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ABSTRACT

Theoretical and experimental techniques are described for characterizing the
probability distributions of certain excess physical noises by their moments. Theo-

retical methods are presented for applying this "moments technique" in the time domain

to random-pulse noise, and in the frequency domain to any random functions for which
the moments exist. The frequency-domain technique is used for a theoretical study of
the approach to a gaussian distribution of random-pulse noise that is subjected to severe

band-limiting. In contrast, the departure from a gaussian distribution of random-pulse

noise that is band-limited by RC cutoffs at low and high frequencies is examined by using
the time-domain technique. It is found that the approach of noise distributions to gauss-

ian is governed by the "memory" of the filter system rather than simply by its band-
width.

An experimental system is described for measuring the first four moments of
noises in the 0.2 cps - 10 kc range. It is concluded that experimental measurements of

moments are more desirable than direct probability density measurements when the
goals are: (a) to categorize broadly the form of continuous noise distribution by a small

number of parameters, and/or (b) when a minimum investment of time and equipment
is desired.

Measurements on 1/f noise in germanium diodes confirm (within experimental

error) that the first probability distribution of this noise is gaussian in nature. Some
effects of limited system bandwidth are illustrated by measurements on the distinctly
non-gaussian "avalanche" noise in silicon junction diodes.
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I. INTRODUCTION

1.1 EXCESS PHYSICAL NOISE

The noises that appear in electronic devices have been classified as thermal noise

arising from statistical fluctuations of the thermal energy of the device, shot noise

arising from the discrete nature of the electron, and excess physical noise (1), which

includes all of the noises that derive from the particular physical structure of the mate-

rial, and which is usually ascribable to conductivity fluctuations. Some examples of

excess physical noises are the 1/f noise in semiconductors, avalanche noise in the

reverse breakdown of semiconductor diodes, and flicker noise in vacuum tubes. In

this work the first-order amplitude probability density of 1/f semiconductor noise and

of avalanche noise were investigated experimentally. We shall assume that the reader

is acquainted with the standard results in noise theory, such as those that can be found

in reference 12.

Direct measurement of the first probability density is difficult for physical

noises that have a 1/f spectral density, since this spectrum leads to long correlation

times and, therefore, to long observation times and elaborate data collection systems.

Filtering the low-frequency components of the noise to decrease the correlation time,

however, can modify the probability distribution considerably. It is for this reason

that we have used a technique of measuring moments for the purpose of evaluating the

probability distribution, rather than measuring the distribution density directly. Since

one purpose of these measurements is to establish experimentally the gaussian or

non-gaussian nature of semiconductor 1/f excess noise, proof is included that for a

wide class of non-gaussian noise models, RC limiting of the low-frequency portion of

the spectrum leads to an increasing deviation from a gaussian distribution. Studies

undertaken for avalanche noise (which is markedly non-gaussian) illustrate some of

the effects of filtering on the probability distribution that is to be measured.

1.2 NOISE AMPLITUDE DISTRIBUTIONS OF NON-GAUSSIAN NOISES

Two classes of non-gaussian noises have received attention recently: noise

derived from gaussian by a resistive nonlinearity and noise resulting from the super-

position of independent pulses.

In the past decade work has been done by Rice, Bennett, Middleton, and others (2),

in examining the effect of a resistive nonlinear system on the probability distribution

and spectral density of a gaussian noise input. The general problem of the effect of

resistive nonlinearities on amplitude distributions of all orders is susceptible of im-

mediate solution; therefore attention was focused on mathematical techniques for the

evaluation of the power spectrum. Solution for the probability distribution in the case

of nonlinearities with energy storage was accomplished, for a square-law detector fol-

lowed by filtering, by Kac and Siegert (3), but other detector characteristics have not

been treated analytically.
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Random-pulse noise, which has been investigated by Rice and Middleton (4),

provides a field in which application of the moments technique is straightforward.

This report is devoted primarily to examination of pulse noise, although the methods

used can be applied more generally (9).

1. 3 MEASUREMENT OF AMPLITUDE DISTRIBUTIONS

Early measurements (5) of probability distributions were made by inspection of

photographic records of the waveforms under investigation. The accuracy of the results

obtained by this method was usually limited by the length of the analyzed time interval,

which, in turn, was limited by the laboriousness and time-consuming nature of the

measurements. Later techniques have been based either on the use of electronic level

selectors or on measurements made with cathode-ray tube displays (6). The electronic-

selector technique, when combined with digital counting schemes, can provide measure-

ments over the long periods needed for the tails of the distribution, but it requires

extensive and complicated equipment. Measurements with cathode-ray tube displays

and photocells are limited by the integrator time constant to moderate lengths of

observation time. If photographic techniques are used to examine the display, the

time of observation can be extended considerably, but the numerical evaluation of the

probability density is quite difficult.

We have no specific knowledge, at this time, of any instance of the use of
measurements of moments to evaluate waveform probability distributions, but the

widespread use of this technique in statistical and actuarial work leads us to suppose

that its application to (electrical) waveforms must have at least been contemplated by

others.

1.4 RESULTS OF THIS INVESTIGATION

In this report analytic methods for evaluating the moments of a probability dis-

tribution after filtering by using either a time-domain or frequency-domain approach

are provided, together with examples of their application. A proof of the approach to
a gaussian distribution for random-pulse noises, which are examined after severe

band-limiting, is given. Attention in this proof is centered on the nature of the ap-

proach to a gaussian distribution as the bandwidth is decreased. In contrast, the

effect of RC filtering of the low end of the random-pulse noise spectral density is
found to be an increasing departure from a gaussian distribution, and consideration
of this case leads to a clarification of the concept of band-limiting which is implied in

such a statement as "under band-limiting non-gaussian noises tend toward a gaussian
distribution."

Equipment which has been used to measure moments experimentally is described

briefly and the conditions under which experimental use of the method of moments is

most desirable are discussed. The results of measurements on 1/f noise from a
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germanium junction diode and on avalanche noise in silicon junction diodes are given.
Some of the effects of a limited-system bandwidth on measurements of a non-gaussian
distribution are shown by the results for filtered avalanche noise.
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II. THE MOMENTS TECHNIQUE FOR USE IN THE FREQUENCY DOMAIN AND TIME
DOMAIN

2.1 SIGNIFICANCE OF MOMENTS IN EVALUATING AMPLITUDE DISTRIBUTIONS

In this section we shall show how the values of the moments define the first-order
and nth-order probability distributions and how, in practice, the first-order probability
density would be obtained from the values of the first-order moments.

The first-order probability density function p(x) and its characteristic function

Fx(u) are uniquely related by the Fourier transformation:

Fx(u) = f ejUxp(x) dx (1)

p(x) = 1 f e-iuxFx(u) du (2)
2f -0

Equation (1) is also the definition of the characteristic function. The characteristic
function can be written in the form of a Taylor series in which the coefficients of the
terms are the moments of the probability distribution.

F.(u) = E (ju)' Xn (3)
n-0 n

It is clear, then, that the complete set of moments (if they exist) uniquely defines the
probability density.

It is usually desirable to use only the lower-order moments (customarily, the first
four moments), x, 2, x3 , and x4 , to obtain the probability density. Two techniques
are commonly used to provide an expansion of p(x) in terms of the moments. The
earlier technique - the Gram-Charlier series and the Edgeworth expansion (7) - uses
an expansion in terms of the gaussian distribution pg(x) and its derivatives in order to
approximate slightly non-gaussian distributions. Pearson's system (8) is an attempt to
fit both slightly non-gaussian and markedly non-gaussian distributions by using only the
first four moments. It predicates a distribution density with a single extremum and
a high degree of contact with the axis for large amplitudes. It is designed for use in
fitting this wide class of density functions. We have found that the Pearson system is
easy to use and that it usually provides a good fit to the continuous distributions we
encountered (9).

The nth-order probability distribution, the nth -order characteristic function, and
the expansion of the nth-order characteristic function in terms of the higher-order auto-
correlation functions are given by extension of the first-order equations.
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P(U2. ( .xn ) = 2 ff . ..fexp j x F.) dul du2 du (5)

F,,(ui, u21 U = f fexP(i E uvxv) p(xl1 x2,. xn) dxdX2 o dxn (5)

Fx(ul, U2 , . Un) (u (iuU)l (x)"1j2) (xV2 o (xn) n

vl=0 v2 = =0 = vl! 2! vn

(6)

A higher-order Edgeworth series may be used to approximate the probability

density for almost-gaussian distributions by using higher-order autocorrelation func-

tions( 10), but there is no higher-order equivalent to the Pearson system available. In

this investigation attention is centered on the first-order distributions.

2.2 EVALUATION OF THE MOMENTS IN THE FREQUENCY DOMAIN

We now describe a technique for the evaluation of the moments and the higher-

order autocorrelation functions of the output of a linear filter, in terms of the frequency

response of the filter H(o) and the corresponding higher-order autocorrelation functions

of the input variable. The relation for the moments was first stated by Mazelsky (11).

We add the generalization to higher-order autocorrelation functions, together with

a demonstration that as complete a characterization of the output variable as is avail-

able for the input function can be provided.

Consider an ensemble of random functions x(t) which are statistically stationary

and ergodic. These functions are passed through a linear network whose impulse

response is h(t) to yield the output variable y(t).

From network theory (12), the system function of the linear system, H(w), is

defined as the Fourier transform of the impulse response.

h(t) - 1 f H(w) ei°tdo (

H () = f h(t) e-i() t dt (8)

The relations between the input and output of the system can be written in the time

domain and frequency domain as

y(t) = f h(r) x(t - ) dr (9)_ 00~~~~~~~~~~~~~g
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and

Y () = H (o) X () (10)

where X(o) is the Fourier transform of x(t), and Y(w) is the Fourier transform of y(t)
in a sense that will be specified in Eq. (18).

The first autocorrelation function and spectral density will now be defined before

we proceed to the nth-order equivalents. The first-order autocorrelation function is

defined (13) by the relation

T
qx(r) = lim 2T T x(t) x(t + r) dt (11)

The Fourier transform relation defines the spectral density x(w) (also called the

power spectrum):

(D ( ) = f x (r) eji"rdr (12)

x r) = (. f xw) ej'r d, (13)

By a direct extension of Eq. (11) we can define the nth-order autocorrelation

function as

~bx(rl, r2, .. rn ) = lirm 21 x(t) x(t + r1) x(t + r2) ... x(t + rn ) dt (14)

The existence of this function for all values of r 1, 2, . . . , Tn can be demonstrated
for all time functions that would be encountered in physical measurements. The

restriction to physically realizable waveforms implies that x(t) must remain finite at

all times. Then all the moments of x(t) will exist. Since the maximum value of

x(T, T2 , . ,Tn) (which occurs for O = T1 = T = Tn ) is the (n + 1 )th

moment of x, then Ox(T, T2 , . . rn ) will always exist.

The corresponding n -order spectral density is defined by the multiple Fourier
transform relationship:

(xD (c o 2.. n) = rff '. x (rl r2' . rn) exp [-j (a1 rl +2 r2 + . + Wn rn)] d r d r2. d rn

(15)
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O~x (l, 2, * rn) =(2-) rr Jx ( 2,a) 3 . . on) exp [j (lrl +2r2 + ' +)nrn)] dl d2 ... d)n

(16)

The (n + 1 )th moment of x(t) can be evaluated from x(W1, w2' . . .' On)'

xn+l= x( , 0,... , 0) =Ox (_) 'x(l 2 .dd . . dn (17)

This relation implies that x(01 W2, 2 ' ' ' ' ' n) is integrable and hence can have no

singularities worse than delta-functions.

There is another property of the nth-order spectral density which we shall

establish: an expression for the spectral density in terms of the Fourier transform of

the time function X(w). If we define the sectioned variable xT(t) as being equal to x(t)

in the region from -T to +T and zero elsewhere, we can write the Fourier transform of

x(t) as

XT () = (f XT (t) exp(-jct) dt) (18)

where < f(t) > indicates the ensemble average of f(t).

From Eq. 15, we have

'x0,2-- 2T 2 n[T lim I TfrXT(t) xT(t+rl).. xT(t+rn)dt)1

X exp[-j (& 1rl + 2r2 + .. .+ rn) ] drl dr2 . . . drn

Tim 2T([Ir XT(t+ rl) exp[-j _x(t+rl)]drl f XT(t + r2) exp[-o 2(t + r2)]dr 2T-oo 2T [

-[f xT (t + r) exp [-j on (t + rn)] drn| [ xT(t)exp[j ( + 2+ + n)t] dt

Therefore,

D.X(o1, w' n) 2 = im 1 XT(cl1) XT(O 2 )... XT(&n) XT(W1 + c 2+ ... + +n) (19)
T 2T

which, in general, contains delta-functions, but is integrable in w-space.

Next we evaluate the (n + 1) th-order moment of y(t):

yn+l = lim [y(t)]n+l dt (20)
T-,oo 2T -T
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We can substitute for y(t) from the convolution equation(Eq. (9)).

n+ = lim - 1 [r h(ol)X(t - al)dal [f h(2)x(t - 2)d 2 . [. h(an+l)X(t-n+l)dn+ dt
T.-o 2T -T [oo J

ff . .fh(o)h(a 2 )... h(an+) do1 d 2 ... dn+l

x lim 1 x(t - 01) x(t-a2 ) . . . x(t - oan+) dt
T-,- 2T -T

ff .. f h( a) h( 2 ) . . . h(on+) q, (01 - 02, ol- 03. 01 -o+1) d0 1 d 2 ... du+ 1

= WIh(f) h(a 2). h(an+l) [-) r . (.( , 2 . n)

x exp i [ (1- a2) + w2 (al1- a3) +- + (l- On+l)] dw do 2 . . dn] da da 2 . . . dan+

yn+l = (+)n ff" ' .... ~L)~. 2, %n)H ( 1 ) H ( 2) . . H ()

x H*(o,1 + 2 + . + n) dol do 2 . . . don

In the light of Eqs. (19) and (10), this relation indicates that we could have written

more simply:

yn+l = I r r 2T f im I YT() YT( 2) · YT (n) Y ( + 2 + + n)

2 7 - -T - 2T

x dw, d 2 . . .dO n

(l 0 ff .flim 1 [XT)XT(1 XT(2) . . . XT ( n ) XT (O1 +2+ ... On)]

x [H((w,) H((02) . . H(n) H* ( 1 + 2 + . + n)] d 1 d 2 . . . d n

which yields the same result. It is clear that in general the nth-order spectral

densities of the input and output of a linear system are related by

Qy(Ol, 2 ... ' On) = x(Ol' o2 .On) H(to)H( 2).. H(on)H* (o + t2 + .. + On)

(22)

The existence of this relationship means that given the nth-order autocorrelation

function or the nth-order spectral density of an arbitrary random function which is the

input to a linear filter, we can obtain that autocorrelation function or spectral density

of the output which is of the same order. This technique, then, provides as much
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information about the output of the linear system as we know about the input. Our

attention, it should be emphasized, is fixed on the autocorrelation functions and the

power spectra rather than on the probability densities. This is permissible, since the

probability densities are uniquely defined by the autocorrelation functions.

It must be noted that the application of these techniques to any actual problem is

quite complicated and that, in general, machine computation would be required. The

characterization of a distribution may be quite approximate, however. Frequently, one

is interested only in the first-order probability density or the first- and second-order

distributions. For these limited goals, the moments technique is useful.

2.3 EVALUATION OF THE MOMENTS IN THE TIME DOMAIN FOR RANDOM-PULSE

NOISE

For the class of random functions that consist of the sum of a series of pulses

whose initiation times are randomly distributed, Middleton's simple and direct

technique (14) enables us to obtain the moments in the time domain. We shall use this

technique to examine the effect of linear systems on the moments only, but the higher-

order autocorrelation functions can also be obtained from Middleton's equations.

The proof of the Middleton relations presented here is simpler than that provided

by Middleton (15) because we are interested only in the first-order characteristic func-

tion.

Consider a function xK(t) which consists of the sum of K randomly occurring pulses

in an interval (0, T), and for which K itself is a random variable with a Poisson distri-

bution. Then we can write

K

xK(t) = E ake(t- tk; rk) (23)
k=l

where ak is the amplitude coefficient of the kth pulse, rk is a duration coefficient for

the kth pulse, and tk is the occurrence time of the kth pulse. K, ak, rk, and tk are

independent random variables for which the probability density functions are p1(K),

P2(ak), P3(rk), and p4(tk), respectively. The characteristic function of a single pulse
can be written:

F (u) = exp [jua k e(t - tk ; rk)] P2 (ak) 3 (rk) P4 (tk) dakdrkdtk (24)
O--o 0

Since the pulses are independent of each other, the characteristic function of the
random variable x(t) can be obtained, using the Poisson nature of p1 (K), as

9
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~ - KFx (u) p (K) Fx1(u))
K=O k=l

= E(NT)K exp(-NT) [F (u)]K
K=0 K!

= exp [- NT + NT F (u)]

where N is the average number of pulses per second.

Fx (u) = exp NT +NT f exp [juak e(t - tk; rk)] P2(ak) P3(rk) P4(tk) dak drk dtk
-0 0 0

= expNTf f T [ exp[juak e(t - tk ; rk)] - 1] P2(ak) P3 (rk) P4(tk) dak drk dtk}

The assumption of a random pulse initiation time in the interval (0, T) means that

p4(tk) = 1/T for 0 < tk < T and zero elsewhere. If we assume that the duration of

the pulses is short compared with T, we can extend the upper limit of integration for tk

to infinity. Let us further assume that the pulse parameter distributions are the same

for all pulses.
Then

F,(u) exp{ N r ff [exp [juae(t -tk; r)] - 1] 2 (a) 3 (r) da dr dtk}

Since the process is assumed to be stationary, we can set t = 0. We also substitute

p = -tk to obtain the final form:

Fx(U) = exp{N O [exp [juae(p; r)] 1] p2 (a) p3 (r) da dr dp (25)

Let us apply this expression to the particular case in which p2 (a) = 6 (a - a),

P3 (r) = 6 (r - ro), e(p, r) = 1, for 0 < p < r and zero elsewhere. Therefore,

Fx(u) = exp{N f r0 [exp(juao) - 1]dp}

= exp [N r(exp(jua o) - 1)] (26)

This is the characteristic function for a Poisson distribution (16); therefore, we

can write
c(a) writ ]x/ exp(-Nro) X n) n = 0, 1, 2,... (27)

o )! exr 0) x n)
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Usually, the evaluation of Fx(u) in closed form and the subsequent Fourier trans-

formation are not feasible. In such cases, it is usually possible to obtain the semi-

invariants and moments.

The semi-invariants or cumulants are defined (17) by the equation

M1 mF,(u) = exp [ E (Km<j (28)

We can put Eq. (25) into this form by using the series expansion for the exponential

function, which yields

F.(u) = expN f [ ;] p2(a) p3(r) da dr dp

= exp { ( u() m [ amem(p; r) p2(a) p3 (r) da dr dp (29)

Therefore,

Km = N fo f amem(p;r) p2(a) p3 (r) da dr dp (30)

This expression can usually be evaluated, and the nth-order moment can then be

obtained from the nth-order semi-invariant (17).

The use of this time-domain technique permits us to examine the effects of various

network configurations and parameters on a type of non-gaussian noise that appears

frequently in models of noise processes. The effects of a variety of networks are

examined in the appendix.

11
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III. SOME APPLICATIONS OF THE MOMENTS TECHNIQUE

The relations established in Section II for the moments in the time domain and

frequency domain will now be applied. The frequency-domain techniques will be used

in examining the nature of the approach to a gaussian distribution for random-pulse

noise which is sharply band-limited as the bandwidth goes to zero. Section 3. 1 is

devoted to establishing the nature of the higher-order autocorrelation functions and

spectral densities. The effects of band-limiting will be considered in section 3. 2.

In section 3. 3 we shall consider the effect on the distribution of eliminating the low-

frequency energy in random-pulse noise, and illustrate the application of the moments

technique in the time domain.

3.1 EVALUATION OF THE HIGHER-ORDER POWER SPECTRA FOR RANDOM-

PULSE NOISE

The complete expressions for the first-, second-, and third-order spectral

densities of random-pulse noise will now be presented, and the nature of the terms

in the general nth-order spectral density will be discussed. It should be pointed out

that this is actually the same random variable that was treated in section 2. 3, the

initial assumption made here, that all the pulses are identical, being removed by a

suitable averaging technique later in the development.

We consider a random function of time x(t) which is the sum of a series of
randomly occurring pulses, all of which have the same waveform. The sectioned

function exists only in the interval (-T, T), where T is very much greater than the

individual pulse length, and can be written

N

xT(t) = E f(t-t n ) (31)
n=1

where tn is a random variable with a uniform distribution in the interval (-T, + T).
The average pulse density is N = <N/2T>. Since the individual pulses exist only

for a length of time small compared with T, the usual autocorrelation function of an

individual pulse goes to zero in the limit as T--~co. In this section, therefore, we

shall use a modified nth-order autocorrelation function, Tf (7 1 , 2, ... , Tn), for the

individual pulse, which is defined by:

f(r'1, r2 . ... n) f= f f(t) f(t + rl) . . . f(t + rn ) dt (32)

The modified spectral density is defined as the Fourier transform of f (1, 2, ... , n)
It can then be shown that

Df ( 1 , (C2 . .. ) F(o 1 ) F (c 2) . . . F (n) F* (o + 2 + · · · + n) (33)

12
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where

F () = f f(t) exp (-jet) dt (34)

Instead of the mean value of f(t), we shall use

f = f f(t) dt = F(O)

We shall now examine the first-order autocorrelation function of x(t).

=T°) 2T T ft - tm)1 f(t- t n + r)J dt (35)
T~ 2Tn=1

We distinguish two separate cases here: where n = m and where it does not.

(r) = l 1 f(t- tm) f(t- t +r) + E E f(t- tm) f(t - tn + ) dt
T-00 2T -T m=1 + m nj (36)

m-n

The first term is merely the modified autocorrelation function of an individual pulse

and thus it yields

lim N"f(r) = N f(r) (37)
T- 2T (37)

In evaluating the second term we recall that the initiation times are independent random
variables with probability density 1/2T in the interval (-T, +T) and zero elsewhere.

The contribution from this term must be a constant, since, on an ensemble basis, the
probability of overlap of the pulses f(t- ta) and f(t - tb + T) is independent of T. If the
displacement between the initiation times of the two pulses, ta -tb + , lies in the

interval (td, td + dtd), then the contribution from this term will be

(f(td) = f f(t) f(t + td) dt (38)

The probability that the displacement time will be within this interval is dtd/2T. There
are N(N-1) such contributions in the second term. Therefore, the value of the second
term is

lim N(N 1 t m N(N-1 1) f(t) 
T-0o 2T -T 2T T- (2T)2

= lim N(N-1) f2 = 22 (39)
T -.- (2T) 2

We can see this result more directly by noting that the first term contains all
of the contributions from pulses overlapping with themselves, while the second term
contains all of the contributions from random overlapping with the other pulses. For

13
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two statistically independent random variables, the mean of their product is the

product of their means: The mean of each variable is N f; therefore, the contribution

from the second term should be N2 2. Both of these trains of logic will be employed

freely in the development of the higher-order autocorrelation functions.

The expression for the autocorrelation function of a sum of identical randomly-

occurring pulses of density N pulses per second thus becomes

O5x ( r ) = Nf(r) + 2 (40)

Fourier transformation of this result yields the first-order spectral density

x(6o) = ±Nf(w) + 2r j22 (o) (41)

Next, we consider the second-order autocorrelation function.

x (r, r2) = T f(t- t ) f(t- tm + ri)] f(t - tn + r2 ) d (42)

Three cases can be distinguished here: all of the indices are identical; one

index differs from the other two; all three indices differ.

When all of the indices are identical:

T N N
lim 1 TT f(t-ti) f(t-t1 + r ) f(t-tj + r2)1 dt Tim 1 2T f
Toc 2T - 1=1 T-_ 2T=1

= N f(71r, 2)

If one index differs from the other two, we get three possible terms:

TimN N
rnlim f E E [f(t - t) f(t - t + r1) f(t - tm + r2) + f(t - t) f(t - tm + r) f(t - t + r2)

T 2T T mri

X/_lm1 + f(t - t) f(t - t + r1) f(t - t+ r2)dt

We consider the first of these terms and then generalize the result, thus obtaining
a complete expression for the case in which one index differs from the other two.

T N NT oX 2T f ZE E [f(t-t ) f(t-tf, + r ) f(t - tm + r2)] dt
'- _ m=1

We notice first that the values of these terms must be constant with respect to 2,
since t and tm are independent random variables. If we define f(t - t)f(t - t + r 1)
as a new variable g(t - t ), we can apply the same reasoning that we used for the
second part of the first-order autocorrelation function, and thus obtain

14

I ·



lim 1 N(N 
T -.oo 2T 

T T
1) f f g(t-t ) f(t-tj

-T -T

= lim [N(N
T-o 2T

= N2 f(rl f,

T
1) f f

-T
(t - t) f(t - t + r ) dt ]

liT 2TTox 2T T [f(t - t Ie) f(t - t + rt) f(t - tm + r2)] dt = N2 f f(rl)
N N

.=1 m=l

Generalizing from this result, we see that the terms in which one index differs
from the other two are equal to

N2f [f(r 1 ) + f(r 2 ) + f(r - r2) ]

The case in which all three indices are different requires application of the same

techniques. We have

T N
lim 1 

T-,o 2T -T _=1

N N

E E f(t - te) f(t - tm + r ) f (t - tn + r2) dt
m=l n=l

2 m nd

The result will be a constant, since tQ, tm, and tn are independent random variables.

Consider the situation in which t - tm + 1 lies in the interval (tdl, tdl + dtdl) and

tQ - tn + 2 lies in the interval (td2, td2 + dtd2 ) for tdl and td2 within the interval

dtdl dtd2(-T, T). The probability of this situation arising is
(2T)2

The value of the

integral of the product at this point is f (tdl, td2). There are N(N-1)(N-2) possible
ways in which this can occur. Therefore, for the third case, we find:

lim I N(N - 1)(N - 2) T f(td) dtd1 dtd 2 _= N3 f(0,0 )
T--- 2T T -T 2T 2T

= N3 f3

Therefore, the second-order autocorrelation function can be written:

x(rlr2 ) = Nf( rl,r 2 ) + N2 [f(rl ) + (f(r2) + ]f(r_ r2)] + 3 3 (43)

The second-order spectral density is evaluated by a Fourier transformation:

(x (a 1,W2 ) = N f(01,(62 ) + 2 N2f[5f(l)& ( 2 ) + f (2) (&1) + f( (1) 8( + 1+ 2)]

+ (2 7)2 N3 f3 8(61) $(02)
(44)
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The third-order autocorrelation function can be found by an extension of these

methods.

X(r1,r2,r3) Tim 2T E f(t tk) [ f(t te + II
T-,oT-T _k=1

N (45)

x [m_f(t-tm+ 2)] [l f(t-tn + r3]dt
m1=1 n=l

Here we can distinguish five cases: (1) all of the indices are identical, (2) three of
the indices are identical and one differs, (3) the indices are identical in two pairs

which differ from each other, (4) two indices are identical but the other two differ
from this pair and from each other, and (5) all of the indices differ. Now we can

obtain the correlation function by the same procedure that was used earlier, and we

find (listing the results for the five cases in the proper order) that:

x (rlr2r3 ) = N f(rl,r2,r3 )

+ N2 f[gf(rl,r2 ) + f(rl,r 3 ) + SCf(r2,r 3 ) + f(r2- rlr 3 - rl)

+ N2 [f(rl) f(r 3 - 2 ) ) + f(3-) + f(r3)f (r2 - rl)] (46)

+ N3 f2 [ +f(r1 ) + + f(3r2 ) + f(r 3 - + f(73 r2 ) + ff(r3 -+ (r2rl)]

+ N4 j4

The usual Fourier transformation leads to the corresponding third-order spectral
density.

(x(01,02,c~3 ) = Nif(o01,2,03)

+ 2r N2 f [f(c)1 , 2 ) 6()3) + )f(&)1,C)3) 6()2) + f()2,)3) $5( 1 )

+ f(6 2 ,( 3)8(6) 1 + 2 + 2 + 3)]

+ 2trN2[Df(6l) f( 3 )(W 2 + 0)3) + Df( (2)(f(03)(1 + 3)

+ Pf(63) f(2) 8( 1 + 02)1 (47)

+ (2 tr)2 N3 f2 [~f (6 w2) $ (3) + f() f () (o) 5(3) + ()f (3) $(wl1) $(o02 )

+ f (6 3 ) (0 1) ((02 + 0)3) + ff(0 3 ) 8() 2 ) 6(01+ 03)

+ )f (02 ) (0w3 ) 6(01+ 02)]

+ (2 r)3 N4 4 (1) 8(02) 8(6o3)

The generalization of this technique to nth-order autocorrelation functions and

spectral densities is rather lengthy, but possible. It is usually sufficient, however,
merely to note the nature of the various terms of which these functions consist.
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We first consider the nth-order autocorrelation function. We must consider

n + 1 indices. Let us take the case in which the indices are equal in groups of ml,
m 2 , 1.. ma so that m + m2 + .. . + ma = n + 1. The spectral-density terms that
correspond to this situation will be of the form

[4)ff(t"t 2 .... m 1 X fml0ml+l ml+m2-1)(om + oml+l + + oml+m2 ) ] x 

[f (tom l+m2 +.. +ma.' oml+m2+...+ma.l+1 .. w On-l1 ) (48)

X '8(t+m 2 +... +ll +lWm+m 2+...+mal+l + ... + . + + On )]

This general expression will be of considerable use in section 3. 2 in which we examine
the nature of the approach to gaussian statistics when this type of noise is band-limited.

We have now developed the first-, second-, and third-order autocorrelation func-
tions and power spectra for a function that is the sum of identical random pulses of
density N pulses per second. In addition, we have examined the general characteristics
of terms in the nth-order spectral density.

The extension of these results to the case in which the pulses are not identical
but are determined by the values of some parameters, '1, 2' ' ' ' ' b' whose joint
probability distribution, P(i 1, 2' .'.' b) ' is known, canbe found by use of the relation

ff( ,r2, . .. rn· ) = ffJ ... f (rl r2 .... rn)P(0 ll'2 . . b)(d.p1 d12 ..... b db

since the pulses are still independent of each other.

3.2 THE APPROACH TO A GAUSSIAN DISTRIBUTION OF FILTERED RANDOM-PULSE
NOISE: AN APPLICATION OF THE MOMENTS TECHNIQUE IN THE FREQUENCY
DOMAIN

We can now present a proof of the approach to a gaussian distribution of random-
pulse noise when it is passed through a narrow-band filter with abrupt cutoff limits.
While the usual proof by the Central Limit Theorem (18) is applicable to this type of
noise, the proof by the moments technique provides additional information about the
nature of the approach to a gaussian distribution - and especially about the way the
odd moments vanish as the bandwidth is reduced. This proof provides an example of
the application of the moments method in the frequency domain. Other examples of
applications of this technique are given in reference 9. We shall consider the first
four moments in detail to illustrate the technique and then discuss the nature of the
approach to a gaussian distribution of the higher-order moments.

Let us consider an idealized bandpass network for which H(w) has the form
shown in Fig. 1. Since no dc is passed by this network [H(O) = 0] it is clear that the
mean of the output distribution will be zero.

17
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H(w)

Fig. 1. The system function, H(6 ), for an
idealized bandpass network. I

the algebra, it allows us to focus our att
moments. (This same technique will be
Making this assumption, we get

N X~f(o)

my (~6) = (2 a) 2

0

The first-order spectral density of random-
)ulse noise is given in Eq. 41. From Eq. 16,

D y(o) = H(o) H*(o) x(()

= H(o) H*(6o) L[Nf(o) + 2 N2f2 a(o)] (49)

Since the network passes no dc, the second
;erm gives zero contribution. We assume that
Af(w) is a smooth function within the pass
region of the filter and that it can be approxi-
mated by Of(wo) throughout this region. This
Ls not a necessary condition for the application
of the moments technique but, by simplifying
ention on the effects of the network on the
used for the higher-order spectral densities. )

o - a < (o < 0 
+ a

02 2

elsewhere (50)

From which we obtain

Y _ 1 df (I y(o) d n = 1 f( 0)
2r -- 2 r 2 a (51)

If we examine the second-order spectral density in Eq. (44), we see that we can
immediately eliminate most of the terms. All terms which include the function 6 (w1),
6(w2), or 6(w 1 + w 2) give zero contribution to the third moment of y(t), since H(ol),
H(o 2), and H*(w1 + w2) are involved in the evaluation of y3 . The one remaining term

is N- f(rol, 2) '

Therefore,

(P (o1,( 2 ) = Nf( 1 l,6 2 ) H(6 1 ) H( 6)2 ) H*((o1 + 2) (52)

Since y3 equals the integral of this function in the ol, w2 plane, let us examine the
regions in this plane for which the function is nonzero. In Fig. 2a we consider the
narrow-band case in which a < 2/3 wo and in Fig. 2b we consider the situation in
which a > 2/3 oo. It can be seen from Fig. 2a that there are no regions in which
the product H(CO1) H(w2) H*(w1 + w 2) is nonzero. The third moment is always zero
for a < 2/3 co. From Fig. 2b it can be seen that the total area of the region of
overlap is 3 (3. 2)o)2 = 27 (a 2
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fig. 3. The volume centered at (, o0, - 0) in
which the function H(o 1) H(0 2) · H(e 3 )

- H* ( + °)2 + 3) is nonzero.

NON-ZERO REGIONS ARE
SHADED

Fig. 2. Nonzero regions in the wl- 2plane

for the function H(o l ) H(o 2) · H* (1l+ 2).

From this value we find that

3 i ( )1 \2 N Of(COOCo)
3 t 2 (2 a)3

O for a < 2 
3

27 (a _ 2 )

This sharp cutoff of the third moment at a = 2/3 w0 is the result of the idealization in

the infinitely sharp cutoff of the network but it does provide information about the region

of rapid approach to zero of the third moment for more realistic networks. Examination

of the situation for the higher-order odd moments will provide an extension of this

insight into the nature of the approach to a gaussian distribution.

Next we examine the third-order spectral density given by Eq. (47). If we elim-

inate the terms that incorporate 6 (w1) (), 6 (w 2), 6(w3) or 6 (w1 + w 2 + w 3), we are left with

O (1,Cj23) - [H(6 1) H( 6 2) H(` 3) H*( 6 1 + 2 + °63)]

x N f(cDli2,6)3) + 2N 2 [ ) f(l) f (
3 ) 8(62+ c63)

+ f ( 2 ) Of(6)3) (o1 + 6)3) + (f(O63) f(c 2 ) (0 1 + o2)]

(54)
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Consider the contribution to y4 from the first term in this function:

N f(w1 l02,X3 ) H(( 1) H(O 2 ) H(0 3) H*(o1 + co2 + 03)

Corresponding to the wl, w 2 plane in the evaluation of the third moment we now have

w 1, 2 , 3 space in which we must find the volume in which H(w)) H(w 2) H(w 3 )

H*(0 1 + w2 + 3) is nonzero. For H(wol) H(wO2) H(w 3) there are eight cubes with sides

of length ac centered at the eight points specified by ( woo, ± o, ± W0o) . When the

further requirement that H*() 1 + 2 + o3 ) be nonzero is added, the cubes at

(+ 0 o', + 0, +o) and (- 0o, - w0 , -) are eliminated and the other six cubes are

reduced in volume. The solid that remains at (o, 0, - 0)o) is shown in Fig. 3. The

volume of the solid is a 3 /2. It should be noted that if of(W1 w2 ' 3) takes on the

value 0f(wo, -wo, w0) throughout the volume centered at (wo, -wo, w0), it will take

on this value within each of the other five solids because

Of (O, -0), o ) F*w F (o)o F*(o ) F (o) F*( o )

Therefore, this first term in the third-order spectral density of the

contribution 1 3 N f (o' 0o' ) ) to y .
3 16a 

Examination of the symmetries involved in the second term in

shows that three equal results will be obtained. Therefore, we now

first of these three terms. We seek to evaluate

input gives a

cy(Wl' 2' 3)

consider only the

1(.3 .ff 27?N2 f(Cl) )f(< 3 ) (&)2+ 3) H(w1 ) H(&J2) H(co 3) H*( 1+ 2+ co3) d d w do 3

Integration with respect to w2 yields

()2 ) ; f(6il) Ff(o3 ) H(o 1) H* (w3 ) H(oj3 ) H*(wl) d d 32T" ff - f01o'()3c 

which reduces to

O f(2ao ) ] 2[ r 
Now, we can write for the fourth moment:

y4= 3N Of(COO,-o0, O0 ) + 3 N f(ro)]2
(2 r)3(16 a) 2 2a I

The skewness and excess (19) are

(55)

2 TN [f(_o)]3/2

(a ) 
(2 a)3/2

for a > 2 o
3

for a < 2 o
3
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and

= _ 3 = 3a 0f(o0o,-o0,0o ) = 3a
Y2- (y2)2 8r rN [cf(0)12 8f N (57)

Next we examine the behavior of the nth-order moments, considering the behavior
for n even and n odd separately.

The moment of order n (for n even) will be derived from the n-l th-order auto-
correlation function.

x(12 rn. lim f E f(tt = [ia f(t -tm + rl)] [.. f( t -mn+rn-l) ]
T~,~ 2T (-tm f(t-tm l'

(58)
There are, then, n indices to be considered. If there are any cases in which a single

index differs from all the others, a 6 ( w m ) term will appear. Such cases, then, will

provide no contribution to the nth-order moment and so need not be considered. Now

suppose that there are a different indices available. Then we can see the general

form of the term in Eq. (48). If we multiply this by H(wl) ... H(wn ) H*(wl +... +wn l)

and integrate with respect to the n-lth variables, we obtain a result of the order of
l/aa. Since our interest centers on the normalized nth moment, which is n/(1,2 ) n / 2

n/2 (n/2)-aand is of the order n a /2, we must consider the behavior of /) . This will be
a constant for a = n/2, which implies that when the number of different indices is equal

to n/2, there is a contribution to yn which is independent of a. Since no indices may

appear less than twice, this specifies that, for a--O, the only terms in ox(wl... Wnl)
that contribute are those of the form

[f (6o1)] [f(63) (62 + 603 )] [f (5) 8(6)4 + 65)] . [f (0n-) 8(on-2 + on-1) ]

The number of such terms is equal to the number of different selections that can be

made among n indices, taken two at a time, and it equals (n-l)(n-3)... 5- 3- 1, which

is precisely the value of the normalized gaussian nth moment. The terms of next

higher order in a will have (n/2)-l different indices (all appearing twice except one

which appears four times). They will make a contribution to the normalized moment

of order a and will go to zero directly with the bandwidth. Other terms will be of
higher order in a up to a(n/2)-1 for the case in which all indices are identical.

Next consider the nth-order normalized moment, where n is odd. There are
n indices in this case but since every index must appear more than once, there can,

at most, be (n-l)/2 different indices. This would yield a term of order
2 \2

a - coo 2w
3 2Owhich exists only for a > . The term of next higher order

(3/2 3
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_2 O
5( 2wis of order and will be nonzero for a > . We can describe t

a5/2 5
stain th 2 0o tthsituation for the n moment as a increases from zero. When a - , the nth

n n-1

moment becomes nonzero. It now increases proportional to n/2 W

;he

{hen

2 0
a reaches the value , another series of terms comes into existence which is of

n-2
n-3

order ( n-2
n-2

2

2wo
This process continues until a > , when all the non-dc

3

terms will have appeared. It is clear, then, that however narrow we make the band-

width, some higher-order odd moments will exist.

This application of the moments technique in the frequency domain has shed some
light on the nature of the approach to gaussian statistics with narrow-band filtering, in
addition to providing a proof of this approach to supplement the usual Central-Limit-

Theorem proof.

3.3 THE EFFECT OF LOW-FREQUENCY FILTERING ON RANDOM-PULSE NOISE:
AN APPLICATION OF THE MOMENTS TECHNIQUE IN THE TIME DOMAIN

The effect of an RC low-frequency filter on the amplitude distribution of a sum
of random pulses can be found by evaluation of the moments in the time domain. The

result will have significance for the question of how much of the low-frequency energy

of a physical noise process can be filtered out if we are interested in determining the

form of the amplitude probability distribution of a physical (possibly non-gaussian)
noise.

We take, as a particularly iluminating example of a noise process, a train of unit
steps with Poisson-distributed starting times. We seek information about the amplitude

probability density of the output from a linear filter whose system function is

H(s) = 1 

( ros ) ( )
(59)

This system function corresponds to the filtering imposed by a typical measuring sys-
tem whose response falls off at 20 db per decade both at high and low frequencies. We
shall allow T to vary while To is held fixed so that for T < o we have a constant low-

frequency cutoff and a variable high-frequency limit, while, for r> o' it is the low-
frequency cutoff that is variable.
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The response of this network to a unit step is

e(t) = r (e-t/ r - e 't/O) (t > 0) (60)

It should be noted that H(s) is unity for the middle-frequency region, if is the low-

frequency pole (T > To), but is not unity, if T is the high-frequency pole. We shall

consider the normalized moments, however, so that this will make no difference in

our results.

We use Eq. (30) to establish an expression for the mth semi-invariant.

Km = N f [e(t)]m dt (61)
0

Performing the indicated integration, we obtain the general expression:

mN (_l)rm! (62)
=m F(r\)ri z= (m -)! ! (m - ) r + r (62)

We evaluate the first four semi-invariants (17) and obtain from them expressions

for the skewness 1 and the excess y2 which will be examined in greater detail.

K 1 = N K NT2 K = 2N r3
2 ( + r) 3(r + 2 )(2r0 + )

K4 = 
4(ro + r)(3 r + )(r + 3 )

K3 1 1
K2 3(r + 2 r)(2r + r)

4 \2 ( + )3/2 (63)

K4 1 1
Y2 

K2 N (3 r + r)(rO + 3r) (64)

3 (r0 + r)

The skewness and excess are plotted in Fig. 4. It is clear that it is the low-frequency

pole which modifies the probability distribution of the sum of Poisson-distributed unit

steps most markedly. Furthermore, as the system eliminates an increasing portion of

the low-frequency energy, the distribution deviates increasingly from gaussian. This

indicates the need for clarification of any broad statement which maintains that: as the

bandwidth in which a non-gaussian noise is examined goes to zero, the amplitude prob-

ability distribution goes to gaussian. This statement does not apply in the above case

because the skirts of the system function are not sharp enough. Evidently some property

of the skirts must be included in the "band-limiting" statement.
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Fig. 4. Effect on the skewness and excess of moving a pole of H(s).

The necessary clari-

fication can be obtained

by restating the criterion

for approach to a gaus-

sian distribution as fol-

lows: For a progressively

longer filter memory, a

filtered non-gaussian noise

approaches a gaussian

distribution. By limiting

the low-frequency response

in the manner considered

in the example above, we

actually reduce the mem-

ory of such a nonoscil-

latory system. Middle-

ton (14) points out that

the amount of overlapping in a sum of random pulses provides a good criterion for the

deviation from a gaussian distribution. This viewpoint is certainly reasonable on the

basis of Central-Limit-Theorem ideas, and it evidently applies to the case of pulses

modified by passing through a linear network. In that case, the amount of overlapping

at the output clearly becomes a function of both the overlapping of the original input

pulses and the memory of the filter.

In relation to experimental methods of measuring the probability distribution of

noises for which the sum of randomly occurring pulses is the model, it is clear from

the foregoing that "eliminating the low-frequency energy" can often lead to measure-

ments that are farther from gaussian than is the actual noise distribution.
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IV. SEMICONDUCTOR NOISE MEASUREMENTS

4.1 MEASUREMENTS AND TECHNIQUES

The nature of the measurements of 1/f noise in germanium junction diodes and
of avalanche noise in silicon junction diodes will now be discussed and an estimate of
the expected error in these measurements provided. A brief description of the
moments-measurement equipment is given here; for a more complete description
see reference 9.

Four measurements were made on semiconductor noise:
1. The second, third, and fourth moments were evaluated experimentally.
2. The frequency spectrum was measured between 100 cps and 60 kc.
3. Photographs of the noise waveforms were taken.
4. Probabiloscope photographs were taken to provide a qualitative picture of the

distribution density.
The measuring system is shown in Fig. 5.

The noise source consisted of
INISE TAI. I the dinde iindr xamintinn in a

TEKTRONIX TEKTRONIX
NOISE _ PREAMPLIFIER VARIABLE PREAMPLIFIER
SOURCE TYPE 122 ATTENUATOR TYPE 122

ANALYZER

constant temperature bath and a suit-
ANALYZER able biasing circuit. This noise

source is shown in Fig. 6. For the
TEKTRONIX

TYPE OSCILLOSCOPE 1N91 diode, measurements were made
FOR WAVEFORM
PHOTOGRAPHY at room temperature. The constant

temperature bath in this case was
DUMONT

TYPE 304A one pint of water in a Dewar flask.
OS ILLOSCOP E
FAR PRARARII nA -. ma e r
SCOPE Since measurements were takenI PHOTOGRAPHY

every half hour, it was felt that the
Fig. 5. Over-all measuring system. high heat capacity of the bath and the

low thermal heat transfer into the Dewar flask would result in temperature variations
so small that the moments measurements would not be affected. Application of
Newton's law of cooling to available data (20) gives an expected change of 0.1°C for a
5°F temperature differential over one-half hour. The silicon diode noise was meas-
ured at the equilibrium temperature of a mixture of dry ice and acetone. This mixture
in a Dewar flask provided a constant temperature environment.

The noise spectrum analyzer (21) is a heterodyne analyzer with filter bandwidths
of 10 cps and 100 cps. It provides continuous measurements of the noise spectrum
between 100 cps and 60 kc.

A Tektronix 535 oscilloscope and a 35-mm oscilloscope camera were used to
photograph single stroke traces of the noise. The brightness of the oscilloscope spot
was increased in proportion to the rate of travel by an intensifier as described by
Kemp (22).
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I I lh nrhhilnrtesno 19R. 1,lc d

a DuMont 304A oscilloscope with a
5ADP15 tube, a 35-mmoscilloscope
camera, and an optical wedge with
a density range of 1:3 (a fractional
transmission range of 1000:1). No
attempt was made to evaluate
numerically the probability dis-
tribution, since the intention was
to obtain a qualitative picture of

CONSTANT _L4J % AL LI.A LLLJJL L PLl L J.D LJL
TEMPERATURE
BATH with the result from the moments.

Fig. 6. Noise source. The moments analyzer (Fig. 7)
consisted of an amplifier-rectifier-

cathode-follower unit which fed three function generators whose outputs were propor-
tional to the square, cube, and fourth power of the noise. Three integrators then
provided the desired moment values.

The amplifier-rectifier-cathode-follower unit provided a gain of approximately
eight from a paraphase amplifier so that the second Tektronix preamplifier would not
operate in a nonlinear region. It was found simpler to design a full-wave rectifier to
feed the square- and fourth-powe; function generators than to design function generators
with the desired accuracy of balance. The full-wave rectifier was balanced to 1 per
cent. The cathode followers in this unit had output impedances of the order of 100 ohms.
The frequency response of these units was good at 40 kc.

The function generators used back-biased diodes to match straight line segments
to the desired power laws. The desired accuracy was 2 per cent of the desired value
over output amplitude ranges of 50:1, 125:1, and 256:1 for the square-, cube-, and
fourth-power units. They are dc units so that the minimum amplitudes in these
ranges are set by the function-generator drift and the drift of the integrator input cir-
cuit. The frequency response of the over-all function-generator system, including the
amplifier-rectifier-cathode-follower unit, is good to 10 kc.

The integrators were designed to average the input function with a 10-second time
constant, and then apply this average to
drive watt-hour meters. The only limita- INTEGRATOR A.x2

tion on the length of the integration period x (t 

is the drift of the input circuits. However, x C'I AMPLIFIER -RECTIFIER INTEGRTORA x
3

CATHODE-FOLLOWER

the ease of taking readings every half-

hour (and resetting the zero) led us to do so A' lx(t)
FUNCTION GENERATORS

in this study. In a half-hour period, the
over-all moments analyzer drift was less Fig. 7. Moments analyzer.
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than 10 mv at the input to the chopper circuit in the integrator. The accuracy of the

integrators is of the order of ±3 per cent except for very small inputs.

4.2 ERRORS RESULTING FROM LENGTH OF OBSERVATION TIME

In addition to the errors in measuring the moments inherent in the particular types

of function generators and integrators that were used, there are unavoidable errors

caused by the limited observation time and by the limited amplitude range that can be

incorporated in the function generators. The limited observation time is particularly

significant when an attempt is being made to measure the amplitude probability distribu-

tion of noise with a 1/f spectral density, owing to the long correlation times that are

required.

Consider an ensemble of stationary ergodic random functions. We want to measure

some property of this ensemble by observing one member of it for a period of time T.

If we performed this operation on each member of the ensemble, we would obtain a

series of values that are random functions. We want to estimate the variance of these

values in order to determine how accurately a measurement that is made on one member

represents the average value for the ensemble. In the limit T--co the value for one

member must approach the average value for the ensemble (from the ergodic

property). For the case of 1/f noise, we shall be interested in measuring the moments

of a random function which, it develops, actually has a gaussian or near-gaussian

distribution. For such distributions, the contribution to the measured average from
extreme values increases as we consider higher-degree moments. Therefore, we

would expect to find that a longer observation time is required for the fourth moment

than for the second, and, indeed, this is true. The development of the results below

is based on a theory of statistical errors in measurements on random time functions

developed by Costas (24), Davenport, Johnson, and Middleton, (25), and Siegert (26).

We wish to measure the average value of a function of a random variable, x(t).

Let us define z(t) as

(t) = g [x(t)] (65)

We are, then, interested in the properties of

M(T) I fT z(t) dt (66)
T o

In this study we shall examine the mean and the variance of M(T), using the method
described in reference 25.

The ensemble average is

M(T) - - z(t) dt = z (67)
T o

27



This is expected, since the ensemble is stationary. The variance of M(T) is

2 (T) = 2 ( - r ( 2] d r (68)

Now consider the evaluation of 0 z(T) for the first four moments in terms of

Ox(r). For z = x we see immediately that

z (r) = x ( (69)

For z = x w e w i s h t o e v a lu a t e z
z2 x x 2 , where x1 = x(t) and x2 = x(t + r).

We now specify that x(t) obey a gaussian distribution law. Although this limits the
results somewhat, they still can serve as a guide for the case in which x(t) is nearly
gaussian. We can, from Eq. (6), write

x x2 - (j)4 Fx(Ul,u 2) ] (70)
xx- du u J2:u2

For a gaussian distribution,

Fx(u1,u 2, . .,uM) = exp =1 E Ox(tL - t k ) U
1 

U k + E XkUk (71)

We take x = 0, since the equipment used in this investigation did not pass dc. If we
perform the indicated operation on Fx(ul, u2), we obtain

z(r) X2 2 a + 2 2(r) (72)

We can use the same technique in order to get the correlation functions of the other
moments. We list the results for the second, third, and fourth moments:

x2 (r)= 2 ()+ x (73)

3(t) = 6 () + 9 ox x ,(r) (74)

Ox4(r) = 244x(r) + 72x2 () + 9 (75)

Consider first the simple case in which

, x(r) = e Irl/' (76)
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This is the case for which

x() = 2 ax
'0 2 + 1 (77)

0

where or 2 is the ensemble-wise variance of x(t).
X 2 2 2 2

Now we can obtain values for arx(T), a 2(T), 3 (T), and a 4(T) from Eq. (68). We
assume T >> To. Then we obtain x x x

a2 (T) = 2 0 o,2 (78)
T

U2 (T) 20 4o22 (T) - 2Torx (79)

o
2 (T) - 22T ° (80)

2
4 (T) 84 o0

x T (81)

We have now obtained two properties of the distribution of the first four moments
of a sample taken in time T: the mean and the variance. It is clear that z(t) = [x(t)]n
does not have a gaussian distribution. However, the operation of integration for a
period T can be thought of as passing [x(t)]n through a filter whose memory is T. This,
as we have seen in section 3. 3, leads to an approach towards gaussian statistics at the

output of such a filter. To a good approximation, therefore, we can assume a nearly

gaussian distribution of the sample statistics. If M(T) obeyed a gaussian distribution,
the probability of a single value lying within the 2 aM limits would be 95 per cent. We
can establish a criterion for a suitable observation period, T, then, on the basis that
2 aM = 0. 05M.

In Table I expressions for a 2n (T), x, and the value for T, using this criterion
xn r/

for the case when the autocorrelation function x(7) = ax e ,are given. For the

third moment, we have substituted I x3 l (the third absolute moment) for x3 so that the
criterion can be applied.
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Table I. Observation Times Required for 95 Per Cent Probability of Less
than 5 Per Cent Error.

Moment (n) a2, (T) xn T

2 29a T X 3200 ro
T

3 22 ara6 x 13,800 ro
T x

4 84 r a8 3 4 15,000 ro

Now we recall that the frequency spectrum of x(t) that was chosen in the above case

Eq. (77) is flat up to a high-frequency cutoff at 1/27r o0 cps. In this study, however, we

are interested in making measurements on functions that have 1/f spectra. We filter

this noise at both low and high frequencies before measurements are made (0. 2 cps and

10 kc) so that, for the measured function, the spectral density can be approximated by

O () -= JO (82)
(C2 + )2) (2 + 2))

1 2

where co1 is the low-frequency system cutoff and o2 the high-frequency cutoff. The

autocorrelation function corresponding to this spectral density can be found in terms of

the exponential integral function by using relations given by Jahnke and Emde (27).

1 [e+ t a2 Ei (- 9o2 ) + e~rL)-- + 
xr) = 2 21 2[e+2 Ei (- r 2 ) + e a2 Ei (9 2 ) - e+l Ei (-rl) - e a1 Ei (rl)l (83)

2 1

This function is plotted in Figs. 8 and 9. However, in this case, we cannot obtain the

values of (Tz(T) by direct integration.

We shall now establish a criterion for the observation time that is necessary to

achieve suitable fourth-moment accuracy when gaussian noise with a 1/f spectrum is

observed. In the integration for a2
4 (T), the major contribution comes from small

X
values of the argument (). The extension of the integration to 15000 To was made so

that the 2/T coefficient would become small, but the contribution to a 2
4 (T) for

x4
T >> T is negligible. T

Therefore, we compare the values of f (1 - T/T) [ Z(T) - 2]dT for the

exponential autocorrelation function and for the exponential integral function. We have

seen Eq. (81) that, for the exponential, we obtain 42 Tr0oa. If we use numerical
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Fig. 8. Autocorrelation function of /f
noise, RC filtered at high and low fre-
quencies drawn for small values of the
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Fig. 9. Autocorrelation function for large values of the argument.
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integration when rw1 is small and an analytic expression for the proper asymptotic

series (28) for the exponential-integral function when Tw is large, we obtain
8

(1. 17) x (8/ol) (w 2/wl is taken to be 50, 000, as it was in this investigation). There-

fore, an appropriate parameter for use in the T = 15, 000 T equation would seem to be

r1 1.17 1 _ 0.028
° 0 42 A)1 _o 1

Since this development (especially the numerical integration) is quite approximate,

an arbitrary factor of 10 is now inserted in this criterion. Therefore,

1 _ 0.28
0 (01

Our requirement of 95 per cent probability of an error of less than 5 per cent for the

fourth moment, when ol = 2 x 0.2 cps, is

T 1 hour (84)

The measurements on 1/f excess noise were actually made at 30-minute intervals

over a 30-hour period. It is felt that the standard deviation of these individual measure-

ments is about evenly divided between the errors caused by the components of the

moments-measurement system and the errors arising from the length of observation

time.

4.3 ERRORS RESULTING FROM A LIMITED AMPLITUDE RANGE

Next we consider the effect of limitations in the amplitude range of the function

generators that were used to obtain the square, cube, and fourth powers of the input

noise. For large amplitudes, the contribution to the integrated values of the moment

is large but the probability of occurrence is small. We must, therefore, concern

ourselves with the area under the curve defined by xnp(x). The total area is'the value

of the moment but the height of the curve xnp(x) is proportional to the contribution at

any amplitude. In order to get a clearer picture of the requirements to be imposed on

the equipment design, however, the cumulative area under these curves is examined

in Fig. 10. We can tabulate the five and ninety-five per cent values from this curve

(see Table II). Within these values, we wish to obtain 2 per cent accuracy. It is clear

that the most stringent output dynamic-range accuracy requirement will be on the

fourth-moment generator. The chosen dynamic range must be greater than that from five

to ninety-five per cent because it is difficult to center the input amplitude range precisely

with respect to the accurate portion of the function-generator characteristic. In

particular, we designed for a usable fourth-moment input amplitude range of 4:1 or an
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Fig. 10. Plot of
( xnp(x) dx)

X
n

variable.

for a normalized gaussian

output range of 256:1. For the third-moment generator, a 5:1 input or a 125:1 output

range is called for. For the second moment, we require a 7:1 input range, since

errors in the value of the second moment result in an error twice as large in the

evaluation of the excess. This corresponds to a 50:1 output range.

The design criteria in these last sections are based on limiting each error to
5 per cent. However, the design incorporates several conservative factors, and actual

checks on known distributions (sine waves and square waves) lead us to believe that our

results are of better than 5 per cent accuracy.

4.4 MEASUREMENTS OF 1/f EXCESS NOISE

Measurements were made on a General Electric Company 1N91 germanium junc-

tion diode at room temperature. The back current was approximately 100 /la for all
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Table TI. The 5 and 95 Per Cent Values for 
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n

5th per cent of moment 95th per cent of moment

n a a

2 0.58 2.78

3 0.82 3.05

4 1.06 3.32
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measurements and R s was a 50-k wire-wound resistor. The noise voltage was ap-
proximately 20 millivolts, as measured by a Ballantine Model 300 averaging vacuum-
tube voltmeter, in the frequency range 10 cps-40 kc and after amplification by a factor

of 100 in the first preamplifier.
The spectral density of this noise was obtaibned; it is shown in Fig. 11. These

data obey a 1/f l 1 law, which

is in agreement with the

usual experimental measure-

ments that give exponents
varying from 1. 0 to 1. 4.

The moments of this
noise were measured for

30 hours, readings being

taken every half-hour. The
[ ... . .l1 ·

-10

0.1 10

FREQUENCY(KC)

Fig. 11. Measured spectral density of 1N91 germanium dic

irequency range tnat was
examined was 0. 2 cps-l0 kc.

The value for 24/112 was
2. 88, as measured on the
panel meters, with a

standard deviation of 3. 6 per
,de noise. cent, and 3. 03, as measured

by the integrators, with a
standard deviation of 3. 6 per cent. The deviation from a gaussian distribution is
clearly within the limits of experimental accuracy.

The values for p13/ /2 are +0. 030, with a standard deviation of 130 per cent
from panel meter readings, and +0. 031, with a standard deviation of 62. 5 per cent for
the integrators. If we compare these values with Ix31/,1/ 2 = 1. 6 for rectified
gaussian noise, we find that these values deviate from zero by less than 2 per cent.
These deviations from gaussian noise are well within the expected experimental error
of 5 per cent.

Photographs of the noise waveform for two sweep speeds are shown in Fig. 12.
The probabiloscope photograph for this noise is shown in Fig. 13. It displays the
expected gaussian shape on a log-probability scale. A log-probability gaussian
distribution curve is shown with it for comparison.

We conclude that 1/f excess noise in germanium junction diodes has a gaussian
first probability distribution.

4. 5 AVALANCHE NOISE

McKay (29) recognized that there was an increased noise from semiconductor
diodes in the neighborhood of the inverse breakdown voltage and that this noise was
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1.0 MILLISECONDS

PROBABILOSCOPE SEMI-LOG CURVE
PHOTOGRAPH FOR GAUSSIAN NOISE

Fig. 13. Probabiloscope photograph of 1/f noise com-
pared to the log-probability curve for gaussian noise.

l I

5.0 MILLISECONDS

Fig. 12. Photographs of 1/f noise waveforms.

visibly non-gaussian. We shall report some measurements made on this avalanche
breakdown noise.

Measurements were made on a Raytheon Manufacturing Company N305A silicon
junction diode that was held at the temperature of a mixture of dry ice and acetone

(-77°C) for a range of inverse currents of 27/za to 500/za. The region of incipient
breakdown is from below 27/ a to approximately 160 ga. Above 160/ a the diode was
considerably less noisy.

Measurements of the spectral densities were made for several values of the
reverse current in the avalanche region. These are shown in Fig. 14. We also
present in Fig. 15 a spectral-density curve for a current that is well into the avalanche
region (500 a). It is clear from these curves that the noise is no longer 1/f in nature
and that, therefore, the averaging time for moments measurements could be
considerably reduced.

Several five-hour runs were made and the resulting values for the moments from
the integrator were compared to those from the panel meters on the integrator strips.
It was found that deviations were well within the experimental error. We shall,
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densities of silicon junction diode avalanche noise for inverse currents of 20, 100,
125, and 155 a.
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therefore, use these short-averaging-time moments in this section. For several

values of the current, the frequency spectrum within which the measurements were

made was varied in order to see the effect on the distribution. The expected approach

to a gaussian distribution is demonstrated in this way. In Fig. 16 the effect of the high-

frequency cutoff on the skewness and excess is shown for back currents of 90, 100, and

110 ia. In Fig. 17 this approach to gaussian statistics is shown for 130,140, and 150 ,a.

The effect of variation of the back current in the avalanche region on the skewness and

excess is shown in Fig. 18, in which all of the moments are measured in a bandwidth

from 0.2 cps to 10 kc. Far into the avalanche region, at 500 lia of back current,

values of -0.007 for the normalized third moment and 2. 88 for the normalized fourth

moment were obtained. These values are gaussian within the accuracy of the

moments-measuring equipment.

Probabiloscope photographs were taken for back currents of 100/ta and 1401a

(both for different values of the high-frequency cutoff and for direct feed into the

oscilloscope). These photographs are shown in Figs. 19 and 20 together with the

Pearson curves calculated for the values of the skewness and excess obtained with these

currents and spectra. The general trend toward a gaussian distribution as the high-

frequency limit is decreased can be seen from these curves, the approach being faster

Cn
" 0.4z

0.
cn 0.2
!-

-0.2

U

-0.5

Un
U)

X

, -1.0

I I 1111 I I I I II I 1 11111I1 I I 1111 I I I II I I I I 111111
0.1 I 10

HIGH-FREQUENCY CUTOFF (KC)

Fig. 16. Effect of high-frequency cutoff on measured values of skewness and excess for
inverse currents of 90, 100, and 110 I a.
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o- 130Po
A- 140
o- 150

, , ,,,,,I , , ... , , ,,,,,, I I I I 1111 II I I I

0.1 I 10

HIGH-FREQUENCY CUTOFF (KC)

Fig. 17. Effect of high-frequency cutoff on measured values of skewness and excess for inverse
currents of 130, 140, and 150 a.

MEASUREMENTS
IN BAND FROM
0.2 CPS TO
40 KCPS

I I I I I I I I
140 160

avalanche noise
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UNFILTERED NOISE
IS FED DIRECTLY TO
THE PROBABILOSCOPE

0.2 CPS
TO 40 KC

0.2 CPS
TO 10 KC

0.2 CPS
TO I KC

0.2 CPS
TO 250 CI

0.2 CPS
TO 50 CP

Fig. 19. Probabiloscope photographs and Pearson
curves for 100-na avalanche noise examined with
different system bandwidths.

UNFILTERED NOISE
IS FED DIRECTLY TO
THE PROBABILOSCOPE
(POLARITY REVERSED)

0.2 CPS
TO 40 KC

0.2 CPS
TO 10 KC

0.2 CPS
TO I KC

0.2 CPS
TO 250 CPS

0.2 CPS
TO 50 CPS

Fig. 20. Probabiloscope photographs and Pearson
curves for 140/za of inverse current (avalanche
noise) examined for different system bandwidths.
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for a distribution with a wide range of values (as for 100ga) than for a distribution that

is almost discrete in nature (as for 140 ua). These curves also illustrate some short-

comings of the Pearson system. In the 0. 2 cps - 0. 40 kc curve of Fig. 19 the rather

irregular distribution shown in the probabiloscope photograph is poorly approximated.

More serious is the poor approximation shown in Fig. 20 to the case in which the

system bandwidth is 0. 2 cps to 10 kc. Although further investigation shows that almost

90 per cent of the area under the distribution density curve is in the left-hand maximum,

the presence of the second peak as a result of the Pearson assumptions is quite

undesirable. This emphasizes the desirability of having available a qualitative

probabiloscope curve when applying the Pearson system. The modification of the

distribution in Fig. 19, even for a system bandwidth from 0. 2 cps to 40 kc, is also

worth noting.

In addition, probabiloscope photographs were taken for several values of reverse

current, using direct feed to the oscilloscope. These curves (Fig. 21) show quite

clearly the increasing probability of one amplitude level as the inverse current is

increased.

The interpretation of the curves is greatly aided by examination of the actual

waveforms.

The waveform photographs in Fig. 22 show how the approach to a gaussian

distribution takes place: that is, the sharp pulses of the avalanche noise are averaged

so that we see fluctuations in the density of pulses rather than the pulses themselves.

The waveform photographs for several values of inverse current shown in Fig. 23 were

taken by feeding the noise directly to a Tektronix 535 oscilloscope. They are helpful

in interpreting the probabiloscope photographs of Fig. 21. They show that avalanche

noise consists of a series of nonoverlapping pulses whose density decreases as the

current increases.

This investigation illustrates that frequently photographs of waveforms yield more

information about the process than a probability distribution. If, however, probability

distributions are desired, when the correlation time for the process is short, as for

avalanche noise, a direct probability analyzer would provide more precise information

about the distribution than a moments-measuring analyzer. In this connection, a system

bandwidth wider than that employed here is probably necessary for the accurate

evaluation of the probability density of a process like avalanche noise, whose wave-

form consists of rapid transitions between states. Thus the avalanche noise

investigation has clearly shown some of the shortcomings of the moments-measuring

method, in addition to demonstrating the ease of handling data in the form of moments.
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27 MICROAMPERES 50 MICROAMPERES

100 MICROAMPERES 110 MICROAMPERES 120 MICROAMPERES

130 MICROAMPERES 140 MICROAMPERES 145 MICROAMPERES

150 MICROAMPERES 160 MICROAMPERES

Fig. 21. Probabiloscope photographs of unfiltered avalanche noise for various
inverse currents.
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O.2 MILLISECOND

I I

0.5 MILLISECOND 0.5 MILLISECOND 2.0 MILLISECONDS
0.2 CPS TO IOKC

1.0 MILLISECOND
nlRFCT FFFn

5.0 MILLISECONDS
0.2 CPS TO 40KC

Fig. 22(a). Effect of filtering on the waveform of avalanche noise (140 poa).
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0.5 MILLISECOND 0.5 MILLISECOND

2.0 MILLISECONDS 2.0 MILLISECONDS 2.0 MILLISECONDS

5.0 MILLISECONDS
0.2 CPS TO IKC

5.0 MILLISECONDS
0.2 CPS TO 250 CPS

5.0 MILLISECONDS
0.2 CPS TO 50 CPS

Fig. 22(b). Effect of filtering on the waveform of avalanche noise (140 a).
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V. CONCLUSIONS

We have attempted to describe a moments technique that is useful in the experi-

mental investigation of physical noises, and in the analysis of the effects of networks

on such noises.

The moments technique provides a theoretical tool of great usefulness in the

examination of the effect of filters through an amplitude distribution for several classes

of non-gaussian noise. Specifically, when the higher-order autocorrelation functions

or spectral densities of these noises are obtainable, and when the frequency response of

the network is easily handled analytically, in the frequency domain the moments

technique can be employed. On the other hand when the random-pulse type of non-

gaussian noise is considered, and the impulse response of the filter is simple, the

moments-measuring technique in the time domain is attractive. Here, for example,

we have considered the nature of the approach of a random-pulse noise model to a

gaussian distribution for severe band-limiting, with special attention to the behavior

of the higher-order moments.

We have also examined the effect of an RC limited bandwidth filter on random-

pulse noise. All noises are inherently non-gaussian (in the strictest sense), since

they consist of effects that are quantized; but the measuring system is usually not

capable of distinguishing these discrete events. Middleton (4) suggested the basic

idea that it is the overlap of large numbers of pulses which leads to an essentially

gaussian distribution. In this work we have elaborated this conclusion by showing that

the overlap caused by the filtering action of the measuring system itself must be

considered in evaluating the validity of the measured distribution parameters that are

obtained from such a system. More specifically, we have indicated that the "memory"

of the measuring system has the most important role in modifying the distribution.

The experimental application of a moments technique is of particular value when

1/f noise, for which the correlation time is long, is being examined. The limiting

factor in any measurement of the probability density is the length of observation time.

For direct probability density measurements, this both limits the accuracy and

requires equipment capable of making simultaneous multilevel measurements on the

tails of the distribution. In such a case, measurement of the moments, and application

of Pearson's system to obtain a suitable curve, provide a considerable saving of

equipment. A moments technique is particularly applicable when it is desirable (and

sufficient) to characterize a distribution by a small number of parameters, as is the

case when the deviation of a distribution from gaussian is being examined.

Such was the case in the measurement of moments of 1/f noise. Bell (30) had

previously made direct measurements of the distribution of carbon resistor noise in a

frequency band from 40 cps to 6 kc. In this investigation we felt it desirable to make

measurements in a wider band and to get a direct characterization of the departure
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from gaussian, if any. Our conclusion is that, since the deviation from gaussian lies
within the experimental error, the 1/f noise has a first-probability distribution which
can be characterized as gaussian.

The measurement of the moments of the avalanche noise, however, illustrates
the shortcomings of an approach that.gives attention exclusively to measuring the
moments. For such a noise (where there is a short correlation time), it is feasible
to make accurate direct measurements of the distribution density. From these
measurements, the skewness and excess can then be calculated to characterize the
departure from gaussian statistics. It is clear, also, that a bandwidth greater than
10 kc is desirable for noises with flat or nearly flat spectra going to higher frequencies.
This is very difficult to achieve with the desired high accuracy with the type of function
generator used here.
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APPENDIX

Further Applications of the Moments Approach in the Time Domain

Values for the moments of the output from linear systems whose input is random-
pulse noise were obtained in a number of cases, in addition to the one described in
section 2. 3. These results are tabulated below.

In Table A-1 we consider the response to randomly distributed unit steps; in
Table A-2, the response to unit pulses of length r seconds.

The average density of pulses is assumed to be N pulses/second. The values for the
nth-order semi-invariants and for the skewness and excess are tabulated directly.
The moments values can easily be obtained from the semi-invariants (16).
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