;.:n Tneorem vve knovv mat there e^^isti a

neighborhood I'vv'x-x Vv'i^-r]'- {'vVv;:-. Vv'i^-f', of ixn, iirr-r,oX. ^''"^ 3 neiQhborhood

Vv'i^- of Mn-r 'i'' ''"'i*-, Jf'"^ d ^-inl ^i.h f..,nC.tiOn 0;-. [Wv- :< Vf|^-rJ "^
''''^'V'

'-'•''-'' ^-^^

ir(".ar-r,.^'^'<..yn-r)) = CL U223)

for all (:i,\ir,-/} e (W.^ X WV-r).

A I s . b e c a u s e vv e c a n o n i y un i q u e i y o b t a i n r c o rn p o n e n t s o f y i n t e fn'> j o f

and the remaining n-r components of v.. the remaining m[kl-r equations of

(4.20) are functionally dependent on the first r equations of (4.20) Thus,

the function J2r algo saUsfi£« these. ei^uation$.' the.t 15, we &lso> have,

f''^^'\}<.Xi^.r.^iXAin-r>.2) = ClD (422b)



5 Illustration of Nonlinear Constraint Theory (Rigid

Pendulunrj Problem)

Suppose a pendulum swings in a plane with rectanqular coordinates

(yr,t).ij2(ty'. and corresponding velocities (y3(t),y4(t)) The Lagrangian is

L:= (U3^ + U4'^''/2 lor a unit rnass, while the external force is 1= [0. -Ir for a

unit gravitational force in the negative U2 direction The constraint or

algebraic equation is c := y^^ + y2^ -1 = if the rnass is a unit distance from

the pivot. Also, the authors in [2] interpret the term -2y5(t) to be the

tension in the pendulum rod Therefore, the rigid pendulum problem can be

represented by a decoupled system of differential/algebraic equations of

the form (3.2). That is.

FCx^CxjJiCx)) :=

Fi(s<,i(x)..5i'(x))

F2(x,;i(x),ii'(x))

F3(x,li(x),ii'(x))

F4(x,v(??),v (?<:))

F5(xi(x)y(x))

yry3

y2-y4

y3*2yiy5

y4*2y2y5-

2 2

y i*y 2-

1

LL. (5 1)

The first order constraint Tor system (5.0 is:

F6:=-2v5(i)(y,y', + y2y'2) = 0.

Forsake of simplicity we will let 275^') = -1.



41.J

E H C 3 u ': 9

ciF^,/3Z = [y, 1^2
i 1 1; 'J J

is in the row space of

u

and

{dFfc/ayUF^/azjr iy, y

IS not in the row space of

Olyi y2 0]

'3,0- 2y5

n

n

•il5

_2y, 2y2

-1

n

2yi

'! I.

F^ IS a first order constraint of type B, for all (xxz) s n.

Now we can formf.^'^
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— r * 1

i-.i J

Fa

y, " y?

y;-y4

y4*-y2y5- '

yi * y2
-

'

yiy, ^ y2y2

Differentiating the nonlinear system (5.2) with respect to x, and utilizing

the substitution z - ll. yields a system of the form (3.i5), for

J

1



a:

:.uch that

J1.1

1 ,0

J
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For the complptt' demonst nation of the application of our constraint

theory in order to prove the existence and uniqueness of the solution to this

problem, see [4]. Successive differentiations with respect to x, etc. yield a

s y s t e rr\ o f t h e : o rrr) (31 5 ) , f o r

dF'^/i?:

•iFiLi/a;

3Fi ]/di

3F12/.1;



1



J"

IJ

y't

•-yi

y 3

"-y
1

j-2y5y i-4yiy^5 -2y5y

u
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V 7 '

J_ - ,^'4 , .^y -, ^y, ^y^ u U u u -
i oj,

which are such that (3 15) holds, for // = 3 and 1 :. i ^ 7 Thu:, wh .:.!:it.a;ri tne-

following fourth order constraints;

F,3 := [:i3(1)]W3l = Fy,

= Fe..

= 2Ffl,

F,4:=[V3(2)]Ta[3

'15.= iV^'-'j'al-^

F,6 = ly3W]W3

F,7:=iV3^5)]T^r3

F,o;=iv.C6)]TcJ3

= F 12'

= 2F8.

F,o,

and

Thus we see that we have seven nontnvial fourth order constraints, which

are all of type C.

Therefore, our recursive process, applied to the system of differential/

algebraic equations (5.1), representing the rigid pendulum problem, has

termnnated with all type C fourth order constraints, R2 3 = n r 5, and

-3 3 "
1^2 3 = 2. ^'or all {)<;i,2) in a neighborhood n of a point (xq^Vo.Zj].) Thus

we can invoke Theorems 4.1 and 4.2 to prove the existence of a unique local

solution to (5.1).
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6. Extension of Local Results to Semi-Local Results

The Picard-L'ridelnf Theorem 'or tne '"oetnod of successive

approximations) is used to investigate conditions under whicn an initial

valued ordinary differential eouation has a solution and that that solution is

unique, in the previous sections of this article, we extended that idea and

optained necessary and also sufficient conditions for the existence, and m

some instances the uniaueness of a local solution to nonlinear systems of

differential/aiqebraic equations. Now r/e will discuss the extension of our

local results to serni-local results. We will eschew the extension of our

local results to semi-local results for systems of differential/algebraic

equations with discontinuities and/or turning points, because these systems

require that certain problem-dependent nnatching conditions be supplied.

We utilized our constraint theory to prove the existence, and in some

cases, the uniqueness of linear and nonlinear systems. of differential/

algebraic equations via transforming them to explicit systems of

differential equations of the form

subject to the initial conditions

such that

X e W,,



'//here '/-/^ c [xn;i^,rii, Wv c Rr', and Vv^ z R"^ are ne^qhtiorhooGi of .v,. ij-y.

anu Zo.. :-rope:t;vely. '

Recall that our existence and uniqueness results tor the initial va'iue

problem (6.1) vvere deduced for all (x.j;) in a region D c n, where D is

defined in (4.6), (4.7), and (4.8). Via invoking the Picard-Lindelof Theorem,

we proved that the initial value problem (6 1) had a solution $, r/hich

exists on a finite interval [xq/x) c
[;<;o..:<finl Sf""^ passes through the point

(:<o.-i^o^ ^ ^ "'"'^6 authors in [1] prove that if ||hl[is bounded by

M < CO on D , then the following limit exists:

$(x-0)= lim *(x). (6.2)

x-»x-o

Suppose that the point (x, $(x - 0)) is in D. If Yis the function defined

by

Y(x) = *(x), X e [xo,x) (6 3a)

Y(x) = *(x - 0), X = X, (6.3b)

then T is a solution to the initial value problem (6.1) of class C^ on [x,j,xi].

The function Yis called a continuation or extension of the solution ^

to [xo,x). The authors in [1] discuss other extensions of the solution $. if it

is known that there exists at most one solution through



UQ

IX, ^I'x - 0);, thyn one can E-pAak of /.vr continuation oi ^to

[:<Q, xv'] c [:<o,XfinJ. ^^''f •^''
-^ ^- ''"' general, if a continuation of a solutlDn *

on Iaq,x) exists on some interval containing [xq.x) c [>::,-,, iv^nl, then we can

say ^can be continued (extended), or has a continuation (extension).

The previous remarks are summarized in the following theorem from [1],

Theorem 6.1:

Let the system m (5. 1) be such that he C^ in a domain £/ c n, and

suppose h IS bounded on i7 if $ is a solution to the initial valued problem

(6.1) on an interval [xq;x) c Ix^.x^-^n], then the limit

^(x - 0) = lim ^(x)

exists. If (x, ^(x - 0)) IS in /> then the solution $ may be extended to the

nqht of X .

We can repeatedly apply Theorem 6.1 to continue a local solution to a

system of differential/algebraic equations to a semi-local solution until

the criteria that allowed us to invoke the Picard-Lindelof Theorem no longer

hold: that is, until one or more of the following occur

(i) A discontinuity of F is encountered on n.

(ii) A turning point of F is encountered on n: that is. a point is

encountered such that the rank of IdF/dz} varies on ti.
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(iii) A ijiS'iontinuitu oi F'^-! is HncountHred on Jt

(iv) Discontinuities of [^F'^^:'/.ix], and of the Jacobian matrices ['?'£.-^-/3iJ.

and/or [tiF^'^l/Ciz] are encountered on n.

(v) A point IS encountered such that the ranks of the Jacobian matrices

[;iFl''<:j/.3v). and/or lti£f'<l/3z] vary on ft

(vi) The numiber of constraints ^rif variable on n. fc.r exarnp'e. a t.^pe a

constraint at a point (xi ,v, ,2, ) e n becomies a type B or type C constraint at

another point (:<2,iii..Z2) s n.

(vii) The function n in (6.1 ) does not satisfy a Lipschitz condition on H.

The situations in (i), (11) and (vn) are the miost common and natural ones

f r vv h 1 c h t h e h y p 1 h e s 1 s f t h e P i c a rd - L 1 n d e 1 f T h e re rn c re a k 3 d vv n . The

remiaining situations are consequences of our constraint analysis, in

particular, the situation described in (vi). which may be caused by one or all

of the previous situations, motivates us to define the followinq:

Definition 5. 1 A nonlinear function of the form (6 1 ) has higher

order turning points if the number of constraints are variable on nZ]

Thus we can conclude that if the situations (i) through (vn) do net occur.

we can utilize our constraint analysis, the Picard-Lindelbf theorem, etc . to

continue a local solution to a system of differential/algebraic equauons to

a semi-local (and perhaps a global) solution.
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