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ABSTRACT

This paper examines how setups, due-dates and the mix of standardized and customized

products affect the scheduling of a single machine operating in a dynamic and stochastic

environment. We restrict ourseh'es to the class of d}'namic cyclic policies, where the

machine busy/idle policy and lot-sizing decisions are controlled in a dynamic fashion,

but different products must be produced in a fixed sequence. .As in earlier work, we

conjecture that an a\-eraging principle holds for this queueing system in the heavy traffic

limit, and optimize over the class of dynamic cyclic policies. The results allow for a

detailed discussion of the interactions between the due-date, setup and product mix

facets of the problem.
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This paper focuses on what we consider to be the three most important structural

features of single machine scheduling problems. The first characteristic is the presence or

absence of setup costs and/or setup times when the machine switches from one type of

product to another. Setup penalties force the scheduler to exploit the economies of scale,

which leads to dynamic lot-sizing policies. The second factor is the presence or absence

of advanced information regarding future demands, which gives rise to problems with

and without due-dates, respectix^ely. This aspect of the problem essentially dictates the

nature of the object i\'e function: If advanced information is pro\ided then the objecti\'e

function is based on due-date considerations (e.g.. earliness and tardiness costs) and if no

such information is a\'ailable then the objecti\'e function is expressed in terms of system

measures (e.g.. inA'entory costs, waiting time, throughput). The third characteristic is

whether products are customized or standardized. This feature is intimatel\- related to

the make-to-stock/make-to-order distinction: Customized products must be made-to-

order whereas standardized products can (but do not need to) be made-to-stock.

The aim of this paper is to pro\'ide a unified (with respect to these three features)

treatment of single machine scheduling in a dynamic and stochastic environment. More

specificall}'. we consider a manufacturing system consisting of one machine that produces

multiple types of goods, which we refer to as products. Each product can be either

customized, which requires the request for an order before production can begin, or

standardized, in which case they can be pre-stocked in a finished goods inventory. The

machine is limited in capacity and can only produce one unit at a time. Whenever the

machine switches from producing one product to another, a setup cost and/or setup time

penalty is incurred. Orders arrive to the system, each requesting a unit of the product at

a specified due-date. A completed unit assigned to an order before the order's due-date

must be held and an earliness cost is incurred. Similarly, a tardiness fee is levied whenever

a completed unit is delivered to an order after its due-date. In addition, unassigned items

held in finished goods in\'entory also incur a holding cost equal to the earliness fee of that

(standardized) product. Interarrival times. ser\"ice times, due-date lead times (an order s

due-date minus its time of arri\'al) and setup times are random x'ariables that can vary

by product.
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Figure 1: The eight subproblems under consideration.

In this setting, the machine at an}' point in time can idle, produce the product that

it is current!}' set up for. or initiate a setup for a different product. In other words, the

scheduler makes three t}'pes of decisions in a dynamic fashion: Whether the machine

should be bus\' or idle, how much to make of each product (i.e.. lot-sizing) and which

product to produce next. In this paper, we restrict ourselves to dynamic cyclic policies.

which allows full discretion o\'er the first two decisions, but produces each product in a

fixed c\'clic sequence. We wish to optimize the queueing system with respect to long run

expected average costs due to earliness. tardiness, holding and setups.

The \'enn diagram in Figure 1 delineates the eight subproblems that are incorporated

b}' our anal}'sis. Although onl\' the general scheduling problem is considered throughout

the body of the paper. §5 is de\'oted to a discussion of each of the eight regions in the

\"enn diagram. Since the existing literature has only examined specific regions of the

X'enn diagram, we delay our literature re\'iew to this discussion.

This paper expands upon the methods of Markowitz. Reiman and Wcin (1995) (ab-

brex'iated hereafter b}' MRW'j. which analyzes the stochastic economic lot scheduling





problem (depicted as subproblem 4 in Figure 1). MRW applies Coffman. Puhalskii and

Reimans (1995a. 1995b) heavy traffic averaging principle, which considers two sets of

scalings: A fast one where time is sped up by a factor of 0(n) and a slow one where time

is increased by a factor of 0(s/n) (where n goes to infinit\- in the heavy traffic limit). The

fast scaling leads 1o a diffusion limit and the slow scaling leads to a fluid limit. The hea\'y

traffic averaging principle couples these two processes and makes this difficult scheduling

problem amenable to analysis. .As in MRW. we optimize the control problem, first in the

fluid limit and then in the diffusion limit. The primary analytical contribution of this

paper is to determine how due-dates affect the system beha\'ior under the fluid limit. .\s

in our previous applications of the heavy traffic averaging principle (Reiman and W'ein

1994. 1995. MRW and Reiman. Rubio and Wein 1995). we conjecture that this principle

holds for the system under study, without prox'iding a rigorous proof of convergence:

see Reiman and Wein (1996) for a heuristic justification of this conjecture. Because a

closed form solution has eluded us. we resort to de\'eloping a computational procedure

for soh'ing the control problem. Howe\'er. to gain further insight, we analyze the special

case where each product has a different deterministic (as opposed to random) due-date

lead time: in this case, the results simplify considerably. Finally, a simulation study is

performed to assess both the effect i\-eness of our proposed policies and the accuracy of

the heavy traffic approximation.

The scheduling problem is formulated in §1 and heavy traffic preliminaries are intro-

duced in §2. W'e perform a hea\'y traffic analysis of the scheduling problem in §3 and

work through the deterministic due-date lead time case in §4. Section 5 is devoted to a

discussion of the subproblems outlined in the \'enn diagram in Figure 1 and §6 contains

results of a computational stud\- on due-date effects. Concluding remarks are offered in

§7. Readers interested only in the qualitati\-e insights derived from this work may omit

§2. §3 and §4.

1. PROBLEM FORMULATION

A single machine produces .V different products. Without loss of generality, we

assume that products 1.2 V' are customized and .V" -I- 1 V' -I- A"' = A' arc
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standardized. Each product ; has its own generally distributed service time with mean

jj'l'^
and coefficient of \ariatioii c,j. Orders for goods arrive from an exogenous renewal

demand process. For each product i. the interarri\'al times of orders are generally dis-

tributed with mean A,"^ and coefficient of variation c,^. The arrival and service time

processes for each product are assumed to be independent, although they need not be

(see Reiman 1984 for the incorporation of correlated compound renewal processes). The

utilization of product i is p, = X,l jJ, and the system utilization, or traffic intensity, is

Orders arri\'e to the system with a specified due-date. The due-date lead time, which

is the time interval between an order's arrival and its due-date, for product i is a random

variable with density f,(s). cumulati\-e distribution function F,{s) and mean /,. and is

independent of the arrix'al and service processes. (For quantities that undergo scalings.

a "tilde" denotes a lack of scaling, a "bar" denotes the fluid scaling, and no symbol

abo\-e the quantity denotes the diffusion scaling.) We assume that the due-date lead

time distribution has bounded support, and denote its minimum and maximum by a,

and 6,. respectively: because due-date information typically reflects future demand, we

further assume that a, > 0.

Orders for customized goods are immediatel}- queued. The machine can onl>- work

on a customized product if an order is present. Once a customized order is serviced, the

completed unit is either held until the order's due-date or delivered immediately if the

order is tardy. If the unit is held, the order incurs an earliness fee (holding cost) h, per

unit time until the due-date: if the order is past due. it incurs a tardiness fee (backorder

cost ) of 6, per unit time late. In anticipation of our subsequent analysis, we also express

these cost parameters in terms of units of work: h, — hifj, and b, = b,iJ,.

The flow of physical product and orders is more complex for standardized products,

and we need to keep track of both orders and completed items. Completed items can be

pre-stocked in the finished goods inventory, where each unit accrues holding costs at a rate

of h, per unit time. Orders for standardized products are queued upon arri\al. and can be

filled b}' an item either from the finished goods in\-entory or directly from the output of

the machine. Once an item is assigned to an order, the s\'stem incurs either an earliness





fee h, for each unit of time until the order's due-date or a tardiness fee of b, per unit time

tardy. Again, these costs have workload equivalents h, = h,fj, and 6, = b,jj,. Notice that

we have made the natural assumption that the holding cost for an unallocated item in

the finished goods inventory is identical to the earliness cost incurred when a completed

item is allocated to a standardized order before its due-date (in the latter case, one can

envision the item sitting on the shipping dock until the order's due-date). Hence, no

benefit can be gained by assigning a completed item to a standardized order before its

due-date: Delaying the allocation of completed items to orders results in more flexibility

and a lower cost policy. Therefore, without loss of generality, we only consider policies

that incur no earliness fees for standardized products, and so standardized orders exit

the system when completed items are assigned to them.

The scheduler can observe the system state at each point in time. To ease the

notational burden, we only introduce notation in this section for those quantities that

will be used in our subsequent hea\y traffic anal}'sis. Let the slack of an order be its

due-date minus the current time. Hence, an orders slack is identical to its due-date lead

time when it arri\'es to the system, but the slack, which can be positi\-e or negative, is

a dynamic quantity that decreases at unit rate throughout the order's sojourn in the

system. The system state includes the arri\'al time and the slack of each order in each

product's queue, the number of items of each standardized product in finished goods

in\entor_\-. which we denote b\- I,(t) for ; = .V" 4-1 V. the product that is currently

set up (or being set up), and the residual service and setup times (if they are currently

in progress).

The machine follows a dynamic c\xlic polic>'. .\11 products are serviced in a fixed

cycle. At any point in time the scheduler can deploy the machine in one of three ways:

Produce the product currenth- set up for (this might not be possible if set up for a

customized product and there are no orders present), set up for the next product in the

cycle, or idle. The policy is dynamic in that the lot sizes and the busy/idle polic}- can

be molded to address the changing needs of the system.

A penalty is incurred ever>- time the machine switches production to the next product

in the c}'cle. This penalty can be a cost, a period of downtime or both. The hea\y traffic





performance of the system depends on these penalties onl\- through the average setup cost

per cycle. A', and the a\erage total switchover time per cycle. 5. If only one form of setup

penalty is present and setups \-ary by product, then the best cycle order can be found by

sohing a traveling salesman problem, where the distance between two cities corresponds

to the setup penalty between two products. If both forms of penalties are present then

the situation is more complex. We also assume that the policy is preemptive-resume, but

the appro.x'imation scheme used here is too coarse to differentiate between a system with

a preemptive-resume polic\' \'ersus one without preemption.

We wish to minimize the long run expected average cost of the system, and additional

notation is required to describe our objecti\-e function. Let T^, be the time that the n'

unit of product i is assigned to an order. When a completed unit is assigned to an order,

we assume that it is assigned to the order with the earliest due-date within its product, as

this will minimize cost (sec Pandelis and Teneketzis 1995 and Righter 1996). For t > 0.

define the minimum slack L,{t) to be the smallest slack among all orders in product Ts

queue at time t. Finall\-. let J(0 be the cumulati\-e number of cycle completions by time

t. The long run ax'erage cost is

1
^^^

T->oo T y,^j {n|r„,<r}

limsup-|X: E [h.Lt{T^.) + b,L:{Tr.,)] (1)
T->c

=.V'= + 1

'^°
{n\T„,<T}

+ Z [l^h.l(t)dt+ Yl b,L;{Tn,)] + I<J{T)

where x+(0 = max{j(O-0} and x'{t) = ma.x{-x(t).0}. Notice that the multiplicative

product of cost and queue length is integrated o\er time for the items in finished goods

inventory, whereas we have chosen to sum the product of cost and time (e.g. /i,I, (Tn.,))

over orders. This "reversal of the order of integration" is a necessary step in analyzing

the effects of due-dates.

2. HEAVY TRAFFIC PRELIMINARIES

This section prox'ides an over\'iew of the hea\-y traffic anal\-sis of the problem de-

scribed in §1. The approach outlined here relies heavily upon results in Coffman. Puhal-





skii and Reiman and MRW. and we refer readers to these papers for more details.

Workload Processes. We begin by defining the key stochastic processes for our

heavy traffic analysis. Recall that the system has queues of orders for all products

and a finished goods in\entory of items for all standardized products. For customized

products ; = 1 A'^. let \Vi{t) be the total amount of time required for the machine

to process all of the orders that are in product Ts queue at time t. For standardized

products I = A'"^ + 1 A', let \\',(t) be the total amount of time needed to process all

standardized orders of product ; minus the total machine time already invested in the

units in product Ts finished goods inventory at time t. We refer to W, = {ir,(0-' ^ 0}

as the workload process for product ; = 1 V. and let it' = J2',=i ^^i be the total

workload process. The total workload at time t represents the total amount of work

currently being requested (in the form of orders) minus the total work stored in in\-entory

(this work will eventually be assigned to orders). This one-dimensional process is the

natural definition of workload for systems with customized and standardized products:

readers should note that, in contrast to MRW. the total workload is defined from the

"make-to-order" point of view, in that work in orders is positi\'e and work in finished

goods inventory is negative.

Heavy Traffic Averaging Principle. Coffman. Puhalskii and Reiman"s hea\y

traffic averaging principle (abbreviated by HTAP) has augmented the understanding

of hea\'ily loaded multiclass queueing systems that incur setup costs or setup times.

Although rigorously proved for a two-class queue (in the absence and presence of setup

times in 1995a and 1995b. respectively) that employs an exhaustive service discipline,

numerical results in Reiman and Wein (1994. 1996). MRW and Reiman. Rubio and Wein

support the conjecture that the HT.AP holds for a much wider class of systems. .As in

these applications, we conjecture that the HT.AP holds without providing a rigorous proof

of convergence.

The HT.AP is based on two sets of limits, taken as the total utilization goes to one and

synchronized by a scaling parameter n. The first limit of the HT.AP states that as \/n{l —

p) approaches a constant c. the normalized total workload process \\'(nt)/\/n weakh'

con\'erges to a diffusion process. 11(0. with parameters defined by the system data and





policy. It is calleil the diffusion limit and is tli(> result of a functional central limit theorem.

The second limit, called the 6iiid limit, states that for the same scaling parameter ii and

for a given total workload, the individual workloads \\',(\/nt)/ \/n. converge almost surely

to l'V'i(0' 3, fluid process; this result is related to the functional strong law of large

numbers.

The time scale decomposition inherent in these two limits is intuitive: .As utilization

approaches one, the amount of work in the system is large and the total workload cannot

change quickly; yet, as the machine switches between products, work can shift rapidly

among the individual queues and inventories. The shifting of individual workloads occurs

an order of magnitude. 0{\/ri). more quickly than the total workload, and so the fluid

limit evolves for a period while the total workload remains relatively constant. For exam-

ple, the total workload might change on the order of weeks, while individual workloads

change daily.

Dynamic Cyclic Policies and the Fluid Limit. Under a dynamic cyclic policy.

a service cycle corresponds to the setting up and processing of each of the .V products. If

the machine is following a dynamic cyclic policy, then the HT.\P implies that many cycles

will be completed before there is a significant change in total workload W{t). Because

there are many cycles for a given total workload, a dynamic cyclic [)olicy can be expressed

as a function of only the total workload level, not the individual workloads; i.e., the lot

sizes for each product and the busy/idle policy depend only on the total workload level.

.VIRW show that dynamic cyclic policies in heavy traffic can be completely characterized

by an idling threshold u'o and two workload-dependent functions, the .V— dimensional

cycle center .r'^{w) and the cycle length t{w) (throughout, we denote the total workload

process by W and an arbitrary feasible total workload by w). The fluid process is

unaffected by the idling threshold, and is dictated by the latter two functions. The i^^

element .r';(tr) of the cycle center is the average amount of work in product i over the

course of a cycle in the fluid liiuit. The cycle length t{w) is the amount of lime required

to complete a cycle in the fluid limit. For the inventories and queues to remain balanced,

the machine must allocate p,T{ir) units of time per cycle producing product /. While

product ; is in ser\ice. the process U', decreases at rate (1 — p,): while the machine is set
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up for other products. II', increases at rate p, (p(M-haps by depleting the finished goods

inventory for / = iV'^+ 1, . . . , N). Setu]) times are unsealed (i.e., remain 0(1)) and vanish

in the fluid limit: The large amount of work in the system causes setups to be performed

relatively infrec[uently. Thus. i)roduct Ts workload level fluctuates by p,[\ — p,)t[w)

over the course of a cycle, and ranges from a minimum of x'i{w) — /y,(l — p,)t{w)/2 to a

maximum of .r';{w) + p,{ 1 — p,)t(w)/2. The cycle center and cycle length are parameters

that can be set by the scheduler, subject to some restrictions: The sum of the cycle centers

must ecjual the total workload, J2,=\ •''''iiw) = u'; the minimum amount of work over the

cycle must be nonnegative for a customized product, .r"-{w) — ^,( I — p,)t{w)/2 > 0; and

if there are setup penalties then the cycle length t{w) must be greater than zero.

Cost per Cycle. CJiven the dynamics described above, we can e.xpress the cost of

a fluid cycle. c{ic). in terms of the parameters r'-'{w) and t{w). The cost per cycle is

composed of individual product (earliness, tardiness and holding) costs and .setup costs,

and is given by

A- N ;^-

where c,(.r'\ r. w) is product /"s average cost rate for a cycle given a policy .r' and r and

total workload «-. and A' = l\ / n is the normalized setup cost per cycle (see Reiman

and Wein 1991 for a justification of this scaling). In MRW, we calculated c,(.r''. r, u') by

integrating the cost over one production cycle and then dividing by the cycle length. In

the next section, we perform the same type of calculation for our due-date problem but

"interchange the order of integration" as discussed before. That is, instead of integrating

over time in the cycle, we integrate over the orders filled during the cycle.

Dynamic Cyclic Policies and the Diffusion Limit. Coffman. Puhalskii and

Reiman show that the drift of the diffusion process for total workload level w is .</T{ic) — c.

When there are no setup times, the diffusion limit is a reflected Brownian motion (RBM).

regardless of the policy in use: this result coincides with classic results (Iglehart and Whitt

1!)70). Since the cycle length T(tr) is dictated by the dynamic cyclic policy, the drift of

the diflfusion process depends on both the policy and setup times when setup times are





present. The variance of the diffusion process is a^ = J2',=i ^(^ai + f"si)' '^"^^ ^^^''^ '^ "^"ly

dependent on system parameters.

Although the idhng threshoki u'o does not affect the fluid process, this control pa-

rameter does impact the one-dimensional diffusion process 11' by acting as its reflecting

barrier. There are restrictions on u\) only if there are no standardized goods in the

system. In this case, wq must be nonnegative.

The Optimization Problem. Suppressing the notation illustrating the dependence

of the cost on our policy, we can e.xpress the objective function in equation (1) as

1 T'

7; / c{W{t))clt, (3)
/ Jo

11m sup
T->co J

where c{ir) is given in (2). Our controls arc the idling threshold ii-u and the ;V— dimensional

functions .(''^(ir) and "((('). .As in .\I1{\V. the optimization is carried out as follows. We

minimize (2) with respect to ,r' to find the cycle center in terms of r(u') and lcq. This

is a constrained nonlinear optimization problem. Then (3) becomes a diffusion control

problem with a drift control (via the cycle length t{u-)) and a singular control (via the

idling threshold icq).

3. OPTIMAL DYNAMIC CYCLIC POLICIES

The goal of this section is to optimize the cost in ('^). This optimization is performed

in several steps: In ^(.].i and §3.2. we calculate the cost function c,{x'^ .t. w) in (2) for

customized and standardized products, respectively. To ease readability in these two

subsections, we suppress the notation depicting the dependence of the fluid processes

and policies on a fixed total workload w. Then we perform the cost minimization in §3.3

atul translate the solution into a dynamic cyclic policy for the original queueing control

problem in §3.4.

3.1. Customized Products. The i)rimary challenge in calculating c,(.r'\T. ir)

is to determine how due-dates affect this cost function in the fluid limit. We begin

by normalizing the due-date lead times. Because queue lengths and waiting times are

typically 0(i/77) in heavy traffic mocU'ls. it is appropriate for due-date lead times to also

10





be 0{\/n). Therefore, we assume that the due-date lead time density f,(\/ns) converges

to the nontrivial density /,{<). witli cumulative distribution function F,{s) — F,{^/us)

and mean /, = l,/\/n- In contrast, under a diffusion time scaling the density f,{ns)

converges to a point mass at ^ = and is zero elsewhere. Hence, due-dates do not

appear in the diffusion process and are isolated in the fluid limit. This state of affairs

is consistent with the heavy traffic snapshot principle (see Reiman), which states that a

customer's sojourn in the system is instantaneous under the diffusion scaling.

Let Li{t) = L,[\/nt)l s/n denote the minimum slack process in the fluid system, and

define the process D,(s.t) to be the amount of product / work present in the system at

time t that is due at time .•< -|- f: in other words. D,{s. t) is the work present at time t that

has slack .s. Let D,{.sJ) = D,(s/ns. ^t)/^ lenote its fluid limit. Notice that D,{sJ)

provides a more detailed description of the orders than 11,(0-

Equation (1) shows that the key to calculating the cost function is to determine

the behavior of the minimum slack /!,(/) throughout the course of the cycle. The cost

function c,(.r'^. r. »•) is derixed in three steps (in Proposition 2, Proposition 3 and equa-

tion (11), respectively): We calculate the process D,{s.t) in terms of the original problem

parameters and the mininumi slack at the start of the cycle, derive L,(t) in terms of the

process D,(.s.t) (in these first two steps, we replace D,{s.t) l>y a process closely related

to it. as explained after Proposition 1). and express the cost function c,(.r'^.T. ic) in terms

of L,(n.

Without loss of generality, we assume that a cycle for protluct / starts at time zero

and service is received from time (1 — p,)T to r. Hence, the amount of product / work in

the system at the start of a cycle, which we denote by ,rf, is equal to .r^" — "^,(1 — p, )/'-.

The initial work ,r' nuist be stored in the system as orders with due-date lead times

greater than or equal to Z.,(0). by definition the smallest slack among product / orders in

the system at time zero. The relation between D,(s.t) and the workload n',(/) at time

zero is given by the following proposition, where f]'{s) is defined as 1 — F,{.-<).

11





Proposition 1 .1/ time t = 0,

A(.s.O) = (4)

ifs<LdO)

and

1= r P.F[(s)ds. (5)
JL.iO)

Proof: Because the |)roduct /' workload arrival process is deterministic and flows in

at rate pi under the fluid scaling, at any dt instant of time f,(^)p,dl units of work due in

.s units of time arrive in the fluid limit. The work in the system at time t with slack .s is

bounded by wie maximum amount of work th;.l could have arrived with a due-date of ^-f-^-

At time zero, the maximum amount of work present with slack .s is the recently arrived

work plus work that arrived / units in the past with a due-date of .s + 7\ Xotationallw this

is /o^/3,/,(-s + r)dr. which is equal to p,F^'{s). Thus, D,(.s,0) < p,F[{s). This inequality

is strict if orders due after time L,(0) were worked on. Since an earliest due-date policy

is being used and the machine processes work at rate one. which is strictly greater than

PiF'^ls), it follows that D,(s.t) at the next instant either vanishes or is untouched by

service and only affected by arrivals. .\t time zero, the machine has just switched out of

producing product /, implying that the work due after time L,{0) has not been touched

and that there has been no opportunity for orders to arri\'e with due-date lead times

below L,(0~), the smallest slack the instant before the switchover. Thus, equation (4)

holds. By construction, we have .r^ = /£^m) D,{s,0)ds. Combining this with equation (4)

yields equation (5). |

Because the interaction of D,[s, t) and L,(t) is complex, we streamline our calculations

by creating a simplified variant of D,(s.t) that evolves through the course of one cycle.

Let Di''(s.t) be the amount of work at time / with slack .s if the machine performs no

work for product i from t = nnf;7 r; D'^(sJ) is only defined for t G [O.r). Thus.

Di^{sJ) = D,[sJ) for .s > L,(f) but is not necessarily for .s < L,(t). The process

D;^(.s. /) is useful for two reasons: Its behavior is easy to describe, and I^,{t) can be derived

directly from it. The evolution of /);^(.'<./) is described by the following proposition.

12





Proposition 2 Fort G [O.r).

vv^"(.^.0 = (6)

[ p,{Fns)-F[{s + t)) if,<L,{0)-t

Proof: By construction, Di'{i>J) evolves according to tlie differential equation

D;'(../ + ,//) = D;^(5 + f/^/) + p,/(.s). (7)

That is, the amount of i)rodurt /' work in the system at time / + dt that is due at time

/ + s + df is equal to the amount of work that was previously in the system at time t

with slack 5 + dt phis the amount of work with a due-date lead time of .s that has just

arrived. Using the fact that D'^is.t) equals D,{s.t) at t = 0. readers can verify that

D-'isJ) = p,(F:{s) - F^{s + t)) + D,(.s + /,0) (8)

is the solution to eciuation (7). The proposition follows by using equation (1) to substitute

in for D,(s + Ml) in (8). |

In an attempt to enhance the reader's intuition, we point out some noteworthy fea-

tures regarding the evolution of D]^(s,t) in Figure 2. For the sake of concreteness,

Figure 2a contains a uniform due-date lead time distribution, with fluid minimum and

maximum of o, = aj \JTi and 6, = 6,/x/n. Figures 2b-2d display, for a fixed value of t.

D\ {s,t) as a function of s under three cases depending on the relative value of /.,(0).

a, and a, -f t. Although this figure represents snapshots of D^" {s.t) at a fixed time t, it

is perhaps more instructive to describe the dynamics of D'^ {s.t) as / increases. As time

t progresses through the cycle, the existing orders age and new orders arrive. .A useful

metaphor is to imagine the area under the curves in Figures 2b-2d as water, the curves

as waves, and new orders as raindrops accumulating on the waves. Then the waves of

work travel to the left (i.e., slack is decreasing) in Figures 2b-2d as time progresses, and

grow in height as new orders are added to them. Notice that work with slack /-i(O) at

time zero has slack Z-,(0) — / at time / if no work is performed dining the cycle. By
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equation (6), for slacks .s exceeding this critical value, the work at time / that has slack .s

is Z)f (s,<) — p,F^'{s). For these slack values, which corres[)oiKl to the regions in Figures

2b-2d to the right of Z,(0) — /, the cjuantity Z);^(.s,/) is in eciuiUbrium: The amount of

work that is aging ecjuals the amount of work that is arriving for all values of ,s > L,(0) — /,

and so the shape of the wa\es in Figures 2b-2d to the right of the barrier Zi(0) — t are

invariant over time /. For a fixed time / in these eciuilibrium regions, D'^ {sj) is propor-

tional to the complementary cunudative distribution function of the due-date lead time,

and so /)f (.s,/) drops to zero at the point 5 = 6,. Also, for .^ t [L,{0) — t.a], D'^'isJ) is

constant and takes on its maximum value oi p, (see Figures 2b and 2c); here, all of the

work that could be due at time .s -|- / has arrived.

By Proposition 1, at time t = 0, Z)f'(.s,0) has the e<:|uilil)rium value p,F[{.->) for

i: > /,(0) and otherwise. However, the evolution over the cycle of D^{s,t) has two

different qualitative structures depending on if the earliest possible arriving due-date

lead time o, is greater than the initial minimum slack Z,(0), or less than it. If L,(0) <

a, then no new orders will have a slack less than those that had a slack of L,(0) at

time zero. Therefore, orders arrive with just the correct due-date lead time distribution

to maintain the equilibrium behavior of /)-^(.s,0), as displayed throughout Figure 2b.

However, if Z/,(0) > a, then new orders can arrive with a due-date lead time smaller than

the minimum slack of the orders present at time zero. In this case, as time i progresses,

a small amount of orders with slacks less than Z,(0) — / accumulates but never exceeds

p,F^{L,{0) — /). which is the (juantity of work in the system at time t with due-date

leadtime Z,(0) — / (see Figure 2d). Thus, the critical slack value of Z,(0) — t marks the

barrier between the ec|uilil)rium work level p,F^{s) (to the right of the barrier) and the

accumulation of new orders with small due-date lead times (to the left of the barrier).

Finally, referring to the portion of the curve to the left of the barrier in Figures 2b-2d,

in the region .s < Z,(0) — /. all of the work in 1,(0) is due after time .s + /, and hence

D^(^.t) must equal zero for .'^ < a, — t: this critical value of s corresponds to an order

arriving at time zero with the minimum due-date lead time of a,.

.\ldous. Kelly and Lehoczky (1!)95) use heav\- traffic theor\' to analyze the perfor-

mance of a single-class (il /G/[ fpieue with randcMU due-date lead times that operates
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Figure 2: The function D] (.s./) as a function of s.
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uiuler the first-come first-served discipline. They deriv(> a figure that is essentially identi-

cal to Figure 2b. Because there are no setups and only one product, the non-equilibrium

region to the left of the due-date lead time barrier L,{0) — / does not appear in their

problem.

Our next step is to calculate the minimum slack process L,{t) in terms of D', [s.t).

When the machine is servicing other products, the order with the earliest due-date corre-

sponds either to the earliest due-date request just as the server switched out of product

/ (i.e. Z,(0) < a,) or the request w^ith the due-date lead time of «, that just arrived after

the machine switched out (i.e., L,{0) > «,). Thus, we have

l,{t) = m\n[a,-t,L.{0)-t] for f e [0.t{1 - p,)). (9)

Recall that D['{s.t) was constructed under the assumption that the machine does not

work on [product / throughout the cycle. When product / is being served, the machine

consumes the left most part of the curves in Figures 2b-2d (in the context of our metaphor,

the machine swallows the water at a constant rate). For t t (^"(l — /^,),r). the server

would ha\e completed t — t([ —
/>, ) units of work. Since the machine works according

to the earliest due-date rule within each product, work corresponding to D; {sj) for 5

below L,{t) has been completed. Thus we have the following proposition.

Proposition 3 /.,(/) /--^ fhf ^inallrst qunntittj that satisfies

t-T(l-p,)= 1"^'
D^'{sJ)cl.. for /e(r(l-p,).r). (10)

Equations (5), (!)) and (10) iiniqucly det(rnunt L,[t) outr tht course of one cycle.

Ecpiations (.5), (9) and (10) can be used to express the minimum slack process L,(t)

ov^er the course of one cycle solely in terms of the initial minimum slack and the primitive

probabilistic processes of the problem (although we do not write out this expression here).

In addition, we can summarize the (|ualitative behavior of the minimum slack process.

From time zero until time r( 1 — p, ) no services occur and only orders arri\'e to the (pieue.

Since orders age and get closer to their due-date, the minimum slack in product /. f.,{f).
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is monotonically decreasing at unit rate for t G (0,r(l —/?,))' <^s seen in (9). From time

r(l — />, ) until r, Z,(/) is monotonically increasing because the service rate is always

greater than Dt{s.t) (i.e., orders are being filled faster than they can age), although its

behavior is more comple.x. If L,{0) < o, then, when the machine begins working on

product /, L,(t) increases linearly until the end of the cycle; referring to Figure 2b, the

machine is consuming the flat part of the curve and L,(t) does not reach a, before the end

of the cycle. If Z,(0) > a, then the rate of increase is volatile, moving quickly through

the region to the left of the barrier Z,(0) — t in Figures 2c and 2d, dramatically slowing

when the barrier is passed and then speeding up again as the right tail (represented by

p,F[{s) in Figures 2c and 2d) is reached.

Our tii.al step is to determine product i's average inventory cost per cycle in terms

of Li{t) for a given cycle center .rj' and cycle length r. It is ecjual to the average of the

earliness or tartliness costs associated with orders as they are filled. Since the machine

follows an earliest due-date policy, the earliness or tardiness of an order filled at time t is

either /.,(/) or the due-date lead time associated with a current arrival if that arrival has

a due-date lead time less than L,(t). If there are arrivals with due-date lead times ^ less

than L,(t), then the machine spends p,f,{-s) fraction of effort on them and 1 — p,F,(L,{t))

fraction of effort on orders with slack Li{t). Thus the average cost for a product / order

is

r,«,r,»0 = i r (b,L;(t) + h, (l-p,F,(L,[t)))L:{t)+ ['^'^'\>J.{s)sds ]dt.
T Jt(\-p,) \ [^ ' Ju \)

(11)

Although this cost function is complex, the average cost per cycle is computable. The

HTAP has dramatically simplified the problem. As noted in §1. the state of the system

in a Markov decision process framework is unwieldy l)ecause the evolution of orders

with due-dates needs to be tracked over time. The fluid limit has transformed order

progression through this complex state space into iD,(.s./). From a functional analysis

point of view, the ideas are similar because D,[-J) is a bounded function on a compact

domain and so is a point in tin- infinite-dimensional space of sc|uare integrable functions

L^ . The fluid limit thus approximates the e\-olution of orders in the system as a path





in L^ . parameterized by tlie index t in D,(-J]. Althongh tliis relationship is abstract.

the path in L' is made computationally tractable by Propositions 1-3. xMoreover, by

"reversing the order of integration." we are able to take advantage of this tractability

and translate D,{s.t) into an average cost per cycle.

3.2. Standardized Goods. The cost calculations for standardized products are

more complex than in the customized case because the ciueue of orders and the inventory

of completed items are embedded in the products' workload. Let W/{t) represent the

amount of product / work in finished goods inventory at time f (i.e., the amount of

machine time embedded in /,(0)- a'ld let W/{t) = ^y/{\/nt)/^ be its fluid counterpart.

.An important aspect of U /(/) is that it must be nonnegativc as it represents actual goods

in inventory; backorders are in the form ol unfilled orders in D,(s,t). We assume, as in

the customized case, that at time zero the server has just switched out of product /.

Because D] (.^.t) = D,{.^.t) for .s > L,{t). the workload process IV',(0 f^^n '^f' expressed

as

\V,{t)^ r r)^'{s.t)ds-\V,'{t) for /G[0,r). (12)
Jl,{i]

Recall that we do not assign completed units to standardized orders before their

due-date. This leads to the imj^ortant observation that L,{t) < for all /. The rational

for this is simple: If for some unexplainable reason Z,(/) > (for instance when a rare

event suddenly shifts the total workload le\el \\',(t)) then we assign no completed units

to orders and instead place them in finished goods in\entory. The minimum slack /.,(/)

then decreases to zero and never again goes higher. This is a transitory effect that will

be washed away after the repetition of several cycles and so can be ignored. Hence, by

equation (6) we can conclude that

D;^'(.s,/) = /j,/'7(.s) for .s > and /e[0,r). (13)

Because units from in\entory are allocated to |)revent backorders, it follows thai /.,(/) <

only when 117(0 = 0: i.e.,

\\\'{t)L,{t) = for all /. (14)
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So if Z,(^) < then the next unit of product /' completed by the machine is assigned to the

product /' order with the earHest due-date, and a tardiness cost is incurred. Completed

units that are not assigned to ord<^rs are placed in the finished goods inventory represented

by \V/{t) and accumulate a holding cost. Therefore, the cost per cycle for a standeirdized

product is

C,(X% T. W]
1 r b~i-{t)dt^- r hxv![i)dt

Jt(\-p,) Jo
(15)

Ecpiations (r2)-( 14) lead to the useful relation that li'/(/) is positive only if \V,{t) <

Ji]^ PiF[(s)ds, and so \\'/{t) = (n'',(/) — pj,) . It is important to note that we already

know the behavior of 11,(0 fui" standardized products from MRW. Thus, the liolding

cost portion of the cost per cycle in (15) is just a translation in terms of workload (or

equivalently, cycle center ,r^') by p,l, of the stochastic economic lot scheduling problem

(SELSP) holding cost.

Now we turn to the tardiness costs in (15). Because /.,(/) < when tardiness costs

are incurred, it follows by (12)-(14) that

U-(/)= r D^{sJ)ds+ rp,F:{,)ds
JL,[t) Jo

:i6)

during these times. To determine D^^isJ) in the first integral, we observe that L,(t) >

Z,(0) — t by (9) and the fact that Z,(0 is nondecreasing for / € (t(1 — />,).r). Hence.

-'* > Z,(0) — / in the first integral, and so D^" (sj) = p,F^'(s) by Proposition 2. Because

.s < in this integral, equation (16) becomes \\\{t) = jl^^,)p,ds + pJ,. We conclude that

in the backorder regions

p,L;(t) = {\\\{t)-pjY . (17)

By equations (15) and (17). the time average tardiness cost for a given total workload is

/'.

r (\\){t)-p,tydt (IS)

.Again, this is a translation of the SELSP cost per cycle.

Therefore, the cost per cycle for standardized goods with due-dates is exactly the

same as the SELSP cost with a cycle center shift by />,/,. which is just ])ro(luct / s
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utilization times its mean due-date lead time. For a system with only standardized

products, it follows t hat the optimal switching curves are shifted by pj, from the SELSP

case, and the cost is independent of the due-date lead times; this important observation

is discussed further in §4.5, §5.6 and §5.8. Thus, as in .MRW, c,(.r"', r, tr) is broken down

into three regions based on if there is only holding, only backordering or mi.xed costs over

the cycle. The cost per cycle can be expressed as

c,{x'-\T.ir) =
<^

f'dpJ^ - -1-1)
2

ifoe [/>,/, -,r:-±^i^4^]

if /j,[, - .r;' < TpAi-P.)

(19)

3.3 Optimization. With an expression for average cost for each level of workload

in hand, we can optimize over the dynamic cyclic policy as determined by .;"', r and

U'o- The generalit\- of the due-date lead time distribution prevents an e.xact solution. .A

numerical procedure, however, is possible. Policy optimization must be performed on

both the fluid and the diffusion levels.

I'nder the fluid scalings. the cycle center ,;•" can be optimized with respect to a given

cycle length r and total workload level u\ This nonlinear program can be stated as

follows:

such that:

min Z'XiC,(x'.T.

E;^= i-K

.r? > iMizM
f^.)r ; 1, V"

(20)

(21)

(22)

The highly noidinear aspects of L, and thus c,{x''.t.u') make this problem complex.

Nonetheless, the problem can be solved numerically using standard descent methods,

and we denote the solution In' .;"'( r, lu).

In the dilfusion scheme, the long run average cost of the entirt^ problem is minimized.

Ci\en that the optimal cycle center x''{t. ir) is known, the minimization of equation (3)
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reduces to a diffusion control problem with a drift control (via t{w) ) and a singular control

(via Wo). Let V (»') be the potential (relative value) function and g be the gain (optimal

long run average cost). Although the drift of \V is unbounded, we assume that standard

arguments apply (see Mandl 1968), and express the associated Hamiltou-Jacobi-Bellman

optimality equations, after using equation (2), as

min < y^Cj(a-'' (r, w). r, w) -\ g ~ c\''[u') + — V'"(fr) ( = for tr < Wq
^("'1 U=l

(23)

and

V"(('') = for u' > u'o. (24)

.\s in MRW, we numerically solve the diffusion control problem by approximating

the diffusion process by a Marko\' chain. This Markov chain approximation algorithm

was developed by I\ushner (1977), and we refer readers to I\ushner and Dupuis (1992)

for details of the algorithm. .MRW contains a full description of its application to solving

the corresponding optimality equations for the SELSP. Because the optimality equations

in MRW are very similar to equations (23)-(24), we omit a description of the algorithm,

and refer readers to .Appendix 1.

When there are no setu]) times, however, the diffusion process W becomes a REM

and the diffusion control problem is easy to solve. .-Mthough the cycle length r and

cycle center .r" must still be optimized for each total workload level, they can be done

individually without the need to refer to or update the potential function V''(a'). Since

the steady state distribution of the total workload process W is exponential when setup

times are zero, the optimal idling threshold is given by

k'q = argmm,^,, / c(a')— e ^^
' 'aw,

Jw' o-

where r and a""' are the parameters for the f^BM U'.

3.4. Proposed Policy. The solution outlined in §3.3 needs to be unsealed to

be implemented. .-Mthough the translation to an unnormalized polic\' has considerable

room for interpretation, we propose an intuitive policy. The heavy trafiic analysis hnds





a minimum lexel of work experienced by an iiulividual product over the course of a cycle

for every total workload level. Because work is depleted while the machine is serving

it. we propose that the machine continue production on the current product until this

minimum amount of work is reached, and then begin setting up for the next product in

the cycle. In addition, the machine idles when the total workload level has fallen to the

idling threshold.

We define the policy in terms of two quantities that are naturally observed in practice:

0,{l), which is the number of orders of product / in queue for / = l....,N and /,(/),

which is the number of completed units of product / in finished goods inventory for

I = iW + \ .V. For ease of exposition, we let 7,(0 = for / = 1, ... , /V"-". The linear

identity O, - I, = /;,ir,, where 0,{t) = 0,(nli/^ and /,(/) = [,{nt)/s/^ , which is

known to hold for a wide variety of queueing systems in heavy traffic, is used to translate

the heavy traffic solution to a scheduling policy in terms of 6',(/) and /,(/). The proposed

policy is: Switch out of product / when

o,{t)-i,{t) < A/',
.e-,i:;li//;^(Q.(0-/.(0)

.V ..-w/>.,^ ,-..^^ ^.^ E; = ,

^- (O.(O-MO)

v/n

(26)

and idle the machine when

X:/'r'(^.(o- A(0) = v^u'o^ c-^")

1=1

where .rf (tr). t'(w) and ((\" are determined from the optimization procedure outlined

in §3.3. Because a computational i)rocedure is being employed, we must choose a value

of the heavy traffic parameter /;, and we let » = (1 — />)"'. .A.s in MRW, exploratory

computations (not shown here) reveal that the performance of the proposed policy is

very insensitive to our choice of n.

.Although we do not do so here, more complicated policies can be created. .At any

point in time over the cycle, our analysis yields tlie lluid workload level of each [jroduct.

This type of information can be used to determine when random events throw the cycle
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off course in a manner not predicted by the HTAP's 0(s/n) fluid scaling. The dynamic

cyclic approach can thus provide "red flags" or warnings for unusual surges in demand

or slow-downs in machine processing. A more complicated i)olicy using this information

would specif\- when to skip jModucts in the cycle or when to jump to a product that has

an unusually high number of orders. We leave the specification of such [)olicies for future

investigation.

4. DETERMINISTIC DUE-DATE LEAD TIMES

In this section we assume that due-date lead times for each product are deterministic,

thereby allowing us to write a closed form expression for the cost per cycle in equation (2)

in §1.1. In a(^hlition, we are able to state a quick method in §4.2 for determining the

optimal cycle center .r"^' and provitle a formulaic solution. With this, cycle length r

is found in terms of \ '(»•) and the total workload w. However, the solution to the

diffusion control problem must still be computed by the Markov chain ai)proximation

algorithm. The jn'oposed solution is stated in §4.3. .Subsections 4.4 and 4.5 are devoted

to some structural properties of the optimal solution and the value of due-date lead times,

respectively.

4.1 Cost per Cycle. Let each product / have a deterministic due-date lead time of

/,, which is /, = f,/\/n under the fluid scaling. The cumulative distribution function is

'^
' \ 1 if-s < /,

^

For a given cycle center .r; . cycle length r and total workload level w. the cost per cycle

for a standardized product is given by (19). with /, in place of /,.

To Hnd the cost per cycle for a customized prodvict, we must determine the behavior

of Dt{.s.l). L,{t) and D[^(s.t) given .r"^ and r. By Proposition 1. \\v have .r' =
//'(o) Z-*'^''*-

or 1,(0) = /, — .r'/p,. Therefor(>, Z,(0) has a range of [— dc. /,], since for customized

products .r* is greater than or equal to zero. This makes intuitive sense: The mininuim

slack must be no larger than /, because no orders can arrive- with larger due-date lead

23





times. From Propositions 1 ami 2 respectively, we have

D.U.O) = {''„
if.' «(/-''/"/)

(.29)

1^
otherwise

and

f

if .^ < /, - .r;V^>, - /

D'^'i-^.t) = I P, if / - -rj/p, -t<s<f, . (30)

[ if / < ^

We can solve for L,{t) by using Proposition 3: For / G (7"(1 — /9,).r),

^.(0 = L- -rl/p, - (1 - P.}T + (1 - p.){t - r(l - /0)M. (31)

Because (I — p,){t — r(l — Pi))/p, — (1 — p,)T is less than or equal to zero. L,(t) is also

bounded above by /',. Xote that this function depends on the the decision variable x'] via

the initial inventory .r^.

We can now substitute (31 ) into equation (11) to calculate the average cost per cycle.

Since no orders arrive with due-date lead times L,{t) less than /,. equation (11) can be

rewritten as

c,(.r^r.».) = - r (b.l;(t) + h,l + (f))dl. (32)

This structure is similar to that in the SELSP case discussed in MRW'. The cost per

cycle is broken down into three cases depending on if orders are only tardy, only early or

both during the course of the cycle. If !,(/) is always greater than zero over the course

of the cycle (i.e.. if />,/, - ,r^" > rp,(l — pt)/2) then orders are always filled early and so

equation (32) implies

c,(.r^r, w) = -h, f [./ - xUp, -
( 1 - />, )r + ( 1 - p,){t - "(1 - p,))/p,] dt . (33)

which simplifies to c,(.r^\-, lu) = h,p,{f, — .i"'Jp,). This is very similar to the results from

MRW: The cost per cycle is ecpial to that in the SELSP with axes shifted by p,f,. The

similarity can be viewed as an application of Little's law. In our notation, the utilization

p, corresponds to the arrival rate of work and /, - -i^l/p, is the average waiting time, and

24





their product is the nuniher in queue.

Similarly, if t)rders are alvvays tardy then L,{t) is less than for all / G [0,r], and the

cost is c,(.v'-'.T,w) = b,pt[(.r'i/pt) — /,]. If orders are both early and tardy over the cycle

then £,(/) is both positive and negative over the cycle and the average cost per cycle is

c,(j-^r, «•) = b,p

+lhP,

^-i(-/^-?) + i-(l-^^'

'^' ^''
I if r

2t(1-p,) ^ 2^-l' •) + 5^(1-/3,;

341

Again, this reduces to a Little's law version of the SELSP results.

For ease of reference, if the parameters are such that />,/, — x'^^ > Tp,(l — p,)/'2,

we say tiiat product i is in condition I. Similarly, we call product / in condition 2 if

e [pj, - .(; ± r/j,(l - p,)/2] and in condition 3 if /;>,/, - .v"; < -Tp,{[ - p,)/2. In

summary, the average cost per cycle for customized products is

c,{x'-\t.w]
I

>\ + h,
I ^ f ,.c\2

for condition 1

x'^) for condition 2

for condition 3

35)

This leads to a remarkable result: Equations (19) and (3-")) imply that for the de-

terministic due-date case the cost structure for customized products and standardized

ones are exactly the same. The only difference between the two types is the restriction

that for customized products the cycle center .rj" cannot be less than /j,( I — p,)r/2. Due-

dates have transformed customized products into (juasi-standardized ones. We discuss

the interpretation of this resvdt in ^j5.7 and §5.9.

4.2. Optimization. The explicit derivation of average cost per cycle in §4.1 allows

us to make further progress in optimizing this system. First, we derive the optimal cycle

center and cycle length, and then construct an algorithm for use in the dilfusion control

problem.

Cycle Center. By our analysis in §4.1. the only ilifference between the optimization





of the cycle center in (20)-("22) and in MRW is the inchision of the equation (22) con-

straints representing the non-negativity restrictions on customized products. In MRW,

the solution to the program without inequalities (22) was found exactly. For later refer-

ence, we call (20)-(21) the "unconstrained" version of (20)-(22) and denote its solution

by .r"'*". .As discussetl in MRW, the form of the cycle center .r*^*" is broken down into

three regions depending on whether the objective function is linear or quadratic in the

cheapest product at the point .r*-'". We wish to find a similar expression for .r" because

it is used in determining the optimal cycle length r.

The major complication in solving (20)-(22) is the boundary conditions in equa-

tion (22). We exploit the structure of the objective function to determine the structure

of .r^^' and to find which .r^~*"s are binding with respect to the inequality constraints. The

objective function is piecewise quadratic with linear edges. It is convex and so if a local

minimum exists it will be a global minimum. .As per Bertsekas (199-5), the Lagrangian

associated with (20)-(22) with fixed cycle length r and total workload level w is

,V \ (V^

I(.r'-. A.;0 = c{r^,r. .r) + A
(
^ ,< - u^ + E/',(^^^\^ " -rj) • (36)

:1

The Karesh-Kuhn-Tucker necessary conditions state that for local minimum .r" there

exist Lagrangian multipliers A' and //' for j = I •V'' such that

V,ci(.r'--.A'./r) = 0. (37)

^i' > 0. (38)

^- = Vj€0', (39)

where 0* is the set of non-binding cycle centers; i.e.. products j such that x'j > Tpj{l —

pj)l'l. We suppress the dependence of 0" on r and lv for increased readability, for

additional ease of reference, we categorize the binding products l)y their condition. We

let 0'' be the set of products with binding cycle centers and in condition J and 0"'

be the set of binding products in condition 2 (no binding product can be in condition

3). The products with binding cycle centers are pushed to their limit, in the sense

26





that no more work can be performed on these products. Eciuation (37) imj^hes that

^c,(.r''*, r, (r) + A — //, = for i = l,...,yV'-" and -^c,{x''\t,w) + A = for / =

iV" + 1 .'V. Thus, for / e 0' and i = I A'", it follows that T^c,(.r'', r, w) + A = 0.
t

Therefore, the Karesh-Kuhn-Tucker conditions are the same for the non-binding cycle

centers as for those in problem (20)-(22). This fact implies that the cycle center optimality

arguments in .MRW' hold for the non-binding 0' products. There it was shown that

all but the cheapest earliness (minimum /?,) or tardiness (minimum h,) product are in

condition 2. The condition of the cheapest product is used to categorize the total feasible

workload into 3 regions: Region I, where the cheapest product is in condition 1: region

II. where the cheapest product is in condition 2; and region III. where the cheapest

product is in condition S. Here we use the same region terminology to denote when

the cycle center and cycle length are such that the cheapest product is in condition 1.

2 or 3. Let 0^ be the cheapest tardiness cost product in 0' and let 0^ be the cheapest

earliness cost product. For ease of notation, let 0' equal $1 if w > I^;^, /, and 6l

otherwise; the inde.x 0' corresi)onds to the "X'^ product" referred to in MRW. If we let

ir = w —
J2jti.(-)' '''Pji^ — l>j)l~ then the non-binding product / G {0" \ 0'] cycle center is

( n f ^pAi-r.)
\
h,-h,

, /, 1

V. = <
Pifi - TO, • -;, - (E,e0- P,L - »')f>i • 7-2

if |(E,ee- P'L - d^) - E,e{e-\^-} <l < ^^""2"''"'

Pif>
rp,{i-l',) \b,-k

h, + h,
-bf>

if (E,ee- P>J> - '^') - E,e{(-)-\(9-} -i'", <
Tpg.{l-pg.

(40)

and the cheapest product cycle center is .r^*. = w — Ylie&' -''i ' where, for i G {0' \ ^"}-

Oi = (....(6, -//,)/2-(6,. ~hg.)/2 )^, 72 = (....(V +he')/{pe-{\ -pe')]...Y.

the vector o, = (. . . .0,^. . . .)^ is defined by

o,

p.(i-p,) P)(i-pj)

6,+/t, bj+k,

Pti^-Pi)E '€«" b, + ki

for ; ^ J. ana (41-





a„ =
/I \ V^ Pi(l-Pi)

^' + "' L/G0- -fT^iir

(4-

and finally where .r'; = />,/, — ra, • 71 — (X]^ge- Z-'^/,
- «')o, • -;2- Fo'" ' G {0"' U 0"^}, we

have xf = rp,(l - p,)/'2.

It is important to note that when a product ; is binding yet its Lagrangian multiplier

Pi is zero, the inclusion or absence of / in 0' does not affect the cycle centers of the other

products. This can be seen by setting the borderline product's cycle center as derived

from equation (40) equal to r/;,(l — p,)/2 and by subsequent algebraic manipulations. In

addition, on the border between regions II and I or III the cycle center does not change

if using any of the two corresponding e.xpressions in equation (40). We can therefore

conclude that the cycle center is a continuous function of the cycle length r.

\\ ith these expressions for the cycle center, we can restate the average cost per c\cle

in terms of the cycle length r and the total workload level a\ For / G 0" \ ^". it is

c,(t-, ((•)

'(?•

pji^-p,)

//. _u /, \LPAlzJhl I

^P'Ji-p,) \ h,-h, • 1
\
h,-h,

I

I

II

(43)

If we define a f3*7l = -T..-ie{(^'\<}-}<^'li ^'i<^l '-^O'l^ = I -'L,e{(r)'\d-}<^''n2. then the cost per
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cycle for the cheapest product is

r /,,.(„,,. + rE,^(-).^=^V^

C0.{t. w)

p,(l-p,)
-fid'

' E,ee-\0' 6.+/,

h,-h^ + /'^

+
:^

{rao-ji + (a'0. +7-2^ jQe'ri]

III

(44)

The products with binding cycle centers can be in condition I or in condition 2. Thus

for / G {©'' U 0""} the cost per cycle is

c, ( r, «•

Ti;(l-P,)'
ll:(p:.ft for / € 0"'

for , e 0'-
(45)

Cycle Length. Given the form of the cost per cycle in terms of r and u\ we can

find an expression for the optimal cycle length r by differentiating equation (23) with

respect to t and solving against zero. The optimal cycle length is expressed in terms

of basic system parameters, the set of binding products and the effective setup cost per

cycle .S' = /\' + .s\ '(u'). Thus, 0", 0"' and 0'" are all functions of 5 and w. If we define

the constants

"^1

S2

S3

^-- (/), + /?,)/>,(!-/->,) i->,(^
- p,) f b, - h,

ie&'\6'
2{b, + h,

+ Z^ (h0'-h,)+ 2^ (he.+b,).

{pJ.)Hb, + l>.

iee'2

+ x
— r(«r;i) + ;^—"m

8 2/>,(l -/-*,)

(46)

(17)

(48)
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a

ef

,

^''
~

"'
/ Y^

i€0*'
"

ie0*2

„ 6, + /;
, .^

2^ iT^l r(«t7j ,
and

y- (6, + h,)p,{l - p,) p,(l - p,) / 6, - /;, ^

Pj(l -Pj)

!e0*\e*
8 2(6, + /;,

(49)

(50)

lee* j60'

then the optimal cycle length can be stated as

s+a

+^f(E,p,,.^'/--"'^+<>

c"

I

II

III

ol

In order to use the Markov chain approximation algorithm discussed in §3.3. we need

to be able to find r' and .!•"* for a given w and for varying V'(>r). Thus, it is necessary to

fintl the set 0* of non-binding products as a function of the setup penalty 5' = A +-sV '(ir)

and workload w. In the .\ppendix 2. we construct an algorithm that generates the set of

binding customized products as a function of effective setup cost for each total workload

level. This algorithm allows the cycle length, cycle center and cycle cost to be calculated.

This cost can then be fed into the .Markov chain api>ro\imation algorithm so that \ '(ic).

and hence the proposed policy, can be compuletl.

4.3. Proposed Policy. The mapping from the solution of the diffusion control

problem to the proposed policy is the same as in §3.4. which implements a switching

rule for the machine based on \\\. the current workload i)resent in individual orders, via

0,{t) — /,(/) ~ ft,\Vi{f)- III the presence of deterministic due-dates, however, the analysis

in §4.1 allows us to create an alternative switching rule based on the mininnim slack

of each product, via \\\{t) ^ p, (
/', — L,{t)). I'his alternative^ approach might be easier
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to implement in cases where due-date data are more readily available than the levels of

order queues and inventories. Markovvitz (lODti) uses Monte Carlo simulation to compare

the two alternatives, and finds that the approach given in §3.1 clearly outperforms the

minimum slack method, although the discrepancy between the two policies disappears

as the length of the due-date lead time grows; see Markowitz for details.

4.4. Structural Properties. Unfortunately, for .s > 0, no closed form solution to

V''((r) appears possible, even if 0' is known for all total workload levels. However, it

is |)ossible to deri\e several structural properties about the derivative of the potential

function ^'((r), which yields some qualitative insight about the proposed policy. We

assume that as w —> co the set of binding variables 0' stabilizes; i.e., there exists a »'' such

that for all (Ci.iCi > «•'. we have 0'((/^i) = G'iwo). This assumption follows naturally

from the t>ehavior evident in observations 1-S in the .\ppendi.\ 2. which demonstrates

how the products smoothly become binding with respect to .S and w. and the fact that

there are only a finite number of possibilities for 0'. These structural properties are

similar to the ones derived in MRW. Please see Markowitz for details of their proofs.

Property 1. Let the average setup time per cycle s he greater than zero. If region II

conditions hold as w -^ oc, then

\ (n-) = — u' + o[ic).

where 0' is five .sef containing the standardized products and the cheapest hackorder

product (this product could he customized or standardized) and

9 V Pji^-Pj)
-- 2^jee' h;+h;

If region III conditions liold as U' —> 3c. then

;o3)

V'(»') = -— w + o{w). (54)
c
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Property 2. If the setup cost per cycle I\ = ami all of the products are staudardized.

then the policy at the idling threshold icq satisfies the region II ci)nditions if and only il

/), = hj for all i and J. If this condition holds then

///;, 7^ I) J for some i and j then the idling threshold satisfies the region I conditions and

T-{Wo) = 0.

Property 3. If average setup time s is greater than zero, region II conditions hold in

the limit as tc —>• oo if and only if the tardiness costs of all the standardized products

are ecpial and the cheapest tardiness cost among the customized products is equal to

or greater than the standardized tardiness cost (or if the tardiness cost of all of the

customized products are equal and there are no standardized products).

Like their counterparts in MRW. these three properties provide insights into the na-

ture of the optimal cycle length. By Proposition .'5. if the tardiness costs of the cheapest

customized i>roduct and of all the standardized products are ec[ual, then from ec[ua-

tion (.')1) antl Property 1 the oi^timal cycle length r" grows linearly for large total work-

load w. If the tardiness costs are not ec[ual then from Property 1 and equation (51). r'

grows as the scpiare root of total workload. Property "2 describes the optimal cycle length

near the idling threshold (t'o.

Beyond MRW, these three properties make statements about 0'. the set of non-

binding product classes. In the limiting case of w —> cc. the optimal cycle length is

growing and eventually causes all but potentially one customized product to become

binding. By Property 2, around the idling threshold, if /\' — and region I conditions

hold, then no products are binding. If region II conditions hold or I\ > 0. then 0" is a

prion difficult to describe.

4.5. The Value of Due-date Lead Times. Based on the analysis of the oi)tinial

policy, we can comment on how due-date lead times impact the long run average cost.

For systems with standardized goods, due-dates do not influence the optimal costs. By

a quick inspection of the cost |>er cycle in (Mpiation (1!)). we see that modifications in
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due-date lead times are offset by a translation of the cycle center. Thus, the oi)tinial cost

is not alteretl by changes in the due-date lead times: we describe the intuition behind

this result in §5.6.

The situation For customized products is more complex. The translation of cycle

centers influences the costs associated with binding products. .\s due-date lead times

lengthen, the feasible regions for the cycle center .r' and cycle length r grow, thereby

allowing for a lower long run average cost. However, for the zero setup time case, we can

show that when due-date lead times become sufficiently large, no products are binding

and hence the long run average cost is independent of the due-date lead times. We do

this by solving the control problem for the s = case, both ignoring binding constraints

(i.e., treating each customized good as a sla idardized one so that 0" = {1 .V}) and

setting the due-date lead times /, e(|ual to zero. Let Wq be the optimal idling threshold.

If region II conditions hold at the idling threshold u-^ of this no due-date problem and if

in the original problem all of the due-date lead times satisfy

/'-/- >
\

r{l V}
S3

O
i ;i +

P.{^ - l>,)

»o«.72. (56)

then none of the products will ever be binding. Since the derivative of .r^~ — r/j,( 1 — />, )/'2

with respect to total workload w is positive for the .s = case, we need only check that

a product class is non-binding at the smallest workload experienced by the policy, which

is the idling threshold (Cq. Equation (56) guarantees this. Therefore, for due-date lead

times satisfying (56). the optimal long run average cost remains constant for the same

reason as stated in the standardized case.

Similarly, if region I conditions hold at the idling threshold w^ and if the due-date

leadtimes satisfv

l>J. > P,(l - />.)

\ ^J'
'>

V ^^. + ^'

'b, - h
+ /Mi{1 V} +

/><(! - P:)^
for / ^ ()'
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and

p0-fe' >
\f!

{1 V
pe-i^ - pe-) y- Pi(l - pi

i^S' 6, + h,

k - /^
+ h.

1 V (58)

then no product will be bintling (one only needs to check at the idling threshold for the

same reason as in the region II case).

For positive setup times, Property 3 states that as long as there is a customized

product which does not have the cheapest tardiness cost, that product will eventually

be binding for high total workload levels. The longer the due-date lead times the larger

the total workload level before the product becomes binding. Although the average

cycle cost is high for the workload levels \.l;ere the product class is binding, the density

associated with these regions diminishes rapidly. We can infer from this that as the due-

date lead times increase, eventually the reduction in long run average cost asymptotically

approaches the case where all of the products are treated as if they were standardized.

Longer due-date lead times achieve diminishing returns for large total workloads.

5. DISCUSSION

In this section, we step through each region of the Venn diagram and discuss the

relevant literature along with the insights derived from our analysis of the deterministic

due-date lead time case: for ease of reference, the subsections below are numbered in the

same way as the regions in Figure 1. Because our focus is on the dynamic stochastic

versions of these problems, we do not include the vast literature on deterministic or

static stochastic scheduling. For each subproblem. we compute and display a typical

set of switching curves on the workload plane that characterize the proposed policy in

the two-product case. The cost parameters satisfy //[ = 'llii and bx = 262 in each of

these examples. .Mthougli our computations are restricted to the deterministic due-date

lead time case, Markowitz undertakes a partial examination of the cost per cycle for a

customized product with uniform due-date lead times, and the numerical results suggest

that the f|ualitati\e observations describe<l in this section carry over to the random due-

date lead time case.
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Figure 3: Customized products, no setups, no due-dates.

5.1. Customized Products, No Setups, No Due-dates. The outer area of

Figure 1 corresponds to systems vvitli only customized goods, no setup penalties and no

due-dates. Ihese traditional multiclass queues are the simplest of the systems displayed

in the diagram and liaxe l)een extensively studied. Cox and Smith (1961) were the first

to show the optimality of the "T// rule" (in our notation, the r// index corresponds to the

tardiness cost rate b). which gives priority to the product that, while serviced, removes

cost from the system at the highest rate; .see Bertsimas and .\iho-.\Iora (1996) for an

up-to-date set of references for this scheduling problem.

Our proposed policy is similar in spirit. The policy parameters can be easily deter-

mined from §4.2. The lack ol setups forces region II to vanish and the cycle length r

to be zero. .\o diu'-dates indicates that /, = for all jjroducts. implying that only the

region III conditions can apply. Thus for any total workload u- > 0. the cycle center .rf

is set to zero for all / not ecpial to O^. and the cycle center for the cheapest backorder

product is set to a-. In this special case, one can trivially calculate that the idling thresh-

old u'o is zero. The implied dynamic cyclic policy is then simple in form (see Figure 3

for a two-product example wliere 6i > h^): Service all l)ut the least expensive product

to exhaustion and switch out of producing the cheapest product if tliere are any higher

cost products present. I his policy can be interpreted as a two-level priority rule: .\11 but

the least expensive product have high priority and are served to exhaustion in a cyclic

manner; the least expensive ])roduct has low priority.
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It is worth noting that in the heavy traffic limit tlie (|nrue length of the high priority

products vanish and oidy the lowest priority product is present (see W'hitt 1971). It

follows that the heavy trafHc limiting behavior of the proposed policy is identical to that

of a strict "b" |)riority policy: In both cases, the workload process lies along the 0^ axis.

Thus, in the heavy traffic setting nothing is lost between our proposed dynamic cyclic

policy and the c/-t rule.

5.2 Standardized Products, No Setups, No Due-dates. Multiclass cjueueing

systems with standardized products are generally considered to be more difficult to an-

alyze than systems with customized products because of the nonlinear cost structure

introduced by having both holding and backorder costs. .*\dditionally. when constructing

policies for these production/inventory systems, there are no natural switching bound-

aries as with exhausting a cjueue in customized systems. These obstacles have hindered

the analysis of even the simplest case: Standardized products with no'setups and no

due-dates. Zheng and Zipkin (1990) analyze the intuitively appealing longest queue (or

smallest finished goods inventory) policy for a two-product system, which is optimal when

both products have identical cost parameters and operate under independent base stock

policies. Ha (1993) partially characterizes (in terms of switching curves) the optimal

policy for the Markovian two-product case. Wein (1992) uses heavy traffic theory to de-

velop a dynamic priority policy and an aggregate base stock policy for the multiproduct

problem, and \eatch and Wein (1993) expand upon this by examining index policies in a

Markovian setting and l)y analyzing the lost sales case. Finally. Pena and Zipkin (1993)

propose a policy that combines the best aspects of the policies in Zheng and Zipkin, Ha,

and Wein.

Our proposed policy is similar to that of Wein. and readers are referred there for a

more in-depth discussion of the basic insights gained Irom the heavy traffic analysis of

this system. Fri^m the calculations involving setup penalties and cycle length in §4.2. r

is again zero for this case and only regions 1 and HI are possible. The cycle center of all

but the cheapest product is set to zero and x^. equals ir for ir > and .rj,. equals w for

w < 0. Because there are no setup times, the total workload process, which measures the

total work in backorders minus the total work in linisheil goods inventorv. is a RHM and
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Figure 4: Staiidardizecl products, no setups, no due-dates.

the iflling threshold icq is negative (i.e.. —Wq represents an aggregate base stock level for

the total work in finished goods inventory) and has an explicit form (see eciuation (76)

of Wein). The dynamic cyclic policy can be stated as a two-level priority system for

unfilled orders with the added complication of a mechanism to build up a finished goods

inventory. It lias the following rules: 1) service all orders with finished goods inventory if

available: 2) all cpieued orders for products other than product 01 have priority and are

serviced in an exhaustive cyclic maimer: 3) orders for the cheapest backorder product 01

have the lowest priority: 4) if no orders are present and the total workload is above the

idling threshold, then produce product 0^. which is the cheapest to hold in inventory. .\

typical two-product policy (where 6) > 62, hi > hi) is pictured in Figure 4 and. as in

the customized case, the strict priority rule between the products causes the switching

curves to nearly overlap on product 2's axis. The performance of the resulting policy is.

in the heavy traffic limit, identical to the one suggested by Wein.

Comparing the customized product and standardized i)roduct cases, we see from the

proposed policy a distinct role for inventory: It hedges against the risk of backordering.

.\ccording to the IILAP. uncertainty in production and d(>maiid have tlieir greatest im-

pact on the total workload in the system, and the time scale decomi)osition allows the
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machine to flexiljly address requests for high cost pro(hicts without the need for storing

the jjrodurts themselves. Thus, inventory acts as a reservoir of reserve capacity, able to

absorb random tluctuations in service and demand, and tlu" |)ro|)osed policy stores this

capacity in tlie most economical manner possible: It is placed in the cheapest holding

cost product. Similarly, when the finished goods inventory is exhausted, the proposed

policy is still able to flexibly service requests for high cost products by neglecting the

cheapest backorder product, effectively storing deficit inventory in its cheapest form.

5.3. Customized Products, Setups, No Due-dates. The models represented

by region .'5 in the Venn diagram are known as polling systems in the literature on

computer communication networks. Although considerable research has appeared on

the performance analysis of these systems (e.g., l3oxma and Takagi, 1992), the dynamic

scheduling of these nudticlass (pieues with setups have not yielded to an exact analysis.

Hofri and Koss (1987), Liu. Xain and Towsley (1992) and Koole (1994) derive structural

results, Reiman and Wein (199-!) use heavy traffic analysis to develop policies for the

two-product problem. Boxma, Levy and Westrate (1994) and Bertsimas and Xu (1993)

compute static policies (i.e., polling tables), Browne and Vechiali (1989) derive a quasi-

dynamic index policy to choose sequences of products to service at the start of each cycle,

and Duenyas and Van Oyen (1995, 1996) develop scheduling heuristics based on myopic

reward rates for systems with setu]) times and costs, respectively: readers are referred to

the literature review of Reiman and Wein (1994) for more details.

Our proposed policy is a multiproduct version of Reiman and Wein s (1994) policy.

.*\s in the previous customized case, the lack of due-dates and of standard goods limits

the cycle center and cycle length equations to the region III formulations. Ciiven that

/, equals zero for all /, all but the cheapest product, B^. is binding and so 0" C {01}

for all .^' and all w. Thus, the policy can be stated as follows: Service each product

in a cyclic manner. \\ hen set up for all but the cheapest backorder product, service

it to exhaustion. When set up for Ol work on it until its normalized workload reaches

.r'^.(«') — T{w)pe'{ 1 — P9' )/-. where ir is the current normalized work in the system. \\ hen

there are only two products, the pokuy is identical to Reiman and Wein's (1994).

The presence of setui)s eliminat(^s the two-lexel priority scheme seen in the previous
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Figure o: Customized products, setups, uo due-dates.

no setup cases, because a strict priority rule leads to excessive setups. The proposed

policy avoids this by keeping to the cycle, yet minimizes cost by offering ciuick delivery

to high cost products at the possible neglect of the 9l product. However, as in the

previous two subproblems. the heavy traffic analysis essentially treats all but the lowest

priority product in a similar fashion, riiese results suggest that for heavily loaded polling

systems, it is more beneficial to focus on noncyclic exhaustive policies than dynamic non-

exhaustive ])olicies.

.A typical two-product j^olicy is shown in Figure 5. The presence of setup penalties

has added breadth to the switching curves of Figure 3. The policy can be viewed as not

only balancing setups and ([ueueing costs, as directly seen in the formulation of r and j^.

but also as controlling the randomness of the system by isolating the effects of total work

fluctuation in the least cost product. This is seen in Figure 5 by the huge range of low-

cost product cjueue length values (along the vertical axis) caused by the fluctuation of

total workload in the system versus the relatively confined range of the more expensive

product (along the horizontal axis).

5.4. Standardized Products, Setups, No Due-dates. Standardized goods

with setups and without due-dates has long been considered the prototype for modeling

make-to-stock maiuifact uring systems. The deterministic version of this problem, which

is called the Economic Lot Scheduling Problem (ELSP). was originally fornuilated in

1915 (see Elmaghraby 1!)7S). and only recently has the stochastic version of this problem
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Figure 6: Stanclarchzed prochicts, setups, no due-dates.

(the SELSP) received attention. Graves (1980) develops a heuristic using a Markov

decision model, Leachman and Gascon (19SS), Gallego (1990) and Bourland and Yano

(1995) develop heuristic lot-sizing algorithms that are rooted in the deterministic EL.SP,

Sharifnia. Caramanis and Gershwin (1991) use a hierarchical decomposition approach to

anal\ze a stochastic tluid \ersion of the i)roblem. Federgruen and Katalan (1995b. 1996)

use polling theory to analyze the performance of (periodic and cyclic, respectively) base

stock policies for the SELSP. Qiu and Loulou (1995) numerically compute the optimal

solution to the two-product problem by modeling it as a semi-Markov decision process,

.\nupindi and Tayur ( 1994) develop a simulation based approach to compute cost-effective

base stock policies, MRW analyze the problem using the HTAP. and Sox and Muckstadt

(1995) formulate the problem as a stochastic program, and propose a decomposition

procedure to solve it.

Our proposed policy restricted to standardized goods and no due?-dates reduces to

that of MRW. Since all of the products are standardized, there are no orthant constraints

and hence no binding [)roduc1s; i.e.. 0" = {1 \}. .Ml three regions are possible and

the cycle length, cycle center and idling threshold are nontrivial. .\ sample policy is

40





pictured in Figure (i.

A detailed description of the proposed [jolicy for the SELSP and a summary of tlie

key insights are given in MRW. Here we briefly cover the liighHglits as they pertain to the

larger problem. As in the standardized goods, no setup case, the policy treats the total

workload inventory as a reservoir of stored capacity, used to hedge against demand and

service rate uncertainty. The switching curves are constructed so that e.xcess inventory

is stored in the cheapest holding cost product Oj^. and deficit inventory is moved into

the cheapest backorder product 0^. Positive inventory also serves a secondary role: A

small cache of inventory impedes backordering on an individual product level while the

machine is producing other products during a cycle. The amount of inventory required is

dependent on the length of the cycle, which is an increasing function of the setup penalty

as shown in equation (51). .Also, setups introduce breadth between the switching curves,

as seen in comparing Figures 4 and 6.

5.5 Customized Products, No Setups, Due-dates. The systems in region 5 of

Figure 1 reflect manufacturing facilities that service customer requests on a make-to-order

basis with the additional feature that customers do not want the goods immediately but

at some future time. The inclusion of due-dates causes an explosion in the dimension of

the state space, which makes this problem difficult. Pandelis and Teneketzis consider ear-

liness and tardiness penalties and examine pro[)erties of an optimal policy. Righter uses

stochastic ordering to further characterize aspects of an optimal policy. Van Mieghem

(1995) studies a multiclass queueing system with costs based upon a convex nondecreas-

ing function of each orders delay in the system. Using heavy traffic analysis, he shows

that a generalized ci^i rule is asymptotically optimal, where c is a dynamic function that

represents each jobs marginal cost of delay.

.As in both no setup, no due-date cases, the lack of setup penalty causes the cycle

length T and region II to vanish. The presence of (deterministic) due-dates, however,

moves the switching curves into the orthant so that they lie on a new set of axes; i.e..

by equation (40) the cycle centers .r^" are shifted by />,/,. 1 he proposed policy can be

described as follows: If the total work in unfinished orders is less than Yl\ = \ Piji- then

orders that are almost at their due-date have priority and are serviced in a cyclic manner.
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Figure 7: Custoniized products, no setups, due-dates.

and if tlieie are no orders near their due-date and the total workload level is above the

idling threshold, then the machine works on orders for the product with the smallest

earliness cost. If the total workload is greater than J2[=i PiJi then all products other

than the cheapest tardiness product 0^ have priority and their orders are serviced in

a cyclic manner just as their due-dates are reached or passed; the cheapest tardiness

product OJl has lowest priorit\' and its orders are serviced only when the due-dates of the

higher priority goods are distant.

.A two-product e.xample is given in Figure 7. .\s in the no due-date, no setup examples,

the switching curves for the two products nearly overlap. However, the switching curve

shift onto the new due-date axes is readily transparent by comparing Figures 4 and 7.

The shift of the due-date axes in the workload plane represents the tolerance of the

policy toward aging orders not due in the near future. The region corresponding to the

"northeast" portion of the plane corresponds to the workload states where there is too

much work and orders are completed past their due-date. The "southwest"' portion of

the plane is an area where orders are few and if worked on will be completed early.

The intersection of the new axes (the vertical one is liidden t^ehind the switching curve)

corresponds to the state where the wait in (lueue for an order exactly equals its due-date

lead-time.

.•\s in the previous subproblems. the i)roposed policy minimizes the costs of the higher

cost products at the expense of the cheapest product. The policy attempts to service the
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high cost products in such a manner that they are completed exactly when they are due.

As in the no due-date case, excess orders are shifted to the cheapest tartliness product

Ol. The presence of due-dates allows the scheduler to avoid tardiness costs by staying

"ahead of schedule" - that is, by completing some of the orders early to allow for more

slack when there is an unexpected surge in demand or difficulty in production. It hedges

against this uncertainty in the most economical manner possible: It only completes early

those products with the cheapest earliness cost. However, customized products have a

limit on how much "deficit" workload they can hold: The policy is forced to switch setup

when a product is exhausted of orders, and, as in the "kink" on the horizontal orthant

boundary in the proposed switching curves in Figure 7. further hedging against tardiness

must be achieved by completing early the more expensive product. In addition, given

that the low total workload is costly, the idling threshold may be nonzero so as to avoid

states with higli earliness costs.

It is interesting to com])are these results to those of \ an Mieghem. His cost structure

can acconmuKlate a multiclass queueing system with customized products, no setups and

deterministic due-dates, where the earliness costs /?, are set to zero for all products. In

this case. Van Mieghems generalized r// rule gives priority to tardy orders over early

orders (and early ones can be processed in any manner), and priority within the tardy

group is determined, in out notation, by the highest "b" rule. .A.lso. the server works as

long as there are orders waiting.

Our results provide the dynamic cyclic version of this policy just as was seen in the

standardized and customized cases with no due-dates and no setups. There is a two-level

priority scheme for tardy orders, where all but the cheapest tardiness cost product Oj,

have priority and are serviced cyclically: tardy Ol orders are serviced only when there are

no other orders past due. Since all of the earliness costs are eciual, the proposed policy

services the orders to exhaustion when there are no tardy orders. The idling threshold

is set at zero and so does not contribute to the policy: I he machine works as long as

there is work to do. .Again, as in the previous cases without setups, the dynamic cyclic

policy has the same beluuior as the gcMunali/.ed cfi rule in the heavy traffic limit. I hus,

our policy and Van Mieghems are similar when they are Ijoth restricted to the one case
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where tlie models overlap.

5.6. Standardized Products, No Setups, Due-dates. This case, which has not

been explicitly studied to our knowledge, is similar to the customized case, but without

the orthant boundaries. The cycle length and region II vanish. The cycle centers are

shifted onto the new due-date axes /;,/,. The presence of a finished goods inventory,

however, modifies the proposed policy from the previous customized one. The policy can

be interpreted as the following rules: 1) only fill orders when they are due. either from

the finished goods inventory or directly from the machine output: 2) if the total workload

present in orders minus that in finished goods inventory is above J2iPifi then follow a

two-level priority scheme: Orders for high tardiness cost goods (i.e.. all but O^) that

are closer to their due-date have priority and are serviced in a cyclic manner and tardy

Ol orders have lower priority: 3) if total work is Ijelow Y^tPifi then tardy orders have

priority and are serviced cyclically, and if there are no tardy orders the machine works

on the lowest holding cost [Moduct O^ and stores them in the finished goods inventory,

until the workload idling threshold is reached. A typical two-product policy is depicted

in Figure 8.

This i>olicy is exactly the same as a shifted standardized, no setup, no due-date
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policy. Moreover, in the heavy traffic limit both systems incur exactly the same long run

average cost. This perhaps surprising result makes intuitive sense upon closer inspection.

The due-dates we have considered have a special structure: They are 0{y/n) and so only

influence the fluid limit. This implies that in our policy, orders will arrive, become late

and he serviced before the total workload has an opportunity to significantly change.

Moreover, the orders are continuously arriving and in this time frame the machine is

not able to either get ahead or fall behind on orders. Thus, if we are servicing orders

that are due today and arrived 10 days ago, then tomorrow we will be servicing orders

due tomorrow that arrived nine days ago. Due-date lead times have not provided any

additional flexibility to the system; orders are not serviced earlier or later than usual,

only the absolute time of service has been shilted.

The ditTerence between this case and the customized one is the ability to pre-make

goods for a finished goods inventory. With standardized goods, the policy is always

allowed to hedge against backordering by investing in stored work in its cheapest form.

In the customized case (see Figure 7). the inability to manufacture goods in anticipation

of future orders means that the policy might be forced to store work in a more e.xpensive

product when it runs out of orders for 0'^ products and so must finish early the next

cheapest holding cost product.

In a system not in heavy traffic, however, the long run average cost is affected by the

due-date lead time. Buzacott and Shanthikmar (199:1 §4.5) find the long run average

cost for the single-product Markovian version of this jjroblem. If one optimizes over the

idling threshold (Buzacott and Shanthikumar's target level), then the long run average

cost is

ln/> \b + hj \ \np J

as long as the due-date lead time / is less than or equal to .^'_ . In (-^j — »'o ('^i'^

condition guarantees that the idling threshold (Cq is nonpositive). The first term in (59)

is equal to the long run average cost for a system without due-dates and the second is

the due-date contribution. Since i/|—^ -1- A is alwavs negative, due-date lead times rcnluce

the cost of the svstem.
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The reason for t lie difrerence between tlie heavy traffic system and the nnscaled one

can be most easily nnd(>rstood by examining the nnscaled system with no orders and a

fnll inventory. When an order arrives, the total order workload increases above the idling

threshold and the server initiates prodnction. Goods can be finished before the order

is dne, inflating the inventory level beyond the heavy traffic prediction. This has two

effects: Holding costs are greater and the chance of baclvordering is decreased. The due-

date leadtinie has allowed the system to hedge against bacfcordering, something that the

heavy traffic approximation has not allowed for. Nonetheless, as utilization grows close

to one, the long run average cost in (59) is dominated by ^ In ^, which is independent

of the due-date lead time.

ft is also interesting to note the difference between our system and the inventory

model of Hariharan and Zi[)kin (lf)95). They consider a facility that emj)loys a one-

for-one replenishment scheme for a single product, and optimize the on-site inventory

level. There is a deterministic due-date lead time. L,i. for requests and a lead time for

the facility's orders, L^. They find that increasing the due-date lead time decreases the

average cost of the system up until the due-date lead time equals the re-order lead time;

when Ld > is further increases in the due-date lead time have no value. One might

be tempted to conclude that the two results are consistent, because Ld > L^ for our

system, ffowever. in our problem, the sojourn time for orders plays the role of Ls- and

it is also 0{\/n) by the heavy traffic conditions: hence, Ld > Ls does not always hold

in our system. We believe the reason for the difference between Hariharan and Zipkin's

result and ours is that Hariharan and Zipkin consider an uncapacitated system, where

inventory hedges against demand uncertainty but docs not act as stored workload, freeing

machine resources for higher cost products. W'ith longer due-date lead times there is less

urgency for orders to be replenished quickly and so less inventory is needed on-site to

hedge against backordering. In contrast, in our capacitated model, the same amount of

stored work is needed indejK'ndent of due-dat(> lead time, as discussed above.

5.7. Customized Products, Setups, Due-dates. We know of no previous work

analytically treating this problem. 1 his case contains all of the complexity of §1.2. .Ml

three regions can be present, cycle length, cycle center and idling threshold are nontrixial
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Figvire 9: Customized products, setups, long due-dates.

and products can be binding, it is interesting to note that if the due-date lead times are

long enough (Figure 9). the proposed policy looks like a shifted set of SELSP switching

curves (systems with setup times, however, will always be slightly different because the

expanding cycle length r will eventually hit theorthant l)oundary for large total workload,

by Property 1 in §4.4). If the due-dates are short (Figure 10). the switching curves bump

into the orthant and flatten out. Readers should note that Figures 9 and 10 are based

on cases with setup costs but no setup times, whereas the other cases with setups in

this section contain setup times but no setup costs. In addition to viewing the case as

a shifted SELSP policy, it can also be thought of as the customized product, no setups,

due-dates case (Figure 7) with breadth added to the switching curves as was seen in the

transformation between the no due-date cases without setups to the case with setups

(Figures 3 and o).

5.8. Standardized Products, Setups, Due-dates. This subproblem corresponds

to the center of Figure 1. and has received very little attention. The switch to standard-

ized products from the customized case eliminates the orthant boundaries, thereby sim-

plifying the nature of the optimal dynamic cyclic policy. I he policy is merely the SELSP
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Figure 10: Customized products, setups, short due-dates.

policy oil the shifted set of due-date a.\es (see the example iu Figure 11 and compare it

to Figure 6); moreover, as in §").6. the cost under the optimal dynamic cyclic policy is

insensitive to due-date lead times. .\Iarkowitz performs simulation runs for the p = 0.9

case that support this iusensitivity conjecture.

It is worth noting that as due-date lead times increase, the entire set of switching

curves passes into the positive orthant. Hence, longer due-date lead times can transform

a make-to-stock method of servicing demand for standardized goods into a make-to-order

method. When due-date lead times reach this critical level, it is optimal to fill orders

early and incur holding costs: these early orders jn'ovide a buffer against backordering as

would a finished goods inventory.

5.9 Systems with Customized and Standardized Products. Lastly, we con-

sider mixed systems with both customized and standardized products, which would cor-

respond to the border of the "Standardized" circle in Figure I. Our distinction between

customized and standardiz(xl is based entir(>ly on product design, and the derived switch-

ing curves dictate which standardized products are made-to-order. In contrast, other

work has treated the partition of customized and standardized goods as a decision to be

4S





— switch from 2 to 1

- switch from 1 to 2

•- idle

•
• due-date axis

Figure 11: Standardized products, setups, due-dates.

optimized. For example. Carr rt a/. (1!)93) consider a cpieueing system with no setups

or due-dates, where tlie make-to-order (MTO) goods represent low demand items that

have priority over the make-to-stock (.MIS) ones. This intrinsic priority rule allows for a

performance analysis of the MTO/MTS partition, but does not involve optimal schedul-

ing of the products. Nguyen (1995a) performs a heavy traffic analysis of mi.xed systems

without setups or due-dates, and with lost sales instead of backordering. In a subsequent

paper (1995b), she examines different priority rules for the MTO and MTS products

and suggests an algorithm for setting base stock levels. Federgruen and Katalan (1995a)

examine mixed systems with setups and no due-dates, and compare several priority rules

for switching from MTS goods to MTO. They also propose a heuristic for partitioning

MTO and MTS items.

Finally, there is the full i)roblem: Customized and standardized products, setups

and due-dates. .\11 of the previous cases are subsets of this general model. It is the

proper setting to ask questions of balancing inventory costs and setup penalties, of setting

base stock inventory levels and avoiding backordering. of determining due-date lead time

effects and natural due-date-based ]jartitions of .MTS/MTO goods. \'et. this generality
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does not complicate the system beyond the previous cases. The product mix is accounted

for in our calculations by the presence of orthant constraints on some products and not

on others (see P'igure 12 for an example of a mixed system with one customized product,

one standardized product, setup times and due-dates). Most of the insights described

earlier about the interactions of setups, due-dates and orthant constraints carry over

directlv to the combined svstem.

6. COMPUTATIONAL STUDY

Computational results in Reiman and Wein (1994) and MRW confirm the accuracy

and robustness of the HT.AP for make-to-order and make-to-stock systems, respectively,

with either setup costs or setup times, but no due-dates. Here we report on a com-

putational study that tests our methods with respect to mixed systems and due-dates.

Unfortunately, the presence of due-dates prevents an exact derivation (via dynamic i)ro-

gramming) of the optimal policy and an (^xact e\aluatiou of the various policies under

consideration. Therefore, we employ discrete event simvdation for these tasks. For sim-
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plicitv, we only examine two-product systems with deterministic due-date lead times.

Interarrivai times, service times and setup times are independent and exponentially dis-

tributed. The service is preemp'ive-resume and there are no setup costs. For all of the

scenarios in this section, we start with systems void of both orders and inventory and

then perform ten independent runs. Each run contains a 100,000 time unit initialization

period and statistics are recorded for the next 10,000.000 time units.

We wish to examine three issues for mixed systems: The accuracy of the heavy traffic

approximation, the effectiveness of our proposed policy, and the value of increased due-

date lead times. The first product is customized and the second is standardized. Using

the same parameters as a case in MRVV, we set the earliness costs to /?i = 2,/?2 = 1,

tardiness costs to b, = oh,, serxice rates //, = 1. arrival rates Aj = 0.6, A,) = 0.3 and

a\erage setup time per cycle .s — 20. We .set the due-date lead times /i = /2 and test /,

for values ecpial to 0. 20 and 100.

.Sfraw Policies. Since we do not have a convenient point of reference provided by

an optimal policy, we compare the [proposed policy, which is defined in ecjuations (26)-

(27). to three straw policies. The first straw j)olic\- is the proposed policy without due-

date considerations; that is. the polic\- in (26)-(27) is calculated with the due-date lead

time /, set to zero. The second straw policy is a hybrid base stock/exhaustive policy

where the customized product is serviced to exhaustion and the standardized product

is produced uj) to a base stock level //"'r. which is equivalent to a — r order workload

level. The base stock level is calculated in a fashion analogous to the standardized, no

due-date case in §3.1 of MRW. as follows. The cycle center for the customized product

(product 1) is set to r((r)/n(f — Pi)/2. The cycle center for the standardized product

is set to t(u-)p2{\- — pi)!- + I'- If we define v = vj \/n. then the cycle length is t[w) —

2(tr— t')/[/;i( 1 — pi) + /'2(l — Pi)\- Inder this policy, the total normalized workload U' has

a stationary gamma density with parameters o = 'lsjn[\ — p)lo- and 3 = -sll'-i /',(1
—

/;, )/cr' (see CofTman. Puhalskii and Heiman l!)95b). The average cost for this policy is
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given by

Pi(i-p.)ELi ""-'''" "EL, ''-(i-''-)
. w

+c,(r + -—^^i.^^——-.2=-^^^^^—-. ,r) "'p ':::•' e-"^"-^\l
^('-''-''EL,"'(i-''-)"""EL,^'"-''''" /

^*''+'*

3
(60)

iw.

We set /? equal to ( 1 — p)~'^ and use a steepest descent algoritliin to find the parameter

r which minimizes (60).

The third straw policy is again a hybrid base stock/exhaustive policy where the base

stock level is determined by an exhaustive search using nuiltiple simulation runs (the

results of which are not shown here). These two hybrid policies, which will be referred to

as the bybri'f HTAP policy and the hybrid ^'^nrch policy, together offer the opportunity

to determine the accuracy of the HT.\P. Numerical results are contained in Table I

and switching curves for the hybrid search policy and the proposed policy are given in

Figures 13 and 14 for the /, = and /, = 100 cases, respectively.

Due- Date Cost of Cost of Cost of Cost of

Lead Hybrid Hybrid Proposed Proposed
Time HTAP Search vv/o D-date Policy

290.3 (± 3.2) 290.0 (± 2.7) 274.6 (± 1.9) 274.6 (± 1.9)

20 201.8 (± 2.7) 199.5 (± 3.2) 186.3 (± 2.1) 184.1 (± 2.7)

100 122.8 (±1.4) 121.3 (±L. 3) 158.3 (± 0.9) 109.7 (± 1.1)

Table I: Simulation results for the mixed system.

Observations: Straw Policies. The long run average cost for both hybrid policies

decreases with longer due-date lead times. With zero due-date lead times, orders for the

high cost customized product are immediately backordered. driving up costs. .As the due-

date lead times increase, orders for the customizerl jiroduct are less tardy and costs fall.

However, one would expect that eventually they would start to increase again (under the

hybrid policies) as the diu^-date lead times become inordinately long and holding costs

become excessive.

The two hyl)rid policies incm- nearly identical costs. The base stock levels for the

search policy are 4'). 37 and 13 for the /, = 0. 20 and 100 cases, respectively, and the

corresponding HT.-\P levels are 30. 28 and •"). .Mthough the base stock levels for the
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Figure 13: Switching curves for a mixed system with zero due-date lead times.

search policy are consistently higher than those of the HTAP ])olicy, the actual difference

in long run average cost is very small, for the hybrid exhaustive/base stock policy, the

long run average cost as a function of base stock level appears to have a shallow slope

about the optimal solution, and the heavy traffic analysis is able to identify a base stock

level that performs (piite well.

Finally, it is not surprising that the performance of the proposed policy that assumes

zero due-date lead times deteriorates as due-date lead times increase. This deterioration

suggests that it is not advisable to ignore due-dates when due-date lead times are large.

Observations: Proposed Policy. For the reasons cited above, the proposed policy

also has decreasing long run average costs as due-date lead times increase. The proposed

policN' has an important advantage over the hybrid policies that can be seen in Figures 13-

14: It is able to avoid large buildu|)s of product I orders, both in (lueue and waiting to

be shipped. The cost reduction achieved in fable 1 l)y the pro[)Osed policy r(4ative to the

hybrid policies is in the o-lO'/c range, and increases with the due-date lead time /,. For

the /, = case, the proposed policy avoids se/ere backordering by switching to product
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Figure 14: Switching cur\cs for a mixed system witli due-date lead times of 100.

i if there is an excessive luunlx'r of orders in (jueue. However, due to the severity of the

setup penalty, the cycle length r is long and so the product 1 buildup must be large.

Thus, the marginal benefit of the proposed policy over the hybrid policy is not great

in this case. .As the due-date lead time increases, however, the proposed policy has a

greater opportunity to avoid excessive product 1 costs. Tlu^ cycle length r is still large

but the policy is able to attain a balance l)etween earliness and tardiness costs by cycle

center placement. .As seen in Figure 14. the amount of product 1 workload is maintained

near the due-date axis pi /i . which is the level of product 1 workload necessary for a new-

order to wait in queue for an amount of time exactly equal to its due-date lead time.

The hybrid policies are not able to [jerform this type of cost minimization.

The \'aluc of Due-date Lead Times. As due-date lead times increase, our heavy traffic

analysis (see §4.6) predicts that the long run av(M'ag(> costs umlfn' the mixed system should

decrease until the due-date lead tinu^s hit a critical value; beyond this threshold value,

costs should be very insensitive to due-date lead times and t he total system cost should be

almost ecjual to the cost under the corresponding SELSP. .\Ioreo\'er. because the hybrid

54





policies optimize the staiulardizfHl and rustoniized products independently, the inventory

costs for the standardized protluct should be independent of the due-date lead time under

these policies.

For the hybrid polici(\s. there is little change in the costs due to the standardized

product in Table I: Its average holding and backorder costs remain approximately 23 and

11. respectively, for all values of the due-date lead time, and almost all of the savings

are due to the customized product. In contrast, the inventory costs for the standardized

product in the proposed policy change with the due-date lead time (in the /, = 20 case the

earliness cost is 46.7 and the tardiness cost is 12.7: in the /, = 100 case, they are 34.7 and

16.2, respectively). This difference is due to the dynamic nature of the proposed policy.

Unlike the hyl rid policies, the proposed polii.}' is able to shift inventory costs between

the two products by changing the cycl<^ center and cycle length for each workload level.

To analyze the costs incurred by the customized products, we compare the mi.xed

system to its corresponding SELSP. which is MRWs asymmetric, setup time, 6i = 10

case. .According to the d\namic programming results in row 13 of Table \'III of MRW.

the SELSP cost under the dynamic cyclic policy is 106.5. which is fairly similar to the

cost of 101). 7 incurred in the mixed system in Taljle I when /, = 100. This small cost

discrepancy suggests that the critical due-date lead time threshold for this problem is

less than /, = 100. I nfortunatelx'. it is \'ery difficidt to calculate the critical threshold

due-date lead time for the optimal polic\' when setup times are present.

-An alternative comparison where we can calculate the threshold value is to contrast

the mixed system under the hybrid search policy with the SELSP under the generalized

base stock policy described in ^^3.1 of MRW. This generalized base stock policy is similar

in form to the hybrid HT.AP policy, except it includes a nontrivial idling threshold not

present in the hybrid i)olicy. By our analysis in §4.1. the threshold due-date lead time is

''i/pi- where t'l is the base stock level from the SELSP case. For this SELSP scenario, t'l

was found to Ije 49.0. making tlu^ critical du(^-dat(^ lead time. /i. equal to SI. 6. Hence,

heavy trafhc theory predicts that the mixed system cost of /, — 100 shoidd be rougldy

ec[ual to the SELSP cost. Referring again to row 13 of Table X'lII of .MRW. we lind that

the SF.LSP cost under the generalized l)ase stock polic\- is 1 17.0. .\s we predicted, this
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value is reasonably close to the mixed system cost of 122.8 in Table I, particularly since

part of this discrepancy is prol)ably due to the increased sophistication of the generalized

base stock policy relative to the hybrid HTAP policy.

7. CONCLUDING REMARKS

Theories for scheduling a manufacturing facility have examined the issues of customized-

standardized product mix. setup penalties and due-dates, hut have typically focused on

each of them separately. In this paper, Coffman, Puhalskii and Reimans heavy traffic

averaging principle is used to investigate the composite problem. With it, we outline a

computational method to optimize within the class of dynamic cyclic policies. For the

case where each product has its own deterministic due-date lead time, we qualitatively

describe the policy. Our methodology, particularly the determination of how due-dates

affect the behavior of the liuid system, may be useful for studying other systems with

delay constraints, such as due-date scheduling problems arising in computer applications,

inventory-routing problems with time windows, and inventory management of perishable

products.

Our heavy traffic analysis suggests that the risks inherent in the uncertainty of ran-

dom demand and service processes cannot be removed, ^et. by proper scheduling, the

impact of the variability can be reduced by channeling the fluctuations in order queues

and finished goods inxentories into low cost regions of the state space. The presence of

setups, due-dates and product mix each dictate how this dampening of cost is performed.

Our results yield a simple interpretation of how these facets affect the switching curves

that characterize the proposed policy:

due-dates = shifts

setups = breadth

customized/standardized goods = presence/absence of orthant boundaries.

The simplicity of the first of these three observations - that deterministic due-dates merely

shift the optimal switching curves - is particularlx' striking, given how notoriously difficult

it is to analyze due-date scheduling problems in a dynamic stochastic setting. This

three-point guide allows us to ciualitatively understand the nature of dynamic stochastic
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scheduling problems with deteriiiiiiistic due-date lead times without explicitly calculating^

the solution.

Our analysis also sheds light on the value of foreknowledge of customer demand (in

the form of due-dates) when the system is heavily loaded, and how this information

affects the optimal policy. We find that the costs incurred by standardized products are

independent of the due-date lead times for these products. When due-date lead times

increase beyond a certain level, the standardized products are made-to-order, but there

is no change in cost; orders are filled before their due-date, and these early orders play

the same role as a finished goods inventory: They provide a buffer against backordering.

Although costs for customized products initially decrease as due-date lead times increase,

when the (deterministic) due-date lead tin es reach a critical value the costs level off and

the customized product incurs nearly the same cost as standardized products. In essence,

large due-date lead times blur the make-to-order/make-to-stock distinction: They cause

standardized products to be made-to-order and provide customized products with the

flexibility to he produced early, thereby imitating a make-to-stock mode of production.
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APPENDIX 1: THE MARKOV CHAIN APPROXIMATION ALGORITHM

This supplement describes the Markov chain approximation algorithm that solves

equations ('23)-(24). The Markov chain is created by discretizing the one dimensional

total workload state space into intervals of size /; and time into blocks of size A/ . If we

define Q'' = rr- + \ch — s\ then the transition probabilities of th<' Markov chain are

P"(a..u.-/0 = ^ ^, (61)
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and

P'{<r.,r + h) = ^ ^ (62)

{-' + '^y- - V^^\)
P'iu'.w) = 1 - ^ ',

""'
, (63)

Q

and tlie time iiiter\al itself additionallv must be set to

h
2

A/' = ^ . (64)

There is one exception: The reflection boundary is never reached and so the transition

probability in tlie feasible region before u\) is

P'iwo + h. Wo + //) = !- P'(wo - h. ,/•„ - 2//) . (65)

All the other transitions have zero probabilities.

We can now write the dynamic programming optimality equations as

\-{u-) = Y,P\>r.u)\'{<j)+{c{.v^\T.ic)-g)At'' . (66)

Because the Markov chain is a birth-death process, for a policy r and Wq the steady-state

distribution and gain can be easily calculated from the transition probabilities. Similarly,

the potential function can be recursively calculated by

,^ q-c{.v^^'.T{a-).w) + {l~ P''{w.w))\-(w)- P'{>r.,r + h)V{w + h)
\{w + h =- J— . ((w)

With V (((•) and cj determined, an improvement iteration on r can be achieved by perform-

ing the optimization embedded in ecjuation (23) and an improvement on u'o by finding the

threshold that minimizes the gain g. The algorithm terminates when r and »'o converge.

APPENDIX 2: AN ALGORITHM FOR 0"(.S)

This ap])endix describes an algorithm tliat constructs 0'(.S') by finding an initial set

for 5 ecjual to zero and then tracks how the set evolves as .S' increases; for clarity we re-

58





introduce the notation specifying the dependence of the set 0" of non-binding products

on 5'. Our task is complicated by two facts: As .S' increases the optimal solution can

jump in region, and there is nc guarantee that when a product becomes binding and

leaves 0'(.S') it does not re-enter for larger 5'. We simplify our calculations of 0'(5') by

including the type of region the cycle center and cycle length imply in our accounting.

Let 0' (5) denote Q'{S) wdien the cycle center and cycle length satisfy the region I

conditions, 0'"{S) for the region II conditions and (:)''"(S) for the third region. The

algorithm is based on the following eight observations (proofs are provided in .Appendi.x

3):

1. The cycle center x'^' and cycle length t are continuous functions of the efi'ective

setup cost per cycle S.

2. The optimal cycle length r is monotonically increasing with respect to S

.

3. If product I is not in 0". then for 0' = 0' U {/} the cycle center .r"' and cycle

length t' calculated with 0' satisfy .rf < r'p,(l - />,)/2.

4. If S' and S" are such that S' < S" and both their respective optimal cycle lengths

and cycle centers satisfy region I (III) conditions, then Q''(S") C Q''{S') (Q'"'(S") C

0-'''(.s");.

5. IfS is such that the optimal cycle length and cycle centers imply a shift from region

II to region I (III), then 0-'( liin,_u .S' + = 0'"{\\m._^uS - t) (0-^'^(lim._o >' + f) =

0-"(lim._o5-f);.

6. If S' and S" are such that S' < 5" ami both their respective optimal cycle lengths

and cycle centers satisfy region II conditions, then Q''"{S") C 0'"(.^'').

7. When a condition 1 binding i)roduct / changes to condition 2. it remains Ijinding.

8. If S is such that the optimal cycle length and cycle centers imply a shift from

region I or III to region II. tlien 0*"(lim,_yo .S + e) can be calculated i)y an iterative

algorithm.

With these eighl observations, the algorithm we suggest is simple. From an initial

0"'(O). 0'"(O) and 0''''(O). we track how each evolves as 5 is increased. Three types of

events can change 0"(.s'): .\ shift in region, a non-binding customized ])roduct can l)ecome

t/inding and a condition 1 l)in(ling product can become condition 2. Given equations (10)
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and (51). we can ralculatr the range of .S' before any one of these events occur.

The initial set of non-biiuling products is chosen as follows. For an effective setup

cost of zero, cycle length r becomes zero as region II vanishes. If the total workload

level w is less than Z!ili/^./c t'l*"'! there iwe few orders remaining in the system and it

may be advantageous to make binding some of the cheaper customized products. Let

{ti, 6-2, . . . , e\} be an earliness ordering of the products such that /?e, < h,.^ < • • • < ^f,v-

We find 0''(O) by removing products one-by-one. .A product t j is removed if it is next

in the e, list, is customizable and is insufficient for storing the remaining work. i.e.

Y2i=iPifi < Jl^LiPifi ~ "'• The process stops when either a standardized product is

reached in the e, list or the next product €j implies J2i=\ Pifi > Yl',=i Pift ~ "' 'f "' '^

greater than i:i=i /',/,, then 0-'(O) is set to 'I V}. Both 0-''(O) and 0-''^(O) are

always set to {1 V}.

Given an initial 0"(U) we can find the range of eifectix'e setup costs before the set

changes. The set changes when the minimum .S' such that one of the three events occur:

.A shift in region, the binding of a customized product or the change in condition of a

binding product. For a gi\en S' with non-binding set Q'(S') a region change occurs when

c^-y'(S') /^E,e-:»-^-')'^'-^"'-"'
SI S2

region I to region II shift

c
'

S3
'->a'l~'|-2(Z^,g,.,.//|g/) PJ .

- "•

)

I'u'l ,-'l('-ffl

-^4
&'"{S')

T.,e<.-i'"(S')Pifi - '^') " v2
0'"(.s")

S3
":(

region II to region I shift

s')'^2(E,ee-'/(5')'''^'""'

.,5,,(i-Pe.,,-/)
, (V^ pA}j1£i1\ '!)'•

'
"6'

w'"(.s') /^E, €«•//;,, /i/^./.

region II to region III shift

p(-)-"'(.S')

region III to region II shift

(68)
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where

E
>e{e-'{S')\e'^{s')}

E

6, - /^

+
Peus')(^ - Pe-js'))

iiQ''(S')

—2

te{e-'i'{S')\ei{S')} '
^ ' I- "

6, - h.

boi(s')

Pei(S'){l - pe-AS')]

p,{^ - Pi

(69)

(70)

A customized product becomes binding when

region I. i y^ 0'^ binding

f
©*'(>") ( ^•e{-''{f')\n'^ts')) "'

SI
c'ry'(s')
S2

region I. B'^ binding

f0-"(.S') / ^'/-(Z;6(e--f/(5') Pj/;-'^'>'>'^'2

S3

.s = <

S2

-s^ (Ljee-"(5')Pj/j - tt')

region II. / liinding

^5
&-"'{s') I p,f,{h,+h.) V <,"'"'<''")

Pili-PiXfji-tg.)

region III, i ^ 6^ binding

c(-)-'"(>")
f T..et.^>-"Us'}\e-fs')}"'^--'"

S2

region III. 0', binding

i'K
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Lastly, product ; changes from condition I to condition 2 when

^ = < ^3 T^-ii iEjeG'"{S')Pjfj-^'^') -^2 region II
. (-

K ^5 TT^-^2 regi"" III

Thus the current set of 0'(.S"). 0*'(.S") and Q'^{S") is valid for effective setup cost

from 5' to the minimum S greater than S' in eciuations (68), (71), (72). At that point,

Q''(S), Q'''(S) and Q'"^{S) are updated according to observations 5 through 8 and the

process is repeated. The algorithm ends when either all customized productes are binding

or all but one of the customizetl products are binding and the cheapest is the condition

3 product in region III with -^(.r;' — "^'
|,~^

) < (in the other regions, increasing cycle

length impies that either the customized product would become binding or that the

region would eventually shift).

APPENDIX 3: PROOFS OF EIGHT OBSERVATIONS

In this supplement we prove the eight observations stated in .Appendi.x 2.

Observation 1. For a given tr and \ '('(')• the (luantity in equation (23) is continuous

with continuous derivatives with respect to the cycle length t (t > 0). cycle center .r'^ and

effective setup cost per cycle .s". In addition, the boundary conditions are also continuous

with continuous derivatives with respect to .r''". r and .'^'. Thus, the Karesh-Kuhn-Tucker

necessary oi)timality conditions change continuous!}' with .S'. The only way the optimal

x'^ and t' could be discontinuous with respect to an increase in 5' is if there were multiple

optimal solutions for a given .S and ir. This is not the case since the objective function is

convex with respect to cycle center and cycle length and has the unicpie optimal solution

presented in equations (40) and (51).

Obser\'afjon 2. This is easily seen from ecjuation (-51) and the lirst observation im-

plying the continuity of r" during changes of binding products (-)" and changes in region.

Obser\'atjon 3. This follows from the construction of O".

Observation I. We show this b\- inducting on the cheapest products. Consider the

62





region I case: let 01 he the Hist cheapest [)ro(hict to become biiiiHiig in region I at effective

setup cost >'' with c\-ch' length r'. All other i>r()(lucts with smaller earliness costs must

be binding in condition 2. The instant product Oj^ becomes binding, the cycle center has

reached the posit ivity boundary and so

_i
P:(\- -p. z pj\ -

T'p,(l-p,)b,-h.+2h

b, + h,

^'/>fl;(l -Pel)
" — =

;

(73)

In order for the minimum work experienced over the cycle, xl — r/_),(l — p,)l'2. to reach

the boundary as r is increased, its derivative must be negative: that is.

P,{\ - P,)
+ E

p,{\- p,)b,- h, + 2/;^i />()( 1 - Psj,

b, + h.
<0. (74;

.\s .S increases, r also increases, and hence the cheaper binding condition 2 products can

only re-enter in condition 2 and will not re-enter in region 1. Additional products might

leave 0"'(.s'') but since —j—r—- < 1. equation (74) will l)ecome more negative. This
'•, + h,

implies that e([uation (7:5) will remain negative for larger r. and so 61 cannot re-enter

(-)''. The /''^ induction on the cheapest product results in an argument identical to the

previous one where equations (73) and (74) are modified by re])lacing $1 with 0'^ and .S'

with 5'.

The other more expensive products that become binding in region I also cannot

re-enter Q''
. Since hg'^s") > ^'8'(S')- from the above induction we have

p,{l - p,)b, - b, + -l + he-^^s^ ,^ h, + 2 + h -?:(>")

b. + h. b, + h,
(75)

Therefore, the cycle center of the more expensive non-binding products are lower for

larger .S'. Since cycle length t increases with >'. if the cycle center becomes less than

"/),(! — p,)/2. and hence binding, it will remain lunding.

The same argmncnt holds fur region III.

Observation 5. Since cycle centers and cN'cle length are continuous in .^'. this is

ef[\iivalent to the statement that no binding |)roducts in rt^gion 11 become non-binding
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after a transition to region I. Binding condition I products must have become binding

in region I and rcMuain binding by observation 4 (in region III, a condition 1 product

becoming non-binding would violate the region III definition). Condition 2 products in

region I will have a cycle center of the form p, f,
— ro, • 71 — {J^j^e- Pjfj ~ "'')f*i " 72 and so

the derivative of ,r',' — r/>,( 1 — p, )/2 with respect to r is always negative. This implies that

a condition 2 binding cycle center will continue to push against the orthant boundary.

Observation 6. We prove this by examining x'l
— Tp,{l — />,)/2, the derivativ(> of

the minimum amount of work over the course of a cycle, with respect to r. Once the

derivative is negative, we show that it remains so as further products are removed from

0'^'. Thus when a product becomes binding at .rj' — Tp,{l — p,)/2 = 0. as r expands it

cannot re-enter: The negative derivative would continue to push the cycle center against

the orthant boundary. Since no binding products in 0'"(.S') can become non-binding in

the other regions by obser\'ation 5. (d'''(S) is a nonincreasing set witii S.

The derivative of minimum workload in region II for a non-binding product is

d_
.(•

- -or;l -
P,(l-P.)

Y.
pM - Pj)

J^0-"(i-)

V E (2i>. + h.,-i>,)^^4^ri^+ E pA^-pj:
Ljew"(>)

b, + hj
ji<r)"'(S)

(76)

where H = T.ie(r'>-"(S) Pji^ —Pi)/i^'j +'' J- Therefore the derivative is negative if and only

if

E i-^l>' + l'.<-'>/f~'''^ + E /',(l-/>.)>0. (77)

Thus, at efi"ective setup cost .^''. if the derivative of product ; is negative and a more

expensive tardiness product / leaves to form ©'"(>''). then equation (77) implies

je0*"(5)u{/}

•>; , ; ; J'A^ " Pj^
,

'>j + <>j
^ p,(l-p,)>0,

j^e'"(5)u{/}

(78)
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which is

E {^i>. + l'.-'>/-T^+ E PAl-p,) + 2pd}-Pi)^j^>0. (79)

Since b, — bi < 0, \vc have

and so the derivative remains negative. If a cheaper tardiness prodnct / leaves forming

Q'"{S), the derivative of tlie cheaper product implies

E {^'" + i>,-!>
yf~,'''^ + E pAI-Pj)>0. (SI)

The left side of (81) is less than

E [-K^h.-b/f-P^K E pM-p.) (s-2)

because their ditference is

Therefore the derivative of the minimum workload over a cycle lor product i remains

negative after / becomes binding.

OhservHt'ion 7. If this change occurs in regions I or III, then product ; remains

binding because in these regions the (luantity -^(x", - ^'''"^'''^
) is always negative for a

condition 2 product. If the change occurs in region II. a condition 1 product in region II

implies that

^ ^:7i^i''.-''.+-^''.i-'-^^f^<o. (SD
jee'"(.S)\{,}-^'-'j + "j!

or

/Ml -/>-)+ E "'j^~'''\h,-b,-2h,]<0. (85)

je(-)-"(.s)\{<}
"-'^"j
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Subtracting equation (77) from equation (84) we get

V m+hyf~l'^\ (86)

which is positive. As stated in observation 6, this inipHes that T^(.r^"—
'^^'''^~^''

) is negative.

Observation S. A conclusion from the previous seven observations is that 0'(.S') is

relatively predictable with the notable e.xception of transitions from regions I and 111 to

region II. .-Xt these transitions, binding products may again enter 0'(.S'). Re-calculation

of Q'"{S), however, is not difficult. .At the effective setup cost S point of transition from

region I or III to region II. all binding products not before in Q'"(S') for S' < S should

be re-included in 0'''{S). Fhe cycle center can then be re-calculated. Those products

such that either their cycle centers are infeasible or were previously binding and currently

have a negative cycle center deri\'ative (as determined by equation (77)) can be removed

from 0"''(,'^'). By observation 6. they do no re-enter. This process can be repeated until

Q'''(S) is found such that all binding products with negative minimum workload per

cycle derivatives are removed. The resulting ©"'"(.S') is equal to 0' (.S'"*").
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