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1. INTRODUCTION

Gains in computer performance can be
achieved through improvements at the
circuit level (eg. faster circuitry), the
basic building block level (eg. more
powerful microprocessors), the building
block interconnection level (eg. better
computer system architecture) , and the
system software level (eg. more effective
system software) . Many of these points are
studied in [1]. However, there are strong
relative dependencies between the levels
(see Figure 1), and a full system
utilization of improvements at one level
will usually require some associated
modifications at the other levels. The
absence of both necessary system
interconnection signals and important
system software instructions in modern
building blocks are typical examples of
situations where it is appropriate to make
adjustments across level boundaries. Some
of the dependencies and their associated

modifications will be illustrated in this
paper

.
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Figure 1

The four basic levels of potential
Computer System Performance
Improvement; i.e. circuit level,
building block level, building block
interconnection level, and system
software level.
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Average bus utilization and average bus
response time as a function of rhe
number of processors for a pended
transaction based MMPS. The graph also
includes the average bus utilization
for a conventional single bus based
MMPS. [15]

2.4 Memory and Processor Contentions

In a single bus based MMPS, any number
of processors may simul caneously need
information from the same memory module. In
addition, there is likely to be an
exponential-type distribution of the memory
load [15]; i.e., certain areas of r.he

memory will be in greater demand than other
areas (see Figure 2) . Since a memory module
can only service one request at a time,
this situation may result in a severe
contention among the processors which are
requesting the use of rhe highly demanded
memory areas. Similarly, a sec of memory
modules may like to respond simultaneously
to one particular processor. This creates a
processor contention. The memory and
processor contentions, which are often
referred to as the "device busy" problem,
may degrade the MMPS performance. This
performance degradation will arise from
processors awaiting crucial information
from the highly demanded memory modules,
and from tne extra bus load which will be
imposed by multiple requests for
transmission to busy devices. Thus, the
device busy problem must bo dealt with in a
single bus-based MMPS design.

The memory contention can be dealt
with in two different ways. Danielsson and
his colleagues (7) have suggested that the
memory space should be divided into small
modules. This will allow the memory
requests to be spread out over a large
number of independent modules, thus
reducing the probability of getting
simultaneous requests for the same module.
Rather than using small memory modules, the
problem can be solved using faster memory
circuitry in the highly demanded areas.
This concept must be accompanied by a

memory content migration schema which must
be based on continuous memory traffic
statistics. The idea of using memory
modules with different speed
characteristics is analagous to the
well-known cache concept; however, the
shared-bus architecture is more flexible
than a standard cache. Toong [15] has
studied tne memory speed part of this
solution (assuming a stationary memory
content) , using an analytic model, and his
results show promising effects.

No practical implementation of the
above suggested solutions to the memory
contention will eliminate the entire
problem. The processors in the system will
therefore continue to become unproductive
when they must wait for crucial information
from the memory. Note that only a portion
of the delayed information will influence
the processor productivity.

During the unproductive periods, the
actual processors may waste bus bandwidth
through repeated requests for the needed
information. The waste of bus bandwidth can
be reduced significantly by using input and
output queues on all of the devices that
are connected to the bus. This will allow
all of the devices to transmit information
on the bus even though the receiver should
be busy; i.e., the information will be
stored in the input queue until it can be
processed. It will also permit the devices
to keep on working even if they cannot get
immediate access to the bus, i.e., the
output information will be deposited in the
output queue until it can be transmitted.
In normal operation, the actual size of the
queues, which is a system design parameter,
is not likely to go beyond practical
limits. According to Toong [13], who has
studied both the memory speed and the queue
solutions to the device busy problem, a

64-level queue will result in a queue
overflow probability on the order of
10**-i2, which is nearly zero for all
practical purposes.

Design of a reliable single-bus-based
MMPS, which would utilize queues of
insufficient length to reduce the devJ.ce
busy problem, must incorporate mechanisms
that will prevent queue overflow. A
"queue-full" signal can be used to solve
this problem. To avoid wasting bus
bandwidth on queue-full conditions, it
would be necessary to incorporate all the





The physical characteristics of the
bus lines (i.e., speed, length, etc.) will
definitely influence the bus performance.
However, the effect of this matter is
signiticanc only for long busses (length >

1 ft.) and/or for critical speed
requirements. For the purposes of this
paper, the bus lines will be considered to
be short enough and well conditioned so
that they do not impose any significant
data transfer constraints. The only
remaining physical speed constraint, then,
is the speed of the interface circuitry.
This can be solved, for all practical
purposes, by using high-speed, uniform
logic at the bus interface (See Figure 3

for illustration) .

The only remaining factor to consider,
then, is the protocol used on the bus as a

limit to data transfer rates. The high bus
utilizations of the above mentioned
processors is primarily a function of the
master-slave based bus protocols tnat are
used. Normally, the protocols are fixed at
the basic building block design stage, and
cannot be changed after the design is
completed. Recent micro-coded processors,
though, present the potential of being
modified to optimize bus protocol without
changing the basic processor. In general,
the basic building block designers may use
any bus protocol. The actual choice is
always the result of a trade-off process,
which, until recently, due to low-density
devices, could not favor sophisticated bus
protocols. Today, however, with VLSI
technology at hand, it should be possible
to implement low bus utilization protocols
without any major penalties on the other
system parameters.

Different versions of a special "split
transaction" bus protocol, 'have been
proposed by various authors as a general
solution to the high bus utilization
problem [3,6,7]. This type of protocol,
which is illustrated in figure 3, splits
the regular master-slave based transaction
(Tstd) into' two subtransactions (Tl and
T2) . These can take place disconnected in

time as a transaction initiation part and a

transaction completion part. Consequently,
the bus will be free for other usages
during the asynchronous wait interval (Mt).
Obviously, this implies that a read
transaction will utilize both cf the
subtransactions, whereas a write operation
will utilize only the first subtr ansae tion
(Tl).

The actual bus protocol implementation
varies in two major areas. These are:

-centralized versus decentralized
control , and
-synchronous versus asynchronous logic.

The trade-off process between
centralized and decentralized control
involves topics of reliability (fail-soft),
modularity, and cost. The choice between
synchronous and asynchronous logic is more

likely to involve performance trade-offs.
However, the differences between the
various implementations has no major impact
on performance, and a further discussion of
these topics is not pertinent here.
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Performance has always been considered
the only major drawback with the ningle
bus. Interconnection techniques to overcome
the performance problem have usually added
to the system complexity, and thus
corrupted the three aforementioned
advantages. Two one-way paths and multiple
two-way paths are among the most frequently
suggested modifications in terms of
performance gain. Note that these
alternatives represent a bypass of the
actual problem instead of a solution co it.

Danielsson, et. al. [7], have shown
that the single bus represents only a minor
performance degradation, when compared to a

multiport system, as long as the bus is
relatively much faster (a factor of lOx)
than the devices that are using the bus. In

other words, a low bus utilization at the
building block level is necessary for
successful operation of a single-bus-based
MMPS. This fact is also expressed by
Haagens [3]. The bus, as used herein,
consists of the actual buslines, the
immediate busline interface circuitry, and
the bus protocol.

The above results imply that multiport
based systems are probably the best
alternative in applications where
ultra-high bandwidths are required and
where price is only a minor concern. On the
other hand, however, the results also
indicate that given the necessary low bus
utilizations at the building block level,
the single bus will probably become the
superior overall interconnection mechanism
for a major portion of the MMPS application
Epectrum.

2.2 The Bus Utilization Problem

Given the above promising prospects
regarding the single time-shared bus as an
MMPS interconnecton mechanism, the
fundamental problem now becomes that of
designing a new bus which can support such
an MMPS architecture. Essentially, the
single bus operates in a two-step cycle, as
follows

:

-devices with an active bus need compete
for the bus in an arbitration process
before the selected device is connected
to the vacant bus, and

-information is transferred on the bus,
which is released when the transfer is
finished.

as fast as the minimum bus information
transfer process. On the other hand, it
should be noted that a slow,
non-overlapping bus arbitration process
will waste a good portion of the available
bus bandwidth.

The actual bus arbitration process,
which involves decision algorithms based on
the system priority structure, will not be
discussed in this paper. Most of the
problems related to the arbitration process
are described in the literature by various
authors [3,4,8,9,10,11]. In the remainder
of this paper, the arbitration and the
information transfer processes will be
assumed to be overlapping- In addition, it
is also assumed that the arbitration
process is at least as fast as the minimum
information transfer process. The bus
utilization thus becomes solely a function
of the information transfer process in the
remainder of this paper.

Previous generations of
microprocessors (eg., Intel 8080/85.
Motorola M6B00, and Zilog Z80) have very
high bus utilization [12]. A set of bus
utilization values for different processors
is given in Table 1. As a result of the
high bus utilization, these processors
cannot successfully work together on a

single bus without major modifications
(i.e., between 1.5 and 2.5 non-modified
processors will consume the entire bus
capacity)

.

8080* 8080** 6800 6502 9900 LSI- 1.1
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queue status and device-ID signals into the
arbitration process. However, this will
increase the arbitration complexity, and
the cost/per formance potential of the
single bus based MMPS will be severely
degraded. Thus, it is not worth the effort
to try to eliminate all of the additional
bus utilization (especially since the
potential gain is most likely insignificant
in any reasonable size queue system). The
problems associated with passing critical
real-time parameters through the queues,
which will impose an unpredictable delay in

the response, must also be taken care of in

the MMPS design. Both the "repeated
request" problem and the problems
associated with real-time parameters must
bo solved on an individual system basis.

3. A MODERN MICROPROCESSOR ARCHITECTURE.

It will be useful at this point to
relate some of the previous ideas to a

current microprocessor architecture and a

vendor supplied MMPS interconnection
scheme. The Motorola MC68000 will be used
as a representative of the current
microprocessor technology available for

general use. The MC68000 is chosen
primarily because of its microcoded nature
and associated potential of being modified.
Note that there is no major difference
between the MC68000 and the other
alternative 16 bit processors (i.e., Intel
8086 and Zilog Z8000) in terms of a single
bus based MMPS.

Let us first review the architectural
characteristics of the MC68000. At the chip
level, this newest generation of
microprocessors presents significant
improvements over previous architectures.
In particular, data paths to and from
memory have been expanded to 16 bits, and
the address ranges have been extended to

allow larger memory systems to be directly
accessed. All address calculations in the
MC68000 are performed in 32 bits. However,
at the present time only 24 bits are
delivered 'Outside the chip. The address is
delivered in 4 separate spaces, thus
yielding 64 megabyte addressability. All 32

bits could easily become available (given
more pinout) , and future versions of the
processor will definitely be implemented
with the full 32 bit address space. The
MC68000 uses memory mapped I/O. This allows
all memory referencing instructions to be
used for I/O referencing as well, thus
saving instructions at the expense of I/O
protection at the instruction level. As a

result, the I/O protection must be
performed at the memory protection level.
The large memory space virtually requires
some form of management. The MC68000 uses
an external memory management chip. This
allows increased function by increasing
silicon area. The management unit can
relocate, check bounds, and function check
all references to support very
sophisticated memory mapping and protection
facilities.
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Most of the above processor features
would obviously be very useful in a

multiple microprocessor environment.
However, the problem of interconnection
remains to be solved before the features
will have any value in the area of MMPS.

3.1 Microprocessor Timing

The MC68000 bus utilization depends on

the instruction and data fetching process.
Actual bus loading numbers are not
available at the present time. However,
sufficient bus utilization estimates can be

made. The MC68000 has three basic bus
operations. These are:

(Each state is one half clock cycle, or

62.5 ns at 8 MHz.)
-Read: 8 bus states plus wait state
pairs as required

-Write: 10 bus states plus wait state
pairs as required

-Read-Hodify-Wr ite: 13 bus states plus
wait state pairs as required

A detailed description of the basic bus
operations along with the timing diagrams
is g iven in [ 14)

.

Most MC68000 instructions are memory
fetch time bound. In addition, CPU and
memory operations are carried out in

parallel. Therefore, the processor is

almost always on the bus doing a read or a

write oosration. In some addressing modes,
requiring a full 32 bit add, the bus is

idle for one basic machine cycle (i.e.,
250ns at 8 Mhz) . Some instructions,
however, such as RESET, MULTIPLY, DIVIDE,

SHIFT, and ROTATE are CPU intensive. These
instructions, which are less frequently

encountered, do not require any external

accesses during execution. Overall, though,

it is reasonable to assume that a

continuous stream of reads and writes will





be performed by each processor under
execution. The bus cycle description
implies that a processor uses the bus for
all but one of the states in each of the
basic bus operations. If one were simply to
connect two processors on a single
time-shared bus, they could overlap bus
dependent operations (execution) only
during that single state. Thus, with
respect to overall bus utilization, there
is no major difference between the old
Motorola M6800 and the new MC68000. Bus
utilization values like those shown for the
16 bit processors (LSI-11 and TI9900) in
Table 1 should be expected for the MC6S000.

From the above description it can be
seen that each processor inherently uses
the bus it is connected to for a very large
portion of the time. Any attempts to
connect more than one processor on one such
bus would not yield a significant increase
in computation power. This is because each
processor would have to be proportionately
slowed down in order to get access to the
bus. Obviously, the above conclusions are
highly dependent on the instruction mix.
However, the overall result is that, at
best, 2 processors would profit on a single
bus. That is far from a promising result.

local bus contains the needed information
is stopped and the data is passed back to
the requester, who then relinquishes the
global bus.

MC58000
(MPU *l)





processor executing a common routine in

global memory could tie it up completely.
As the processors are assigned a fixed
priority, a complete lockout of the other
requests would occur.

3.3 Split Transaction Multiprocessing

In the previous MC68OO6 designs, buses
were used to supply complete communication
links between one master and one slave
device; the master would ask the slave to

do something, and then wait until the slave
responded. To allow more extensive sharing
of resources, a higher speed communication
mechanism is needed betv/een devices. In

this regard, it becomes desirable to
connect several MC68000 processors to a

split (especially Pended) transaction bus.
One 'very important multiprocessing point
must be brought out here. In a

multiprocessing system, processor
synchronization requires some form of an
"atomic" cest-and-set primitive to
implement resource allocation. In the
MC68000, this is performed via a

read-modif y-wr ite operation, which is

formed of connected read and v;rite

operations. In a split transaction bus, the
first read cycle can be started, and other
bus operations can occur while the first
read is completing. If one of those
operations happens to be to the current
location being read by the test-and-set

,

then it can get to it between the
test-and-set cycles if careful nardware
measures are not taken, which would destroy
the intended operation of the test-and-set
operation. This problem is particularly
evident in a Pended bus with queues, where
the queue may buffer up many requests to
many locations.

Virtually any processor can be
connected to a split transaction bus
(possibly through some external control
logic) , provided it creates some form of
request signal (such as an address strobe)

,

and has an asynchronous signal to denote
transaction completion (wait or
acknowledge). On pfocessors where the split
transaction protocol must be created from
such external signals, the timings may
degrade processor-to-memory performance
figures. In the HC68000, the protocol can
be created, but the timing is less than
optimal. If the slaves are memory fast
enough to supply the processor without wait
states if connected directly, then a split
transaction system will have to insert two
to four wait states [14] into the processor
read cycles due to the delays associated
with proper address strobing and data
acknowledge. The addition of the wait state
pairs results in a net slow-down of up to

50 percent for each cycle of each
processor. By far the worst difficulty,
however, is that tlie MC68000 test-and-set
operation simply makes a read operation
followed by a write operation. It is
impossible to tell, until the read is done.

that a read-modify-wr ite operation is in
progress, which is too late to stop
interference [14]. This problem can only be
solved by a change in the protocol
microcode to enable an output signal to
give an earlier indicator. The only other
choice is to ignore the test-and-set
software instruction and to create the
indivisible operation in hardware
test-and-sel f-se t flags.
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The basic bus control protocol of the
MC68000 has been investigated. It has been
shown to effectively curtail significant
multi-microprocessing because of high bus
utilization. Although the low bus bandwidth
is highly dependent on the instruction mix,
severe throughput degradation results
because of an inefficient protocol design
at the processor level.

The vendor-supplied multiple
microprocessor interconnection system has
also been reviewed. A consensus view is

that the global .system bus can be easily
saturated by the requests of a single
high-priority processor. The proposed
Motorola design is best aimed at low-volume
global transactions where each processor
relies heavily on its local resources. The
Local/Global bus solution would be
inappropriate and inefficient for a large
(>5) number of processing elements, with
high bus bandwidth requirements.

A pended transaction protocol is one
approach for increasing the available
bandwidth of such a time-shared bus.
However, the process of adapting a

standard, high bus usage microprocessor to

such a Pended multiprocessor scheme still
has several difficulties which give such an
approach limited practicality. These
problems include additional wait states in

the processor cycle, and inability to
guarantee proper operation during a

read-modify-wr ite sequence. Since the
microprogrammed nature of the MC68000
allo\'G modification of the addressing
control structures, it would seem possible
to. properly implement the Pended Bus
Protocol directly from the chip without
radically ' altering the chip^s internal
structure. Practical multiprocessing
capabilities could be implemented easily
and directly.





The implications of such an improved [131-Toong, Hoo-min D. , and Gupta, Amar,
system interconnection architecture for " IMMPS-Incerac tive Multi-Micro-
high bandwidth applications, such as processor Performance System," MIT
real-time industrial control or CISR Technical Report #6, December
computation-intensive tasks, are truly ' 1979.
significant. Computer control functions (14]-Toong, Hoo-min D. , Strommen, S. , and
such as multi-dimensional, multi-arm Goodrich II, E. et. al., "Archi-
machine tool operations can now be' tectural Comparisons: "MC68000,
accomplished in a modular, expandable Z8000, 8086," MIT CISR Technical
fashion that can still accomodate current Report 1(5, December 1979.
technology building blocks. Such techniques [15]-Toong, Hoo-min D. , work in progess, to
are also extendable to other application be published,
areas.
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