

LIBRARY

OF THE

MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

,^**^*'

ALFRED P. SLOAN SCHOOL OF MANAGEMENT

A GROUP THEORETIC BRANCH AND BOUND ALGORITHM

FOR THE ZERO-ONE INTEGER PROGRAMMING PROBLEM*

by

Jeremy F. Shapiro
**

December 18, 1967

Working Paper j^0_^67

MASSACHUSETTS

INSTITUTE OF TECHNOLOGY
50 MEMORIAL DRIVE

CAMBRIDGE, MASSACHUSETTS 02139

A GROUP THEORETIC BRANCH AND BOUND ALGORITHM
FOR THE ZERO-ONE INTEGER PROGRAMMING PROBLEM*

by

**
Jeremy F. Shapiro

December 18, 1967

Working Paper ^0^67

This work was supported in part by Contract No. DA-31-124-AHO-D-209,
U. S. Array Research Office (Durham)

**
The author is indebted, to Wayne W. Baxter for his invaluable computer
programming contributions.

\0- 302-/£>l

ABSTRACT

This paper contains a new algorithm for the zero-one integer programming
problem. A given problem is solved first as a linear programming problem
and an optimal basis is obtained. As shown by Gomory, the optimal basis
is used to transform the integer problem into a new optimization problem
over a finite abelian group. The group problem can be viewed as an
unconstrained shortest route problem in a directed network and it is

useful for two reasons: 1) the structure of the group is far simpler
than that of the original problem, and 2) all feasible solutions to
the original problem correspond to paths connecting a specified pair
of nodes in the network. If one of the shortest route paths connecting
the pair of nodes yields a feasible solution to the original problem,
then the solution is optimal.

For a majority of zero-one problems, however, solving the uncon-
strained shortest route problem does not work. Constraints must then
be added to the unconstrained problem making it very difficult to
solve explicitly. The algorithm of this paper finds an optimal
solution to the integer programming problem by implicitly enumerating
all feasible solutions. Each partial solution in the implicit enumeration
scheme is regarded as a path in the group network and tight lower bounds
on the cost of an optimal completion are found by solving various
residual shortest route problems. The group theoretic appraoch also
gives insight into efficient branching procedures.

(3r>7^.rji7

1. Introduction

In [12], Gomory showed how to transform the integer programming

problem into a group optimization problem. The transformation requires

that the integer programming problem be solved first as a linear

programming (LP) problem. If B is an optimal basis for the LP problem,

the group problem involves only the non-basic variables relative to B.

This problem can be viewed as one in which we seek a minimal cost,

non-negative integer, non-basic (optimal) correction to the LP

basic solution that makes it non-negative integer. The usefulness

of the approach is due to the simple structure of the group problem

when compared to that of the original integer programming problem. More-

over, the group setting appears to be a particularly good one for

resolving the number theoretic difficulties of integer programming.

In particular, the group problem can be viewed ([25]) as a special

shortest route problem with side constraints in a directed network

with a finite number of nodes and arcs. The set of all feasible

solutions to a given integer programming problem corresponds to a

collection of paths connecting a specified node in the network to a

second specified node. An unconstrained shortest route path connecting

the specified pair of nodes is backtracked to yield a first attempt

at an optimal correction to the LP optimal solution ([25]). If the

A more precise definition of an optimal correction is given in

section 2.

Induced correction and the resulting LP basic variables constitute a

feasible solution to the integer programming problem, then this solution

is optimal Sufficient conditions can be given ([12], [25]) on when an

unconstrained shortest route path can be guaranteed to produce a

feasible and thus optimal integer solution.

As discussed in [26] , the class of problems for which the unconstrained

shortest route solution will yield the optimal integer solution can be

described qualitatively as steady-state- If b is the vector of constants

in the integer programming problem, steady state means that the optimal

LP solution B b is sufficiently large in each component to remain non-

negative after the correction from the unconstrained shortest route or

group problem is obtained.

If the unconstrained path fails to yield an optimal correction,

there are several alternatives available First, the group problem can

be used to generate and identify good cuts for Gomory's cutting plane

algorithm ([13]) . Another alternative is to find the kth shortest route

in the network (k=2,3,4, . .
-) connecting the specified nodes c In this

case, convergence is through super-optimal mfeasible solutions to

a feasible and therefore optimal integer solution [27]. If the

backtracked correction from the unconstrained shortest route path

can almost be used to solve the original integer programming problem,

then a third alternative discussed in [26] may be suggested. The

backtracked correction "almost solves" the original problem if the

resulting number of infeasibilities in the basic variables is small.

All of these extensions appear to be most useful for problems that are

basically steady-state in character.

It is unfortunate that a very large and interesting class of

integer programming problems are decidedly transient in nature; these

are the zero-one problems. The most promising method to date for

solving zero-one problems has been that of branch and bound, partly

because the branch and bound approach is flexible enough to take

advantage of the special structures of a given problem- Since an

enormous variety of discrete optimization problems can be modeled as

zero-one integer programming problems, it is to be expected that a

general integer programming algorithm should often be inefficient when

compared with a specially constructed, usually branch and bound,

algorithm. On the other hand, there may be value in the general

formulation- This value would be derived from the insight into the

number theoretic difficulties of any problem provided by the general

formulation and approach. Viewed another way, one might sav that

branch and bound algorithms can easily incorporate and exploit macro-

structures which are peculiar to a given problem, while the general

algorithms attempt to analyze and resolve the number theoretic

difficulties at the micro-level.

The purpose of this paper is the construction of an implicit

enumeration algorithm for solving the constrained group optimization

problem. Glover [10] has also discussed this problem. What appears

novel here is the explicit use we make of the shortest route representation

of the group problem in developing new bounds. Moreover, an efficient

sub-algorithm is constructed for solving the group problem with some

but not all of the side constraints included. Finally, an explicit

algorithm for the zero-one integer programming problem is given which

fully integrates the group theoretic concepts and those of implicit

enumeration.

Section 2 contains a brief review of the basic ideas on the

transformation to the group problem from [12] and [25]. The following

section begins with the statement of our problem in canonical form and

the implicit enumerative scheme to be used in solving it. The concepts

and methods of implicit enumeration are very clearly expounded by

Professor Geoffrion in [6] and we shall make liberal use of his work.

The remainder of section 3 is devoted to the development of explicit

bounds from the shortest route group problem which are incorporated

into the implicit enumeration scheme. The group problem is also used

in the construction of the branching procedures.

Section 4 contains a concise statement of the algorithm and a

numerical example of the algorithm is given in section 5. A partial

list of computational results is presented in section 6, These results

are for the algorithm of [22] for the unconstrained group problem.

It is hoped that later versions of this paper will contain complete

computational results.

Section 7 is devoted to final remarks and a discussion of areas

for future research. Four sub-algorithms are given in the appendices.

2. Review and Terminology

The problem is written in initial canonical form as (cf [6])

subject to -b + A'x' >

(1) x' = or 1,
J

where c' is an n dimension vector of integers with component c!

;

b is an m dimensional vector of integers with component b.; A' is

an mxn dimensional vector of integers with generic column a!. The

constraint relations are made into equations by adding surplus

variables . This problem is then solved as the linear programming (LP)

problem

min ex

(2) subject to Ax = b

X >

where A = (A*, -I) and x = (x' ,s) and s = (s^,...,s) is the vector of

surplus variables. The generic column of A is denoted by a . . Explicit

upper bounds of the form x'. <_ 1 are omitted in (2) because such

constraints are quite often implicit in Ax = b. An alternative approach

is to use the upper bounding version of the simplex algorithm discussed

in Chapter 18 of Dantzig [5]

.

We assume (2) has a bounded solution. In other words, assume

that the simplex method applied to (2) yields a non-singular (optimal)

mxm basis B with the properties

(i) B""'-b >_

(ii) c* = c. - c„B a. > j=l,2,..., m+n
J J B 2 -

where c„ is the vector of cost coefficients corresponding to B. Without
B

loss of generality, the columns of A are rearranged so that B =

(a ,,..., a ,). Similarly, the non-basics are in R = (a,,..., a).
n+1 n+m In

Let (1) V denote the set of indices of the basic zero-one variables;
a

(2) U^ denote the set of indices of the basic surplus variables;
n

(3) V denote the set of non-basic zero-one variables; (4) U denote
R R

the set of surplus non-basic varibles.

Using the optimal basis B, transform the integer programming problem

(1) into the equivalent form

min Z c*x

.

j=l J J

n

subject to y = b - Z a^x^

(3)

j=l ^ ^

X. = or 1 if 1 e V„
J R

X = 0,1,2,... if j e U
J ^

Order the non-basics by decreasing value of cj*. This leads to computational
savings in the analysis below (see [25]).

y. = or 1 if i e V„
1 B

y. =0,1,2,.... ifieU
1 B

where b = B b, and a. = B a.. As discussed in [12] or [25], we
J J

transform this problem into a related group optimization problem.

1
The group problem is'

min G^ (a,) = E c*x.
1 ^ j=l J J

subject to E ot.x. = c(, (mod D)
3 2 b

j = l

(4) X. non-negative integer

where D = det B

and

a^ = D {B'^a^ - [B V}} ,
j=l,...,n,

a = D {B -"-b - [B """bp

The group in question here is the finite abelian group G generated

by the {a.}._^ with addition module D. Let f be the mapping from the

lattice of integer vectors in m-space to the group; that is, the m

dimensional vector of integers a is mapped into the group element f(a)

We use bold face square brackets '- * to denote "integer part of";
that is j^a i is the largest vector of integers t such that t <_ a.

by the above transformation. The group has D elements and in general

has a far simpler structure than the original integer programming

problem for which it is derived. In fact, (4) resembles the knapsack

problem. A further discussion of this point is deferred for the moment.

The importance of (4) to (3) is embodied in the lemma below.

First a definition is required. A non-negative integer solution

(x^,...,x''0 of the non-basic variables is called an optimal correction

(to the optimal LP solution to (2)) if (x* ...,x*, y^>,...,y*) is an

optimal solution to (3) where

_ n

y* = b - Z a.xc
j=l J J

LEMMA 1: An optimal solution (x* ...,x*) to (4) is an optimal correction

if

m

(5i) X* ^ 1, j e V

(5ii) y* ^ 0, i=l,...,

(5iii) y* ^ 1, i e Vg.

Proof: Let z* = (z*. z*,...,z*,) = (z*, z*) be an optimal solution
i z m+n K D

to (3), Then z* satisfies conditions (5i) , (5ii) , and (5iii) and

moreover.

z* = b" b - B -""Rz*

is a vector of integers. In other words, B b and B Rzg differ
R

by a vector of integers or

B """Rz^ = B ""-b (mod 1)
R

The integer parts of the vectors B a., j=l,...,n, and B b can be

dropped because they equal O(mod 1). Finally, we can clear fractions

by multiplying both sides by D = |det b| . The result is

E a . z .
= a, (mod D)

j=l J J ^

where a. and a, are defined in (4). Thus z* is a feasible solution

to (4) which implies

(6) E c*z* > I c*x*
j=l J J -j^l 3 ^

Moreover, the fact that x* is a feasible solution to (4) and satisfies

(5i), (5ii) , and (5iii) implies it is feasible in (3), and thus

optimal in (3) by (6)

.

Thus, if we solve (4) and the three conditions of lemma 1 hold,

then we have solved (3) (or equivalently (1)). It is unlikely, however,

that these conditions should hold for a given zero-one problem. One

10

obvious difficulty with (4) is that we allow x., jeV , to take on
3 K

integer values greater than one. Conversely, it is readily seen from

the proof of lenuna 1 that the problem we are most interested in solving

is (4) with the proper side constraints; namely, conditions (5i) , (5ii)

,

and (5iii) . Unfortunately, the addition of all these conditions to

(4) makes it extremely difficult to solve explicitly. Our approach,

therefore, will be to use branch and bound methods to solve (4)

implicitly with conditions (5i) , (5ii) , (5iii) holding. Roughly

speaking, the algorithm will implicitly test all solutions to (3) and

will make use of (4) with a variety of weak side constraints in develop-

ing tight bounds and efficient branching procedures.

The usefulness of branch and bound methods becomes more apparent

if (4) is viewed as a network optimization problem. To do this, we

need to return to a fuller discussion of the group G generated by

{a.}. , in (4).

A useful isomorphic respresentation of G is

(7) G = Z
,+ ' Z (+>'•• ^+ '' Z

qi q2 ^ - %

where

Z = residue class of the integers modulo q.,

'^i

and
r

q.lq.,,, 1=1,..., r-1 and n q. = D^1
' 1+1 . T

^1
1=1

11

Moreover, given a finite abelian group, there is a unxque representa-

tion of the form (7), Thus, G can be represented as a collection of

D r-tuples (£,,..,£) with addition of the r-tuples mod (q ,--.,q),

The usefulness of this representation is two-fold: (1) in general,

r is considerably less than m and often equals one; (2) this representa-

tion of G exposes the basic structure of the group, a structure which

can be exp].oited.

A computational algorithm for achieving the representation (7)

is based on a matrix diagonalization procedure. The theory behind

this algorithm is described in [24]. The algorithm has already been

programmed for the IBM 360-ASP System at Mi. I, and representative

results are discussed in section 6

The r-tuples iU^,- ,1^); «.^ = , ^ , .,

, q^-i, , , £^ = 0,

1,. , q -1} are lexicographically ordered by the rule {H ,..,,l) <

(t,, . ,t) ±t I ' t where s is the smallest index l such that l . < t.-
1 r s s 1 .1

Let A, be a typical r-tuple and G = i«, ^ „ where A =0 Strictly
k -^^^ k k=0 o

speaking, the m vectors o. and q, computed m (4) should be distinguished

from their isomorphic representation as r-tuples. We will not make

this distinction because only the representation (7) will be used below.

It is convenient to view (4) as the problem of finding a shortest

route path connecting a pair of nodes in a related network. If (4)

fails to solve (3) (see lemma 1), the optimal correction we seek still

corresponds to a path in the network connecting the same pair of nodes,

In [27], White has developed an algorithm for finding this path explicitly.

12

Our approach here can be viewed as implicit in the sense of Balas

'

algorithm ([1], [7]).

The network of problem (4) which we call the group network, is

r = [M,Rl . The set M contains D nodes, one for each element >. of G,
K.

The arcs in R are of the form (A, - a., a), k=l,. — ,D-1- An arc
k J k

cost c* is associated with each arc (a, -a., a). Finding an optimal
J k 3 k ^ ^

solution to (4) is equivalent to finding a shortest route path from 9 to

a, in u If u (a,) is a shortest route path from 6 to a , then
b b D

X = (x, , •

, ,x) is an optimal solution to (4) where x = number of

times an arc of the form (a, - q., a,) appears in u (a,) . It is important
k J k b

to note that we have a special shortest route problem because the

same type of arc is drawn to each node- A specially constructed

algorithm which exploits this structure is given in [25] and is

repeated in Appendix A- In the course of finding G (a) , the algorithm

also finds G,(A), k=0,l,, ,D-1, the value of a shortest route path
-L K.

from 9 to A in F- The corresponding paths will be denoted by u,(A)

and the backtracked solutions by x (',) We remark that an almost

identical shortest route network representation of the knapsack

problem was developed in [23].

In order to facilitate the analysis below, augment 1 by a single

node A = (q , q , , . ,q) and by arcs (a - o , A^^)
,
j=l, = . • ,n, with

arc costs c"-: The shortest route path from to A is the least cost

circuit in the network This path is also found by the algorithm of

[25] as stated in Appendix A.

If ct.=e, then the arc is (e,X^) with arc cost c*o

13

We summarize the discussion up to this point in terms of a

corollary to lemma l.

Corollary 1: Any feasible correction z to (3) corresponds to a path

in r connecting 9 to a , Moreover, (4) with the side constraints

(5i) , (5ii) , (5iii) is equivalent to (3) in the sense that a feasible

solution to (4) with these side constraints is feasible in (3) and vice versa,

Proof: The proof is immediate from the proof of lemma 1.

14

3. Bounding and Branching Procedures

We have seen that the original integer programming problem (3)

in the group theoretic setting becomes the problem of finding a

shortest route path in T connecting 6 to a, that satisfies conditions

(5i) , (5ii) , and (5iii) of Lemma 1, The y* in lemma 1 are uniquely

determined from the x* by the constraint equations of (3). We will
3

construct an algorithm for finding such a path by implicitly enumerating

all corrections.

In order to facilitate the branch and bound approach, transform the

surplus variables x., ieU^.to zero-one variables. Let u. be an upper

bound on x in (1) and v. = [log_ u.]. Define the zero-one variables
J J 2 3

V,

(8) X = I 2^ -

J k=0
^^

To facilitate the analysis below, for each non-basic surplus variable

X. , Je\. let

_ k-
a. = 2a., k=0,l,2,. .

. , v ,

c* = 2^c*, k = 0,l,2,,,-,v.

^k ^ ^

It is easily seen from problem (1) that such u. exist.

15

and

a. = f(a.,)= 2a.,

Problem (3) becomes

V.
3

min Y. c*x . + T. I c* 6

jeV^ J J J£U^ k=0 ^k
^^

V.

(9) subject to y = b - E a,x, - E E a. 6.,

i£V„ ^ ^ jeU k=0 ^k ^

X = or 1, jeVj^; 6 = or 1, jeU^^ ;

y^ = or 1, i£Vg; y^ = 0,1,2,.,., ieUg -

It is important at this point to develop and review the systematic

implicit enumeration scheme described in [7] . A partial solution S

to (3) is an assignment of feasible values to a subset of the non-basic

variables ix, , , , . ,x } - The variables not included in the subset of the
1 n

partial solution are called free variables. The current best solution at

any point during computation is denoted by x with value z = ex and is called

the incumbent .

Given the partial solution S, the algorithm attempts either to

continue S to an optimal completion or to ascertain that S has no feasible

completion better than x. If either of these contingencies occurs, then

S is said to be fathomed; that is, all feasible completions of S have been

16

implicitly enumerated. In this case we climb up the tree of enumerated

solutions and free some of the fixed variables in S. Otherwise, a free

variable relative to S is fixed and we descend the tree of enumerated

solutions.

A non-redundant and implicitly exhaustive sequence of partial solutions

is generated if the following rules are used. As discussed by Geoffrion,

let j (i,) denote x, = 1 (6., =1) and j (-j,) denote 1=0 (6., = 0),^ -^k J jk -• -^k -^ jk

A partial solution S is described by a series of such symbols.

The procedure for implicit enumeration of all corrections in (9)

. 2
is

'l^tep 0: Put S = (j).

Step 1: Attempt to fathom S. Is the attempt successful?

YES: If the best feasible completion of S has been found and it is

better than the incumbent solution, store it as the new incumbent. Go

to Step 3.

NO: Go to Step 2:

Step 2: Augment S on the right by j (j) or -j(-j,) where x.(6.,) is any

free variable- Return to Step 1.

Step 3: Locate the rightmost element of S which is not underlined. If

none exists, terminate; otherwise, replace the element by its underlined

complement and delete all elements to the right r Return to Step 1."

To avoid needless repetition, henceforth we shall use only j to

denote a generic index in (9)

.

2
See Geoffrion [7; figure 1].

17

Let S be a partial solution to (9). If S is feasible, then the

best completion of S is to take x. = 0, j^S, since c* >_ 0. Denote this

g
completion of S by x , Suppose S is not feasible. In this case we can

develop a series of tests using both (9) and (4) for fathoming So Define

S S "

T = {j free: c*x + c* < z and either

— 2
(1) a. . > for some i such that y. < or

— S
(2) a. . < for some i such that y. > 1 and ieV^ } ,

ij -^x B '

V.

where y=b- E a.x.-z z "^. 6^

JeV^ ^ ^ jeUj^ k=0 ^k J^

If T is empty, it is clear that no feasible completion of S is better

than the incumbent and S is fathomed.

Similarly, there is no feasible completion of S better than the incumbent

either if

(11) y. + Z ^ max {0, 7. . } + E ^ max {0, a.. } <

^
J -^k

and J
, ., and

S
for some y. < 0: or if

1

(12) y^ + E min {0, a..} + E min {0, a. . } > 1

jeT^ ^J j^cT^ 'Jk

and J

18

for some y. > 1 and ieV^,
1 B

If these two tests do not result in S being fathomed, then we turn

to the group problem (4) for further fathoming tests. Let a,, be the

group element corresponding to S; that is, if

^1' J2'"'"'^v' \ ' ^k''"' ^k

are variables at a level of one in S, then

V u

(13) a = la. + Z a.
S i=l ^i i=l ^k.

It is clear by our discussion in section 2 that the optimal completion

of S can be found by finding the least cost path in T connecting a

to a, such that

(i) only free (non-basic) variables relative to S are used as arcs,

(ii) the free (non-basic) bivalent variables are used at most once,

(iii) the resulting basic variable values from the completed solution

are non-negative; that is y. _^ 0, i=l,-..,m,

(iv) y^ <_ 1, ieVg.

As before, an explicit solution to this shortest route problem with

side constraints is difficult to find. Our approach here is to compute

super-optimal paths by ignoring some or all of the side constraints. The

hope is either that one of these paths will provide a lower bound on the

cost of an optimal completion which exceeds the cost of the incumbent, or

19

that one will provide a feasible and therefore optimal completion.

In particular, there are three different lower bounds on the cost of

an optimal completion of S. The first is G, (a, -a^) which is the cost of
1 b b

an optimal solution to (4) with right hand side a, - a„ - The cost
b S

thmG (a - a) and the optimal path u, (a - a) are computed when IP Algori

I is applied to (A) . Note that it is possible that a^ = a, but S is not
b b

a feasible connection to (9). In this case, we must continue S by a

(least cost) circuit from node a, back to node a, , This was the reason
b b

for the addition of node D to F in the previous section. In order to

avoid excessive repetition below, we state now that for i=l,2,3, the

bounds are denoted by G. (a - a), the backtracked paths in T are denoted
X D o

by M.Ca - a), and the corresponding corrections are denoted by x (a^ - a„)
1 b b b S

It is evident that S is fathomed if

S
(14) c*x + G (a, - a) ^ z

since the sum on the left is a lower bound on the value of an optimal

S 1
completion of S. If the inequality (14) does not hold, but x + x (a, - a„)

is a feasible correction in (9) , then S is fathomed and the new incumbent

S 1
X = X + X (a, - a„) with value

b b

C"X + G^(a, - a„) .

If knowledge of G (a, - a„) and y (a, - a„) does not lead to a

20

fathoming of S, we proceed to the computation of the higher lower bound

G„(a, - ttg) on the cost of an optimal completion to S- G (a, - a) is

the cost of a least cost path from a to a using only the free variables

relative to S, More explicitly,

subject to

^2^°'b ~
^'s^

" ^^"^

n

21

were computed without the explicit constraints that x. < 1, jeV , Thus

a tighter lower bound G„(a - a) >_ G (a - a) on the cost of an optimal

completion of S is

n

G„(a^ - a^) = min Z c*x

.

3 b S . T
11

and
j^S, V.

R

subject to

n
Z a.x, = a, - a^ (mod D)

J J b S
j = l

and
j^S V

(18)

R

c
X. = or 1, J^V S ; x. non-negative integer, j eU

Problem (18) cannot be solved by the algorithm of [25]. A new algorithm

is given in Appendix B for solving this shortest route (group) problem

when some of the arcs can be used at most once.

If the set of free variables is sufficiently small, it may be that

a, - an cannot be spanned by the free variables, particularly when the

bivalent free variables are used at most once, A sufficient condition for

this to occur is that the free variables lie within or generate a proper

subgroup of G that does not contain a, - a . For example, suppose the

canonical representation (7) of G consists of more than one cyclic subgroup,

If the free variables can be represented by some partial direct sum of

22

the Z , but a, - a cannot, then S cannot be feasibly completed. As
^i

a numerical illustration, suppose a - a = (1,2,7) mod (2,4,12) and the

group identities of the free variables relative to S are (0,3,5) ,

(0,1,3), and (0,1,4).^

There is an additional group theoretic lower bound on the cost of

a completed partial solution S which is sometimes available. This lower

bound will not be used here and it is presented primarily because it is

related to the algorithm in [26]. The first step is to net out x from

(9) with the result that (9) becomes

min E c*x, + E _ c* 6

2iev" S^ ^J"J '

U^V S^ Jk J^
R -'k R

subject to

y=b'- I a.x.- E a. 6,

(19) X. = or 1; 6., = or 1;
2 2^

y. = or 1, ieVgi y. = 0,1,2 ieU^,

where

b'=b- E a.x.- E a. 6.,

J^\ s -^ -^ jj^.Up_ S k

The new bound can be found whenever there is at least on b ! < 0.
1

In this case, the LP solution y. = bl, i=l,...,m, to Q-9) is not feasible.

If the group G has a multi-dimensional canonical representation, the above short-
est route problems could be solved for any group formed by taking a partial direct
sum of the Zg . . The resulting shortest route values would be lower bounds on
the shortest route values for the full group. This would be particularly
useful when D is overly large.

23

Reoptimize LP(19) using the dual simplex algorithm since c* >_ 0, j=l,...,n.

S
If the value of the new optimal LP solution plus c*x is greater than z,

S is fathomed. Otherwise, repeat the procedure outlined in section 2 using this

new LP basis to convert (19) to a new group problem. If G(a, - a„)
D S

(the tilde is used to denote the new group) is the solution to the new

S ~ "

problem (4) , then C"x + G(a - a) is a lower bound on the cost of an

optimal completion of S, One cannot, of course, make a general comparison

between the cost G„(a, - a„) and G(a, - a„) . Another new bound can be
z D b Do

found by solving (18) for the new group.

As a final remark about lower bounds, it is important to note that the

bound G„(a, - a„) (and in some cases the bound G_(a, - a„)) need not be
/ b b J b b

k+1 k+t
recomputed for each partial solution. In particular, suppose S ,,..,S

]^
are all continuations of the partial solution S , and the algorithm in

Appendix A was used to solve (15) for S=S ' Letting the bounds be similarly

superscripted, it is easy to see that

k+t k
(20) G^ (a^-agj^+^) _>_ G2(c(^-agk+t) ,

k+t
since the free variables relative to S are a subset of the free

k k
variables relative to S , Recall that the algorithm finds G (X)

,

Ji=0,l D, in the course of finding G„ (a -a^) , and hence

G„ (a, -a„i,+t-) is known. Thus if
2 b S "^^ ^

S^+^ k
c*x + G^{a^-a^]^+t) ^ z,

24

k+t k
S is fathomed. Of course, if the path yielding G (a -a k+t) involves

only non-basic variables which are free relative to S , then

k+t k
G^ (a^-agk+t) = G^Cot^-agk+t)

k+t
As for G (a -a k+t) > ^^ the algorithm of Appendix B finds

k k
G„(a, - a k+t) ^^ ^^^ course of finding G-(a -a k)» then the same inequality

holds. This will generally be the case only when

k k
G^Ca^-agk+t) = G2(a^-agk+t)

and the new information is relatively weak.

It is a simple matter to use the implicit enumeration scheme to

k
keep track of when an intermediate bound such as G„(a -a k+t) is available.

Whenever G„(a,-a„) is calculated for some partial solution S, overline theZoo
rightmost element of S which has one of the four forms, j, -j , j_, -j_.

Remove all overlines to the left and erase the corresponding stored

results. Store G„ . i^-,) , and x (A) , k=0,l,...,D which result from the
z

, J k K.

application of the algorithm of Appendix A to (15)

.

Let S' be any other partial solution. If there is an element in

S' which is overlined, then as described above, attempt to use the

stored results corresponding to this element to fathom S'. Finally, whenever

These results could be saved. We have erased them for ease of exposition

and also because of possible storage limitations.

25

a partial solution is fathomed and elements from it are deleted, erase

any stored results corresponding to deleted elements.

Although the above procedures in the group setting can yield optimal

completions of a partial solution S, their primary usefulness is in

providing tight lower bounds on the cost of such a completion. For this

reason, it appears uneconomical to calculate the bounds from the group

problem before an initial feasible solution to (9) is found. If an

initial feasible solution is not provided, there are two methods for

obtaining one. The first is to use the algorithm in [7] on problem (9)

in the form (1) until an initial feasible solution is found. A second

alternative is to use a non-optimizing backtracking algorithm to find

paths from 6 to a, in the group. Each path selected is tested for
b

feasibility. The algorithm and a short discussion of its properties are

given in Appendix D.

If all of the fathoming tests discussed above fail, then a partial

solution S needs to be continued by setting some free variables x. or

6., to or 1. If S seems to be a "good" partial solution in the sense

that there is a relatively high expectancy that S will lead to an

improvement over the incumbent, then the free variable should be chosen

accordingly. Conversely, if it seems very unlikely that S will lead to

an improvement over the incumbent, then a different rule is suggested.

The problem of basing these heuristic ideas on a formal and rigorous model

is beyond the scope of the present paper.

The approach here will be the following. Let

26

S S S "1
R =

{ J = JeT and C"x + c* + G«(a, -ot-a.) <z } ,

J lob J

S S
If R is empty, then S is fathomed. If R contains all the free variables,

then we choose to set to one some free variable which minimizes the sum

of the infeasibilities; viz-.

""
S - ™

S -
(21) min { E max {-(y. +a..),0}+ Z max {(y. + a. .

- 1), 0}}
c i=l ^ ^J i=l ^ ^J

and

S
In case of ties, choose any free variable with minimal c* . If R is

not empty and does not contain all the free variables, then compare

6 = z - C"X - G„(a^ - a^) >
Z b b

with a prespecified parameter 5„, If 6 >_ & , choose x.=l for j which

satisfies (21); ties are broken as before. If 6 < 6 , select a free

variable x. for which
J

S
(22) c*x + c* + G2(a^ - a^ - a.) >_ z

and set. x. = 0- Moreover, underline the rightmost element -j_ since

(22) indicates that the continued solution {S,j} is automatically fathomed.

In particular, choose that free variable x. such that (22) holds according

to the criterion (21). Ties in this case may be broken arbitrarily.

If a,-a„-aj = e, and {S,j} is feasible in (9), then consider G2 (a^-ag-otj)=0. If

{S,j} is not feasible in (9), consider G2(a^-ag-aj) = G2(Aq).

27

The criterion (21) reflects the prior feeling that the corrections

from the group problem to be found for the next partial solution S'

S'
are just as likely to increase as decrease each y, . A more sophisticated

criterion would be to scan the a.., j free, and then attempt to center

S'
accordingly the y . ,

There are three additional comments to be made about the set R .

5
First, for S=q> , the variables not in R can be dropped from the problem,

k k-1 S S
Similarly, if S=S is a continuation of S , then R =R can be

replaced by R O R ^ Finally, we can replace T by R O T in (11)

and (12).

This completes our discussion of the bounding and branching

procedures for the algorithm of this paper. In the next section we

amalgamate all of the above components into an algorithm.

28

4. Group Theoretic Branch and Bound Algorithm for the Zero-One
Integer Programming Problem

The algorithm below begins after the following initial steps are

performed. First, (2) is solved and the optimal LP basis B is used to

convert (2) to (3) . Problem (3) is then transformed to the group problem

in canonical form and IP Algorithm I is used to find 0,(0,). Section 6
1 b

contains representative times for these computations. If x (a,)

(or any backtracked solution corresponding to any path from 9 to a, with

value G (a,)) is a feasible correction in (3), then it is optimal and

we are done. Otherwise, the results of IP Algorithm I are stored, problem

(3) is converted to the form of (9) , and the algorithm below is initiated.

Step (Initialization) If a finite upper bound on the value of an optimal

solution to (9) is known, set z to this upper bound. If such a bound is not

known, use the Backtracking Algorithm (see Appendix D) to find an initial

feasible solution and initial upper bound. Set S=i> and

R* = {j:c* + G^(a^-a^) < z }

Drop from the problem any variable not in R . Go to (1.1) with R=R .

Step 1 (Bounding Procedures)

S S "

(1.1) If X is a feasible correction in (9), S is fathomed; if c*x < z,

S ' S
z -<- c"x X -<- X and go to (2.2). Otherwise, go to (1.2).

(1.2) Define

c —
T = {j free: j e R and either (1) a. . > for some i such that

g g — n — s
yS<0, or (2) a..<0 for some i such that y.>l and ieV„,where y =b- .Z ^ a.x. .

'i ' ij ^1 B' ^ j=l 2 J
c

If T = ((), S is fathomed; go to (2.2). Otherwise, if either

S — —
y . + E „ max {0,a. . } + E „ max {0, a. . } <

and ,

, „ and

for some y.<0; or if

29

S — —
y. + E „ min {0,a..} + E „ minlO,a..} > 1

and J

Jk^\

for some y. > 1 and ieV , then S is fathomed. Go to (2.2). If all
1 B

of the above tests fail, go to (1.3). Retrieve G^ (a, - a). If

S
c*x + G (a -ttg) >_ z.

S is fathomed; go to (2.2), if

S
C"x + G (a -a) < z

S 1
and X + X (a,-a„) is a feasible correction in (9), S is fathomed;

b b

'" S "Si
z *- c"x + G^ (a, -a„) , x -«- x + x (a, - a„) ,

i b b D b

and go to (2.2). Otherwise, check x (a -a) to see if G^ (a -a)
=

G„(a, -a„) and G-, (a, -a„) = G„(a,-a„). If neither equality holds, go tozbb ibb Jbb
(1,4). If only the former equality holds go to (1.6). If both equalities

S
hold, go to (2.1) with 6 = z - c*x - G (a -a)

.

(1,4) If there is no overlined element in S, go directly to (1.5). If

there is an overlined element j, retrieve G . (a -a^) . If

30

c^K^ + G^^.(a^-a^) ^z,

S is fathomed; go to (2o2). If

S
C'-x + G„ . (a, -a„) < z,

2,3 b S

Q 7

and X + X (a, -a„) is a feasible correction in (9), S is fathomed;
b b

S S 2 i
z ^ c*x + G„ .(a^-a^), x -<- x + x '-^ (a, -a„) , and go to (2.2).

z
, J b b b b

Otherwise, check x '-'(a,-a„) to see if G„ . (a, -a„) = G„(a,-a„) andbb Zjjbb Zbb
G„ .(a,-a„) = G.(a,-a„). If neither equality holds, go to (1.5),
2 , J b S J b b

If only the former equality holds, go to (1»6). If both equalities

S
hold, go to (2ol) with 6 = z - C"x - G . (a -a)

.

(1.5) Use IP Algorithm I to compute G„(a,-a„). Store the results and

overline the right most element of S. If

S
c*x + G (a, -ag)>_z,

S is fathomed; go to (2.2). If

S
c*x + G (a -a) < z

S 2
and X + X (a^-a^) is a feasible correction in (9), S is fathomed;

D b

" S " S 2 2
z -*- c*x + G„(a,-a) and x -^ x + x (a, -ex) . Otherwise, check x (a^-ag)

to see if G„,a^-a„) = G„(a,-a„). If not, go to (1.6). If the equalityzbb J b o

31

S
holds, go to (2.1) with 6 = z - c*x - G„(a,-a^)

/ b S

(1.6) Use the algorithm in Appendix B to compute G_(a,-a„). If
J b S

S
c*x + G2(a^-ag) >_ z.

S is fathomed; go to (2.2). If

S
c*x + G.(a,-a„) < z

J b b

S3 ^ S
and X + X (a -a) is feasible in (9), S is fathomed; z -<- c*x + G„(a -ctg)

S 3
X -<- X + X (a, -a) ; and go to (2.2). Otherwise, go to (2.1) with

6 = z - c*x - G (a -a)

.

Step 2 (Branching Procedures)

S S
^

(2.1) (Descending procedure)^ Let R = {j:j free and c-'x + c';+G (a, -a -a.) ^zl . If
3 ^ D ^ J

S S SROT is empty, S is fathomed and go to (2.2). If R contains all of the

free variables , then augment S on the right by j (i.e. set x. = 1) where

x. is a free variable which minimizes

™ c _ ^ o _
(23) I max {-(y + a. ., 0)} + I max {(y. + a.. -1, } .

i=l ^ "J i=l ^ "J

and

"^B
S c

In case of ties, choose any free variable with minimal c*. If ((> R S

and 6 >_ 6 , augment S on the right by j for j which satisfies (23) breaking

ties as before. If 6 <6„, augment S on the right by -j_ where j is that

32

S
free variable such that c*x + c* + G„(a, -a„-oi.) > z and (23) is a minimum.

J 2 b S J -

Ties may be broken arbitrarily. Set R=R . Go to (1.1) with the augmented

partial solution and R.

(2.2) (Ascending procedure) Locate the rightmost element of S which is

not underlined. If none exists, terminate. Otherwise, replace the element

by its underlined complement and drop all elements to the right. If an

overlined element is dropped, erase the stored solution of G„(X.), k=0,l,...,D.

Go to (1.1) with the new partial solution and R=R .

^5

34

The group G is cyclic and has 48 elements. The relevant information

needed for solving the various group problems is given in Table III.

The righthand b is mapped into a, = 17 (mod 48)

.

h

j

35

indicates that the corresponding bound or quantity is not needed. The

optimal solution is

Xq~-L> Xq— ±, X.-— ±, X,~— 1,^8 11 ^13

x.=0, otherwise, and the minimal cost is 64,

"s V"s S^"b-^) ^2^V"s^ S^Vs^ ^"'^^ R

(t)
(65,67,78) e 17

{11} (59,49,4) 6 11

{11,9} (45,39,12) 20 45

{11,9,8} (0,48,0) X X

{ll,9r8} (45,39,12) 20 45

{llr9,-8} (59,49,4) 6 11

BlT9r8} (65,67,28) 6 17

62

36

6. Computational Results

In this section we report on some partial computational results

with IP Algorithm I. We feel that these results offer some justification

for the hypothesis that the main algorithm of this paper will prove

computationally efficient. The encoding of the algorithm is currently

under consideration.

The times listed in Table V are for the IBM 360-ASP system at

M.I.T. The reader should note that the times of columns (a), (b)

,

and (c) represent set-up times that are incurred only once for each

integer programming problem. Columns (d) and (e) represent the

variable times that would be incurred whenever IP Algorithm I is

applied to problems of the form of (15).

A second point is that for problems 6 and 7 , IP Algorithm I found

an unconstrained shortest route path in the network with cost equal to

the minimal cost of (9), but the backtracked solution was infeasible.

This suggests that the algorithm should find or attempt to find all

shortest route paths connecting 9 to a, . The necessary modifications

to IP Algorithm I are discussed in [25].

r-{

38

7. Conclusion

It Is hoped that the algorithm of this paper will prove computationally

efficient for a wide variety of large zero-one Integer programming problems.

We feel that the computational experience gained thus far Is promising,

and the encoding of the remainder of the algorithm is underway. We

emphasize, however, that an important next step in the development of

algorithms such as the one here is the construction of a sequential decision

process for controlling the bounding and branching procedures . On the

basis of the characteristics possessed by a current partial solution, such

a decision process would choose the bounds to be computed and those to

be Ignored, The decision process should also choose the next partial

solution to be evaluated. The bounding and branching decisions would be

made according to the optimality criterion of minimal expected cost to

solution.

Thus, an additional consequence of the group theoretic approach are

the qualitative insights it provides. For example, if the group is

cyclic, and D is large and for most of the non-basic surplus variables the

c* are large, then the lower bounds from the partially constrained problem

(18) will be high and solving this problem is worthwhile. Conversely,

if D is small and c* for most of the slack variables is small, then the

computational effort required to solve (18) may not be justified. Many

other insights come to mind but unfortunately, there is insufficient

space here to discuss them.

Of course, most of the qualitative insights of [7] are relevant

39

here. As Geoffrion points out, a more flexible search within the frame-

work of implicit enumeration is possible. He also mentions the possibility

of using prior information to make a better start.

As discussed in [25], D may be quite large for some problems, and this

can cause computational difficulties. If so, a different algorithm for

solving (4) which concentrates on calculating only G (a) (or G„(a -a))

may be suggested, A second approach may be to try to decompose the integer

programming problem, or the group network, into more manageable pieces.

This is an area for future research. A third alternative is the following.

Without loss of generality, assume (1) has the property that c! ^0.

This condition implies that the initial solution x'=0,s=b to (2) is

dual feasible, and D for the corresponding basis (I) is one. Beginning

with this dual feasible solution, iterate with the dual simplex algorithm

until (2) is solved or the basis determinant becomes large, but not

too large, say 300 < D <_ 3000. Use the dual feasible basis with this

determinant value to transform (2) into (4) and (9) . The resulting

c* and c* are non-negative and hence there is no difficulty with the

^k

shortest route and implicit enumeration formulations.

Another area for future research is the synthesis of group theory

and special purpose branch and bound algorithms ([15], [18], [19], [22]).

40

REFERENCES

[I] Balas, E., "An Additive Algorithm for Solving Linear Programs with
Zero-one Variables," Operations Research, _13_, pp. 517-546,

(1965).

[2] Balas, E., "Discrete Programming by the Filter Method," Operations
Research, 15, pp. 915-957, (1967).

[3] Balinski, M.L., "Integer Programming: Methods, Uses, Computation,"
Management Science, 12^, pp. 253-313, (1965).

[4] Benders, J.F,, "Partitioning Procedures for Solving Mixed-Variable
Programming Problems," Numerische Mathematik, 4^, pp. 238-252,

(1962).

[5] Datnzig, G.B. , Linear Programming and Extensions , Princeton
University Press, 1963.

[6] Fuchs, L. , Abelian Groups , Pergamon Press, 1960.

[7] Geoffrion, A.M., "Integer Programming by Implicit Enumeration and

Balas' Method," SIAM Review, _9. No. 2, pp. 178-190, (1967).

[8] Geoffrion, A.M., "Implicit Enumeration Using an Imbedded Linear

Program," the RAND Corporation, RM-5406-PR, September, 1967.

[9] Geoffrion, A.M., "Recent Computational Experience with Three

Classes of Integer Linear Programs," The RAND Corporation,

P-3699, October, 1967.

[10] Glover, F. , "An Algorithm for Solving the Linear Integer Programming

Problem Over a Finite Additive Group, with Extensions to

Solving General Linear and Certain Nonlinear Integer Problems,"

Operations Research Center Report 66-29, University of California,

Berkeley (1966)

.

[II] Gomory, R.E. , "An Algorithm for Integer Solutions to Linear Programs,"

Recent Advances in Mathematical Programming , McGraw-Hill

Book Company, New York, 1963, p. 269.

[12] Gomory, R.E. , "On the Relation Between Integer and Non-Integer

Solutions to Linear Programs," Proceedings of the National

Academy of Sciences, Vol. 53, pp. 250-265 (1965).

41

[13] Gomory, RE , "Faces of an Integer Polyhedron", Proceedings of
the National Academy of Sciences, Vol, 57, pp. 16-J8, (1967).

[14] Haldi, J., "25 Integer Programming Test Problems," Working Paper
No. 43, Graduate School of Business, Stanford University, 1964.

[15] Ignall, E- and Schrage, L, "Application of the Branch-and-Bound
Technique to Some Flow-Shop Scheduling Problem," Operations
Research, 11, pp- 972-989, (1963).

[16] Lawler, E.L. and D- E Ward, "Branch-and-Bound Methods: A Survey",
Operations Research, L4, pp 699-719, (1966).

[17] Lembe, C-E and K. Spielberg, "Direct Search Algorithms for Zero-
One and Mixed-Integer Programming," Operations Research, 15,

pp 892-914, (1967).

[18] Little, J,D-C , Murty, KG., Sweeney, D-W. , and Karel, C. , "An
Algorithm for the Travelling Salesman Problem," Operations
Research, n^,pp. 972-989, (1963).

[19] Lomnicki, Z.A. , "A Branch and Bound Algorithm for the Exact Solution
of the Three-Machine Scheduling Problem," Operational
Research Quarterly, J^, pp. 89-100, (1965).

[20] Kolesar, P J. , "A Branch and Bound Algorithm for the Knapsack
Problem," Management Science, 2^, pp- 723-735, (1967).

[21] Mostow, G.D,, J-D- Sampson and J P. Meyer, Fundamental Structures
of Algebra . McGraw-Hill, 1963.

[22] Pierce, J F , "Application of Combinatorial Programming to a Class
of All-Zero-One Integer Programming Problems," IBM Cambridge
Scientific Center Report, Cambridge, Massachusetts, July, 1966.

[23] Shapiro, JF- and HM, Wagner, "A Finite Renewal Algorithm for the
Knapsack and Turnpike Models," Operations Research, ^, No. 2,

pp. 319-341, (1967).

[24] Shapiro, J F , "Finite Renewal Algorithms for Discrete Dynamic
Programming Models," Technical Report No, 20, Graduate School
of Business, Stanford University, (1967),

[25] Shapiro, J„F., "Dynamic Programming Algorithms for the Integer
Programming Problem - I: The Integer Programming Problem
Viewed as a Knapsack Type Problem," to appear in Operations
Research.

42

[26] Shapiro, J.F>, "Dynamic Programming Algorithms for the Integer
Programming Problem - II: Extension to a General Integer
Programming Algorithm", submitted to Operations Research.

[27] White, W,W. , "On a Group Theoretic Approach to Linear Integer
Programming," Operations Research Center Report 66-27,
University of California, Berkeley, (1966).

43

APPENDIX A - IP ALGORITHM I

This appendix contains a statement of the algorithm from [25] for

solving the group problem (3). Strictly speaking, the algorithm below

is a slight modification of the originals The differences are relatively

slight, however, and the reader is referred to [25] for an intuitive explana-

tionc The only remark we make here is that node A has been added to the

network representation- The algorithm finds the shortest route path from

6 to X which is the least cost elementary circuit in the network.

Shortest Route Algorithm for the Unconstrained Group Problem

STEP 1 (Initialization) Set Z(A) = Z(D+1) for k=l,2,...,D where Z =

max c*; set Z(0) = 0. Also, set j (A,) = for k=0,l, . , . ,0-, For
j=l,...,n
j=l,..c,n, and a. f 0, set Z(a.) = c'-; , j(a.) = j and a^^ . = 2 only if

c* < Z(a.). For j=l,,..,n, and a. = 6 , set Z(X^) = c* , j (A) = j only if
J J J IJ J D

c* < Z(X^). For all nodes A, for which ax, is not specified set a^, = 1.
J D k k Ak

Go to Step 2 with A = 9.

STEP 2 Stop if a;^ = 1 for k=0,l,,,,,Do Then G (\) = Z(A) for k=0,l,.cc,D,

Otherwise (1) if there is a k' > k such that a;^ ,
= 2, index k to k' or

(2) if there is no k' > k such that a;^, ,
= 2 index k to the smallest

k"(<k) with ax,„ = 2, Go to Step 3.
K.

STEP 3 For j=j (A) , j (A)+l, » , . ,n, and A +a . i= 0, set Z(A + a.) = c* + Z(A) ,kk "^J '^JJ'^

44

j(X, + a.) = j and ai,+„. = 2 only if c* + Z (A,) < Z(A, + a.). For

j=j('^]^)» ^i^^) + l,= ..,n, and A^^ + a .
= 6, set Z(A) = c* + Z(A.) and

jC^p) = J only if c* + Z(A.) < Z(A). Return to Step 2

45

APPENDIX B - A BACKTRACKING ALGORITHM FOR THE ZERO-ONE GROUP PROBLEM

Our concern here is the construction of an algorithm for solving

the group problem (3) with the side constraints x.=0 or 1, j &V ; namely,

min Z c':x.

j=l J J

subject to

I a X . = a, (mod D)

J=l -^ -^

(25) x^=0 or 1, J£V^;

X. non-negative integer, jeU
1 R

In terms of the lower bounds used in the body of the paper, the algorithm

here finds G„(a,). The algorithm can also be used to find G_(a,-a^)
J b J b S

for some partial solution S by limiting the variables used in (25) to the

free variables relative to S, and by changing the right hand side group

element to a, - a„.
b S

An intuitive explanation of the algorithm is the following. First,

attempt to solve (25) by using IP Algorithm I which solves (4) for all

right hand sides A , k=0,l,,o.,D. Backtrack each of the optimal paths from

6 to X . Some of the paths and the corresponding solutions to (3) are the

correct form for (25) with right hand side A - In other words, there must

be some nodes A for which we have a fortiori G^ (A,) = G (A,). Let K,
k 1 k 2 k 1

be the set of indices for which G^ (A) = G„(A,) and assume G^ia.) / Go (a,).ik3k ibob

46

The next step is to apply the variant of IP Algorithm I described in

Appendix C to problem (25). This algorithm is intended to provide a good

feasible solution to (25) and thereby reduce the work of the exact algorithm

below. Let G (a,) be the value of the feasible solution found by the

heuristic algorithm and let this be the initial value of the incumbent

z„(a^). The reader is referred to Appendix C for a detailed description

of that algorithm.

With the above background, the exact algorithm for solving (25)

can be intuitively described. All circuitless paths between G and a,
b

can be found by a backtracking dynamic programming algorithm. An equivalent

approach is to extend paths forward from 9 to a, . The first step is to

extend the paths m^ , u„,...,y from 6 to a. with costs c* , i=l,..,,no12n J J-^
At any given time during the running of the algorithm, there will be a

T
collection iu } -. of paths being tested and extended.

Consider an arbitrary path \i beginning at 9 whose last arc is

(^1 ~ o^i^j A,) . If X, = a, , then u is terminated and its cost is
k J t k k b t

compared with the cost of the incumbent path and if possible an improvement

2
is made. If A, f a , we use the form of an Optimal Path lemma to extend m •

Specifically, u is extended by the arcs (X, , A + a.) either for j _f_ j - 1

if j^eV , or for j < j. if J£U • Thus it appears that the path p generates
t K t K t

i^-1 or i new paths.
-"t -^t ^

Since all arc costs c* >_ 0, we can without loss of optimality limit

the search to circuitless paths.

^See [25].

47

Fortunately, it may not be necessary to extend y by all the arcs

indicated above and in some cases, it may be possible to discontinue u .

First, we draw the arc (X , A + a.) only if c(u) + c* < z_(a,) where
i^ K J t J _> b

z_(a,) is the value of the incumbent.
3 o

There are three additional tests which can be used to terminate u ,

t

First, if the paths Aj- and A^ are drawn to A, with last arcs (A, -a^ ,a,)"-1 ^^2 k ^ k Iti' k^

and (^^-°i-2t '^h)
^^^pectively , and c(u^^) <_ c(y,-) while j^ >_ j j. , then

Mt;„ can be discontinued. This is because y^- has more free variables to

use in reaching a than y^-^ and it is already at least as good.

Among the paths to A which remain, if there is a y such that

c(u^) +G^(a, - X^) lZ3(a^),

then y need not be extended since G, (a, - A,) is a lower bound on the
t i b k

cost of extending y from A to a . Conversely, if

c(y^) +G^(a^ - A^) < Z3(a^),

and G^ (a, - A,) = G^ (a^ ~ ^) , and x (a, - A,) uses only free variablesiDKJDK bk
relative to g^, then z_(a,) ^ civ) + G(a^ - A,). The solution with

t J D t 1 D K

value z (a) is found by backtracking y and adding the resulting solution

to X (a, - A,) . Once again the path y need not be extended,
b k '^

t

We remark that an explicit numerical label for y is superfluous.

Instead, without loss of generality, we need record only A,
^ j , and

48

V = c(iJ). To reconstruct y from this information, we look through the

paths drawn to A - aj = a for one with value v = v - c* and last arc
Iv J t X/ S U "]

i > J + 1 if i eV„, or j > j if i eU„.
•^s — -^t -^t R' -^s — -^t -^t R

The algorithm below can easily be ammended to find G^(A), k=0,l,...,D.

This variant of the algorithm may often be preferred, especially at the

top of the tree of enumerated solutions (S=!j))

.

Backtracking Algorithm for the Group Problem with Zero-one Constraints

STEP 1 (Initialization) Set z (a) equal to the value of the best

path from 6 to a, found by the heuristic algorithm. Let z„(a,) be the
b J b

corresponding solution. Put the paths (a.;j;v,;2) on the node lists a.,

j = l,,,.,n, and set a. =2, Let a =1 for all other nodes A, . Go to step
J k R

2 with k=0.

STEP 2 If a =1 , k=0,l,2, , • . ,D-1, then the optimal solution is the incumbent

-3
solution X (a,) with cost z„(a,). If there is an a, =2, try to index k

b J b K.

to the lexicographically smallest k' > k such that a ,=2; otherwise,
K.

index k to the lexicographically smallest k' such that a ,=2. Go to Step 3.

STEP 3 Set a, =1, Let
k

J^ = (j
I

(Aj^;j ;v ;6) such that 6 = 2}

In particular, suppose

^1 -^ 1+1

3. = Ji+i } .

49

Reduce J by the following sequence of tests.

Test 1: For 1=1, = .., s, if v-i . > z_(a^), remove i. from J, and erase' Ji— 3 b -^1 k
the

path (A ;j.;v^.;2). If J, =
(j) , return to Step 2. Otherwise, go to test 2

(There are s, paths remaining in J,).

Test 2: For 1=1,..., s^ , if v^ . > v. , £=i+l,s^ , remove i. from J,
1 Ji— J 1 -^1 k

and erase the path C-^, , j . ,v. . ,2) . If J = ip return to Step 2. Otherwise,
rC X J X K.

go to test 3 (there are s„ paths remaining in J,).

Test 3: For 1=1 s„, if Vj . + G (a -A) >_ z (a) , remove j. from J

and erase the path (\ , j .
,vj

.
,2) . If

(i) Vj. + G^(a^-aj^) lZ3(a^),

and

(ii) G^(a,-A^) =G^(a^-X^),

and

(ill) either j (a, -A^) < j .-1 if j.eV„,

of j(vV ^h " Ji^^i

Then z„(a)
-«- v-; . + G (ex -A) and the new incumbent is found by backtracking

the path (X ;j.;v4.;2) and adding this solution to x (a -a,) . Remove j.

from J, and erase the path (A, ,i.,v^.,2).
k ^ k -^1 li

If J, =<l>j return to step 1. Otherwise, go to step 4 with s^ paths

remaining in J, .

STEP 4 For 1=1, 2, ...,s, set &.=1. Extend the path (A ,j,,v.,l) to the
J X k X J

50

paths (X +a , h, v. . + c , 2) for either h=l j .-1 if j . eV , or for

h=l j, if j . eU . For each node ^.+a, = X thereby spanned, set

a = 2 if necessary.. Return to Step 2.

51

APPENDIX C - HEURISTIC ALGORITHM FOR THE ZERO-ONE GROUP PROBLEM

It is easily seen that the algorithm of Appendix A can be ammended

to find feasible solutions to problem (19). This is accomplished by

changing Step 3 so that the arc (A , \^ + a. , .) is not drawn when

In order that this algorithm have maximum effectiveness, reorder

temporarily the non-basic variables so that

(1) The non-basic surplus variables have the highest index. Within

this set, order by decreasing value of c*.

(2) The non-basic zero-one variables are indexed bv decreasing value

of c* except when several variables are mapped into the same group element.

In the latter case, all of the variables mapped into the same group element

should be indexed consecutively by increasing value of c*.

52

APPENDIX D - BACKTRACKING ALGORITHM

The algorithm below generates paths from to a, and tests the

corresponding solutions (corrections) for feasibility in (9) . Its main

purpose is to find a good starting solution for the algorithm in section 4,

rather than an optimal solution. Since short paths tend to have lower cost

than long paths, it is felt that this algorithm will generate good feasible

solutions. It is possible, however, for the algorithm to discover and

identify an optimal solution.

As previously mentioned, it may be preferable for some problems to

use the algorithm of [7] to find an initial feasible solution. The algorithm

here will be particularly effective, of course, for problems which have

few non-basic variables, say n _^ 10.

Two comments about the algorithm are in order. The parameter 3 is

chosen by the user to prevent excessive backtracking. Roughly speaking,

it has been estimated that an analysis involving 10,000 triples would

require 100,000 bytes. Thus, the 360-ASP system could handle up to 25,000

triples. Second, the algorithm can be limited to finding only an initial

feasible solution by exiting from Step 3 whenever z(a) < +«>.

STEP 1 (Initialization): Set K=l and z(a,) = +^ , x(a,) = (0,0,.,., 0).
b b

Add the triples (j,a.,c*) to the K-list. Go to Step 2.

STEP 2 If the K-list is empty, then x(a,) with value z(a,) is an optimal

correction in (9). If the K-list is not empty, perform the following

analysis for each triple (j,A, ,v). If A, = a, , go to Step 3 with the triple

53

(j»^i »v). Otherwise, either for each ^<j if jeU_,, or for each £<j-l

if jeV
,
place {i,\ +a. , v+c*) on the (K+1) list only if K < 3-1 and

v+c* < z(a,)

.

Si o

After all triples on the K-list are analyzed, index K to K+1 and

repeat only if K <_ 6-1. If K=6, terminate with z(a,) and x(a,).

STEP 3 Search through the triples on the (K-1) list for a triple (i,

X, -a . , v-c*) such that either J>j if jeU , or il>j+l if jeV , Search through

the triples on the (K-2) list for a triple (w, Jl,-a,-a , v-c*-c*) such that
K J X, J '^

either w>Jl if ileU , or w >£ +1 if JieV . Continue backtracking until the

entire path is found. Test the correction x=(x^,...,x) for feasibility in

(9) where x. = number of times a. is used in the backtracked path. If x

n ' - n
is feasible, and Z c*x. < z(a,), z(a,)

>- Z c*x. and x(a,)
<- x.

• tJJ d d .ill o
2=1 -^ j=l -^

-^

Return to Step 2„

mtm

Date Due

MIT LlBRftHIES

II III III ill III III III II I III III III III fill III II

3 TOflD DD3 fl71 ST4

O^'/'GT'

illlllil 2^^-^^
3 TDflD DD3 flVl 5MS

ic[^'^7
3 TDflO DD3 671 S37

MIT LIBRARIES

illlllllllllllll l<\-7'hl
3 TDflD 003 fl71 S7fl

nq <2— / "7

3 TOflO DdY ^o''r714

DUPL

III zi^'&y
3 7d6"o""dQ3 b71 010

MIT LIBRARIES

MIT LIBRARIES ,,,, ^il^ri'lMIT LlbKflWlts
1111111 II 111

03 b71 005

MIT LIBRARIES DUPL

3 TOfi

3 TOflO 003 701 TTT

IRARIES OUPL

3 TOfiO 003 70E 03^

MIT LIB«A«I£5

301-6:^

~lOZ-h7

y)%-(o7

-jJToaO 003 b70 170

BASEMENT

V. -.Y I.,

