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Abstract

We consider the minimum cost network flow problem min(cx : Ax=b , x > 0)

on a graph G = (V,E). First we give a minor modification of Edmonds-Karp

scaling technique, and we show that it solves the minimum cost flow problem

in 0((|V|'^ log 1v|)(|e| + |V| log |v|)) steps. We also provide two dual

simplex algorithms that solve the minimum cost flow problem in

0(|v| log |v|) pivots and 0(|v| log |v|) pivots respectively. Moreover,

this latter dual simplex algorithm may be implemented so that the running

time is proportional to that of Edmonds-Karp scaling technique.

Key words: network flow, scaling, simplex algorithm, polynomial algorithm.





Introduction

We consider the minimum cost network flow problem (1)

Minimize ex (1)

Subject to Ax = b

X >_ 0,

where A is the vertex-edge incidence matrix for a graph G = (V,E). In

addition, we assume that V = {0,1,2, ... ,m}, c is an integral n-vector, and b

is a real-valued m-vector with -1 < b. ^ 1 for i € V. We have deleted the

redundant mass balance constraint for vertex 0. We assiime without loss of

generality that | b
,

] <^ 1 since we may scale the variables without altering the

optimum solution.

Let BIT(b) be the minimum integral value of s such that 2^b is integer

valued. Thus BIT(b) is a sufficient number of bits to represent b^ for

all i e V. We let BIT(b) = »» if no such finite value of s exists. We let

BIT(c) = max ( f Iog(
|
c . |

+ 1) 1 : 1 _< j _< n)

.

We present three algorithms for the minimum cost network flow problem.

The first algorithm is a modification of the original scaling algorithm of

Edmonds and Karp (1972). This algorithm solves the minimum cost flow problem

as a sequence of 0(|v|BIT(b)] different shortest path problems, each of which

may be solved in 0(|e| + |v| log |v|) arithmetic steps using Fredman and

Tarjan's (1984) implementation of Dijkstra's algorithms. In the case that

BIT(b) is large (possibly infinite), we show how to reduce the number of

shortest path problems to 0(|v| log |vl). Thus we show that the Edmonds-Karp

procedure is in fact genuinely polynomial, i.e., the number of arithmetic

operations is independent of BIT(b) or BIT(c). (The arithmetic steps used by



the scaling algorithm are as follows: addition, subtractions, comparisons,

truncation, and computing the smallest s such that |2 b^| >^ 1, i.e.,

calculating the place of the first non-zero bit in the binary representation

of b^.)

We also present two genuinely polynomial dual simplex algorithms for the

minimum cost network flow problem. The first of these dual simplex algorithms

takes 0(lv|-^BIT(b)] pivots, or o(lv|^log |v|] pivots, whichever is smaller.

The second dual simplex algorithm takes o(|v| BIT(b) ) pivots or

0(|v|"^ log |V|) pivots, whichever is smaller. The first of the dual simplex

algorithms is a "more natural" pivot rule, and the proofs of the computational

bounds are simpler. However, this latter dual simplex algorithm has the

property that each dual pivot may be obtained via a (non-dual) Dijkstra step.

Thus one may implement the latter dual simplex algorithm so that the number of

arithmetic steps is 0(u*(|e| + |v| log |v|)], where

U* = min(|v|BIT(b), | vf ). In this case, the number of arithmetic steps for

the dual simplex algorithm is comparable to the number of arithmetic steps for

the Edmonds-Karp scaling procedure. This is also the best known computational

bound for the minimum cost network flow problem for sparce networks. Moreover,

the dual simplex algorithms presented here are the first simplex pivot rules

that are provably polynomial for the minimum cost network flow problem.

1. Background

Edmonds and Karp (1972) were the first to solve the minimum cost network

flow problem in polynomial time. Their algorithm, now commonly referred to the

Edmonds-Karp scaling technique, is to solve a sequence of o(BIT(b)] different
j
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network flow problems, each equivalent to (1) except that the j-th such

network flow problem has a right hand side of [Z^bl/Z-' rather than b. They

t'Vi f*Vi

also show that the j problem can be solved from the (j-1) problem via a

sequence of at most |v| shortest path problems. We will describe our

implementation of Edmonds-Karp scaling technique in Section 2.

Although Edmonds and Karp did resolve the question of whether network

flow problems can be solved in polynomial time, two interesting closely

related questions were unresolved. First, as stated in their paper,

"A challenging open problem is to give a method for the minimum cost flow

problem having a bound of computation which is polynomial in the number

of nodes, and is independent of both costs and capacities".

We shall refer to such an algorithm as a genuinely polynomial algorithm. The

reader should be forewarned that we are using the term "genuinely polynomial"

in a slightly different sense than did Megiddo (1981). In particular, our

calculations may be on real numbers, and we are permitting a different set of

arithmetic operations than did Megiddo.

This first question is motivated in part by the existance of genuinely

polynomial algorithms for several important subclasses of network flow

problems, viz., the assignment problem, the shortest path problem, and the

maximum flow problem.

The second question is as follows. Is there a simplex pivot rule that

solves the minimum cost network flow problem in polynomial time? This latter

question is motivated in part by the practical efficiency of the network

simplex algorithm, as documented for example by Glover and Klingman (1975),

and All et al. (1978). The question is motivated also by the recent average

case results for the network simplex algorithm as proved by several



researchers. See Karp et al. (1984) for a list of references.

Tardos (1984a) resolved the first of these two open questions. She showed

how to solve the minimum cost flow problems by solving |e| distinct problems

such that in each problem BIT(c) _< 2 log lv|. Thus Edmonds-Karp scaling

technique is genuinely polynomial for each of these 1e| problems. Tardos

(1984b) shows how to extend her own technique to provide genuinely polynomial

algorithms for all linear programs in which the constraint matrix coefficients

are small, i.e., BIT(A) is polynomially bounded in m and n.

As for the second question, Zadeh (1973) provided the first negative

evidence by showing that the primal simplex algorithm using Dantzig's pivot

rule (i.e., pivot in the variable whose reduced cost is minimum) does take an

exponentially large number of pivots in the worst case. Subsequently,

Cunningham (1979) showed that Bland's primal simplex pivot rule takes an

exponentially long sequence of consecutive degenerate pivots in the worst

case. Indeed, Cunningham's example (a modification of an example of Edmonds

(1970)) shows that Bland's rule takes an exponentially large number of pivots

in the worst case even when specialized to the shortest path problem.

Cunningham (1979) also provided some "good news" with respect to the

second question by developing a primal network simplex pivot rule that avoids

"stalling", i.e., the number of consecutive degenerate pivots is polynomially

bounded. Subsequently, Roohy-Laleh (1980), Balinski (1982), and Hung (1983)

developed polynomial time simplex pivot rules for the assignment problem.

Orlin (1984) showed that the number of pivots for Dantzig's pivot rule is

0(|v|^|E|^BIT(b) 2^"^^^). Thus when 2^^^^^^ is small — as it is the

assignment problem and for the shortest path problem — Dantzig's pivot rule

is polynomial time.

Ikura and Nemhauser (1983) developed a dual simplex pivot rule such that

BITf b^

the number of pivots is polynomially bounded in |v| and 2 .
Used in
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conjunction with Edmonds-Karp scaling, their algorithm solves the minimum cost

network network flow problem In polynomial time.

We present the first specialization of the dual simplex algorithm which

runs in polynomial time for network flow problems. It Is still an interesting

open question as to whether there is a "natural" primal simplex pivot rule

which runs in polynomial time for network flow problems.

We observe that Ballnskl (1982), (1983) and (1984) in his work on the

assignment problem and the transportation problem has provided some intriguing

evidence which suggests why the dual polyhedra of network flow problems may be

better suited for the simplex algorithm than the primal polyhedra. In

particular, he shows that the number of vertices of the dual polyhedra is

considerably smaller than for the primal polyhedra. He also shows that the

Hersh conjecture is true when specialized to the dual network polyhedra. In

addition, he provides a dual simplex procedure for the assignment problem for

which the number of pivots is at most (n -n)/2, and he proves that this bound

is the best possible.

The outline of the remainder of this paper is as follows. In Section 2,

we review Edmonds-Karp scaling procedure, and we show that with a minor

modification it is a genuinely polynomial algorithm. In Section 3, we present

the first of our network dual simplex algorithms, and we show that the number

of pivots is 0(|v| log |v|J. In Section 4, we present the second of our

network dual simplex algorithms and we show that the number of pivots is

0(|v| log |v|]. Finally, in Section 5, we show how to implement this second

dual simplex algorithm so that the number of arithmetic steps is

0(u*(|e| + |vl log |vl)) steps, where U* = min(| V| BIT(b) ,
|v|^log lv|].



2. Edmonds-Karp Scaling Technique

In this section, we describe an implementation of Edmonds-Karp scaling

technique for which the number of arithmetic operations is polynomially

bounded in |
V| .

Before describing our procedure, we first describe some of the notation

and terminology that we will use. We also will make some simplifying

assumptions.

Notation and Definitions

Let G = (V,E) with V = {0, 1 , . . . .m}. A path in G is an alternating

sequence P = ^Q.e^,v^,. . . .e^,v^ of vertices and edges such that e^ = (v^.^v^)

or else e^ = (v^.v^.^. In the former case, e^ is called a forward edge of P.

In the latter case it is called a backward edge of P. The _cosl of a path P is

the sum of the costs of the forward edge of P minus the sum of the costs of

the backward edges of P. A circuit is a path in which Vq = v^ and Vq,...,Vq_i

are all distinct.

A directed path is a path in which every edge is a forward edge. A graph

is strongly connected if there is a directed path between every pair of.-'.l

vertices.

By a rooted tree we mean a spanning tree in which one vertex is specified

to be the root. Unless specified otherwise, we will henceforth assume that the

root vertex of any rooted tree is vertex 0.

T

Let T be a rooted tree. For every pair u,v of vertices, we let P (u,v)

denote the unique path in T from vertex u to vertex v. For every vertex u and

every edge e € T we let p'^(u,e) denote the path in T whose initial vertex is u

and whose terminal edge is e. We say that e € T is a downward, edge of the



rooted tree T if e is a forward edge of P^(0,e). Otherwise, e is an upward

edge of T. We let

B(T,e) = {i e V : e € p'^(0,i)}.

Equivalently, B(T,e) is the set of vertices of V that lie below e on the

tree T.

For a tree T and each e ^ T, we let c denote the cost of the circuit C

created by adding edge e to T, where e is a forward edge of C. Equivalently,

c

is the reduced cost of edge e with respect to the basis induced by T.

1 2
For any pair S ,S of disjoint sets of vertices, we let

6(S^,S^) = {(u,v) € E : u € S^, V 6 S^}.

For any edge e of T we define the fundamental cutset of e to be

'
(u,v) e E : u=€ B(T,e), v € B(T,e) if e is upward

F(T,e) =

(u,v) e E : u € B(T,e), v 6 B(T,e) if e is downward,

The Parametric Sequence of Problems

For each I = 0,1,2,..., we define b(£) as follows.

Let s = [{l-l)/m\ and let v = l-sm. Then

b^(il) =
f2^b.l/2^ if 1 < i < r

f2^"-^b^l/^ ^ if r + 1 <_ i £ m.

We let PROB(il) denote the following problem.



Minimize ex

Subject to Ax = b(Jl) PROB(£)

X >_ 0.

We first observe that bj(0) = 1 or according as b^ is positive or not. Thus

PROB(O) is equivalent to finding the shortest path from vertex 1 to vertex

for all i with b^ > 0.

We also observe that for U* = (mfl) BIT(b), PROB(U*) is the same as

problem (1). Henceforth we will refer to (1) as PROBC").

REMARK 1. Suppose that b(iH-l) f' b(Jl), and that l+l = sm+r with s = [Z/mJ. Then

b^(£+l) - b^(Jl)

-2"^ if i = r

if i * r.

Remark 1 follows directly from the definition of b(Jl). We observe also that

b(Z) is monotonically decreasing in I. Although the monotonicity of b(.) is

not critical to the usual implementation of Edmonds-Karp scaling technique,

the monotonicity of b(.) is required in the proofs of Lemmas 3, 4, and 5

below.

Edmonds-Karp scaling algorithm may be summarized as follows:

STEP 1. Solve PROB(O) by solving a shortest path problem.

STEP 2. For «- = to (iiri-l)BIT(b) , solve PROB(Ji+l) as a shortest path problem

as derived from the optimal solution to PROB(Ji).

We will explain Step 2 in more detail below; however, in order to

simplify the subsequent description and analysis we first make the following
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simplifying assumptions.

Al. The graph G = (V,E) Is strongly connected.

A2. The matrix A has full row rank.

A3. For any directed circuit C of G, the cost of C Is nonnegatlve.

A4. For any circuit C of G, the cost of C Is non-zero.

A5. BIT(b) < «.

We first show that we may make assumptions A1-A4 without loss of

generality.

If G Is not strongly connected, then we may add artificial adgas (0,j)

and (j,0) for each j e [l..m], each edge with a suitable large cost. One of

these edges would have positive flow in an optimum solution for PRGB(il) if and

only if PROB(il) had no feasible solution without flows in artificial edges. As

for A2, we have previously assumed that we eliminated the redundant

supply/ demand constraint for vertex 0. In conjunction with asssumption Al, it

follows that A has full row rank.

A3 is equivalent to dual feasibility. If there is a negative cost

directed circuit, then there is either no feasible solution to PROB(Jl) or

else PROB(£) is unbounded.

To achieve A4, we may add e"-' to the cost of the j edge of E.

Equivalently, we solve the network flow problems described below using

lexicography.

Assumption (A3) is not without loss of generality, but we will relax this

assumption later in this section.

LEMMA 1. Suppose that the data for PROB(£) satisfy Al , A2, and A4. Then there

is a unique optimum solution for PROB(£) for each i = 0,1,2,...
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PROOF. Assumption Al guarantees primal feasibility of PROB(Jl). Assumption A2

guarantees dual feasibility. Assumption A4 guarantees dual non-degeneracy.

Therefore, there is always a unique optimal solution. a

Solving PR0B(&+1)

T
For any spanning tree T and for any integer £ >_ 0, we let x (£) denote

the basic (possible infeasible) solution obtained for PROB(£) with basis T. We

say that T is optimal for PROB(Jl) if x^ (Jl) > and c-"" > 0.

Suppose that the spanning tree T is optimal for PROB(£) but not forAAA A

PR0B(£+1). We construct the auxiliary graph G = (V,E) with costs c for

A

PROB(Jl+l) from T as follows. The vertex set is V = V. For each edge e = (i,j)

with X (£) = 0, there is a corresponding edge (i,j) e E with c. . = c. .. For

T
each edge e = (i,j) with x (A) > 0, there are two corresponding edges (i,j)

A ^S ^V

and (i,i) in E with c , .
= c .^ = 0.

•^ ij ji

By the shortest path problem for G, we mean the problem of finding the

A

shortest path from vertex to every other vertex of G.

LEMMA 2. Suppose that the spanning tree T is optimal for PROB(Jl) but not for

A

PROB(it+l), with Z+i = sm-i-r. Let G be the auxiliary graph for PROB(£)

constructed from T. Let S be an optimal spanning tree for the shortest path

" S
problem for G, and let x = x (A+1). Then

(i) S is an optimal basis for PROB(il+l).

A

(ii) x is the unique optimal solution for PROB(Jl+l),
•-

, w

(iii) |x - X (£)1 = or 2"^ for each e e E.
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PROOF. By assumption Al and by the dual feasibility of T, there Is some

optimal shortest path tree. Edmonds and Karp showed that (1) Is true. The

uniqueness of x follows from assumption A4.

-
s '* T ^

Finally, by Remark 1, 2 (x - x ) Is Integer valued. In fact, x obtained

from X by sending 2" units of flow along the cheapest path In the auxiliary

graph.

Let REM(£) = Ii^i(b^(A) - b^).

The following corollary of Lemma 1 will be Important In the proof that

Edmonds-Karp scaling algorithm Is genuinely polynomial.

COROLLARY 1. Suppose that x(£j^) and x(il2) are optimal solutions for PROB(£p

and PR0B(Z2) respectively. Then for each edge e e E,

|Xg(iip - x^C^^)! 1 |REM(Jip - REMCii^)!.

PROOF. Suppose that i^ <_ X.2' Then

|x^(Zp - x^C^^)! < l^ti IXgCk+l) - x^(k)

< l^^^^ (REM(k ) - REM(k+l))

= REM(il^) - REMCJl^).

with the second Inequality being a consequence of (ill) of lemma 2.

We now present a genuinely polynomial version of Edmonds-Karp scaling
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algorithm.

Edmonds-Karp Scaling Algorithm

Begin

Solve the problem of finding a shortest path from every vertex

i e [l..m] to vertex in graph G. Let T be the optimum spanning tree.

While T is not optimum for PROB(") do

begin

find the largest value of i such that T is optimal for PROB(Jl);

construct the auxiliary graph G for PROB(Jl+l) from T;

let T be the solution to the shortest path problem in G;

let T = T;

end

end.

The proof of the genuine polynomiality of the Edmonds-Karp algorithm will

rely on two aspects. First, we will show that we can find in polynomial time

the largest value I such that T is optimal for PROB(£). Second, we will show

that the number of distinct trees obtained by the algorithm in the "while

loop" is 0(m log m).

Henceforth, we will let SUPFEAS(T) denote the largest value of I such

that T is primal feasible for PROB(£). If x'^(») >_ then SUPFEAS(T) = «.

If T is not feasible for PROB(£) for any i then SUPFEAS(T) = --».

Our procedure for calculating SUPFEAS(T) relies on Lemmas 3 and 5 below.
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Lenmia 3 show that we can calculate SUPFEAS(T) using binary search. Lemma 5

shows that we may restrict the search interval for the value SUPFEAS(T) to an

interval of size 0(m log m)

.

LEMMA 3. Let T be a spanning tree and let e be an edge of T. Let £^,^2 ^ Z

with i^ < ^2'

(i) If e is an upward edge of T, then x^(ij^) >_^^^^2^'

T T
(ii)- If e is a downward edge of T, then x^(Aj^) <.x^(^2^*

PROOF. If e is an upward edge of T, then

-^^) = IicB(T,e)^^^)-

Thus (i) follows from the fact that b^CA) is monotonically non-increasing

in I,

^ j-^- ^r If e is a downward edge of T, then

and (ii) follows from the monotonicity of bji(A). ^

LEMMA 4. Let T be a rooted tree and suppose that Z = SUPFEAS(T) with I <

Let a be an edge such that x^ii+i) < 0, and let s = [l/m\. Then

(i) x^(£) = 0.

. vc^ (ii) Edge a is an upward edge of T.
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(iii) x^(£+l) = -2"^.
a

PROOF. We first observe that 2%iZ+l) is integer valued, and thus 2^x^(4+1)

s T
and 2 X (£) are both integral. Therefore,

2^x'^(Jl+l) + 1 < < 2^x'^(Jl). C2)a — — a

Then (i) and (ii) follow from (2) together with (iii) of Lemma 2.

T T
Because x (A) > x (£+1), it follows from Lemma 3 that edge a is upward, a

LEMMA 5. Let T be a rooted tree and let e be an upward edge of T for which

x-'^(») < 0. Let s = -llog(-x^(<»))j. Then

X (sm) >_ > x'^(m(s+2 + [log ml).

T <3 T
PROOF. Suppose first that x (sm) < 0. Since 2 x (sm) is integer, it follows

T -s
that X (sm) _< -2 . Since e is an upward edge, we know that

T T —

s

X (") < X (sm) <^ -2 , contradicting our definition of s. •
'^

Consider next £' = m(s+2+flog ml). By Corollary 1,

x'^(£') - x-^(<») _< REM(£'). Moreover,

REM(X') <
2"^"^^

T
and thus x (£') < by our choice of s.

e

T
By Lemma 3, we know that the set of integers I for which x (i) _> is an

interval. Therefore, to find SUPFEAS(T), we only have to find an integer I for
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which K^Ci) > and x (Jl+l) < for some upward edge a if T. By Lemma 5, we— a

may restrict our search for the value SUPFEAS(T) to a range depending

on x^(»). We combine these properties so as to obtain the following procedure
a

for computing SUPFEAS(T).

PROCEDURE 1. "Compute SUPFEAS(T)"

Begin

T
Let q = min(x (<») : a is an upward edge of T;

a

_lf_ q >_ 0, then let Jl = «;

- else begin

let s = -llog - qj;

let i^ = sm;

let I2 = H-i + m(2+log m)

;

use binary search to find a value I in [Iy,.12] such that

X (£) 2 for all upward edges a of T and x^(£+l) < for some

downward edge a of T;

"end

if x'^(Jl) > then let SUPFEAS(T) = I;

else let SUPFEAS(T) = -»;

end.

PROPOSITION 1. Procedure 1 computes the correct value of SUPFEAS(T) in

0(|V| log lv|) steps.

PROOF. Let q, s, £,, I2 ^"^ ^ ^^ defined as in Procedure 1, and let e be an

T
upward edge of T for which x (<») = q.

T
Let I* be the maximum value such that x (£*) > for each upward edge a of T.

di
^^

We first note that if q > then £*=£=« as in the procedure. Otherwise, by
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Lennna 5, i* € [I ..Z ]. Moreover, by Lemma 3, the value I computed by binary

search is equal to I*

»

If x^(Jl) < for some a, then a must be a downward edge and thus by
a

Lemma 3. x'^(Jl') < for all V < I. In this case SUPFEAS(T) = -«. Otherwise
a

x^(A) 2. 0» and by our choice of I, x^C^') >, for V > I. Thus I =

SUPERFEAS(T).

We also note that binary search over the interval [Z^..Z2^ takes

O(log (Ao-^i)) "tests" where a "test" consists in checking the feasibility of

x'^(Jl') for some I'. Since each "test" takes 0(|v|) steps, the procedure takes

0(lvl log |V|) steps.

In the remainder of this section, we wish to show that the number of

Iterations of the "while loop" of Algorithm 1 is polynomially bounded.

Equivalently, we wish to show that the number of distinct trees determined by

the algorithm is polynomially bounded.

We first let PERM(il) = {e € E : x^(A) > REM(Z)}. -
.

By Corollary 1, we know that each edge e e PERM( £) is such that x^C^') > for

all V > i. We also know from Corollary 1 that PERM( £) c_PERM(£+l).

LEMMA 6. Let T be a rooted tree that is optimal for PROB(£).

Let V = SUPFEAS(T). Then

PERM(Jl') 5 PERM(Jl'+nri-2m|log m"]).

T

PROOF. Let Z* = i'+m+2mriog m~] . Let e be an edge of T such that x^(£'+l) < 0.

Let B = B(T,e), and let B = V - B.
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By Lemma 3, we know that e is an upward edge of T and thus T n 5(B,B) =» ((».

We will show that there is an edge a € 6(B,B) such that a € PERM(£*). Since

PERM(£') c_ PERM(£*) this will complete the proof. °

c

Let s = l(il'-l)/mj. Then

a€6(B,B) ^ a€6(B,B) ^ ^^^ ^ ^^"^
^

By (3) and the non-negativity of x(£*), there is some edge a € 5(B,B) such

that

x^(A*) >_ 2"®/m.

Finally, we observe that REM(i*) < m2"^'^^-'-°S™ <_ 2"^/m, and thus x (A*) >

REM(£*), completing the proof.

THEOEIEM 1. The Edmonds-Karp scaling algorithm solves the minimum cost network

flow problem with 0(u*( | V| log] V| + |e|)) arithmetic operations, where

U* =min(|v|"log |v|, |v| BIT(b)].

PROOF. Let T^,...,T^ be the distinct trees detetlnined by Algorithm 1, and let

l^ = SUPFEAS (T^). To compute T^ takes 0(|v| |e| ) steps using a shortest path

procedure. If we are given T , we can compute i in 0(|v| log |v) steps by

Procedure 1. We can also compute T^"*"^ in 0(|e| + |v| log |v|) steps using the

Fredman-Tar jan ( 1984) data structure of fiionacci heaps to implement

T iDijkstra's algorithm. (We use the reduced costs c where T = T , so that the

costs on the auxiliary graph are nonnegative.) Moreover, it is clear that

t <_ |v| BIT(b). To complete the proof of Theorem 1, it suffices to show that
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t < 2|V|2 log |V| + |V|2.

Let Sj^ = {A^ : i e [i..t] and PERM(£^) = k.}. By Lemma 6,

ISj^l <_ 2|V| (l+ log |V|] and hence t <_ 2|v|^ log |v| + Ivl*^ completing the

proof.

3. A Genuinely Polynomial Dual Simplex Pivot Rule for the Minimum Cost

Network Flow Problem.

In this section we develop the first of two pivot rules for solving the

minimum cost network, flow problems. Both rules appear to be "parametric rules"

in the following sense: we will show how to pivot so as to obtain an optimal

basis for PROB(Jl+l) starting from an optimal basis for PROB(£). (Thus we will

essentially solve the shortest path problem on the auxiliary graph by a

sequence of dual pivots.) Despite the fact that the pivot rule appears to be

defined parametrically, we will show that both of these pivot males are, in

, fact, dual simplex pivot rules for the original problems, PROB(°»).

A Dual Simplex Pivot Rule

f -.

In linear programming, the dual simplex pivot rule may be summarized as

follows. Given a dual feasible basis B and an infeasible basic solution x

(where Xg = B b) , pivot out a basic variable x. with x^ < and pivot in a

variable so that the resulting pivot results in a dual feasible basis. Within

T
the context of network flows, if x is the current basic solution and if x is

the exiting variable for a e E, then the entering variable in x^ where

e € F(T,e) is chosen so c = min(c : a e F(T,e)]. (Recall that F(T,e) is the

fundamental cutset induced by e.)
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"e.fi

The algorithm presented below Is a refinement of the dual simplex

T
algorithm in that we choose a unique edge with x < to leave the basis.

ALGORITHM 2. "The Scaling Dual Simplex Algorithm".

Begin

Use a phase 1 procedure to find an optimal spanning tree T with respect

to PROB(O). (We will discuss the phase 1 approach in the following

subsection.)

W.ile T is not optimal for PROB(<») do

begin

let £ =• SUPFEAS(T);

T
Let a € T be chosen so that x (A+l) < 0,

and X (A+l) _> for each other edge a on the path P (0,a);

let T' be obtained from T by pivoting out edge a and pivoting in the

edge e € F(T,e) with c = min(c : a € F(T,a));

let T = T';

end

end.

V/e will discuss the phase 1 procedure subsequent to discussing the number

of pivots subsequent to solving PROB(O).

THEOREM 2. Algorithm 2 is a genuinely polynomial dual simplex algorithm for

the minimum cost network flow problem. The number of dual simplex pivots

starting from an optimal tree for PROB(O) is 0(|v| U*], where

U* = min(|vI^log |v|], |v| BIT(b)).
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PROOF. Assume first that T is a dual feasible basis determined by the

algorithm and that l » SUPFEAS(T) with I > -<». This is certainly true for an

optimal solution to PROB(O). Let S be the next basis determined by the

algorithm. We will show that the pivot is a dual simplex pivot and that

SUPFEAS(T) <_ SUPFEAS(S).

Let I = SUPFEAS(T). By (ii) of Lemma 4, the edge a pivoted out of T is

T T T
upward, and x (il) = 0. Moreover, x (») < x (l+l) < 0, and thus the pivot is a

dual simplex pivot.

T
Since x (£) = 0, the pivot from T to S is a degenerate pivot with respect

to PROB(£). The degeneracy implies that x^(Jl) = x^(Jl) >_ and thus SUPFEAS(S)

Let T ,T , ...,T^ be the set of trees determined by the algorithm and let

l^ = SUPFEAS(T^). We have already shown in the proof of Theorem 1 that the

maximum number of distinct values of i is 0(U*). To complete the proof of the

Theorem we will show that if SUPFEAS(T^) = SUPFEAS(tJ) then j <_i+|v|^. ^.

Let T^,...,tJ be a set of trees for which SUPFEAS(T^) = SUPFEAS(TJ) = £.

Without loss of generality, we assume that x^il)'= for all e e E. Otherwise,

T
we would contract the edges a of E for which x ( £) > (and thus c (£) = for

T = T-"-, . .. ,tJ.) This contraction does not effect either the choice of the

entering variable or the choice of the exiting variable in any of the pivots

of T^,...,TJ"^.

Let T = r' for some k e [i..j]. We say that a vertex v of T is green if

T k
the path P (0,v) from to v contains no upward edges. We let G denote the
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1,

set of green vertices of T .

If If V
We let d (v) denote the indegree of vertex v in the tree T . We let S^

1 k.
denote the set of non-root vertices of T with Indegree = 0.. Thus S is the

Ic I 1

2

set of sources of T . The fact that j-i <^ |V| is a consequence of the

following Lemma.

LEMMA 7. For each k 6 [i..j-l]

(i) G^ c G^"^^.

(ii) I , d^v) = I d'^'^'Cv) + 1,

(iil) S^"*"^ c s^.

(iv) |G^| < I ^ d^(v) < IG^I + IS^I - 1.

V6G

We first show why Lemma 7 implies that j-i <_ Iv| .We first note that

by(i) there are at most |vj pivots for which JG"*" |
is greater than |G |. By

(ii) if G^ = gP with k < p, then

I (d^(v) - dP(v)] = p-k,
veG*^

and by (iv) it follows that p _< k + |S
| <_ k4-|v|. Thus the numbers of

consecutive pivots for which ] G
"^

|
= |g |

is at most |v|, and thus

j-i < lv|^

PROOF OF LEMMA 7. Let us denote T^ and T^"^^ as T and S respectively. Let a be

the edge pivoted out of T and let e be the edge pivoted into S.
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If

We first prove (1). Let v be any vertex of G . Since v is green we know

T
that a is not an edge on the path P = P (0,v). Therefore P is also a path in

S, from which it follows that v is green in S. Therefore G ^G ^.

We next prove (ii). Let v be the head of edge a and let u be the head of

edge e. The exiting variable rule for our dual simplex algorithm guarantees

k L k
that V € G . The entering variable rule guarantees that u f G . Thus in

If

pivoting from T to S we delete the edge a whose head is in G and we arid an

If

edge e whose head is not in G . Therefore (ii) is true.

We next prove (iii). Let v be the head of edge a as defined as in the

proof of (ii). Since v is green and we have assumed that x(£) = 0, it follows

T
that the path P (0,v) consists of downward edges. From this fact we conclude

Ic k
that V = or else d (v) > 0. In either case, v ^ S . We have thus shown that

IfJ. 1 If If If4.

1

S ^ c^ S since the pivot from T to T ^ will not create any non-root

sources.

If

We now prove (iv). Since each non-root vertex of G has indegree at least

one.

I ^ d'^dv) > Ig'^I
- 1.

V€G

The sum of the indegrees of the remaining vertices is at least

|v| - |g
I

- |S
I

since this number equals the number of vertices not in G

with indegree greater than 0. Because

I d^(v) = |V| - 1.

veT

it follows that
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I k
^^^^^ ^ ^'^1 " ^^ " ^'^' ' '^

'
" '^ '^

veG

= IG^I + |S^I - 1,

completing the proof of Lemma 7 and Theorem 2. a

It is an interesting open question whether the worst case bound of

o(|v| log |v|) pivots is acheivable. I conjecture that the maximum number of

pivots is 0(|v| log |v|], but I do not know of a proof of such a bound. It is

also conceivable that the maximum number of pivots is significantly less.

5. A Phase 1 Procedure

We still have not yet specified our method for solving PROB(O). In this

subsection we will present several alternatives. '

If we permit ourselves algorithms other than the simplex algorithm, then

we may solve PROB(O) using standard techniques. If c ^ 0, we may solve the

shortest path problem in 0(|v| log |v|+1e|) steps using Dijkstra's algorithm

with the data structure Fibonacci heaps. If c is not non-negative, then we may

solve the shortest problem in 0(|v||e|] steps using the label-correcting

algorithm for shortest paths.

If we permit ourselves the use of the primal simplex algorithm, we also

may still solve PROB(O) quite efficiently. If c >_ 0, then Dantzig's primal

rule leads to the same sequence of pivots as does Dijkstra's algorithm, as

proved independently by Zadeh (1979) and by Dial et al. (1979). If c is not

non-negative, then we may still interpret a minor modification of the label

correcting algorithm as a special case of the primal simplex algorithm. (See

Cunningham (1979).)
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In keeping with the spirit of the rest of this paper, we will show how to

solve PROB(O) via a dual simplex algorithm. As in the case of the usual

shortest path algorithms we will consider the cases of c _>_ and c _^

separately.

Solving PROB(O) if the costs are non-negative.

Let d(Jl) be defined as follows for i € [0..2m].

1 if il + 1 <_ i

d^(£) = if Jl-ra+l_<i_<£

-1 if il-2m+l<i<Jl-m.

Let PROBl(Jl) be defined as follows.

Minimize ex

Subject to (-A)x = d(il) PROBl(Z)

X >_ 0.

We observe that -A is the vertex-edge icidence mature of the graph G' obtained

G by reversing all edges. Thus PR0B1(£) is a minimum cost network flow problem

satisfying assumptions A1-A5.

Suppose that we carry out our dual simplex algorithm to solve PR0Bl(2m)

starting from the artificial tree T for PROBl(O), where T consists of the

edges {(j,0) : j € [l..m]} each with a cost of 0. Theorem 2 shows that the

number of pivots is 0(1 V|). Moreover, the optimal basis T' for PR0Bl(2m) has

no artificial arcs, and its reversal is optimal for PROB(O). To see this, note

that T' is the tree in G' of shortest distances from the root vertex 0. Its

f «!•
I 1
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reversal is the tree in G of shortest distance to the root vertex 0.

Solving PROB( O) if the costs may be negative .

Our dual implex procedure of the previous section relied on the fact that

the original artificial basis was dual feasible for PROB(Jl) for each i.

Unfortunately, in the case that c is not non-negative, there is no obvious

artificial basis that is dual feasible.

In order to create a dual feasible basis, we use a standard method of

linear programming of introducing an additional constraint, creating PR0B2.

Minimize ex

Subject to Ax = 1 PR0B2

y „x + x_, = M
^e€E e

X >_ 0,

where 1 denotes an m-vector with a 1 in each component, M is a suitably large

integer, and xq is a slack, variable (or in graph terms, it represents a loop

at vertex 0)

.

This latter problem is solved by Karp and Orlin (1981) in

0(|v||e| log |v|] steps via a dual simplex algorithm.

Actually, to be more precise, Karp and Orlin solve the parametric problem

obtained by dualizing the "redundant" constraint as follows

Minimize y(c.-X)x. - Ax„

Subject to Ax = 1 PR0B2(A)

X >
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as A varies from -H» to 0. However, we leave It to the reader to show that

under the assumption of dual non-degeneracy, moving from one breakpoint to the

next breakpoint In the parametric simplex algorithm corresponds to executing ^j

dual pivot simplex pivot with respect to PR0B2.

4. A Second Dual Simplex Algorithm

We expect that the primary contribution of Algorithm 2 will be

theoretical rather than computational. Computationally, Algorithm 2 has two

significant drawbacks. First each dual simplex pivot may require n(|E|) steps.

Second, the number of degenerate pivots with respect to PROB(£) may be

n(|v|^).

In this section we offer a speed up technique so that the number of

degenerate pivots with respect to PROB(£) is at most |v|. Moreover, this dual

simplex algorithm may be implemented so as to run in time proportional to the

Edmonds-Karp scaling technique. In fact, it is equivalent in a very real sense

to Edmonds-Karp scaling, as seen in Section 5.

The major idea of the algorithm is to try to enforce a condition so that

the cardinality of S as described in the proof of Lemma 7 is at most 1.

To describe this dual simplex algorithm, we first define "strong

feasibility", a concept introduced independently by Cunningham (1976) and Barr

et. al (1977).

A tree T is said to be strongly feasible for PROB(i) if x^(£) >_ and if

T
X il) > for each upward edge e of T. We will say that a basis T is strongly

optimal for PROB(Jl) if T is both optimal and strongly feasible for PROB(Jl).
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In the following, we let SUPSTRONG(T) be the largest value I such that T

is strongly optimal for PROB(£).

ALGORITHM 3. "The Modified Dual Simplex Scaling Algorithm".

Begin

Use a phase I procedure to find a spanning tree T that is strongly

optimal for PROB(O).

While T is not strongly optimal for PROB(<») do

begin

let I = SUPSTRONG(T);

let S = T;

while S is not strongly feasible for PROB(JH-l) do

begin

5t.-:. let "a" be an upward edge of S for

which x^(£+l) = and x^(Jl+l) >
a e

for each upward edge e on the path from to a in S;

let e € F(S,a) be an edge with

c^ = min(c^ : a e F(T,a)];
S , ^ S

; = minic
e a

let S' be obtained by pivoting in edge e and pivoting out edge a.

let S = S';

end

let T = S;

and

end.
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This algorithm is identical to Algorithm 2 except that we require our

basis to be strongly optimal rather than optimal. As such, the proof of

correctness of the algorithm and the proof of the polynomial bound are both

similar to the corresponding proofs for Algorithm 2.

In the remainder of this section we treat three aspects of the algorithm.

We first point out that the phase 1 procedure for Algorithm 3 is essentially

the same as the corresponding procedure for Algorithm 2. Next we show how to

calculate SUPSTRONG(T) in O(|v|log|v|) steps. Finally,' we will show that the

algorithm is correct and the number of pivots is 0(1 V| log|v|).

The Phase 1 Procedure

Here we may carry out the same phase 1 procedure as in Algorithm 2. The

terminal basis is optimal for

Minimize ex

Subject to Ax = 1 (4)

X >_ 0.

Moreover, each feasible basis is non-degenerate with respect to problem (4),

and thus the terminal basis of phase 1 is strongly optimal for (4). We may now

solve PROB(O) by solving at most |v| intermediate problems starting with

problem (4). At each step we would reduce the right hand side from 1 to for

some component i with b.(0) = 0.
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Computing SUPSTRONG

Despite the close connections between SUPSTRONG and SUPFEAS, it is not

true that the computation of SUPSTRONG easily reduces to the computation of

SUPFEAS. In particular, to compute SUPSTRONG in a polynomial number of

arithmetics steps, it appears that we must be able to evaluate the expression

BIT(a) in polynomial time.

If we count the evaluation of BIT(a) as one arithmetic step, then we may

determine SUPSTRONG in 0(|vl log Iv|) steps. This algorithm is based on the

following lemma.

LEMMA 8. Let T be a tree with root vertex 0, let I = SUPSTRONG(T) , and let V
T

= SUPFEAS(T). Let e be an upward edge of T for which x^(^) = 0. Then

LA/mJ = max(BIT(b^(il')) : i e B(T,e)).

PROOF. We first note that I < V-i and that

Wl.e)"!''*" ' i:icB(T.e)''i<''' " °-

Thus b,(£+l) = b,(£') for each i e B(T,a). In addition.

,-s

^i€B(T,a)^^^^ = ^
^'

where s = |£/mj. Therefore,

s = BIT(b(£)) = max [BIT(b^(Jl+l) : i € B(T,e)]

= max(BIT(b C^i') : i e B(T,e)).
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We can thus solve for V = SUPSTRONG(T) in 0(lv| log |vl) steps by first

solving for SUPFEAS(T) and then using the results of Lemma 8 to compute

l)l'/mj« It is then an easy matter to compute V in an additional

0(lv| log |V|) steps using binary search.

THEOREM 3. Algorithm 3 solves the minimum cost network flow problem in

0(|V|U*) pivots, where U* = min(|v|^ log |v|, |v| BIT(b)].

PROOF. Let T^,...,T^ be the trees determined by the "outer while loop". Let i

= SUPSTRONG(T^) for i e [l..t]. Because of the condition of the inner while

loop, we have l^ < i^'^^ for k e [l..t-l]. It is clear that t < |vl BIT(b). We

will next prove that t <_ |v|^ + 2|v|^ log |v|.

Let l'^ be defined as follows.

I^ = {i € [i..t] : PERM(Jl^) = k}.

Let us partition I^ into I^ and I^, where I^ consists of the first |v! = nri-1

elements of l'^. By the pigeon hole principle, there are integers i,j € I^ such

that Z^ = il^Cmod m). It follows that T^ is not feasible for PR0B(£J+1); hence

by Lemma 6, l^ < l^ + 2|vl log |v| for all p e I^. Therefore,

|I^1 <_ 2|V| log |V|, and |l^| <. |v| + 2|v| log lv|. Since [l..t] partitions

into I^...,I°', it follows that t _< lv|^+ 2|V|^ log |v|.

Now let T^,...,tP be a sequence of trees determined by the inner while

loop. To complete the proof of Theorem 3, it suffices to show that p <_ lv|.

We first note that each of the pivots is degenerate with respect to

PR0B(£+1), where Z = SUPSTRONGCT^ . Moreover, if T = T ,
then x (i+1) =

x(X.+ l), i.e., the tree T is optimal for PR0B(X+1).
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We will soon apply the results of Lemma 7. However, first we will prove

that the number of non-root "source vertices" in T is exactly one.

Let T = T^. Since T is strongly feasible for PROB(Jl) it follows that

T
X (A) > for each upward edge e of T.

T T
Let r e [l..m] with £+1 = snri-r. Then x (i+l) is obtained from x (£) by sending

2"^ units of flow along the path P-^(0,r). Since T is strongly feasible for

PROB()i) but not for PROB(iH-l) we may conclude that

T T
(i) x (A+l) = for some upward edge e € P (0,r)

(ii) x^(£+l) >_
2~^ for each downward edge e € P^(0,r)

(iii) X (£+1) >_
2~^ for each upward edge e ^ P (0,r).

T
If we now contract the edges of T for which x (W-1) > (as in the proof of

TLemma 7), the only upward edges would be on the path P (0,r). It follows that

vertex r is the unique source vertex of the contracted tree.

Let us now apply the results of Lemma 7. Without loss of generality we

assume that Xg(£+1) = for all e e E. Otherwise we would contract those edges

e for which x^{l+l) > 0, without effecting the pivoting in the inner loop.

Let G , S , and d be defined as in Lemma 7. We have just shown that

Is
I

= 1. By (iii) and (iv) of Lemma 7, it follows that

I id^v) = IG^I.
vgG
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By (i) and (ii) of Lemma 7, it follows that

G^ c G^-^1

and thus the number of pivots is at most lv|. This completes the proof of

c

Theorem 3.

5. A Computational Analysis of Algorithm 3.

In this section we will outline why the number of arithmetic operations

for our second dual simplex algorithm is 0(U*(1e1 + \^\ log \v\)]. In fact, it

suffices to show that the "inner while loop" is really a minor speed-up of the

usual Dijkstra algorithm.

Rather than give a detailed formal proof of the equivalence of the dual

pivots and Dijkstra's steps, we will illustrate a pivot in Figures la and lb

and outline the proof of the equivalence.

The Portrayal of a Dual Simplex Piv^t^

Let T be a spanning tree obtained by the algorithm and let S be the next

spanning tree obtained by pivoting out edge a from T and pivoting in edge e.

In order to see why the pivot in equivalent to permanently labeling a vertex

(or more) in Dijkstra's algorithm, let us review some properties of the dual

simplex algorithm.

First let us suppose that T is optimal for PROB(£) but not strongly

feasible, and suppose that the inner while loop will terminate with a tree
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that is strongly optimal for PROB(£). Suppose also that r = il(inod m) for

vertex re [i. .m]

.

Next, let us contract all the edges of T and S for which the flow is

positive. As mentioned in the previous section, these edges will not be

pivoted out until after obtaining a tree that is strongly feasible. Recall

that each of these edges (i,j) 6 T with x. (I) > induces two edges (i,j) and

(j,i) in the auxiliary graph for PROB(Z) each with a reduced cost of 0. Thus

contracting such an edge in G correspond to contracting a strongly connected

subgraph of 0-length edges in the auxiliary graph. This "preprocessing" is in

the shortest path problem for PROB(Jl) may be implemented in 0(|E|) steps.

We now illustrate what such a contracted tree T may look like.

We have portrayed the edges of T-a in Figure la as two subtrees T and T

rooted ac vertex and vertex r respectively, and these subtrees are connected

by the edge a. Also each edge in T-a is a downward edge of one of the

subtrees. To see why each edge of T and t'^ is downward, recall from the proof

of Thereom 3 that the contracted graph T must have at most two source

vertices: vertex and vertex r. Moreover, if we delete edge a then vertex

and vertex r are both sources. It follows that each edge of T and T^ is

downward

.

TEach path P (0,v) for v e T is the shortest path in the auxiliary graph

for PROB(Z) since each edge of the path has a reduced cost of zero and all

other costs are non-negative. Thus T corresponds to a set of "permanently

labeled" vertices of Dijkstra's algorithm.

The edge e is the minimum cost edge directed from a vertex in T (i.e., a

"permanently labeled vertex") to a vertex in T'^ (i.e., an "unlabeled vertex").

Indeed, F(T,a) = 6(T°,T'^).

To pivot from T to S, as in Figure lb, we pivot out edge a and pivot in

edge e. With respect to the data structures representing the tree, we need



35

only to change the predecessor of the head of e, say vertex v. If u was the

predecessor of v in T'^, then (u,v) is the edge to be pivoted out of S. If the

head of e were r, then S would be a strongly optimal basis. We observe that we

are "permanently labeling" the subtree of T"^ rooted at vertex v. In this

sense, the dual simplex algorithm offers a speed-up of the usual Dijkstra

steps.

In conclusion, we can find a strongly optimal basis for PROB(«.) in

0(|El + |V| log lv|] steps using a minor modification of Fredman and Tarjan's

implementation of Dijkstra's algorithm to solve the shortest path problem. The

major difference here is that we always maintain a dual feasible basis, and we

may "permanently label" a number of vertices in a single step.

Incidentally, there would be no need to calculate the reduced costs and

the dual prices at each step. We can defer these calculations until after

finding the strongly optimal basis for PROB(£).

We are currently investigating how fast this dual simplex algorithm is in

practice. So far, the results are too preliminary to report. However, we can

add that other researchers have reported favorable computation times using

Edmonds-Karp scaling technique. For example, Ikura and Nemhauser (1984) have

successfully applied the scaling technique to the transportation problem.

Gabow (1984) has also applied scaling to the shortest path problem and the

optimal assignment problem with very good computational results.
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pv

Figure la . A tree T. T-a forms two directed trees, T° and T^ rooted at

vertex and vertex 6 respectively. (r=6).

Figure lb . The tree S obtained from the tree in Figure la after pivoting

out edge a and pivoting in edge e. Edge a' is the next edge

to be pivoted out.
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