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ERRATA AND CORRIGENDA

For Working Paper No. I58- 66,

THE GENERALIZED RATE OF RETURN

H. M. Weingartner

January I966

An error in the statement of the theorem on page 9 of this paper
was called to my attention by Professor Rubin Saposnik of the
University of Buffalo. To make the statement correct requires
only minor modification; to correct the proof requires a greater
change in its second part. To make these changes, new pages 9
and 10 are enclosed herewith.

A typing error requires substitution of the word "inner" for the
work "linear" on page 3 in the line following equation (l).

I'd appreciate your comments and having any other errors called
to my attention.

H. Martin Weingartner
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Theorem : The net present value of a vector of cash flows Y, v(y), is nonnegative

if and only if there exists an internal return vector R(Y) such that

(10) R(Y)|(Y) < r'^eCy)

Proof : 1. (Sufficiency) If there exists an R(y) such that [R(y),Y] = and

R(Y)|(Y) < r"e(y), then V(y) = [R™, Y] > 0.

From (lO) we have

^11) Vt ^ <%
Next, substitute R for R , term by term, in the expression [R(y),YI. By assump-

tion, R = R = 1. For t > 1, if y > 0, e = 1 and the substitution will in-

crease the scalar product above zero (or leave it at zero) since then r"? > R .

If y < 0, e = -1, it will increase the scalar product above zero (or leave it

at zero) since then R < R and R y > R, y . •

2. (Necessity) If [r"^,yI > 0, then there exists an R(y) such that

R(Y)E(Y) < r"|(Y).

Let [R ,y1 = V(Y) = a > 0, To prove the existence of an IRV with the re-

quired properties we construct one. Let J' = (tj y > o\ , i.e., J' is the set

of t corresponding to positive elements of Y; let J = [t ) y = 0} ; and let

J" = {t I y, < 0, t > l] . The number of elements of J' is assumed to be n', the

number of elements of J"' is assumed to be n", with n' + n" < n. (As before, the

number of elements of Y is n+1.) We define the elements of R(y) as follows:

For t = 0, Rq = R^ = 1;

for tc J' (i.e., when y^Xi), R^ = R™ - b/n'y^j

for tf J (i.e., when y,=0), R = r";
X- t> "G

Ik
The symbol for vector inequality, <, follows the usual definition: each term
on the left is less than or equal ^o the comparable term on the right. If at
least one term is assiamed to be strictly less than its counterpart on the
right, the symbol < is used.
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for te J" (i.e., when y <0, t>l), R = r' + c/n^y,;

liia
where b > 0, c < 0, and b - c = a.

That R(y) is an IRV may be seen from taking the inner product

tfj' ^ teJ" ^

= a - b + c

= 0.

To show that R(y)E(y) < r"e(y), we prove this term by term. For t = 0,

R„ = R^ = 1, by assumption. For te J', e = 1 and R = r" - b/n'y < r" since

b > 0. For tc J, e = 1 and R, = r"^. For te J", e^ = -1 and R^ = R™ + c/n"y^ > r'"

since both c < and y, < 0. However, R > r"^ implies -R < - R™, or R.e, < R^^e , .

QED.

Note that the theorem requires only that at least one IRV satisfying

(l) be found and not that all IRV's have this property. An obvious corollary

which we leave without proof is:

Corollary : If there exists an R(y) such that R(y)E(y) > r'^E(y), then V(Y) < 0.

Comparison of Two Options

As is pointed out ubiquitously (though apparently not sufficiently for

practitioners), the appropriate way of evaluating two rival options is either to

compare their present values, computed by discounting at market rates, or to com-

a bpute the vector of differences of cash flows and evaluate this. If Y and Y are

the two options, the rate r such that

n

(12) Y ^^t- yt)(i + -V = o,

t=0

lij-a
The constant b must be chosen so that R > for all t e J', in order that R
lies in the first orthant as required of an IRV. Since b and c are only con-
strained in sign and by the condition b-c=a, this requirement can always be
satisfied.





THE GENERALIZED RATE OF RETURN

H. Martin Welngartner

Introduction

Investment analysis, both for purposes of capital expenditures and

for financial investments, is based on an evaluation of cash flows . This

evaluation involves the application of interest rates in order to deter-

mine whether a given option--a series of cash flows--is profitable or not.

For numerous reasons, primarily that of simplicity, it has been traditional

to assume that the rates of interest used to measure the worth of an in-

vestment are constant. With this assumption it is possible to equate the

two familiar investment criteria when investments are independent and out-

lays are not subject to expenditure constraints, i.e., when capital markets

are taken to be perfect in the usual sense. An investment is profitable

if its net present value is positive when discounting of cash flows uses

the (constant) cost of capital, or if its (assumed unique) internal rate

1
of return is greater than the cost of capital. Equivalence of these two

criteria is historically most frequently identified with Irving Fisher

[3>^]> and his two-period analysis, portrayed graphically, is generally

utilized to establish the correctness of the equivalence of the criteria.

The internal rate of return, by now a familiar quantity, is that single
rate of interest which makes the net present value of a series of cash
flows equal to zero. Lack of uniqueness is a known difficulty with the
concept, possibly arising when the sign of the cash flows reverses more
than once. However, this issue is not one with which we shall be con-

cerned here.





What if interest rates are not constant over time? Perfect capital

markets do not imply a constant level of interest rates, and indeed, any

2
yield curve which is not absolutely constant in level, furnishes evidence

that interest rates are not, in fact, expected to he constant. While the

present value criterion applies to the same extent with nonconstant interest

rates, the meaning of the rate of return criterion is completely lost. How

can one compare a single rate of interest, the internal rate, with a set

of rates? The answer to this question proves to be illuminating for a

number of issues in investment analysis. For this purpose we shall gen-

eralize the notion of the rate of return to internal return vectors and

show that these form a vector space. This description permits one to re-

define the notion of preference under nonconstant rates using internal

return vectors and to develop a meaningful criterion related to the stan-

dard utility analysis. This formulation leads to several theorems rele-

vant to the evaluation of capital investment projects, and also provides

some useful insights into the nature of the valuation process. More

significantly, the generalized rate of return is employed to correct cer-

tain errors in the formal analysis of the term structure of interest rates,

and indications are provided for using the refined formulation for the

analysis of financial investments.

2
The yield ctirve is a graph which plots the yield on bonds, e.g., cor-
porates, municipals, or U. S. Government obligations, against their
term to maturity. The curve itself usiially is drawn through the lowest
point of each given maturity. See [1]; also below.
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Formal Development

We begin by considering an option—a capital project or financial

investment- -as being characterized by a vector of cash flows, one for each

period, with the convention that an inflow has a positive sign, and outflow

a negative sign. We assijme further that each cash flow occurs at the end

of the period, and that the first cash flow, usually an outlay and hence

negative, takes place at the end of period zero.

Thus an option may be denoted by Y = (y_, y, , y_, . .
. , y ) where

n is the last period with a non-zero cash flow. The conventional internal

X-

rate of return would then be that rate r such that

n

(1) Y y^d + r*)-* = 0.

This equation can be written in terms of the linear product between the

two vectors, Y and R , viz., [Y,R ] = where R = (r_, R., Rp, ..., R )

* * -

1

and R. = (l + r ) . However, in general there are other vectors, R,

which have the property [Y,R] =0. In fact, there is an infinite number

of Internal Return Vectors which make the present value of the strean of

7cash flows equal to zero.

^These would usually be after-tax cash flows, although questions of tax
consequences are outside the present sphere of interest.

k
The length of the period is arbitrary and needs only to be consistent
with the dimensions of the interest rate.

Vectors will be indicated by a single underscore; matrices by a double
underscore. A scalar product of two vectors, X and Y will be denoted by
[X,Y].

f.
~ ~
We shall henceforth abbreviate Internal Return Vector by IRV.

Since these depend only on the option Y, they may also be called "internal."





To aid in understanding the nature of the generalized return vector,

we may describe it concisely in terms of vector spaces. The vectors R which

form a scalar product of zero with the given vector Y are called orthogonal

Q

to Y, and they form a vector space. That is, given any two such vectors,

say R^ and Rj^^ J^ ?^ 0, Rj^ 5^ 0, with [Y,^] = 0, and [Y,R, ] = 0, then any

linear combination of R and R. is also an IRV. That is, for arbitrary

9
scalars a and p

(2) tY,QK^ + pR^j] = 0.

This follows since equation (2) may be rearranged,

(3) «tl'la^ "* P^I'Bb^ = °-

We wish to interpret the internal return vectors in terms of under-

lying interest rates, and so we must restrict the above formulation some-

what. It may readily be seen that the components of the R-vectors, the

R,, may be decomposed into products of one-period discount rates, viz..

(M

h





As siuning interest to be finite, the range for r is -1 < r, < oo which
t w

implies that R, > 0, t = 1, ...,n. That is, we restrict our attention to

interest rates for which the principal does not totally disappear, nor

does it grow without bound. (There is no reason to limit attention only

to positive rates of interest here.) The additional condition, R. > 0,

which is derived from the interpretation, means that we are concerned

only with the positive orthant of the vector space of vectors orthogonal

to the given Y-vector.

The term R,, appears in all the expressions for R . It may be seen

that R_ is arbitrary, i.e., any vector which is an IRV will also be one

if a different value of R- is substituted in its components. The inter-

pretation of R is straightforward. It is the dateline for the computa-

tion of the discounted value, utilizing the discount rates R . Thus, if

R is assumed to be unity, then the computation is as of the end of period

zero, which is usually called a present value. However, it shoiold be noted

that any other dateline can be used, even involving a difference in time

of fractional periods from the present. Also, an IRV (or, for that mat-

ter, an ordinary rate of return) can be computed on the basis of a ter-

minal value of zero. Only a change in the value of R^ is implied. For

our present purposes, it is sufficient if R„ = 1, which assumption will

be assumed in what follows.

A formal development of the notion of the IRV's would also include

the following. First, the given option Y = (y(^,y,, . • •,y ) may be re-

garded as a point in the n+1 dimensional real vector space, V . That is,

it lies in a 1-dimensional subspace of v . The vectors orthogonal to Y
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lie in the orthogonal complement of the subspace of Y, which implies that

the IRV's lie in an n-dimensional subspace of v . More specifically,

given the nonnegativity condition on the IRV's, we see that they must lie

in the positive orthant of this subspace. To help visualize this, it is

only necessary to construct a basis for the subspace.

First, it is clear that with regard to the IRV's, multiplication of

the option Y by a scalar will not have any effect. Hence it is possible

to normalize Y by premultiplying it by I/Yq' A further simplification

may be achieved by assvmiing the first component of Y to be negative, i.e.,

an outflow. This will also mean no loss of generality since it is possible

to multiply Y by -1. Thus we write Y' = (-1, y^,y2^ • • .,y^), with y^ = -J^/yQ-

A basis for the space of the IRV's is then

y
R"^ = (1, ^, 0,0,... ,0) = (1, - —,0,...,0)

•^1 -^1

(5)

y
R^ = (l,0,iT,0, ...,0) = (1,0,- -p,0, ...,0)

•/p <yp

Yr
r"" = (1,0, ...,0,^) = (1,0, ...,0,- -p)

"^n -^n

It is clear that the R are linearly independent, that they are orthogonal

to Y, and that together they span the hyperplane of the IRV's. It should

be noted, however, that the R do not necessarily lie in the positive or-

thant; hence they need not, themselves, be internal return vectors.

10
It is assumed that y^ is nonzero, and that at least one y. is strictly

negative and at least one is strictly positive.
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Whether they are or are not depends on the sign of y^/y. . Similarly there

may be other orthogonal vectors which do not lie entirely in the positive

orthant

.

The Generalized Rate of Return in Investment Analysis

The present value criterion, allowing for different rates of discount

for different periods, may he stated in terms of the vector notation developed

in the following way. Let R be a vector of market discount rates where by

assumption.

(6) «
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The usual present value criterion for acceptance or rejection of

12
an option is simply: reject option Y if V(Y) < 0. It is possible to

relate the present value criterion to a proposition about IRV's of the

option Y in a basic theorem. Before stating it, we require an additional

definition.

The option Y has not been constrained in any way. Specifically,

we have not assumed that Y is of the "standard" variety- -with a negative

term at the start followed by nonnegative terms exclusively. In order to

1^allow for generality we define the elementary matrix E(y) in which the

off-diagonal terms are all zero, and the diagonal contains terms e, are
t

defined by

(9)

r 1 if y^ >

The y are, as before, the components of Y. It may help to visualize E(y)

as a transformation which is equivalent to turning an arbitrary option into

a standard one. It is required to prove the following:

%-^
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Theorem : The net present value of a vector of cash flows Y, V(y),

is nonnegative if and only if there exists an internal

/ s l4
return vector R(Y) such that

(10) R(Y)E(Y) < r"".

Proof ;

1. (Sufficiency) If there exists an R(y) such that [R(Y),Y] = and

R(y)E(y) < r", then v(Y) = [R™, Y] > 0.

From (10 ) we have

Next, substitute R for R , term by term, in the expression [r(y),Y]. If

y > 0, this will increase the scalar product above zero (or leave it at

zero) since R7 > R. • If y. < 0, it will increase the scalar product above

zero (or leave it at zero) since R < R and R.y > R.y,

•

2. (Necessity) If [r",Y] > 0, then there exists an R(y) such that

R(Y)E(Y) < R^".

Let [^,Y] = V(y) = a > 0. Also, let y be the first value of y

different from zero, t > 1. (The term y is necessarily different from

zero
.
) An IRV is then

T^/„\ /-. r,ro r^m ^m „m / . ,in „mx
R(y) = il,R^>R^,--->\_y\ - a/yj^, lVl--"«n^'

That this is an IRV can be seen from the factorization

14
The symbol for vector inequality, <, follows the usual definition: each
term on the left is less than or equal to the comparable term on the
right. If at least one term is assumed to be strictly less than its
counterpart on the right, the symbol < is used.
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[R(Y),Y] = [R™, Yl - (a/yj^)yj^ = a - a = 0.

To show that r(y)e(y) < R , we prove this term by term.

For t = 0, R„ = R_ = 1 (by assumption).

For t=l, ...,k-l, y, = 0, and hence e = 1. Therefore R^e = R , t=l, ...,k-l.

\ = ^ - ^\' i^
^k > °' «k = ^' ^"^ Vk = \ < <• ^' ^k < °' \ = -1-

Then \ > ^> ^^^W '^ ~\ '^ ^' ^°^ t=k+l, ...,n, R^e^ = I^ if y^ > 0;

R+e, = - r" < rJ if y. < since r"? > 0. QED.

Note that the theorem requires only that at least one IRV satis-

fying (l) be found and not that all IRV's have this property. An obvious

corollary which we leave without proof is

:

Corollary : If there exists an R(y) such that R(y)E(Y) > R°,

then V(y) < 0.

Comparison of Two Options

As is pointed out ubiquitously (though apparently not sufficiently for

practitioners), the appropriate way of evaluating two rival options is

either to compare their present values, computed by discounting at market

rates, or to compute the vector of differences of cash flows and evaluate

this. If Y^ and Y are the two options, the rate r such that

n

(12) y (yl
- yj)(l + r*)"*= 0,

t«0
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may be compared vith the market rate of interest, if the latter is constant

over the n periods. If it is not constant, applying the IRV criterion to

the vector (y^ " Y ) will lead to correct solutions. However, the virtue

of the original internal rate of return criterion, namely that the appro-

priate cut-off rate r did not have to be determined with precision, is no

longer as strong a virtue.

a b
In the instance of strong dominance, when Y > Y , every vector R

orthogonal to (jT' - Y ) satisfies R < R^' In particular, except for t = 0,

R < R , assuming only that R > 0. That this must be the case may be

seen from the fact that (a) the components of (y^ ~ Y ) ^^^ ^^^ positive,

(b) that a basis for the space of the IRV's constructed as in equations (5)

consists of vectors none of which lies entirely in the first orthant (since

-y-/y < 0) and (c) any linear combination of these basis vectors has com-

ponents with both positive and negative signs, and hence does not lie

within the first orthant. This establishes the conclusion. Under our

earlier definition of the IRV's, such an orthogonal vector R is not

strictly an IRV. We may conclude that in the absence of strong dominance,

reference to the market vector H is required. ^

The Uniform Perpetual Rate of Return

On occasions when it is desirable to make comparisons between stan-

dard options in the form of rates of return, the uniform perpetual rate

On a diagram of present value against discount rate, the condition of
strong dominance for a constant interest rate analysis would show the
curve for option Y to lie entirely above the curve for Y . The usual
internal rate of return for each option separately is fo'und at the in-

tersection of its curve with the interest-axis. The internal rate of
return for the difference between the options, usually located at their
crossing point, would not exist in this example.
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will give valid answers. In the standard option, the first term is nega-

tive while the following ones are positive. The first term, y^, may there-

fore be called its cost. Given the interest rate on perpetuities, r , and
oo

R°^ (with as many terms as the longest of the options to be compared) one

^0'obtains first the present value of the returns of an option, [R ,Y] + y_^.

and converts it into a perpetual return of r ([R , Y] + y-) per period,

and into a rate of return

(13) r = ^ ^ .

Obviously, if r > r , the option should be accepted since this is equiva-

lent to the statement that [R ,Y] = V(y) > 0, as some transposing of terms

will show. Ranking of independent options according to their respective

uniform perpetual rates of return is equivalent to present value ranking,

and also to ranking by the "Excess Present Value Index" or benefit/cost

ratio. In fact, r is only a scalar multiple of the benefit/cost ratio,

17
the multiplier being r

Analysis of the Term Structure of Interest Rates

In the preceding sections we have considered the evaluation of

streams of cash flows in terms of vectors of discount rates and have ap-

plied the framework to capital projects. In the remaining parts we shall

utilize it for an analysis of the term structure of interest rates. First

_ —.—_— —

=

The positive sign before y_ results from the assumption that y- is

negative.
17

For a discussion of the use and limitations of this ratio for analysis

of capital rationing problems, see [j].
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we shall define some additional notation and utilize it to prove an ele-

mentary, if not universally known, proposition about bond yields. Then

we shall indicate the source and extent of certain errors in empirically

estimated forward interest rates.

Since we shall confine our discussion to the structure of interest

rates prevailing at one time, and not to its changes over time, we shall

again denote future one-period (spot) rates prevailing in the market in

period t by r , and the discount rates applying to future cash flows by

IT. We shall also require rates which express, on an annual basis, the

discount rates R , by use of the following definition, to be enlarged upon

below,

(14) rJ = (JL_)t or i, = (R^)-^/* - 1
* 1+r^ * *

The yield-to-maturity on a bond, i.e., the internal rate of return, will

again be denoted by r and the yield vector by R . To simplify the argu-

ments, we shall scale a bond so that it has a maturity value of 1 and de-

c
note its coupon rate by r . By assuming that the frequency of coupons is

one per interest period, we have, in effect, an equivalence between the

coupon rate and the amount of the coupon. Unless explicitly stated to the

contrary, we shall discuss bonds only ex-coupon on a coupon date, and

hence we are able to describe bonds as options with the following vec-

tor of cash flows

:

/\ /CC '^C\
(15) Y = (-P, r , r , ..., r", 1 + r )

The price of the bond is p, the periodic coupon is r , and the final

c
payment is its unity par value plus one coupon, i.e., 1 + r .
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The first proposition we wish to establish is that two bonds having

the same term-to-maturity and the same frequency of coupons but having

different coupon rates cannot have the same yield-to-maturity unless the

market yield curve is absolutely flat. Let Y^ and Y be two otherwise

identical bondsj their yields, expressed as vectors, are R (jr) and R (Y ),

and R is the market vector. If the market vector determines their

prices, then it must be that a) [R^,^ 1 = ^E^>X ] = 0. By assimiption b)

[R*(Y^),Y^] = and c) [R*(Y^),Y^] = 0; and also d) Y^ 5/ Y^. Further, by

saying that the yield curve is not flat we mean that r, = r is not true
t q

for all t and q less than the maturity of the bonds. Since by definition of the

yield vector R,

(16) R* = i-^f, t=l,...,n
^ 1+r

i.e., all components of R are functions of the single short rate r , this

also implies that R 5^ R (JT) and R^ 5^ R (Y ) . From their definitions and

also, from the previously adopted convention (implied by referring to

present values) that Rq = 1 for all IRV's, we know also that r'" ^ Cffi (Y^)

and R^ 7^ PR (Y ), for arbitary scalars oc and p. That is, the market vec-

tor and the yield vectors are not linearly dependent. By (a) and (b), R

and R (ir) are elements of the orthogonal complement of TT', and as just

established, they are linearly independent. If the two bonds have the

same yield to maturity, then R (y^) = R (Y ) = R , which means that R

and R^ are also independent elements of the orthogonal complement of Y .

— _
In this discussion and also that below, we shall ignore the effects of
taxation on the valuation of bonds. The results we obtain are independent,
or rather, in addition to such effects.

19
It clearly does not matter for our present analysis whether the market
vector does or does not include a liquidity premium.
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Put another vray, the vectors IT" and Y are both elements of the orthogonal

complement of the subspace of R^ and R . Since the latter space is n-

n b
dimensional, the space of T^ and Y is one-dimensional, which implies

B. b
that X = yY for some scalar 7, contrary to the hypothesis.

This theorem is pertinent when the yield curve is utlized to dis-

cuss the term structure of interest rates, and when evidence is marshallai

for or against the expectations hypothesis. Specifically, it is useful

to make clear the distinction between a schedule of yield-to-maturity of

bonds versus maturities, and a schedule of n-period interest rates, i.e.,

the term structure. In the former, bond coupons play a specific role.

The n-periods rates, however, do not correspond to rates on contracts

in the usual financial markets. Instead, they express trade-offs across

the time axis in most simple terms, viz., as the periodic interest rate

applicable to a loan made at the end of period which is to be repaid,

together with all interest , compounded once per period, at the end of

period t. Thus a loan of one dollar made for k periods requires repay-

ment of (l+r ) at the end, and the yield on a k-period bond is neither

20
identical with r, nor is it a function of it alone,

k

Bond yields and n-period rates are related, but the relationship

involves the coupon rate and the term structure of interest rates up to

the maturity date of the bond. We shall demonstrate this in two parts.

First we derive the relationship between coupon rates and bond yields,

given a term structure, and illustrate it graphically for some hypothetical

20
This incorrect identity is maintained by Meiselman [6], and Kessel [5],
among others

.
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term- structures. Then we shall derive the difference between the yield

on an n-period bond and the n-period forward rate, and also provide some

examples

.

Bond Yields and Coupon Rates

Given the fact that both the market vector and the yield vector of

a bond are IRV's, it is a simple matter to relate the yield to the coupon

21
rate, given the market vector. We do so by writing the bond price, p,

as the discounted value of coupon payments and payment of par value at the

end, when discounting is done first by use of market discount rates, R ,

22 *
and second, using its yield to maturity, r . In the latter case, the

price is the sum of an annuity of r per period for n periods plus the

present value of $1, n periods hence. The two expressions are

n

(17) p . r=
)^

R» . ,f

t=l

(18) p = 4 [1 - (1 + r*)-""] + (1 + r*)-".
r

After transposing and rearranging, the desired expression is

obtained

:

(19)

/ . * \ - n _,m
(1 + r ) - R

c ' n
r =

n

R^ - i;^ [1 - (1 + r*)-^]

t=l

21
There is a one-to-one correspondence between the components of the market
vector and the n-period rates which comprise the term structure.

22
All interest rates, here and below, are assumed to be expressed as decimals
and not as percentages

.
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For obvious reasons of mathematical simplicity, the expression shows

the coupon rate as a function of yield, rather than the reverse. The main

implications of the expression need not, however, be lost. First, the rela-

tionship between yield and coupon rate involves also the entire schedule

of n-period interest rates, expressed here in terms of I^. Justification

for this observation is intuitively easy to grasp. Since coupons are re-

ceived periodically between the purchase date and maturity, these coupons

are discounted to the present at rates expressing time trade-offs between

the coupon dates and the present, and not between the maturity date and the

present.

Apart from understanding the general role of the n-period rates in

expression (19)> it is less easy to visualize the shape of the relation-

ship. For this reason it has been graphed for three separate term-structures,

2k
two of them rising, one falling. The same term structures are also utilized

in later discussions, and are presented in Table I and Figure I.

23
^The one circumstance in which the coupon rate has no effect on yield is

R = (l + r ) , i.e., when the term- structure is flat. From equati

(17) and (18) we see that this must be the case since then also

n

I R^ = ^ [ 1 - (1 + r*)-"]

t=l

which is equivalent to

n t n

^ [ TT (l + r^)]"^=^ (1 + r*)-*.

t=l T=l t=l

pit m
Instead of the R7, the graphs portray the r , defined by expression (ih),
which are more readily understood.
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TABLE I

Three Assumed Term Structures of Interest
Rates for Illustration of the Relationship

Between Bond Yields and Bond CouponB





FIGURE I
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* c
Figure II presents the relationship between r and r for these

three term- structures and for several different maturities. Two observa-

tions are most striking. First, contrary to the empirical relationship

found by Durand [2], in which many other considerations, especially taxes,

play a role, the curves corresponding to the rising term structures fall,

though at decreasing rates, i.e., the higher the coupon, the lower the

corresponding yield for a given rising term structure. The decrease is

more pronounced for the more gradually rising term structure. By contrast,

the falling term structure produces a positive relationship between coupon

rate and yield, though also one whose rate of charge decreases. That is,

when the t-period interest rate decreases for increasing t, the effect

25
of a higher coupon rate is to increase the yield.

One way in which these relationships are sometimes visi:ialized is

in terms of "average" or "effective" maturity. A higher coupon rate implies

receipt of a larger proportion of the total payments of a bond by a given

date than one with a lower coupon rate. By shortening the "effective"

maturity, the yield on a bond (which is also an average—a xreighted average)

changes in the same direction as a change in the t-period interest rate

from a later to an earlier date. This corresponds to a decrease for a

26
rising term structure, an increase for a falling one.

Errors in the Empirically Measured Term Structures

As indicated, many writers fail to make the distinction between the

term structure and the yield curve. As a result, tests of theories about

25
A flat term-structure does not give rise to a cur-/e since, in that case,

r = r for all t, and both numerator and denominator of (l9) vanish.

26
The leveling- off of all curves in Figure II is due to the fact that the

assumed term structures all approach a constant level.
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FIGURE II

RELATIONSHIP BETWEEN YJEM) AND COUPON RATES FOR

THREE ASSUMED TERM STRUCTUHFo OF INTEREST RATES

AND A MATURITY OF THIRTY PERIODS
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the nature of the term structure as, for example, for or against the ex-

pectations hypothesis, cannot be carried out accurately. This concluding

section is devoted to the derivation of the error resulting from use of

the yield curve for obtaining the term structure, and to indicate its size

by use of some examples.

The yield curve is generally obtained by drawing a free-hand line

on a graph of the yield to maturity against term to mat\irity. For a

variety of reasons, most of which are outside our present interest, such

a graph generally shows several yields for a given maturity. For a class

of bonds of generally homogeneous risk of defaiilt, as, for example, gov-

ernment bonds or certain municipal bonds, all noncallable and having no

special featiires, an important source of difference between yields is the

difference between coupons. The common practice is to draw the yield

curve through the points of bonds with lowest coupons, which are also gen-

27
erally the lowest points for given maturity.

There is nothing objectionable in this procedure for graphing the

yield curve. However, it must be borne in mind that the lowest coupon rate

may differ from one maturity to another, and that the lowest rate is not

zero. Because of this, the whole set of preceding t-period rates, t=l, ...,n-l,

enters into the estimation of the n-period rate. This rate may again be

derived from the two expressions for the price of a bond, (l?) as a func-

tion of the term structure, and (l8) in terms of its yield to maturity.

27
This rule is not rigidly adhered to by Durand [l,£l, whose curves are
most frequently referenced. Durand is extremely careful, and he ex-

plains his deviations from this rule in specific instances.
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Once more combining these relationships and solving for R , after re-

• ^ K4. •
28

arranging terms we obtain

(20)
^ \l+r7

l+(4-l) (1 + r*)-" n-1

R = R
.m

t=l

Making use of the relation between the discoimt rates and the n-period

rates, viz., r = (i/r )
' - 1, we obtain

' ' n ' n' '

(21) r =
n

1+r

1 +

•«•

1/ (1 + r*)"" n-1

* <
t=l

-l/n

As this expression shows, the rate to year n implied by a given yield de-

pends also on the market discount rates, R7, t=l, ...,n-l, as well as on

the coupon rate, r .

The relationship between bond yields and the implied t-period rate

has been graphed in two ways. In Figure III the t-period rates are plotted

against the term together with the yield cuives from which they were de-

rived. A uniform 5^ coupon was assumed. The t-period rate in each instance

was computed from the yield of the same value of t, and from the values of

f , t=l, ...,t-l obtained before. I.e., expression (21) was applied re-

cursively. To keep the examples simple, the yield curves used here are the

2H
To clarify, it may help to write (l?) as

n-1

p = r Z < ^ (1 * ^°K
t=l
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FIGURE III

Relationship Between Yields (r. ) and LnpHed Interest
Rates (r. ) For Three Hypothetical Yield Curves of 3%

Coupon Bonds with Terms- to-Maturity from One to Thirty Years

Interest
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^
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Figure III (cont.)

A.

r

30 Years

b. Palling Yield Cttinre

't

30 Years

c. Rnplflly rilstnR Ylelfl Curve
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three curves of Figure I, given in Taihle I as term- structures. In Figure IV

the relationship between the coupon rate and the implied t-period rate is

plotted for a fixed maturity of thirty years and for three given yields,

29
those in Figure III, and for their respective term- structures.

Figure III indicates that the direction of the error in estimating

the t-period rate from bond yields depends on the slope of the yield curve

itself: if it is rising, the yield underestimates the t-period rate; if

it is falling, it overestimates it. Thus an inversion in the yield curve,

from rising to falling or vice versa, with the long-term yields unchanged,

implies a change in the long-term interest rate.

A curious fact which emerges from Figure IIIc is that although the

yield curve here is monotonically non-decreasing, the term structure falls

slightly at the end. This result can be attributed to the leveling off of

the yield curve.

Figure IV gives an indication of the magnitude of the error which

the coupon introduces in estimation of the term structure from bond yields.

For the rising term structure (Figure Ilia) a 2^ coupon implies a l6 basis

point overestimate, a 55^ coupon implies a 30 basis point overestimate. The

falling term- structure shows a nine basis point underestimate with a 2^

coupon and a l6 basis point underestimate with a 5/^ coupon. The chief

implication of these graphs is that while it would be better to estimate

the term structure from bond yields by drawing a curve below the points with

29
Note that these are not identical with the term stmictures of Table I,

as explained above.

A "humped" yield cu]

term structure to an overestimate, the two curves crossing.
A "humped" yield curve implies a change from an underestimate of the
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FlRiirf IV

Relationship Between Coupon Rate and the Implied
t-Perlod Interest Rate for Three Given Term-

Structures and Yields and a Thirty-Period Term

n
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0.0U5

0.0U2

^ O.OUl

0.0^*0
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lowest coupons when the term structure is rising^ when it is falling the

curve should not be below but somewhat above the lowest points. The exact

deviations can be computed recursively from expression (21).

Conclusions

The objective of this paper has been to generalize the notion of

the internal rate of return for situations of nonconstant market interest

rates and to apply it to the evaluation of streams of cash flows for in-

vestment decisions by firms j and to utilize the framework for an analysis

of the term structure of interest rates. We have established the rela-

tionship between net present value and internal return vectors and the

requirements for ranking streams of cash flows, and also related it to a

one-dimensional criterion, the uniform perpetual rate of return which may

be used with standard streams of an outflow followed by inflows.

The notation has also proved useful for establishing the relation-

ship between bond yields and coupon rates for given term structures of

interest rates, and to indicate the need for a clear distinction between

the schedule of bond yields to maturity and the term structure. The

method was applied to measure the error introduced by using the yield

curve in place of the term structure, and it was possible to show that

the sign of the error depends on the term structure itself.
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