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ABSTRACT

The integer programming problem is reformulated using group

theory thereby allowing a new Lagrangian optimization problem for integer

programming to be constructed. The properties of this problem and

its relationship to group theoretic branch and bound and cutting plane

algorithms are discussed. Necessary and sufficient conditions for the

existence of optimal multipliers are also given.





GENERALIZED LAGRANGE MULTIPLIERS

IN INTEGER PROGRAMMING

1 . Introduction

Several authors ([3], [4], [8], [9], [10], [14]) have proposed

generalized Lagrangian methods for finding good or optimal solutions to

integer programming problems. The capital budgeting problem of Lorie

and Savage [9], essentially the 0-1 multi-dimensional Knapsack problem,

has received particular attention in this regard. In [9], Nemhauser and

Ullman prove the somewhat negative result that the approach of Everett

[4] applied to the capital budgeting problem by Kaplan in [8] can yield

an optimal solution only if there is an optimal linear programming solution

that is integer. In this paper, we use group theory ([5], [6], [7], [11],

[12], [13]) to reformulate the integer programming problem, thereby

obtaining a Lagrangian problem which appears to offer greater combinatorial

resolution than previous methods. Conversely, the usefulness of the group

theoretic approach is enhanced by the Lagrangian problem.

In the next section we construct the Lagrangian problem and discuss

its properties. The following section is concerned with the relationship

of cuts generated by the Lagrangian problem to the strong cuts developed in

[6]. Necessary and sufficient conditions for the existence of optimal

multipliers are also given. There follows a numerical example and a few

concluding remarks. There is one appendix in which some of the previous results

are specialized to the zero-one integer programming problem.
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2. Construction of the Lagrangian Problem and Its Properties

Consider the Integer programming problem In the form

mln cw

s.t. Aw = b (1)

w non-negative integer

where c is a lx(m+n) vector of integers, A is an mx(m+n) matrix of

integers, and b is an raxl vector of integers. The columns of A are

denoted by a., j = 1,..., m+n. Let B be an optimal LP basis for (1)

and rearrange the columns of A so that it can be partitioned as (R,B)

and c as (c^^, c^). The generic n-vector of non-basic variables is denoted

by X and Is called a correction.

The columns of B with addition modulo I generate a finite

abelian group consisting of D elements (see [ 5 ]). Let G be

the group and let X , k = 0,1,..., D-I, be its elements where X is the

Identity element. Finally, let g be the function which maps integer

m-vectors Into group elements. It can easily be shown that problem (I)

is equivalent to

min E c.x, (2a)

If B is an arbitrary basis, the analysis below is valid with minor
modifications.





n

s.t. Z r..x. < b
,

, i = l,...,m, (2b)

n

E a.x. = B (2c)

j=l

X. =0,1,2,...; j=l,...,n (2d)

where c. = c. - c B~ a , R = (r
. .

) = B~ R, b = (h ) = B~ b, a. = g(a )

and 6 = g(b). Condition (2b) is equivalent to the requirement that

the basic variables (relative to B) be non-negative, and condition

(2c) is equivalent to the requirement that they be Integer.

If we let

X = {x|x satisfies (2c) and (2d)},

Then problem (2) can be rewritten as

n

min E c.x.
j = l

J J

s.t. Z r..x. < b., 1 = l,...,m, (2 )

1 = 1

xe)C.

Problem (2') has the same form as Everett's problem [ 4 ] and problem (2)

of [2 ] . The approach suggested by Everett is to weight the

constraints (2b) by multipliers and place them in the objective function.

1
"

We assume the existence of at least one x such that .Z.a.x. =g. Otherwise,
problem (1) is infeasible. J- J J





m
In particular, for given u. >_0, i = l,...,m, satisfying c. + T. u?r ^ 0,

^
1 i=l ^ ^J

j = l,...,n, we construct the new Lagrangian optimization problem

n m
,- — ,

rain E (c . + Z u.r . . )x.

3=1 J i=l ^ ^J J

(4)

s.t. xeX

Problem (4) is a group optimization problem identical in form to the

group optimization problem originally derived in [ 5 ] . See [ 11 ] and

[ 12 ] for a further discussion of this problem. An optimal solution to

(4) is denoted by x , or more generally by x(u) when u is the vector

of multipliers in (4). The requirement that c. + T; u.r.. > 0, j =
J i=l ^ ^J

~

l,...,n, is necessary for (4) to have a bounded solution.

Notice that we could have constrained explicitly some variables in

(1) to be zero or one. The modifications to the construction above in

this case are given in Appendix A.





We begin our analysis with a restatement in the context of this

paper of Everett's theorem 1 [ 4 ; p. 401]. First, for given u >^ 0, let

P ={i|u° > 0} . (5)

LEMMA 1: An optimal solution x to (4) is optimal in (2) with b^,

i = l,...,m, replaced by

n
(i) E r. .X? if i e P

3=1 '' '

n

(ii) E r. .X? + q. if i «! P,

where q . is any non-negative integer, i ^ P.

Proof: Suppose the contrary; that is, suppose there exists a non-

negative integer vector ycX with the properties that

n n

E c.y. < E c.x°,

j=l J ^ j=l J J

and

n _ n _
E r, .y. < E r^ .x? for ieP.

Since u. >^0, i = l,...,m, there obtains





n m _ n

Z (c. + Z u°r..)y. = Z (c . + Z u°r..)y.
j=l J 1=1^ ^J J j=l J icP ^ ^J J

n _ n m _
< Z (c. + Z u°r..)x° = Z (E. + Z u°r..)x°

j=l J icP ^ ^J J j=l J i=l ^ ^J J

The last inequality is a contradiction to the optlmality of x in (4).

When (4) is solved by tlie algorithm of [11 ], the algorithm also

finds optimal solutions to (A) when the groun constant B in (/c) is replaced by

A , k = 0,1,..., D-1, X ?^ e. Let x° (A ) be the optimal solution when 3 is
K K K.

replaced by A, .

COROLLARY 1: An optimal solution x (A.) to (4) with group constant

A, is optimal in (2) with b., i = l,...,m, replaced by
K 1

n
(i) Z r..x°. (A, ) if ieP

j=l ^J J ^

n
(ii) Z ?..x°(A, ) + q. if ii^P

where q. is any non-negative integer, i ^ P.

Thus, problem (4) is algorithmically useful in several ways. Suppose

(4) with u =0 (i.e., the group optimization problem of [ 5 ] ) fails to solve

n _

(2) because for at least one i, Z r..x. > b.. Then (4) can be resolved

j=l ^J J ^

with new u^ for which some u^ ^ 0; e.g., yl > only if the i constraint in

(2b) with X = X is violated. Let x^ be the new optimal solution to (4).





"-
1 -

There are three cases to consider. First, suppose E r..x. ^b., i e P. In

j = l ^^ ^ ^

this case, ex is a lower bound on z*, the cost of an optimal correction to (2)>

n _
This lower bound is greater than ex because of the constraints Z r,.Xj <_

j = l
^^ -•

" - 1
E r X , i e P, implied by (4) which were not in effect when (4) was pre-

viously solved with u = 0. The improvements of bounds could be very impor-

tant to the algorithm of [ 12 ] in which group theoretic bounds are used to

limit the search of the non-basics for an optimal correction.

" - 1 - 1

The second possibility is that Z r..x. < b., i = l,...,m, or x is a

3 = 1
^J J - ^

- o . - 1 - o .

feasible correction. Since ex < z*, the non-negative quantity ex - ex is

an upper bound on the loss from terminating with x .

Finally, if neither of the two cases above obtain, the cut

(c + u^R)x > (c + u^R)x^ (6)

is a valid cut which could be added to (1). The relationship of the

Lagrangian methods to the cutting plane method are discussed in the next

section.

If the requirements vector b can be relaxed, then a suitable solution

to (1) may be derived by replacing b with Rx (A, ) + Bq for some A where
K K

q can be any integer vector satisfying q >_ and q. = if i e P. The optimal

solution to the new (approximate) problem is (x (>.,), q)

.

We are now assuming u is an arbitrary non-negative vector in (4).





In order to put this relaxation scheme in better perspective, con-

sider the isomorphic representation of G as M(I)/m(B) where m(I) is the

group consisting of all integer points in m-space with ordinary addition,

and WV(B) is the subgroup consisting of all integer points which can be

spanned by integer combinations of the basic activities . The element 3 in

(2c) is then an equivalence class of m-vectors. Because of the combin-

atorial structure of the given problem, it may be that vectors from B are

awkward as b vectors in (1); e.g., low cost corrections for group right

hand side B may tend to be long and infeasible in (2).

It is tempting to try to construct an algorithm which, starting with

o k
u = 0, solves (4) with a monotonic increasing sequence of u , k = 0,1,2,...,

- k k - k
so that Rx converges to b from above. Unfortunately, the Rx vectors are

not sufficiently well behaved to make such an algorithm feasible. There

- k
is, however, a certain degree of regular behavior exhibited by the Rx .

LEMMA 2: Any optimal solutions x and x to (4) with non-negative

multipliers u and u respectively must satisfy

(u^ - u°) R (x° - xS >





and

10

Proof. The proof is immediate from the inequalities

(c + u°R)x° 1 (c + u°R)x\

(c + u^R)x^ < (c + u^R)x°.

Thus, if u, > u, and u. = u., i = l,...,m, i ^ k, then Z r..x. <
k k 1 1 ..ill—

n j = l
J -^

— o 1
L r..x.. Unfortunately, with u so defined there is no way to explicitly

J-1 n _ ^
control the magnitude of the sums Y. r..x., i ?* k. Although future research

j=l ^J J

may lead to algorithms with well behaved properties for using (4) to solve

(2), it appears at this time that the primary usefulness of (4) in solving (2)

is as a heuristic. In particular, we are currently implementing an adaptive

integer programming system based on the ideas in [7], and we plan to exper-

iment with the setting of multipliers in (4) in the near future.

Finally, we remark that the multipliers in (4) have an unusual

interpretation for the integer programming problem with the formulation

(2). In particular,

c. + ua . = c. - Ila . + ua . = c. - (IT - i>)a.
J J J J J J J

where ij;
= uB . The usual LP interpretation of II is that n. reflects the

cost savings to be gained by reducing b by one unit. In the above expression,

Jl. is adjusted by -i|; . which can be interpreted as an added cost because the

distance with respect to the i basis activity a from b to the boundary
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of the cone { H : B £ >_ } is insufficient. This last statement can be

made more precise by the following lemma from [13]. The lemma states:

Given any set I ^. { 1 , . . .
,m} , there exist non-negative integers t* such

that if b. ^ t*, i e I, then (2) with rows i e I omitted in (2b) solves

(1) in the sense that there is an optimal solution to the reduced

problem which is an optimal correction in (1). Suppose (2) satisfies

the condition of this theorem for some set I. Then problem (4) formed

from the reduced problem (2) is the same as problem (4) formed from the

original problem (2) with u. = 0, i e I.
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3. Cutting Plane and Lagrangian Methods

In
[ 5 ], Gomory uses the group theoretic approach to develop

theorems for characterizing and constructing strong cuts for the cutting

plane method. If we let [X] denote the convex hull of X , then the cuts

of interest are the faces of [X]. Our purpose in this section is to

relate problem (4) and the Lagrangian cuts to these faces.

Suppose Ax >_ A is a face of [X]. Gomory shows [ 6 ; p. 16] that

A > and A > 0. It is natural to ask if it is possible to obtain— o —

a Lagrangian cut (6) equivalent to this face. Since for any k > 0,

kAx >_ kA is an equivalent cut, the correct mathematical statement of

this problem is: Does there exist a u >_ 0, k > 0, such that

uR - kA = -c? (7)

The system (7) consists of n equations in m+1 variables which does not

always possess a solution of the form we seek.

Although this inability to produce selected strong cuts appears

to be a drawback of the Lagrangian method, we remark that the faces of

[X] are generated with respect only to the group identities of the non-

basic activities a., j = l,...,n, and the requirements vector b. The

Lagrangian approach, on the other hand, incorporates Information about

the real space identities of the a. and b. A synthesis of the two approaches

would be to (i) select a boundary point x of [X] by solving problem (4)

for a specified u ?* chosen according to the magnitude of b , and (11)

use the methods of [ 6 ] to generate cuts beginning with those which

contain x .
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Of course, a more fundamental existential question is: Does there

exist a u >^ such that (4) solves (2)? To answer this, a definition is

needed. A solution t e 2^ is said to be irreducible if s <^ t and s e X

implies s = t. Let T be the set of all irreducible solutions. It is

easy to demonstrate that T is finite; say T = {t )i^_i •

Suppose X* is an optimal correction. Then it is clear that x* is

an optimal solution in (A) if and only if there exists a u >^ such that

c + uR > 0, (8)

and

(c + uR)t'*^ > (c + uR)x*, k = 1,...,K. (9)

Note that each x e X can be decomposed in at least one way as x = t + s

where t e T and s is non-negative integer. Thus, (c + uR)x >^ (c + uR)t >_

(c + uR)x* and condition (9) is sufficient as well as necessary. The

following lemma is a direct consequence of Farkas' lemma applied to (8)

and (9) for u ^ 0.

LEMMA 3: Suppose x* is an optimal correction. Then there exists a u >_

such that X* is optimal in (4) if and only if for every K-^n vector v > and

V ^ such that

^ - k
"

Z Rt v, + J^, a.v„. . < Rx*,

k=l
K K
Z v Z

k=l ^ k=l
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there obtains

I ct^ V, + .5:,c.v - ex*.

k=l
K K

^ ^k " \
k=l " k=l "

This lemma is difficult to interpret as it stands. Suppose, however, that

there exists a vector v > and v ^ with v = 0, j = l,...,n, and— r>.+j

also such that

K _ _ .

L Rt v <_ Rx*, (10)

k=l
^

K

^ ^k
k=l "

and

•^ - k
I ct V, < ex*. (11)

k=l
^

K

^ ""k
k=l

^

In this case, there does not exist a u such that x* is an optimal solution

in (4). Conditions (10) and (11) state, of course, that x* is not optimal

in (A) if there is a convex combination of the t which is less costly

and uses no more resource than x*. The interested reader should compare

this with Everett's discussion on the source of gaps which can be found on

page 408 of reference 4.
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Lemma 3 was derived without regard to whether or not the given

optimal correction x* is irreducible. If x* is reducible, then necessary

and sufficient conditions that x* is optimal in (4) is that there exist

a u 21 such that for at least one teT for which x* = t + s (s >_ 0, s ?< 0)

c + uR >_

( c^ + uR) t >_ G + uR) t k = 1 , . . . , k

(7 + uR)s =

Since g(t) = g(x*) = B, we have g(s) = 0. Thus, the condition that

(c + uR)s = can be interpreted as the requirement that there be at least

one costless circuit in the shortest route network representation of (4).

Any such circuit can be built up from costless elementary circuits which

can be found by the algorithm of [11].
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A. Numerical Example

Consider the integer programming problem

min 21x„ + 6x, + Ax^
2 A 5

s.t. -Ix, + 13x„ + 5x, + 2xc = 1612 A 5

10x„ - Ix. + Ix, + 3xc = 8
2 3 A 5

X. non-negative integer, j = 1,2, 3, A, 5.

(12)

Activities a, and a^ constitute an optimal LP basis. Problem (A) derived

with respect to this basis is (all fractions were eliminated by multiplying

by 13)

min (lA - 3u + lu )x + (11 + 19u, + 37u )x + (8 + 2u^ - 5u )x

s.t. -3x + 19x + 2x <^ 32
^ ^ -* (13)

Ix + 37x - 5x <_ 2A

Ix^ + llx + 8x E 11 (mod 13)

X. non-negative integer, j = 1,2,3

The optimal solution to (13) with u° = 0, u" = 0, is x° = 0, x° = 1,

x° = 0. This correction is not feasible in (12) as the second inequality

constraint in (13) is violated. Setting u = 0, u„ = 1, yields the solution

X. = 0, x„ = 0, x„ = 3, which is the optimal correction we seek. In fact,

this correction is optimal for any u >^ with u. = 0, 9/13 ^ u < 8/5.
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5. Conclusion

In this paper we have tried to demonstrate how the Lagrangian

problem (4) is useful when trying to solve integer programming problems.

We saw that an optimal solution to (4) could be used in a variety of

ways to find good or optimal solutions to (1). Unfortunately, the theor-

etical results obtained thus far are not sufficiently strong to enable

us to algorithmically control the properties of optimal solutions to

(4). Future research may lead to an improvement in these procedures.

We emphasize once again, however, that we expect to incorporate problem

(4) into the adaptive group theoretic algorithm of [7] and experiment

with heuristics for setting the multipliers u.. It seems clear that the

power of the group problem from [5] can be enhanced by the approach here.

Certain results from the literature on generalized Lagrange

multipliers were not specialized for our problem although it is possible

to do so. In particular, Everett's lambda and epsilon theorems in

reference 4 were ignored because they appear to be not directly relevant

to our study. Similarly, the linear programming problem in [2] and

Brooks theorems in [3] have been ignored. In addition, there may be some

connection between the results here and those of Balas in [1] on duality

theory in integer programming.
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Appendix A

The Zero-one Integer Programming Problem

Suppose there is a subset SC {l,...,m+ti} such that x. = or

1, JF.S, and X = 0, 1 ,2, . . . , jtS . Suppose further that the first m.-

basic variables are 0-1 variables. Then (2) becomes

n _
min Z c.x. (lAa)

j = l
J J

s.t. £ r..x. < b
,

, i = 1, m (14b)

j=l -J J - i

n _ _
Z (-r..)x. < 1-b., i = l,...,m, (14c)

j=l
iJ J - 1 ' ' 1

Z a.x. = B (14d)

X. = 0,1,2,..., j e S^ (14e)

x^ = or 1 , i e S (14f)
J

As before, define

Z = {x|x satisfies (14d), (14e) , (14f)}.

For a given u where we now require u >^ only if i >_m + 1, we define

the Lagrangian problem (4)
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n _ ™ _
min Z(c.+ Eur..)x.

j=l J i=l " ^J J

(15)

xeZ

Problem (15) is a zero-one group optimization problem which can be solved

by the zero-one group algorithm of [7]. We have the following corollary

to lemma 1

.

COROLLARY 2: Let x be an optimal solution to (15) with u such that

u? > 0, i = m, + l,...,m. Then x is optimal in (14) with (a) b , i =
1 — ' 1 1

l,...,m, replaced by

n
(i) I r,,x° if u° >

j=l ^J J

n
(ii) Z r. .x° + q, if u° < 0;

j=l ^J J i 1
-

and (b) 1 - b , i = 1 , . .
.
,m , replaced by

n
(iii) Z (-r. .)x° if u? <

j=l ^J J

n
(iv) Z (-r. .)x° + q, if u° > 0,

where the q. can be any non-negative integers.

Problems (14) and (15) are the ones applicable to the Lorie-

Savage capital budgeting model. We mention in passing that the zero-

one group algorithm solved the example in [8] with u = 0; that is,

without resort to explicit use of the multipliers of this paper.
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