
-«r J

HD 28

.M414

WORKING PAPER

ALFRED P. SLOAN SCHOOL OF MANAGEMENT

HITACHI: PIONEERING A "FACTORY" STRATEGY AND

STRUCTURE FOR LARGE-SCALE SOFTWARE DEVELOPMENT

Michael A. Cusumano

September 27, 1987 WP#I886-87 (Revised)

MASSACHUSETTS
INSTITUTE OF TECHNOLOGY

50 MEMORIAL DRIVE

CAMBRIDGE, MASSACHUSETTS 02139

HITACHI: PIONEERING A "FACTORY" STRATEGY AND
STRUCTURE FOR LARGE-SCALE SOFTWARE DEVELOPMENT

Michael A. Cusumano

September 27, 1987 WP#1886-87 (Revised)

JfPT LIBRARIES

RECEIVED

Michael A. Cusumano '^/ll/^l

MIT Sloan School of Management Software Project Paper #3

Working Paper #1886-87

HITACHI: PIONEERING A "FACTORY" STRATEGY AND STRUCTURE
FOR LARGE-SCALE SOFTWARE DEVELOPMENT

INTRODUCTION

This paper is part of a larger study examining the question of whether

or not companies are choosing to manage a complex engineering activity

such as large-scale software development with a range of strategic

considerations and organizational as well as technological approaches that

corresponds to the spectrum usually associated with "hard" manufacturing,

i.e. job shops, batch organizations, and factories exhibiting various degrees

of flexibility in product mixes and technologies. The research project

includes the proposal of technology and policy criteria defining what a

factory environment for software might look like; a survey of 38 software

facilities in the U.S. and Japan to determine where firms stand in relation to

these criteria; and detailed case studies examining the technology and policy

implementation process followed at firms identified as being close to the

factory model .

'

There are several interrelated conclusions: (1) This spectrum, including

"factory" approaches, is clearly observable in the sample of software

facilities in the U.S. and Japan. (2) There appears to be nothing inherent in

software as a technology that prevents some firms from creating strategies

and organizational structures to manage product and process development

more effectively, even with a relatively new and complex technology such as

software. (3) The basic technological infrastructures to aid software process

management are not significantly different between Japanese and U.S. firms.

(4) But, Japanese firms -- led by the NEC group and Toshiba, and followed

by Hitachi and Fujitsu -- are significantly ahead of most US. competitors in

implementing "flexible factory" type of strategies focused on reusing

standardized comp^onents (modules of code) and then customizing end

products .

This paper analyzes what is probably the most difficult aspect of the

software factory -- the implementation process. Hitachi is significant for

two reasons: One, its Software Works (originally a facility performing both

systems and applications programming) was the first software factory

established in the world, and Hitachi has made available extensive historical

and technical documentation for this facility's technological and policy

systems. Two, Hitachi has extended its factory approach to both

applications and systems software development.

I. HITACHI: THE STRATEGIC AND STRUCTURAL SETTI NG

Corpo rate Organizat ion and Products

Hitachi originated in 1908 as the machinery repair section of a mining

company in the town of Hitachi, Japan, a couple hours by train north of

Tokyo. In 1986 it had approximately 80,000 employees and sales in the

neighborhood of $20 billion dollars. Hitachi s major area of business was

communications and electronics equipment, including computers and software

(36% of fiscal 1985 sales), although the company also sold heavy machinery

(21%), home appliances (24%), industrial machinery (9%), and telephone

exchange equipment and other products (10%). In computer sales among

Japanese companies during 1985, Hitachi ranked fourth, behind Fujitsu, IBM

Japan, and NEC, but was traditionally the market leader in large mainframes

and second to IBM in very-large mainframes.

For most of its history, Hitachi's organization has centered around

factories, of which the company operated 28 domestically in 1986. These

belonged to 7 groups: Computers, Electronic Devices, Consumer Products,

Industrial Components and Equipment, Industrial Processes, Power Generation

and Transmission, and International Operations. Group headquarters retained

responsibility for sales, but factories have been responsible for product

engineering and manufacturing. Factories also operate as independent profit

centers, with financial management based on 6-month budgets for each

factory. Plant managers are thus responsible for engineering and production

costs, the setting of production amounts, and any related expenses; and

company policy has required factory managers to institute standardized

controls and procedures for budgets as well as engineering and manufacturing

management. There have been no exceptions, not even in the case of

software. This is what led to the birth of the world's first software

factory.

The Computer Group

Computer exports for Hitachi have been relatively small in comparison

to domestic sales (about 17% in 1985).^ Mainframes are designed to compete

specifically with IBM models as well as to be fully compatible, and appeared

to be of unique designs. For example, the AS/9000, introduced around 1982

to compete with IBM's 3081 model, used denser circuitry and a shorter data-

flow path than IBM to provide considerably more computing power for the

dollar It v\as also, according to Datamation, "a more expandable and more

cost-effective mainframe, with expanded performance levels when compared

to a similar IBM system. "° Hitachi computers introduced to compete with

IBM s new 3090 Sierra series, the AS/XL 60 and 80, also achieved computing

speeds equivalent to the IBM machines with half the number of processors

and at a lower price.

The 19S2 incident in which Hitachi engineers were caught by the FBI

attempting to buy information on the 3081 operating system, particularly new

features that IBM had decided to imbed in microcode ("firmware), suggests

that Hitachi has actively sought information on IBM machines and software

to help its hardware and software engineers design compatible products.

°

This process of information gathering or even "reverse engineering" may

have also aided the performance of Hitachi mainframes and software.

It is also the case, however, that underlying Hitachis apparent

technical success in hardware and software is a long history of computer

development, Hitachi engineers began experimenting with this technology in

the mid-1950s and completed their first model in 1957, using parametrons (a

solid-state device used primarily in Japan during the 1950s), and then a

transistorized business computer in 1959. The model for this machine was

developed at a Ministry of International Trade and Industry research

institute, the Electrotechnical Laboratory (ETL), and largely completed during

1956 -- two years before the commercial introduction of transistorized

computers in the United States. The main ETL designer, TaUahashi Sigeru,

helped transfer this technology to Hitachi and moved to the company

formally in 1962, where he headed hardware product development until 1980.^

Along with in-house research and product development, Hitachi also benefited

from a licensing agreement with RCA between 1961 and 1970, tlnrougln which

it manufactured RCA-designed computers, as well as sold RCA software, for

resale under the Hitachi label in Japan.

The production of computer products before 1961, along with the

arrangement with RCA, reflected a dual strategy within Hitachi: independent

development of new technology as well as direct purchasing of technology

from abroad. This two-fold approach turned out to be extremely important:

When RCA failed to introduce competitive new products in the late 1960s

and then withdrew from computers in 1970, Hitachi had sufficient internal

expertise to design machines that would eventually compete with the IBM

370 and subsequent mainframes. Equally important, Hitachi engineers had an

opportunity to cultivate independent skills and develop a distinctive, factory-

centered approach to software development.'^

Hitachi's computer group in the mid-1980s consisted of six main

facilities, two for software and four for hardware. The Software Works,

which started with 348 employees in 1969, grew to nearly 3000 before being

separated into two sites during 1985. It has continued to produce operating

systems for mainframes, mini-computers, and office computers; related

systems software (such as language processors); and on-line data-base

programs. The smallest programs were several thousand lines of code and the

largest several hundred thousand. Omori Software Works produces large-

scale customized applications programs such as real-time banking or factory

control software. Research and development on new hardware technologies

as well as software development tools and design concepts took place in two

corporate facilities .
^^ In addition, Hitachi had numerous subsidiaries

producing computer-related products and services, including 23 software

companies 13

H ITAC H I COMPUTER G ROUP. CA. 1986

EMPLOYEES PRODUCTS

2,800

LLNE FACILITY
Hardware

Kanagavsa Works

Odawara Works 2,400

Asahi Works 1,100

Device Development 80
Center

Software
Software Works 1,400

Omori Software Works 1,500

Mainframe Computers

Peripherals

Smail-Scale Computers

Semiconductor Devices

Systems Software

Applications Software

CO R PO

R

ATE RDD
Central Research Labs 1,200

Systems Development 350
Laboratory

Basic Research

Systems and Applications
Software Technology

Corporate Prog ram s for Eng i neering and Manu factu ri ng Improvement

The software factories took part in all company-wide efforts at

analyzing and improving various aspects of engineering and manufacturing

operations. Several corporate programs appear to have led to an increasing

refinement and improvement of the factory concept (technology and

procedures) for software, and of engineering performance in this area.

For example, a company-wide movement among Hitachi factories since

1968 has been the "Management Improvement" (Ml) program. The major

focus of this has been to promote the establishment and implementation of

specific standardization, "zero defect," and p roductivity- improvement

objectives. ^ At the Software Works, during 1969-1971, this movement took

the form of setting standards for design, programming, and testing activities,

introducing a document control system and a zero-defect program, and

launching a study of how to reduce personnel costs and increase programmer

performance. As a next step, in 1973 managers asked all planning personnel

to submit suggestions on how to improve productivity; this resulted in 1437

proposals, some of which were adopted quickly -- such as structured

programming techniques and better debugging methods.

Also under the Management Improvement program, during the later

1970s, the Software Works launched studies of design productivity, reliability,

profit generation, and market share. "* Management formally organized these

efforts through the factory staff structure, such as a Rationalization

Promotion Center in 1975 (headed by the factory manager).'" The company-

wide focus in recent years has centered on three specific areas and potential

ways to integrate and improve productivity in product engineering and

production; Hitachi has equally applied the concepts and recommendations in

hardware and software facilities:

Area Main Objective Solutions
Design technology Shorter times CAD

Standardization

Production engineering Labor reduction Automation
Process improvement

Control technology Less work-in-process Inventory control

Another example is quality assurance. Since the founding of the

company, Hitachi has followed a practice called "gleaning," which involves

picking out product- or system-design errors, analyzing them, and then

formally recommending solutions and making reports to colleagues Factories

have case reports once a month; there are also reports at the division level

approximately once every other month. The Software Works adopted this

practice in 1977, with the particular objective of developing design and

analysis procedures that would reduce the recurrence of system problems

identified by customers, such as not meeting user specifications or designing

programs that were not "user friendly."'"

IL SOFTWARE STRATEGY: THE FACTORY MODEL

Product Proliferation and Proqramme r Shortages

The first Hitachi computers of the late 1950s and early 1960s used

drums for main memory, and paper tape for entering programs and data as

well as receiving output. Thus, they did not require software except for

simple input/output programs and a few subroutines for scientific

calculations. With the inclusion of core memory and card readers during

1963-1965, it became possible to use higher-level languages such as

FORTRAN and to write more sophisticated programs. Yet the hardware still

had no interrupt features, so control programs were small. The first program

resembling a modern operating system for a Hitachi computer was a Fortran

"monitor"' system introduced with the HITAC 4010 in 1965.'^ But this was

actually an RCA product (model 401), which Hitachi produced from imported

knock-down kits; Hitachi required little product engineering or software

knowledge, except to be able to service the machine. ^^

An in-house project, on the other hand, provided Hitachi engineers with

extensive experience in both hardware and software development, as well as

8

began to strain engineering resources. in the early 19GOs, Hitachi's Central

Research Laboratory took on contracts with Tokyo University, the Japanese

Meteorological Agency, and Nippon Telegraph and Telephone's main

laboratory to build a very-large scale computer capable of time sharing,

dubbed the HITAC 5020. The Central Laboratory completed one unit for its

own use in 1964 and then, under the direction of Shimada Shozo, set out to

produce an operating ("monitor") system that would allow the 5020 to

perform input, output, and computation functions simultaneously. Laboratory

engineers had previous experience developing an assembler and FORTRAN

compiler for Hitachi's parametron computers; between 20 and 30 were

assigned to work on software for the 5020. The Central Laboratory was one

of two sources of computer expertise in Hitachi at the time; the other was

the Totsuka Works, which produced telecommunications equipment and had

led the company's entrance into computers during the 1950s. ^'

Shimada's major source of ideas for the operating system software was

MIT, where he and several other Hitachi engineers visited in 1965 on the

introduction of a Tokyo University professor to the head of MIT's electrical

engineering department. MIT researchers were then developing their own

time-sharing system, Multics, using a GE mainframe. Shimada received a copy

of the manual, which discussed several new approaches and ideas such as 2-

level addresses and virtual memory. In Shimada's words, the Multics manual

"actually made our mouths water." As soon as he returned to the Central

Research Laboratory, he made the development of a comparable operating

system his next project, in cooperation with Tokyo University's Computing

Center. The first delivery of the 5020 was in 1965, to Tokyo University .
'^^

They finished a Japanese version of Multics in 1968, a couple years before

The 5020 was not suited for businesses and the project team became

short-handed as Hitachi management gave priority to developing system

software for the HITAC 8000 series. ^4 Introduced during 1967-1969, the

8000 family was a Japanese version of the RCA Spectra series (which v,ss

partially compatible with the IBM 360). The 8000 also provided a major

incentive to create a formal strategy and mechanism for program

development, because RCA was not developing adequate system software.

Hitachi decided at first to use the RCA operating system, TDOS, but this

required at least two magnetic-tape stations for compilers and the program

library. in contrast, a major feature of the IBM 360 was that all functions

were available on a faster and larger disc drive system. While RCA

hesitated over whether or not to develop a disc system, Japanese customers

insisted on this, prompting Hitachi to start modifying RCA's TDOS around

1966 and create a new "disc operating system," DOS.^^

Designing an effective disc operating system capable of on-line

processing exacerbated the strain on software-engineering resources in

Hitachi. The manager of the project, Sakata Kazuyuki, found 80 engineers

to work on the system, with assistance from Hitachi s Central Research

Laboratory, the Totsuka Works, two subsidiaries (Hitachi Electronics Service

and Hitachi Electronics Engineering), and a subcontractor, Yoshizawa

Business Machines. (The groups from Hitachi Electronics Engineering and

Yoshizawa remained together and formed the basis of the company's largest

software subsidiary, Hitachi Software Engineering, established in 1969.)

Both TDOS and DOS provided the basic structure of EDOS, which allowed

for greater volume on-line and large-scale batch processing and was

10

completed in 1969; this became the foundation for Hitachi's current operating

system for large-scale computers.

Yet another software project Hitachi tackled in the 1960s was an

operating system for a project sponsored by MITI and Nippon Telegraph and

Telephone (NT&T) to build a very-large scale computer, called the HITAC

8700/8800 within Hitachi (the NT&T version, the 8800, was to be used for

telecommunications data processing). Development work for the software

started in 1968 at the Kanagawa Works and was then taken over by the

Software Works in 1969. The commercial operating system that resulted from

this project, 0S7, had multi-processor, multi-virtual memory capabilities, as

well as supported large-scale batch processing, time sharing, and on-line

real-time computing. ^° The first commercial deliveries came in 1972-1973,

primarily to universities and research institutes.'^" The computer fell short

of several performance goals and was not as powerful as the 370 series,

which IBM introduced while the 8700/8800 was in development. Nonetheless,

the project provided Hitachi with extensive experience in IBM-compatible

hardware design, integrated-circuit logic chips, and large-scale software

engineering. Furthermore, the 8700 successfully targeted a relatively large

domestic market for IBM-compatible machines, which Hitachi was later able

to switch to its M-series, which competed directly against the IBM-370 and

subsequent series. ^^

Systems programs were not the only software orders to Hitachi during

this period. Since few companies in Japan outside of the computer

manufacturers had in-house software expertise, Hitachi and the other

mainframe producers had to design several large applications programs. In

Hitachi's case, these included a series of real-time reservations systems for

n

the Japan National Railways (the first programmable system Hitachi delivered

in 1964, with 1100 terminals throughout Japan); on-line currency-exchange

and deposit systems for the Tokai Bank (1965) and Sanwa Bank (1967), and

real-time production control systems for Toyo Kogyo (Mazda) and Nissan

(1968). 31

The banking systems were particularly important, because most Japanese

banks at the time were buying these from IBM; Hitachi's system miarked the

beginning of a shift to more domestic systems. ' Developing the Tokai

software, which connected 200 remote terminals around Japan to a central

processing center in Nagoya, was a particularly difficult but valuable learning

experience, according to Sakata. Before taking on the job, he and other

Hitachi engineers spent nearly two months in the U.S. during 1963-1954 to

observe several American airline and banking systems, including Howard

Savings in New Jersey and Continental Illinois in Chicago. They were

thoroughly dismayed at how difficult the programming looked and, once they

completed the initial Tokai system, it took a full year to get the software

working properly. Due to the contract terms, Hitachi was not paid for this

extra debugging time and had to absorb the costs itself."^ The cost and

frustrations of this project made Sakata and other managers particularly

concerned about improving their ability to control schedules and time

estimates, as well as bugs.

Evolu tion of the Factory Strategy

During the late 1950s, engineers at Hitachi's Totsuka Works, including

Sakata, believed that, since computers relied on digital technology similar to

the telephone exchange equipment they were already manufacturing, Hitachi

12

would be able to manufacture computers independently. ^ This factory thus

began hardware design in Hitachi, and also established the first group

officially responsible for software development (mainly language processors

and utility programs), the engineering service section. The section started

in 1960 with about 10 engineers and in 1963 was divided into two planning

sections, one for government and university business, and another for private

contracts. The concept of "service" was intimately linked to software since,

to sell computers, Hitachi had to learn from potential customers what their

needs were and then be able to provide adequate programs. Closely related

to this section was another group which trained technicians for

maintenance.

Hitachi management next decided to establish a separate computer

division in 1962 along with a new factory to manufacture hardware, the

Kanagawa Works (separated from the Totsuka Works). The hardware design

section in the new plant took charge of writing or revising software for the

new RCA machines Hitachi was planning to offer. But managers worried

that the dispersion of a scarce resource -- software engineers -- would

make it difficult to write software for the new 8000 series. This situation

then led to the creation of centralized system program department in the

Kanagawa plant, headed by Sakata and modeled after a similar department in

RCA."^ The new department formally brought together the group in the

Central Research Laboratory that had been developing software for the 5020;

the software engineers already in the Kanagawa Works; and a program

section at the division level (although physically located in the Kanagawa

Works) that had been studying programs for pre-Spectra series RCA machines

produced in Japan. The core group consisted of about 60 engineers; Hitachi

13

hired another 20 personnel, for a total of 80. '

Underlying the establishment of this department, according to the head

of the design section and Sakata s successor as department manager in 1969,

Fujinaka Satoshi, was also 'the anticipation that we would develop software

as a factory product." With the 8000 series going on sale and software for

the 5020 yet to be delivered, noted Fujinaka, "Work was increasing so

rapidly that the new structure couldn't catch up with it. Every day was a

struggle with time. "'^

The next logical step was a software factory. In fact, rapid growth of

the computer division caused acute shortages of space and personnel in both

the hardware and software areas. The building housing the Kanagawa Works,

located in Totsuka-cho, Yokohama, was expanded but this was still

insufficient. As a result, Hitachi established a separate facility for

peripherals (Odawara) in 1966 and purchased another site in Hadano, an hour

or so by train from Totsuka, vshere it built its current mainframe plant

(Kanagawa Works). The design and production departments moved to Hadano

in August 1968, leaving most of the company's software departments at

Totsuka (a few others, for some systems engineering and small-scale

computers, remained within the division's staff organization until later in the

1970s). In February 1969, the Totsuka building was officially upgraded to a

separate factory -- the first software facility in the world referred to as a

••/ t. "39factory. ^^

According to the managers who operated the new factory, Komoto

Yukio (the first head of the Software Works), Nakatani Nobuo (his

successor), and Sakata Kazuyuki (who served as deputy general manager

during the 1970s), there were two reasons for following this strategy: One

14

was the acute shortage of software engineers and the hope that centralizing

software development in a single facility would bring about an increase in

productivity. Despite a nation-wide search for software engineers, they

still had considerably less than their target to staff the new factory in 1969.

The second and major reason was a corporate decision to stop treating

software as simply an engineering service that went along with hardware but

to view it as a separate product that could and should be produced and

inspected, with guaranteed quality, in a more disciplined environment. The

key benefit of the factory approach, Hitachi managers believed, was an

improved ability to control quality. Hitachi managers such as Shibata also

believed they were making a conscious departure from the approach used at

RCA, where software quality was not emphasized and little attention was

paid to fixing bugs. Japanese customers would not tolerate the bugs

discovered in RCA programs, forcing Hitachi, according to Shibata, to find a

better way of guaranteeing quality.

Nor was the decision to establish a software factory made in a casual

manner; executives discussed it at the highest levels of the company.

Hitachi President Komai gave the final order to organize the Software Works

as an independent profit center, in keeping with Hitachi's traditional

organizational structure and control system. A debate within Hitachi ensued

over the nature and name of the new facility; some engineers wanted to

establish a "Software Center." But President Komai intervened and ordered

that they "call it a factory. "^^ This was despite the fact that no other

company in the world had established a factory for software production, and

Japanese university professors criticized Hitachi, maintaining that software

was not sufficiently understood to be produced through engineering and

15

factory methods. -^

The Factory Architects

The central figure in the development of the factory's process and

quality control systems was Sakata Kazuyuki, the individual who had served

as manager for several key projects as well as for the system program

department (currently he is a senior managing director of Nippon Business

Consultants, a Hitachi software subsidiary). Sakata had entered Hitachi in

1941 from a technical high school and gone to work as a machine operator

in the Totsuka Works. After additional training at Hitachi's in-house

engineering school and a two-year stint in the army, he joined Totsuka's

production engineering department in November 1945 and began developing

standard times for machining operations as well as studying job tasks,

scheduling, and conveyor systems to improve productivity. In 1957, Sakata

moved to the accounting department and got his first glimpse of a computer

-- an IBM 421 tabulating machine. In I960, he was reassigned and made the

manager of a new computer inspection section, which had about 30 members.

When Hitachi management separated computer development from the Totsuka

Works in 1962 and established the Kanagawa plant, Sakata continued as

manager of the inspection section, which was now located within the

engineering department. The following year he became head of the computer

division's engineering service department, which did systems engineering for

Hitachi customers. Then, in 1965, with the establishment of the system

program department, Sakata became responsible for software production and

quality control.

Sakata's major frustrations were bugs in the software Hitachi was

16

receiving from RCA, and the shortage of programmers, which he had to

divide among the RCA machines, the 5020 project, and applications programs.

A dozen Hitachi hardware engineers not working on the 5020 learned how to

write software by studying and translating RCA's COBOL, FORTRAN, and

ASSEMBLER manuals for the HITAC 3010 and 4010 machines; seven or eight

then continued in the system program department reviewing the new

programs from RCA and correcting bugs before shipping the software to

Hitachi customers. This experience, as well as his background in hardware

production management and inspection, and in computer engineering service,

convinced Sakata that there had to be a better way to produce programs and

prevent breakdowns due to errors: setting the same quality standards for

software as for other Hitachi products, and rejecting the notion that the

nature of software was such that there would always be bugs. "Thus,"

Sakata recalled, "even though it was software, we called [the new facility] a

r 4. "44factory. ^^

The key individual who became responsible for implementing Sakata's

basic ideas was Shibata Kanji, currently the head of the engineering

department in the Software Works. He first joined the engineering service

section of Hitachi's computer division in 1964 after majoring in electrical

engineering at Shinshu University, and later moved to the system program

department and then the production administration section of the Software

Works.

Shibata quickly became the in-house expert on software-engineering

management soon after he joined Hitachi. One aspect of the company's

training program for new engineers required them to take several months

during their second year to write a paper on a theme related to their work.

17

and then give a presentation. Shibata chose to collect data on programmers

working on software for the RCA machines and the 5020 -- hovs much time

they spent each day on different activities and different types of programs.

Programmers did not like being watched closely or keeping records, recalled

Shibata, so they stopped doing this in 196G. But Sakata, Shibata's supervisor

in the system program department, read his paper and decided this data was

too valuable not to collect. Sakata then hired female employees to keep the

records, which became the basis of the Software Works' production planning

and control system.'^"'

III. FACTORY ORGANIZATIONAL STRUCTURE AND MANAGEMENT

Control Philosophy

With the decision to establish a software factory, Hitachi software

managers became obligated to adopt company- wide accounting and

management procedures and thus innovate in software engineering

management by devising systematic controls on the process flow, costs, and

product quality. There was little opportunity, then, for Hitachi managers to

treat software as an "art" or "craft." In Hitachi's hardware factories, the

management systems evolved centering on standardization and components

control. Sakata and Shibata believed it was possible to apply the same

concepts to software.

In particular, Shibata wanted programmers to design modules that would

serve as the equivalent of standardized hardware parts. "Around 1970 we

came to believe that we had to introduce a components control system

similar to what you find for hardware, and in the Software Works we

18

established a committee to take this up as a special project." The committee

members soon realized, however, that "software is not sufficiently

standardized to be treated the same as hardware components control." They

changed their priorities and decided that, first, they had to find a way to

standardize product design, just as this had been done in hardware

manufacturing, and then worry about components control. A special

committee then started establishing standards for all activities, while the

original committee adopted the name "Structured Programming Methods

Committee," believing that structured programming techniques would provide

a way to standardize the software design process. Company engineers next

spent several years studying these techniques from available literature, as

well as analyzing programs Hitachi had already written to find ways to

improve the design structure. This was before structured programming

became discussed more widely in industry journals and adopted by other

46companies. "

In addition to their central objective of standardization, the experience

of Sakata and other Hitachi managers in hardware production had encouraged

them to believe that improvements in productivity and quality (reductions in

bugs) were most likely to come from better tools and management systems.

In software, they viewed these as higher-level languages and modularization

for long-term maintenance, as well as visible charts and documentation for

better process control. Developing a "visualized" production control system

became an especially important goal, because software engineering did not

involve visible raw materials. To pursue these objectives, they decided to

analyze, and then attempt to manage, the overall process of software

development in much the same way as they saw hardware engineering and

19

manufacturing: They developed factory systems that provided controls for

production management, including man-pov,er, process, quality, and product

controls; and for product engineering, including standardization, design, and

inspection. The controls involved a mixture of manual and automated

support-tools and systems, with strong efforts during the late 1970s and

1980s toward computer-integrated production. ' (See Table)

Initially, the motivation for pursuing factory-type production and

product-engineering systems was to be able to inspect software products, like

any other product Hitachi manufactured, and thereby be able to guarantee

quality. But a side benefit of the system of controls, according to Shibata,

turned out to be the "minimization of problems." This has resulted in

significant improvements in productivity, thus indirectly addressing the

shortage of skilled programmers. °

Process Flow and Organization

The factory organization contained departments and functions similar tc

those in hardware manufacturing plants: product planning, inspection,

engineering, accounting, and general affairs, as well as training. Hitachi

managers did not view the factory organization as static; over time, they

consolidated some functional areas, added design departments as software

technology evolved (such as for artificial intelligence and computer graphics),

and centralized all large-scale custom applications (railways, banking,

industrial) development in a second facility, the Omori Software Works.

Hitachi engineers conceived of the software development process in

much the same way as other software engineers around the world: as

primarily composed of design and testing activities. Data on man-pov\er

20

allocations (total number of workers) per process at Hitachi Software Works

ca. 1985 indicates this is an accurate conceptualization: roughly 50 to 55%

went into planning and design, 5% to coding, 30-35% to debugging, and about

10% to inspection. ^

The organizations and process flows were somewhat different for

systems software as opposed to applications software. As seen in the table,

the Software Works began with three design departments for distinct types

of programs: system development (custom applications engineering), system

programs (basic software), and on-line programs (large-scale real-time

applications programs for the National Railways, NT&T, banks, and other

industrial or institutional customers). For systems software, the design

departments were responsible for design, program construction (coding), and

debugging, with inspection done by a separate department. At Omori,

however, high level design was done by systems engineering departments

specializing in different industries or functional areas, and this was

separated from program construction and system testing. In this clearer

division of labor between design and "manufacturing," according to Shibata,

Omori operated more like a "factory." There was a division of labor for

systems software as well in the sense that younger programmers were asked

to do coding, but there was no organizational separation of design and

program construction as at Omori.
^"

21

SOFTWARE PROCESS FLOW AND DIVISION OF LABOR^ ^

A SYSTEMS SOFTWARE (Hitachi Software Works)

Pesig n Depa rtments
Basic Design
Functional Design
Structural Design
Coding
Stand-Alone Debugging
Combinational Debugging
Comprehensive Debugging

Inspectio n Department
Initial Inspection Planning

Documentation Planning

Inspection Program Compilation

Final Product Inspection

B. CUSTOM APPLICATIONS SOFTWARE (Omori Software Works)

Sy s t

e

m Enqinee r

i

nq Departments
System Proposal Compilation
Demonstration
Estimate

P n>g ramm i ng Depa rtments
System Construction/Consultation
System Design
Program Implementation
Conversion
System Test

Follow-Up Service

Inspect io n an d Quality Assurance
Final Inspection

22

SOFTWARE FACTORY ORGANIZATIONAL EVOLUTION

A. Hitachi Software Works 1969 Organization Chart^^

DESIGN DEPARTMENTS ADMINISTRATIVE SECTIONS

SYSTEM DEVELOPMENT
Design Groups (6)

SYSTEM PROGRAMS
Planning Group
Design Groups (2)

ON-LINE PROGRAMS
National Railways (2 Groups)
NT&T (4 Groups)
Banking (2 Groups)
Government (1 Group)

Administration
Inspection
Engineering
Accounting and Control

General Affairs

COMPUTER TECHNOLOGY SCHOOL

B. Hitachi Software Works 1986 Organization Chart^-^

Product Planning Department

DESIGN DEPARTMENTS:
No. 1 Systems Programming
No. 2 Systems Programming
Database Programming
Data Communications Programming
Language Processor
Artificial Intelligence

Computer Graphics
Small-Scale Systems Programming

OTHER DEPARTMENTS:
Engineering
Documentation/Manual Development
NT&T Information Processing Systems
Inspection
Computer Center Service
Software Education Center
General Administration
Purchasing
Accounting and Control
Software Technology Center

C. Onrori Software Works 1987 Organizational Structure and Functions ^"^

SYSTEM ENGINEERING DEPARTMENTSPROGRAMMING DEPARTMENTS
Banking Analysis, Planning, Design
Media Implementation
Hospitals Inspection & Quality Assurance
Local Government
Industrial OTHER DEPARTMENTS
Distribution Program Support
Accounting Contract Service Program
Payroll Technical Support Center
Networks System Design Automation
Tool Development Computer Center

System Simulation Test

23

A flexible aspect of both factories, however, was the ability of

managers to move personnel freely between among groups within a

department, such as if problems arose on a given project. For example,

departments in Hitachi Software Works generally had between 500 and 600

people, with the NTlT department being the largest (around 900);

departments were then organized into groups of about 100 programmers, with

sub-groups of about 30 members. Managers could also appeal to engineering

groups within each department to add manpower to help solve project- related

difficulties, or they could appeal to the Engineering Department and the

Software Technology Center for problems or develop tools considered to have

factory-wide relevance. "^

Staff Dep a rtmcnts and Functions

PRODUCT PLANNING

The Product Planning Department in the Software Works was launched

in 1970 to centralize planning activities dispersed among the system program

department, the large-scale program area, and the administration (control)

section. Responsibilities included planning for products such as nev\

operating systems, beginning with OS7, but also for exports In 1974, for

example, the department set up promotion conferences to determine policy

for Hitachi's M series, which Hitachi was designed to compete directly with

the IBM 370 family. These activities included preparing for OEM exports to

Itel in the U.S. and studying how to make the Hitachi hardware fully IBM

compatible. To assist in this effort, Hitachi also established in 1972 a

Computer Liaison Office in Mountain View, California, which the Product

Planning Department in the Software Works administered directly. This

24

office served as an "information pipeline" on IBM, replacing RCA, and in

1978 was absorbed by the San Francisco office of Hitachi America. " In the

late 1970s, the department became involved in product pricing as Hitachi

unbundled software from hardware, and in administration of overseas

technical contracts. '

ENGINEERING (PRODUCTION ADMINISTRATION)

This department originated in the engineering department, software

section, of the Kanagawa Works, and was moved in 1970 to the Software

Works. It began with two sections (engineering and administration) and 36

members. The engineering section served largely as a liaison group for the

computer division, other Hitachi factories, and subcontractors, providing

explanations and documentation on software-product pricing and progress on

product development. The administration section was responsible for

production management and process control (scheduling), as well as

administration of the computer and software centers attached to the factory.

This group set standard times and was responsible for cost control and

studying software productivity. It also helped develop control systems to

monitor design and inspection, as well as other tools, in conjunction with

the System Development Laboratory (established in 1975) and the Software

Technology Center (established in 198X). General-use tools were always paid

for out of the factory budget. Other sections of the original engineering

department later became full departments: procurement, which purchased

software from overseas and Japanese subcontractors; and the

CO
documentation/manuals section.''"

25

INSPECTION

This department originated with the SoftvNare Works and has followed

the strategy of developing inspection and control techniques based on actual

operating data. The manager of this department reports directly to the

factory head, as in all Hitachi factories. In addition to overseeing all testing

and debugging, an important tool has been the "needle probe," to identify

bugs while a program is in development and provide data to revise estimates

and formulate countermeasures to correct the problems. The inspection

department also operated the SST, established in 1977, which simulated user

conditions and used input/output and circuit defect generators to detect

bugs; organized the design review task forces, which include reviewers from

several different departments, including inspection; evaluated the performance

of programs at customer locations; took charge of maintenance; compiled

information on bugs and developed methods of testing for potential defects

and developed the factory's bug forecasting system. In addition, the

department had responsibilities for programmer training and helped develop

support tools. ^^

ACCOUNTING AND CONTROL

The members of this department set up and have maintained the

factory's cost accounting system. A major problem in the beginning was

how to treat orders, sales, and income. Management then decided to total

development expenses for systems software after a project's completion and

then charge these back to the Kanagawa Works. Payments for applications

programs for customers were included with the hardware; the Software Works

received payments by submitting in-house order tickets. Essential to the

26

calculations were the standard times for all software development activities,

set by the engineering (production administration) department. ^

SYSTEMS ADMINISTRATION (OMORI SOFTWARE WORKS)

This department originated in 1973, from the computer division's

systems consultation department, which developed large-scale applications

programs for the government and private customers. Fujimoto, the head of

the Software Works, and Sakata, the deputy general manager, moved this

divisional department to the Software Works as part of their effort to

centralize and standardize design activities, in preparation for the

introduction of the first M-series mainframes in 1974, which required

additional personnel to rewrite programs to run on them. The institution of

SC (system consultation) standard times corresponded to the move of this

department to the Software Works. The department also took over

responsibilities for financial controls for leased systems."' Hitachi then

moved the systems administration department to the Omori, Tokyo site, and

in 1985 made this a separate factory for applications programs.

MANPOWER CONTROL

The basic tool for manpower control in Hitachi's software factories is

standard times for all phases of the development process, beginning with

basic design. Since the establishment of the Software Works, a committee of

Hitachi managers has revised these once per year, to keep up with

improvements in programmer productivity. This attempt to study and

discipline an engineering activity began in the mid-1960s, when programmers

in the Kanagawa Works began recording data on computer time and personnel

27

required to develop particular programs. Guided by Shibata, Hitachi engineers

had enough actual data and confidence by 1967 to establish formal

procedures for estimating both labor and machine hours for program

development, initially placing this information on job tickets. The

inauguration of the Softv^a^e Works in 1969 then made it necessary to adhere

to Hitachi s company-wide budgeting and cost-accounting procedures, which

used standard times as basic accounting units for all engineering and

production activities.

"We were perplexed," recalled Sakata, but they set up a committee that

succeeded in drawing up formal standard times for each activity and for

each class of programmers, based on their training and experience. The

standard times consisted of debugged program steps per day or month, and

took into account factors such as the type of program being written and the

language being used. They collected the data in a "red book" that became,

in the early 1S70s, the basis for the factory's current cost accounting and

planning systems. Hitachi instituted these controls for software several

years before IBM began promoting the use of standard times, although the

System Development Corporation had published some materials discussing how

to devise standard times for software during 1967-1968 and these provided

several suggestions to Shibata. °^

Hitachi managers early on realized that systems software development

required a different set of activities than customized applications software.

To deal with this problem, they established SC (system consultation) standard

times in 1973. The systems engineering groups also developed separate

tools and systems such as HIPACE (Hitachi Phased Approach for High

Productive Computer System Engineering) to standardize their proposals and

28

to aid in design automation. The evolution of different standards and tools

made it relatively easy to move the applications departments to the

independent Omori site.

Planning and scheduling improved significantly soon after the factory

was established, through the compilation of actual data for each phase of

the development process, and continual refinement of planning techniques.

Accurate programmer classifications were considered essential to both the

planning and budgeting systems, which, for each project, took into account

the experience and potential output of team members. Programmer

classifications were determined largely but not entirely by their length of

service in the company. Seniority was a fairly accurate indicator of

performance, according to Sakata, because actual data showed that coding

speed increased markedly with experience. But, at any given time, only

between 20 and 30 percent of programmers actually met standard times, and

it generally took 2 to 3 years to reach standard times for coding (and longer

for design)

.

Programmers were also tested before managers raised their official

classifications. They were made to take certain courses, and then tested at

the completion of each course. In addition, all programmers twice a year

were tested through competition in contests, where they had to write flow

charts and code to solve certain problems. The contests involved both

individuals and groups, and management recorded the results in a data base

as a reference for future planning and scheduling.^

PROCESS CONTROL

Establishing a capability for accurate planning and process control were

29

his most enduring problems, claimed Sakata. These were especially important

because Hitachi s computer division sales department would always announce

new computer products and give out specifications before the Software

Works had developed the systems software. This placed a tremendous burden

on softvsare managers to meet their targets. Customers also wrote their own

applications programs, based on the advance specifications, and became very

upset if the systems software was delayed or if Hitachi changed the

specifications .

The Software Works' process-control system monitors the status of each

project through documents covering the first half of the development

process. Large projects include several hundred people, divided into teams of

about thirty with responsibilities parcelled out equally to team members.

Time and manpower estimates rely on actual data for past projects, including

the annually revised standard times.

For example, scheduling for a given project first involves the system

architects determining the general functional specifications and how many

program steps this will take. This is the most difficult part of scheduling,

according to Shibata, and thus the most error prone. Then they look to

standard times data for each phase of the development process and calculate

a standard time objective for the entire project. They next look at the skill

levels and particular programming experiences of the employees available for

the project. Using the standard times as a reference, they work out a

schedule based on required program steps, man-months adjusted for skill and

experience levels, and computer time.

At the inception of the factory, managers began using simple arrow

diagrams and then a computerized diagramming tool, PERT Network System

30

(PNET), to keep track of projects and draw up a master schedule. Hitachi

linked this experimentally with a planning simulation program in 1971, HICAP

(Hitachi Computer- Aided Planning). It did not prove to be especially

accurate, however, and involved other problems. Most serious was that

letting the computer control the schedule was too lax, since parts of a

program often have to be completed before other work can continue;

managers preferred to deal with these types of problems through personal

negotiations. In addition, during project progress meetings (formalized in

1973-1974 and which met once a month to discuss problems and potential

solutions), they found it convenient to use arrow diagrams on paper, because

of all the schedule changes they usually made. Hitachi thus went back to

manually written arrow diagrams for process planning, until the factory

introduced CAPS as an on-line production control system in 1978 to track

the actual progress of completing modules and documentation, and of

debugging and design review. This system involved the assignment of every

programmer to a specific terminal as well as a central data base to keep

track of the process flow, mainly through the completion of documentation.""'

In the debugging process, the basic control mechanism has been check

lists, which indicate problems and progress toward solutions, including from

1973-1974 a system of tickets (or tags) for accompanying documents. "°

Hitachi used PX tickets to accompany daily control charts during debugging,

and PY tickets for daily control charts during inspection. PZ tickets

accompanied control charts identifying specific defects or bugs, while PW

tickets designated control charts used during planning, design, and coding.

Other tickets indicated the state of work-in-process, and progress in

correcting defects. Overall monitoring of the debugging process was also

31

incorporated within CAPS.

To determine what percentage of a project has been completed,

managers submit reports on completion of modules. If a program is designed

to have 100 modules, for example, and 80 are completed, then they consider

the project 8Cfc done. One of the results of the control systems used at

the Softv\are Works is that, if projects are falling behind, managers can add

people -- not just anyone, but the best people available -- and generally

finish close to the target. This was because the factory environment

facilitated rapid understanding of projects."^ In contrast, IBM's experiences

with the 360 operating system development was that adding people tended to

make projects later, due to the communication time needed to familiarize

new personnel .

^

QUALITY CONTROL

Hitachi engineers defined quality control for software as, first,

preventing the creation of bugs in the design stage, and, second, meeting

performance specifications. These two factors directly impact the customer

and so, according to Shibata, Hitachi gave them primary importance. Two

other features of quality that directly affected the manufacturer were

maintainability and portability of a program, so Hitachi also tracked these

measures secondarily.' To improve quality control in the mid-1970s,

Sakata, Shibata, and other factory managers decided to adopt structured

design methods, high-level languages, and formal systems for quality and

process control, and product engineering. These facilitated long-term

maintenance as well as short-term productivity by making it possible to

divide job tasks more easily and to test completed modules and programs.

32

In 1971, the factory instituted control charts indicating the generation

of bugs and status of corrections, as well as a "needle probe" technique,

developed by Sakata, to test a program being developed when about 60% was

completed, and then revise the overall bug estimates.'^ In 1972, Hitachi

added another ticket-control system: P tickets to designate program

changes, and B tickets to indicate corrects of bugs. In 1974, these were

linked to the PX-PW-PZ process-control ticket system, to simplify project

control and estimating. At the same time, the needle probe tool and data on

actual bug generation for different types of programs became the basis of a

time-series statistical program for forecasting bugs instituted in 1975,

FORCST. This also provided programmers with examples of bugs in different

types of software, to help them avoid making similar errors.'"^ Included as

part of the quality control effort were also design review sessions from

around 1974 (particularly used for applications programs where Hitachi had

to meet customer specifications). In addition, the system-leaning practices,

focusing on particular system design problems and solutions that seemed

instructive to present to all employees in the Software Works, supplemented

other quality assurance activities.

Following the practices of other Hitachi factories, the Software Works,

with assistance of engineers from the System Development Laboratory,

formalized as well as automated its quality control tools and procedures

during the mid-1980s, referring to its system as "SQE" (Software Quality

Evaluation). This maximized not subjective measures of quality but program

"reliability" (shinraisei , and consisted of a set of procedures and tools to

"support and improve" reliability by determining the number of defects and

the software and providing quick analysis of the causes of errors and then

33

feedbacl- to make corrections and prevent similar errors by predicting and

correcting errors before products reach the customer. The objective was

continual improvement in the level of "built- in" (tsukurikonii) design quality.

Previously, quality control primarily involved the statistical evaluations of

finished programs, without systematic error analysis, feedback into design, or

control over future design efforts.

Two basic policies underlay the SQE system. One was that the error

analysis should involve a broad number of measures and sufficient

information to allow useful feedback for all phases of development, from

initial design through inspection. These measures, tools, and analysis

techniques \^e^e also supposed to be sufficiently flexible to adapt to changes

in programming environments over time. The second was that the entire set

of procedures and tools should be easy to use for everyone involved in

development of the software; therefore, Hitachi made the tools available for

personal computers. It should be noted that these two characteristics--

defect analysis and feedback to design to build quality into future products,

and simplification of tools and procedures to make sure they were used

widely, insuring at least some measure of success -- were both characteristic

of Japanese quality control practices in other "hard" manufacturing

7f>
industries .

'°

The basic procedure followed was to (1) use reports on bugs from

customers to estimate how many latent defects existed, (2)combine this

information with in-house data on bugs uncovered, (3) predict the number of

defects in new, similar products, and (4) attempt to locate these "built-in

errors" through testing. As long as a product type and its user environment,

as well as its workforce, did not change too much, Hitachi engineers felt

34

confident they could use historical data to predict latent bugs in new

programs, particularly since the data captured made it possible to revise

estimates continually.

Several simple statistics were considered most useful in estimating and

analyzing errors: development size (number of steps or lines of code);

program processing content and structure; program development

configuration; percent of the program written in high-level languages;

number of design man-hours given the size of the program; number of test

man-hours given the size of the program; number of checklist items given

the size of the program; comparison of the estimated and actual sizes of the

program; patterns formed by bugs detected.

The SQE tool set consisted of three subsystems -- design quality

estimation, test quality estimation, and comprehensive quality estimation--

each covering different phases of the development process.

The design quality estimation subsystem was first used in the planning

stage. For design reliability, first, a table was drawn up for each new

program listing the number of bugs expected to be in the software and the

number detected as development progressed. Second, a reliability checklist

was used to make sure the software performed the basic functions its was

designed for. Third, as part of the error analysis procedures, a "quality

objectives establishment" program was written to model the occurrence of

bugs, using coefficients drawn from historical data on factors such as

program size, processing content and structure, percent written in high-level

languages, number of man-hours spent on design and testing.

The test quality estimation subsystem was use to evaluate quality during

the different testing steps. A QC graph chart actual bugs detected on one

35

axis against estimated bugs likely to occur in different stages; this made it

possible to monitor visually progress in error detection, as well as provide

immediate "feedback" to design and "feedforward" to improve later testing--

before a product was completed. To track the data on actual bugs versus

estimates at the completion of each development phase, and to generate

estimates on how many bugs were likely to remain undetected, Hitachi used

a program called FRCST.

The comprehensive quality estimation subsystem was used in final

inspection. This used data generated by the other two subsystems to

evaluate a program on the basis of eight criteria covering product design,

product quality, and operating quality.

PRODUCT CONTROL

This consisted of a formal system, started by the system program

department in the Kanagawa Works, for both storing program source files

and accompanying documentation for future reference, either to correct bugs

or to add enhancements. In 1976, Hitachi started the practice of keeping

copies of all programs in a separate location to guard against destruction

from earthquakes or accidents.''

STANDARDIZATION

In addition to standard times, from the inception of the Software

Works, Hitachi managers made "job standardization" a top priority. They did

not establish long-term fixed standards, because personnel and technology

were changing continually. But the standards establishment committee

initially met almost weekly to determine what short-term work standards

36

should be and codified these as the Hitachi Software Standards (HSS). This

entire effort involved a deliberate attempt to standardize software as Hitachi

factories standardized the development and production of material products;

specifically, managers tried to prevent programmers from designing, coding,

and documenting software products in different ways. In Shibata's opinion,

standardization of the entire process flow was probably the most important

technique Hitachi found to raise productivity, particularly when combined

with high-level languages and group-programming support systems such as

CAPS. The fewer bugs that resulted was one advantage; another was that

standardized documentation made inspection easier."

According to the official factory history, the standardization effort was

extremely difficult and not very successful at first. Over time, however,

factory managers succeeded: The effort depended on the establishment of a

structured design method in 1973 to facilitate program maintenance and

portability, despite the lengthier programs that often resulted.'^ At the

same time, the factory instituted a standardized "components [modules]

control system" and then in 1977 a general-use software tools registration

and control system. Meanwhile, the factory published standard coding

manuals for each programming language used in the facility."^

The structured programming method Hitachi adopted began with a

standardized approach to design: (1) determination of user requirements; (2)

determination of external specifications (the program's logic structure); (3)

determination of internal specifications (the program's "physical" structure);

(4) manufacturing (coding); and (5) inspection (testing and debugging). The

logic structure represented the functional layers of a program and the

interconnections (input/output) between those layers. First, programmers

37

wrote specifications in natural language and used an in-house tool, CEG

(Cause-Effect Graph), and decision tables to identify inconsistencies or flavss

in the logic structure. They then broke down the object function into

partial functions to develop algorithms to implement the desired

specifications. The physical structure represented the actual modules making

up the program (their hierarchical arrangement as well as interconnections)

and data (data hierarchies, data and module interconnections, and data-point

relationships) .

Hitachi's major design objectives were (1) to match the physical

structure as closely as possible to the logic structure; (2) to standardize the

physical structure; and (3) to make the elements of the physical structure as

independent as possible. This latter principle required each module to have

only one input and one output, and each module to be in effect a "closed

subroutine " Documentation also followed a standardized format. In addition,

several support tools relied directly on the standardized design structures.

AGENT (Automated Generator of External Test Cases), for example,

automatically generated test items from the cause-effect diagrams and served

as a logic-design support tool. ADDS (Automated Design and Documentation

System) served as a design-support tool for the physical structure by

analyzing design information and generating documents in graphic form.°

Related to standardization was the capability to reuse modules

developed for both system and applications programs. Since standard times

did not assume a programmer would reuse software, doing this allowed

programmers to meet or surpass standard times, and helped managers meet

cost or scheduling targets more easily than without reusing modules.

Potential reusability was considered at the very beginning of designing a

38

program, and facilitated through the standardization of design through

structured programming.

The tradeoffs, according to Shibata, involved performance and

enhancements; structured programs designed to contain reusable parts did not

always perform as well as newly written programs. In fact, a general rule

Hitachi used was that, if they had to revise 30% of the code in a module,

then, in terms of functional performance, it was better to write the module

needed from scratch. Only in 1985 did Hitachi managers require programmers

to start keeping data on how much code they were reusing, although survey

data in the previous paper ranked Hitachi in the high category for this

measure, exceeded only by Toshiba, which was over 50% (See Appendix table

on "Reusability Analysis"). For new releases of systems software, the

reusability rate was about 90%.°"^ The most opportunities for reusability,

however, Hitachi viewed as being in applications programs.

In addition, considered as part of the standardization and reusability

effort were a series of systems to facilitate the transfer of programs among

different machines. HIPAL (Hitachi Program Application Library), an on-line

data base of applications programs and utilities, was first set up within the

computer division in 1968 and then transferred to the Software Works in

1970. A tool for translating programs for different machines, HITRAN

(Hitachi Translation Program Library), was separated from the HIPAL system

in 1977. Both of these were for in-house use. HILINK (Hitachi Users'

Program Library Network) was a separate system launched in 1975 that made

it possible for Hitachi customers to exchange programs they had written.'"

TRAINING

39

Training was integral to standardization and the general success of the

factory effort. Consequently, an education program was set up along with

the Softv.are Works. Hitachi hired both software engineers who had studied

in the U.S., as well as high-school graduates which the company had to tram

itself. But the expansion of Software Works personnel from 348 in 1959 to

over 900 in 1971 created a severe strain on instructors; a temporary solution

was to make greater use of large meetings, as well as use the results of

tests based on the Hitachi Software Standards and contests among the

programmers, to judge the abilities of programmers.^ Managers recorded

the results of these tests and contests and used them (along with length-of-

service information) to classify programmers as an aid in estimating time and

cost schedules."^

The education and classification scheme extended for 12 years in

Hitachi, after which individuals received the grade of chief programmer or

system engineer, depending on whether they were in systems software or

applications software. During the first year in the Software Vvorks,

employees were classified as trainees and took courses in introductory

computer science and basic programming. They remained classified as

"junior" programmers or system engineers from the second through fifth

years in the factory, during which time they received additional courses.

Programmers with between six and ten years of experience were designated

junior leaders and received middle-level courses. Between their ninth and

tenth years, programmers rose to the status of planners or sub-leaders, while

undergoing advanced training. Chief programmers continued their education

and studied subjects such as software reliability, use of design review,

or
semiconductors, and computer network technology.

40

There was a distinction between the systems and applications factories,

however. In Hitachi Software Works, where there was no organizational

separation of program design from program construction (implementation),

young employees who started out doing coding eventually could rise up to

become designers. In Omori, however, there were separate career paths for

system engineers versus specialists in implementation. Within the

implementation area, a young employee might move up from doing simple

coding to detailed design and planning, but would not normally switch to the

system engineering area. The reason was that Hitachi managers felt

implementation and systems engineering for outside customers required

specific and different sets of skills, in which employees should specialize,

although all systems engineers generally spent about two years working in

program implementation before moving over to the high-level design area."'

IV. THE TOOL SET

The initial essence of the factory infrastructure at Hitachi was

primarily a combination of policies to promote standardization and the use of

"good" practices such as structured design. A set of tools to facilitate

division of labor and group programming evolved afterward, largely in

response to several problems in software management that appeared to defy

complete solution through management alone. A Hitachi memorandum cited

six areas of specific concern:

1. The invisible nature of the production process

2. Increasing scale, complexity, and diversification of program functions

41

3. Pressure for higher reliability

4. Difficulty of improving production efficiency

5. Shortage of software designers, especially experienced designers, and

managers

6. Increased work hours for management. °

The response engineers at Hitachi's Systems Development Laboratory

and at the Software Works arrived at during the late 1970s was to develop

computer-aided systems for functional support (such as design, coding, and

testing) and group programming in general. The factory's policies for

standardization, design, and inspection functions for systems software were

integrated through CASD (Computer-Aided Software Development System);

and the policies for man-power, process, and quality control through CAPS

(Computer-Aided Production Control System for Software). Both CASD and

CAPS relied on various subsystems or support tools, and standardized

methods. They themselves also evolved into a broader effort labelled ICAS

(Integrated Computer-Aided Software Engineering System), aimed at full">

integrating product-engineering and production-management tools and

act i vities .

°^ The System Development Laboratory has directed the

development of these technologies, with the cooperation of the Engineering

Department in the Software Works in areas related to production and quality

control. 90

Computer-Aided Software Development System (CASD)

CASD was mainly a response to the increasing size and complexity of

software programs and grew out of a design and debugging tool Hitachi

42

developed during 1975-1977 to centralize controls for supporting and

standardizing design through the use of structured programming, high-level

languages for system construction, multiple and remote computer sites, and a

central program library.^' After 1979 it became also a tool for reliability

improvement, evolving increasingly in parallel and with linkages to CAPS,

which standardizes a variety of technologies and activities to improve

control over manpower planning and scheduling as well as cost, process

flows, and quality. ^

There were two basic assumptions underlying CASD: One was that

labor productivity in software could be improved by standardizing the tasks

in each phase of development and then utilizing support tools. Second was

that performance could be improved not only through standardization but

also through automating these support tools for each phase of the

development process and then integrating them into a single system. This

was an attempt, in the words of the architects of the system, to "modernize"

as much as possible of what has usually been considered a manual activity,

supported only with tools for discrete parts of the development process.^''

Structurally, CASD included three interconnected support subsystems,

for design, programming, and testing. The design-support subsystem

constructed the design documentation and analyzed the design specifications.

The programming-support subsystem made it possible to write the system

using a high-level language, and analyzed the results. The testing-support

subsystem then helped devise the test items and run the program being

tested, as well as evaluate the comprehensiveness of the tests after they

were run.

The design-support subsystem relied on a structured-programming tool

43

called Automated Design and Documentation System (ADDS) as well as

Hitachi's Module Design Language (MDL). MDL made it possible to

standardize and formalize design specifications at the module level; the ADDS

system placed this documentation, as well as corrections or changes, into a

central database, and checked for obvious errors, thereby assisting in the

design review process. Printers and terminals provided the capability to

"visualize' the design documentation. The tables and charts produced by

ADDS covered areas such as the functional layered structure of a program,

module specifications, the data flow path, module connections, and summaries

of the modules, functions, and changes.

The programming-support subsystem relied on a standardized language

for coding, the Hitachi Programming Language (HPL). This also facilitated

design review. HPL's main components were a compiler and what H'tachi

called the Static Code Analysis (SCAN) system. Coding reviews were supposed

to catch program bugs as early as possible and also provide a way to

examine the program logic. Hitachi engineers were frustrated because this

was largely a manual process, and was affected significantly by the different

levels of ability of the programmers. To address these problems, the SCAN

system received static-code analysis data from the HPL compiler and put out

various reports for use in the coding review. These reports analyzed the

program control structure in graphic form, the program's data structure, and

the module control structure and relationship between modules and data.

Then, SCAN checked the results of these analyses with design information

from ADDS. 9^

The testing-support subsystem was intended to tackle problems of

quality control and productivity simultaneously by facilitating the

44

identification of bugs and, correspondingly, the reduction of man-hours

devoted to testing. This subsystem had four objectives. One was to clarify

in detail the design specifications, on the assumption that the test items had

to determine the conformance of the program to its specifications. Another

was to establish testing standards for a given program, recognizing that it

was impossible to test all potential operating conditions. In addition, the

subsystem was designed to automate as much of the testing process as

possible, as well as evaluate the comprehensiveness of the tests. Several

other tools -- Cause and Effect Graphs (CEG), Automated Generator of

External Test Cases (AGENT), HPL Test and Debugging system (HPLTD), and

Test Coverage Manager (TESCO) -- were integrated within the system to

perform these objectives.^"

Computer-Aided Production Control System (CAPS)

As with CASD, CAPS development was inspired by several persistent

problems. Hitachi managers wanted greater standardization and control of

the process flow, delivery times, quality, and overall costs. In particular,

CAPS focused on the following areas:

1. Collection and analysis of management or process-control data in

accordance with the structure of a program

2. Chronological analysis of each type of process-control data

3. Imposition of controls on the process limits of design documentation

4. Japanese character and graphic output through a non-impact printer

5. Multifaceted quality analysis

6. Construction of a data base for actual data and standard times

45

7. Automatic collection of data

8. Capability for on-line instantaneous utilization of the automated

output. ^^

The manual procedures and computer-aided production-control tools

introduced at the Kanagawa Works and then the Software Works between

1967 and 1976 provided the foundation for CAPS, of which Hitachi completed

an initial version between 1977 and 1930, by establishing a formal means of

collecting and analyzing both historical and current data on programmer

productivity and project management. The incremental evolution of these

management policies and tools is clearly evident in the following chronology

of major milestones preceding the start of CAPS development. °

1967 Completion of a system for computing labor and machine hours for

software development (Kanagawa Works)

1969 Establishment of standard times for software development (Software
Works)

1971 Establishment of programmer ability coefficients and amendments of

standard times

Completion of an estimation and budget system using standard times

and a simulation system for resource planning

Completion of a PERT Network System (PNET), an automatic
diagramming system for schedule control

Implementation of a manual system for time-series analysis of test

processing and quality control

1972 Completion of a system for budget- vs . -actual expenditure control for

man-hours and machine-hours for each project and department

Implementation of a manual system for document schedule control

1973 Implementation of a manual system for job process control

Implementation of a manual system for productivity analysis and

46

control

1974 Completion of a productivity analysis system for each project and
department

1975 Implementation of a manual system for defect factor analysis and
quality control

1976 Development of a time-series statistical program for forecasting
defects (FORCST)

Establishment of a standard scheduling system

Implementation of structured design methods

Central to CAPS was the standardization and clarification of program

structures; this the factory accomplished by requiring programmers to use

structured design methods. But successful implementation of the computer-

aided features of the control system depended equally on several

improvements in hardware technology. One was high-performance computing

power, so that numerous programmers could be on terminals connected to the

same data bases; this was done by installing Hitachi's largest mainframes, the

M-180 and M-200I-I. CAPS also demanded increased storage capacity for the

historical data base recording past data and present data, and comparing

these with standard times; this came through another Hitachi product, MSS

(Mass Storage System). To use MSS efficiently required a large-scale data-

base management system; Hitachi filled this gap with the development of

several systems, most notably ADM (Adaptable Data Manager). Managers

also wanted simple visual graphic output, to make it easier to follow the

process flow; this was achieved through the use of non-impact laser beam

printers that printed Japanese characters as well as English. In addition,

managers wanted to formalize the development process for new software

products and then shorten the time needed for program development; Hitachi

47

has been most successful in accomplishing this in the applications area, with

a series of procedures and tools such as EAGLE and HIPACE, as well as

CORAL (Customer-Oriented Application Program Development System), and

CANDO (a prototyping tool). These are used primarily in Omon and

applications subsidiaries. ^

An example of this mixing of management policy and computer

technology can be seen in the incorporation of standard times into CAPS.

Controlling programmer time and machine time was considered critical

because, according to Shibata and Yokoyama, these accounted for over 90%

of software production costs. Sakata had earlier decided it was necessary to

establish standard-time estimates for man-days and computer time. Shibata

and his contemporaries, however, wanted to incorporate these into a

computerized system that would enable Hitachi to follow the time estimates

more closely in the actual production process. Standard times required,

first, determining job standards and, second, classifying programmers by

ability; managers such as Shibata wanted to be comprehensive but stressed

that standard times be as simple as possible, so they would be easy to re\ise

as well as to simulate, while still covering most of the appropriate criteria.

To facilitate the accuracy and utilization of the standard times, for each

project, estimates and actual data were fed as the project progressed into a

central production data base from on-line terminals. This made it possible

to compare progress to estimates and revise estimates during the project.

Under CAPS ca , 1980, data points included the following:

1. type of object machine (large, medium, small, peripheral)

2. type of program (control program, on-line user control, generator,

simulator, etc.

48

3. process phase (basic design, functional design, etc.)

4. degree of difficulty (newness)

5. production volume (number of steps)

6. language being used (assembler, COBOL, FORTRAN, etc.)

7. machine being used

In addition, cost overruns and late deliveries were the result, Shibata

and Yokoyama believed, of inaccurate daily scheduling and planning. To

correct this problem, Hitachi engineers wrote an algorithm to calculate

manpower needs and schedules automatically. This took two factors into

consideration: (1) actual working hours of the committed programmers; (2)

the minimum necessary times required for different phases for each type of

software program and standard times. Another assumption at Hitachi was

that there was a relationship between the progress of a software project and

its quality; an ideal system would thus integrate production management and

quality control data. Therefore, they designed CAPS to estimate

automatically the number of defects likely for each phase of development,

according to the type of program, number of steps, items tested, and other

factors, based on actual data.'^^

CAPS relied completely on the use of structured programming

techniques, and then used this design technology to make the structure of

programs visible. A data base control system designed for structured

programs divided into modules, ADM (Adaptable Data Manager), automatically

checked actual progress versus estimates, as each module of a program was

completed. ADM then produced a detailed printout tracking the schedules for

design, testing, and inspection, with additional information on documentation

49

and quality (errors in the specifications, design documents, or manuals; bugs

found in test items and coding; analysis of the causes of bugs and

countermeasures) . Three subsystems -- for documentation daily-schedule

control, testing preparations and programming progress control, and testing,

bugging, and inspection progress control -- were also integrated within CAPS

and provided additional printouts v\ith information and analysis. In this

sense, CAPS was more than just a system for production management that

provided a visual capability for process monitoring; it also analyzed data and

served as a tool for quality control.

As a production and quality control system, CAPS was not fully

integrated with CASD but was developed in parallel. For example, CASD

output files were not automatically sent to the CAPS production database

source file; nor did CASD automatically send corrected modules to CAPS.

Automating the information flow was, however, a major area of development

and central to the ICAS program. '^"^ For example, between 19S3 and 19E3,

Hitachi completed links betvseen the two systems making it possible to

register program modules in the CAPS program library automatically from

CASD, and to automatically feed data on bugs from CASD to CAPS.

Integ rated Comp uter-Aided Software En gineering System (ICAS)

ICAS also represented a mixture of technology and standardized

methods and procedures), but was aimed at incorporating even more advanced

methods and computer-aided tools. It contained four main features: (1) an

integrated methodology for the structuring and abstraction of software, using

a formal language and graphic notation, throughout a life cycle defined as

need analysis, requirement definition, planning, programming, testing.

50

operation and maintenance; (2) interactive tools for each phase of the life-

cycle; (3) an "intelligent" workbench, using a personal computer, allowing

programmers to use the tools by having dialogues with the computers; and

(4) complete management of information for all phases using a relational

database. The basic philosophy of this approach was to develop not

"methodology-free" tools, leaving it up to the user to decide on which

development methodology to employ, but to present computer-aided tools

with a "fixed development methodology of multi-purpose use," allowing users

to develop software quickly by using the tools "without having to worry

about which methodology to apply."

Requirements definition involved stepwise refinement in the procedural,

functional, and logical description of the system being designed. From the

conceptual model, programmers determined the control structure, abstracted

data and formed data modules, and defined functional algorithms with only

three control elements -- sequence, repetition, and selection -- using PDL or

PAD (Problem Analysis Diagrams). ICAS then automatically converted the

functional algorithm into statements written in a programming language.

Several tools simplified needs analysis and description (PPDS--Planning

Procedure to Develop Systems and FRAME--FormaIized Requirements Analysis

Method), and requirements definition (RDL/RD (Requirement Definition

Language/Analyzer)

.

Design-aid tools included ADDS (Automated Design and Documentation

System) and MDL (Module Design Language), already part of CASD, as well

as PDL/PAD (Problem Design Language/Problem Analysis Diagram). PDL/PAD

was intended to automate coding and completely integrate design

documentation and source programs. it consisted of a program logic design

51

tool, based on structured programming, and a tool to convert automatically

design documents into high-level language source programs (PL/1), or vice-

versa. For example, departments writing in COBOL were able to automate as

much as 30V of coding tasks '^ In addition, DBDS (Database Design

System) was a tool for designing databases Test-aid tools included AGEKT,

TESCO, and CEG, discussed above. A Software Engineering Workbench

(SEWB) and a Softvsare Engineering Database (SEDB) provided an

infrastructure to use these tools in an integrated manner. The relational

database stored all data from each tool input into the computer.'^''

The quality control portions of ICAS we'-e in actual operation in the

Software Works as of 1986 as part of CASD. Other subsystems of ICAS

being refined at the Systems Development Laboratory, Hitachi Software

Works, and Omori Software Works were already in use for applications

software. Most important were HIFACE, the set of procedures and

methodologies to guide system design, and EAGLE (Effective Approach to

Achieving High Level Software Productivity), an automated system-

development support tool used to locate reusable modules from a parts

library. '^° EAGLE was also linked to the PAD system, making it possible

to generate nev\ modules from high-level designs while retrieving exisitng

modules for other functions from a parts database.'*^'

Even before complete integration within the ICAS project, HIPACE

provided a factory-type methodological infrastructure and EAGLE a factory-

type technological interface for applications development at Hitachi's Omori

facility and Hitachi Software Engineering .

''° Hitachi intended HIPACE to

reduce costs in customized applications development by facilitating

communication between the company's system engineers and customers and

52

applying well-defined, standardized procedures to system development and

project management. It set the process flow as follows: analysis, system

planning, system design, program design, program construction, test, transfer

(to customer), installation and evaluation. First, engineers used Structured

Data Flow diagrams (SDF) to analyze customer needs. Planning Procedure to

Develop System (PPDS) and Standard Procedure to Develop Systems (SPDS)

then provided documentation and project-management standards for each

phase of the development process. A set of worksheets referred to as Work

Breakdown Structure (WBS) provided the format for planning of the actual

design, programming, and testing tasks. To facilitate long-term maintenance

and reliability (and reusability), engineers then used HIPACE-SA for

structured analysis, HIPACE-SD for structured design, and HIPACE-SP for

structured programming (usually in COBOL or PL/1).^^

The EAGLE system extended the HIPACE methodology by adding four

computer-aided functions: (1) conversational language processing from system

design through testing, using easily understandable menus; (2) a central

database on design specifications and program implementation, as well as

project management (tracking information from the standardized work sheets

defined in the SPDS manual) to facilitate system development and

maintenance; (3) automated construction of new source programs from

standardized patterns ("skeletons") and components (sub-routines); and (4)

automatic compilation of maintenance documentation.

The process flow in using EAGLE was also clearly defined. The first

two steps are the analysis of data types and interrelationships and their

recording in a "data dictionary" database; this is followed by registration of

the system design and program documentation in a specifications database.

53

At this point, nevs standardized modules are identified and registered in a

central program parts library, and existing components are identified for the

system being developed, if applicable. This makes it possible to "assemble"

programs using the new and reused modules. Hitachi also makes these

standardized modules available as products with the EAGLE systems it sells

to customers, although company engineers have found that "data modules"

are easier to use than processing algorithms, which tend to be more difficult

to standardize. EAGLE next generates an outline of the program from the

detailed (module-level) specifications and then produces a source program.

The source program is then edited to add particular functions wanted by

individual users. Finally, test commands are automatically generated and

carried out in conversational language (Japanese) .

^ '^

Recent efforts (1984-1986) to develop the EAGLE system have focused

on making it both more flexible for meeting customer needs as well as more

appropriate to a factory environment stressing division of labor and maximal

use of standardized components. One the one hand, the conversational

interface has been improved; and the system now handles PL/1 and CORAL

(Customer-Oriented Application Program Development System -- a Hitachi

language for writing specifications in Japanese), in addition to COBOL. N'ew

software makes it possible for customers to design their own menus, rather

than use only the ones Hitachi provides, to add unique features to programs

being constructed. The system also can now be used to construct data-base

and data-communications programs, in addition to business-applications

programs

.

EAGLE has also been modified to work more smoothly in a time-sharing

environment, to allow more people to divide up the tasks of system

54

development and have better access to the library of reusable components. '
^

The overall result, according to Hitachi data, is that programs designed with

EAGLE generally show a 2.2-fold improvement in "productivity" (Hitachi

usually measures this by lines of code per programmer in a given time

period). As indicated in the table below, EAGLE also has shifted more

effort into system design and substantially reduced necessary for testing.

For a hypothetical program taking a year to develop without EAGLE, this

would mean a reduction in development time to 5.4 months, with testing

being reduced from 4.8 to 1.4 months and program implementation from 4.8

to 1.9 months. Around 1986-1987, the Omori Works also introduced a design

automation system using artificial intelligence techniques to automate some

of the system engineering tasks, such as documentation construction, data

retrieval for hardware and software configurations, and system simulation .' ^^

Without EAGLE With EAGLE "*^^

Development 100 (12 months) 45 (5.4 months)

System
Design 20% (2.4) 38% (2.1)

Program
Implementation 40% (4.8) 36% (1.9)

Test 40% (4.8) 26% (1.4)

Another system to save on design time is APP (Applicable Program

Products), which is a library of basic programs for different applications

that, if appropriate for a particular customer, Hitachi will use as a basis for

building semi-customized systems. The objective of this approach was to cut

costs in development, shorten the time required, and guarantee at least

55

"stable quality in operations." As of 1957, APP core programs existed for

banks (on-line banking, credit evaluation, customer information);

broadcasters; hospitals (accounting); local governments (residents information

systems, library information systems); finance (accounting systems); personnel

management and payroll calculation; videotex; computer- room operations and

control.''^''

V. ADDITIONA L ORGANIZATIONAL FLEXI BI LITY

Where Hitachi has needed more organizational or geographic diversity

to meet customer needs than its two software factories provided, it has

relied on approximately 23 subsidiaries. The largest were Nippon Business

Consultants (ca. 2500 employees), established in 1959; Hitachi Software

Engineering (ca. 2400 employees), established in 1969; and Hitachi Micro-

Computer Engineering (ca. 1500 employees), established in 1982 ^ Hitachi

classified these firms into ten groups, with several overlapping:

(1) General systems and applications software houses
(Nippon Business Consultants, Hitachi Software Engineering, Hitachi

Information Networks, Hitachi Computer Consultants, H/tachi
Computer Engineering; and the regional companies Hitachi Chugoku
Software, Hitachi Tohoku Software, Hitachi Chubu Software, Hitachi

Nishibu Software)

(2) Industrial-use control systems
(Hitachi Industrial Engineering, Hitachi Process Computer
Engineering, Hitachi Control Systems)

(3) Semiconductor and micro-computer software
(Hitachi VLSI Engineering, Hitachi Micro-Computer Engineering)

(4) Information-processing and telecommunications systems
(Hitachi Electronic Service, Hitachi Communications)

(5) Video and audio equipment, and personal-computer systems and software

(Hitachi Video)

56

(6) Semiconductors and electronic devices
(Hitachi Electronic Devices)

(7) Precision instruments software
(Hitachi Instruments Engineering)

(8) Automotive electronics

(Hitachi Automotive Engineering)

(9) Robotics, control equipment, and business personal computers
(Hitachi Kyoba Engineering)

(10) Personal Computers
(Hitachi Micro-Software Systems)

In addition, other Hitachi factories produced specialized software

products. Most prominent was the Omika Works, a factory producing control

computers and terminals in Hitachi's power generation and transmission group

that had another thousand programmers writing real-time industrial control

software. Omika also used the versions of CAPS and ICAS, although these

had to be modified for the different architecture of the control computers.

There were also several hundred programmers at the Totsuka Works writing

switching systems software, and at the Kanagawa Works, writing design

automation software for computer hardware. Both Totsuka and Kanagawa

used the CAPS and CASD tools.
""^^

A brief discussion of Hitachi Software Engineering illustrates how the

Hitachi group has managed to combine flexibility in serving customer needs

with a disciplined engineering and manufacturing approach to software

development. Some sections of this subsidiary of some 2500 employees

worked as part of the permanent workforce in Hitachi's in-house software

factories, while other groups did customized systems development for a wide

variety of Japanese customers.

57

The company was organized around design departments specialized in

specific industries or applications, link financial systems or hospital systems.

Unlike the Omori Works, there were no separate implementation departments;

the design departments did their ovs n detailed design and coding, although

sections specializing in implementation as opposed to systems engineering did

exist in each department. Program libraries and reusable parts databases

were also developed for specific industries or applications, corresponding to

the departmental organization structure.

There was a functional division of labor with the customers, including

the Hitachi software factories; this depended on how much expertise the

customer had, relative to Hitachi Software Engineering. In some cases,

where the customer has a lot of expertise, Hitachi Software Engineering

would receive only functional specifications and then do the detailed design

and program construction. This was done on occasion with the Omori

Works, which had considerable expertise in system engineering; Hitachi

Software Engineering would then serve as the "factory" to construct and test

the actual program.

In the view of Matsumoto Yoshiharu, manager of Hitachi Softv\are

Engineering's RlD department, and Matsuzaki Yoshizo, an applications

software manager, it was not necessarily the division of labor which

distinguished a "factory approach" from a non-factory approach. Their

philosophy, and that of managers such as Shibata Kanji and Nokoyama Yoichi

in Hitachi Software Works, was that the degree of control over processes,

quality, and costs determined whether a product was made in a factory-like

organization or not. In particular, Hitachi managers emphasized their design

review procedures along with extensive (and expensive) bug analyses

58

;ign j

The J

basic strategy used to eliminate bugs consisted of three elements: (1)

careful design reviews beginning with functional specification and detailed

design phases to catch bugs early in development; (2) elimination of boring

tasks such as coding, through automatic code generation from PAD diagrams

or from reusable software modules; and (3) use of the FORCAST program to

predict bug levels and then to test until the predicted numbers of defects

are found. '

When Hitachi Software Engineering served as a manpower souce for

Hitachi Software Works or Omori Software Works, its employees followed the

factory practices and used the tools at these facilities. In other cases, they

still usually applied tools and methods transferred from Hitachi such as

CASD, CAPS, and HIPACE, but with several in-house systems. Hitachi

Software Engineering was also remarkably efficient in project control. The

company reported in 1981 that it was able to complete 98% of projects on

time and 99% at an actual cost between 90% and 110% of the original

estimates. This compared to 300%-overruns during the early 1970s. (The

average project size was 50,000 lines of code; the largest were about 500,000

lines.) '^° Control was exercised through separate databases for manpower,

bugs, and project management; these were not yet linked in 1987, though

this was in the planning stage. As in Hitachi Software Works, some of the

data input procedures were automated, and others manual.''^

As did the Hitachi factories, Hitachi Software Engineering emphasized

extensive programmer training (1-year training periods, including 2 months of

off-the-job training when they entered the company), as well as strict

implementation of top-down, structured design and careful controls on

budgets and project management, including standard times for programmers

59

(design and coding). Historically, managers at the subsidiary focused first on

setting up a project and production auditing system (1969-1975); applying

structured programming techniques and software tools (1976-1978);

productivity improvement and quality assurance through the standardization

of methodologies and tools (1979-1981); and productivity and quality

improvement through the generation of reusable modules ("standard

patterns"), their cataloging in program libraries specialized for different

applications, and utilization in the writing of new programs. ^^

In addition to program libraries, Hitachi Software Engineering also

relied on a separate library for "common parts" that served as reusable

modules. These included patterns for mainframe operating systems and

related programs, as well as for functions such as message reception,

message format and contents checking, data-base management system

processing, message editing and switching, screen mapping, line-overflow,

error displays, program-function key code analysis, screen editing, and table

"look-up." Some managers assigned programmers exercises on a monthly

basis to make them familiar with subroutines stored in the program

libraries. A Production Engineering Center was responsible for screening

new modules recommended by project managers for registration in the parts

library. The company also gave out rewards to programmers who registered

particularly useful modules, based on an analysis of the specifications (not

actual reuse rates). In general, all programmers were encouraged to look

into the reuse library at the design stage (between functional specifications

and detailed design), to determine if there may be parts they could reuse.

Through these policies, as well as the use of tools such as EAGLE, Hitachi

Software Engineering was able to increase reuse rates from a level of 10 to

60

20% in the early 1980s to about 40% in 1987, depending on the

department. ^^

Since the activites of Hitachi Software Engineering spread across

numerous areas and customers, it did not have a centralized company data

base for production control. Standards were also frequently determined by

customers, since the company was dedicated to producing customized

1 9Tprograms. Nonetheless, an integral and clearly stated component of

management strategy was rigid discipline throughout the firm. In fact, the

two managers who spearheaded the development of production technology at

this subsidiary, after moving over from Hitachi Software Works, openly

admitted to the use of extensive training techniques to make programmers

comply with company standards for program design: "To meet our production

criteria, project procedures have been standardized and imposed on

employees. If any modules deviate from the coding standard, they are

returned to the production line."'^-

CONCLUSION

Hitachi did not impose standardized practices or emphasize reusability

as much as some other firms because of the broadness of its product lines

and the diversity of its customers, even within single facilities. Yet it is

significant as the first company to introduce successfully a factory strategy

and structure to manage the process of large-scale software development.

Much can be learned about the patience required to rationalize management

of a new and complex product and process technology from Hitachi's

experience.

61

Intervievss v.ith managers and a study of technical and historical

documentation indicate that Hitachi s movement tov>ard the factory model

resulted from three interrelated strategies:

1) A company policy of establishing independent factories (which included

both product engineering and mass-production functions) for each major

product area.

2) Belief on the part of managers responsible for corporate- and division-

level strategy, as well as for software development, that a centralized

and disciplined factory environment, integrating product engineering and

mass-production activities, offered for any product the potential of

improving worker productivity and quality, as well as project and cost

control

.

3) Top management decision and commitment (including di\'isional

executives and, especially, the company president) to treat software as

a product whose development could and should be controlled in a

factory, as any other product the company manufactured -- making it

necessary to apply company- wide , standardized accounting and

management controls to all software engineering activities.

The history of Hitachi Software Works also indicates that the

foundations of the factory were primarily policy-oriented. Somewhere in

between technology and policy was the introduction of a structured

programming technique during the mid-1970s. Structured programming is

really a methodological tool; since it was necessary to train and require

programmers to use this as standard procedure, the use of this new

technology or tool involved critical policy decisions and implementation. This

62

was especially important because structured programming as defined by

Hitachi became the foundation of the factory's standard-times, cost-

accounting, and general production-control systems, as well as specific

support tools. The rather sophisticated (computer-aided) technological

infrastructure evolved after the basic policy infrastructure, but rapidly, from

a few tools at first to an extensive set of interrelated systems that are

increasingly being further integrated.

A contrast between implementation of the factory model at Hitachi and

the experiment at System Development Corporation in the mid-1970s also

offers some suggestions regarding why one company might succeed better

than another at this approach. SDC attempted to introduce simultaneously a

factory system containing both a technological infrastructure and a policy

infrastructure (set of standard procedures covering system-analysis, design,

implementation, testing, and project-management). While the technology

(central production database, program library, automated documentation and

testing tools, etc.) was there, programmers seemed to dislike the

standardized environment and reusing other programmers' code. Perhaps

more important was that project managers disliked giving up control to the

factory and work for the facility dwindled; this led eventually to the

dismantling of the factory infrastructure through the dispersal of systems

engineers to different sites to develop programs, with little capability to

1 9S
divide labor or reuse modules as once envisioned in the factory concept. '^"^

Hitachi, on the other hand, incrementaly developed and imposed a

policy infrastructure over a period of several years, thereby training

programmers and managers to operate within a highly standardized, factory-

like environment. Hitachi modified these procedures gradually and then from

63

the mi-1970s began investing heavily in tools and large-scale computer-aided

systems -- the factory-type technological infrastructure. This shift in focus

to technology-based tools and automation thus came after successfully

innovating in process management by applying a standardized approach to

both system and applications softvsare development.

One might also identify a parallel here with Toyota, a company often

cited for its excellence in production management. The largest Japanese

automaker has consistently demonstrated the world s highest levels of

physical productivity in automobile manufacturing by deemphasizing the use

of sophisticated automation or computer-based systems, preferring instead to

focus on process control and innovation, as well as flexible tools, to extend

the performance of human workers. Only after these policy innovations have

Toyota managers agreed to introduce more automation, but only if the

technology is sufficiently flexible (such as programmable robots) to fit into

its manufacturing system and supplement the efforts of human workers.

The comparison with Toyota, as well as the SDC case, reinforces the

notion that technological advances alone do not necessarily bring as many

benefits in productivity as simply better process management. The Hitachi

case in software suggests that, with the proper mixture of policy and

technology, including a strategy to assure the compliance of managers and

engineers or other programmers, the factory approach should offer several

advantages in efficiency. As suggested in the first paper from this research

project, these might include the following:

Institutionalization or dissemination of "good" technologies and

64

programming or manaqefnent practices.

The production engineering departments in Hitachi's software factories,

as well as the factory training programs, were responsible for introducing

techniques and tools that, in textbooks on software programming and

engineering management, are widely considered to be fundamentally good

practices. These include structured design methods; bug-forecasting data

collection and models; documentation standardization and control systems;

formal project-management and design-review systems; program libraries;

wide use of computer-aided design, coding, and testing tools; and promotion

of standardization of practices and reusability of code where possible.

Providing a sufficient scale of people and operations to justify research

and development for improving process technology and techniques.

In addition to engineering departments in the software factories,

Hitachi also used the System Development Laboratory to perform R%D

activities related to programming support tools and methods. The

centralization of software production at the Software Works and Omori

provided an in-house core of 3000 programmers and supporting staff; Hitachi

Software Engineering and Nippon Business Consultant added another 5000.

Improving process efficiency through teamwork and better inter-qroup

communication.

65

This can be seen in two examples. One, is that the percentage of late

projects in the Software Works dropped dramatically within a fevs years of

the founding of the factory, from over 72% in 1970 to 13% in 1973 and to a

remarkably low 7% in 1974 and 1979, with an average of 12% during 1974-

1985. The figure for 19S6 was about 5%. These numbers placed Hitachi

Software VNorks along with other firms leading in this category. Variations

in these figures reflect the level of activity within the factory, with more

late projects when Hitachi was completing new large new projects -- for

example, a new mainframe operating system. But, in general, reporting

procedures, as well as CAPS (Computer- Aided Production Control System for

Software), made it possible to integrate manpower-control, process-control,

and quality-control functions and support tools. Another example of the

factory benefits is Hitachi's overturning of Brook's law about more

programmers added to a late project causing projects to be later. The

factory environment allowed Hitachi managers to add people (albeit the best

people available and not just anyone) to help finish projects on time.

66

HITACHI SOFTWARE WORKS: PERFORMANCE DATA

Year

O rganization a l foc u s on ra isinq enqm ee rinq p rod u c

t

ivitv and product

q uality (defect control)

.

As indicated in the table, sales productivity of Hitachi employees in the

Software Works doubled within one year of the factory's opening and has

increased significantly overtime, although direct productivity figures for the

facility are proprietary. Company-wide and factory programs, such as the

Management Improvement movement and system gleaning practice, form.ally

promoted the analysis and implementation of measures to improve labor

performance and product quality. The central production data base for the

factory started in the mid-1960s also made it possible to track programmer

productivity as well as defect measures, and thereby have precise data tc use

in determining specific methods or in developing new tools to be used

throughout the factory. Perhaps most important, the administrative and

technological infrastructures of the factory -- manpower, process, quality,

and product control in the area of production management; standardization,

design, and inspection in the area of product engineering -- facilitate

performance analysis and improvement. Individuals do not ha\e to expend

time and energy, for example, in deciding which languages or methods to

use, or whether to develop a particular support tool. Systems such as EAGLE

also save extensive manpower by automating much of testing and by

recycling program components.

In quality, Hitachi employs a measure of user- reported major bugs and

has reduced bugs from an index of 100 in 1978 to 14 in 1985. One unofficial

estimate is that this figure represented approximately 0.01 defects per

program package per machine installation per year, and placed Hitachi in the

68

low category, along with other leaders in this measure that participated in

the survey. ^' According to Shibata, the decrease in bugs reflected several

factors: a new System Simulation Tester (SST) completed in 1977-1979; CASD

(Computer-Aided Software Development System), another group-programming

tool to facilitate product standardization, design support, and inspection

functions; reused code, reaching approximately 90% in new releases of

products such as operating systems; and increasing sales of essentially bug-

free programs. '^°

Reducing waste and redundancies due to dysfunctional behavior of

individuals and the lack of an organizational strategy.

High-level factory managers such as Sakata, as well as middle managers

from the engineering department such as Shibata, have set a clear direction

for personnel and technological development in the Software Works. Their

initial focus has been on gathering information on software technology and

then standardizing methods and tools, and setting factory-level performance

goals. Later efforts have focused on automation and reusability. The

factory infrastructure and strategy they have created has reduced the

possibility of individuals duplicating the efforts of others in tool or method

development, as well as writing code, and lessened the likelihood of workers

engaging in practices that are contrary to the organizational goals such as

to develop reusable modules, or use factory-wide tools and standardized

methods that facilitate reusability, maintenance, testability, and the like.

69

Maintenance of o rganizat ion al and technic al "flexibility."

Both the technological and policy infrastructures of the Hitachi

softvtare factories have been evolving since 1969. Most of the tools

developed for Hitachi Software Works (and then introduced in other Hitachi

facilities or subsidiaries), such as CAPS, CASD, HIPACE, and EAGLE, ha\e

been adaptable enough to incorporate important technical advances, such as

additional linkages between systems, the addition of other support tools for

documentation, testing, and the like, or increased capabilities of adapting to

non-standardized customer needs. Structured design has also endured for

well over a decade. High levels of reusability indicate as well that Hitachi

programmers find modules in the program library are not obsolete. While

the factory approach might seem to make it difficult for a particular facility

to respond to a unique customer need or a specific type of technology,

Hitachi has been addressing these concerns through continued development of

cu stome r - or ien ted design systems such as EAGLE, as well as the

establishment of numerous subsidiaries and new factory departments such as

for artificial intelligence.

70

REFERENCES

1. The current version of the main paper from this research project is titled

Michael A. Cusumano, "A Comparison of U.S. and Japanese Software
Facilities: Implications for Strategy, Technology, and Structure," Sloan
School of Management . 1987 Working Paper #1885-87 Revised 9/25/87.
Another completed case is "A U.S. 'Software Factory' Experiment: System
Development Corporation." Sloan School of Management . 1987 Working Paper
#1887-87.

2. Toyo Keizai, Kaisha shikiho (March 1986).

3. Japan Economic Journal, 7 June 1986, p. 14; and, for market share data,
"Nihon no konpyuta setchi jokyo," Coniputer Report (in Japanese), January
1985, p. 78.

4. Hitachi Ltd., "Introduction to Hitachi and Modern Japan" (International
Operations Group, 1983); Tadao Kagono et al.. Strategic vs. Evolutionary
Management: A U.S. -Japan Comparison of Strategy and Organization
(Amsterdam, North-Holland, 1985), pp. 103-105; Takahashi interviews.

5. Japan Economic Journal , 7 June 1986, p. 14.

6. Dale F. Farmer, "IBM-Compatible Giants," Datamation . December 1981, pp.
96-97, 104.

7. "2 New Computers from IBM Rival," The New York Times . 12 March 1985,

p. D5.

8. A useful book in Japanese on the details surrounding this incident is

Nano Piko, Nichi-Bei konpyuta senso: IBM sangyo supai jiken no teiryu (The
Japan-U.S. computer war: underlying the IBM industrial spying incident)

(Tokyo, Nihon Keizai Shimbunsha, 1982).

9. RCA, Control Data, IBM, and NCR all delivered transistorized computers
in 1958. See Franklin M. Fisher, James W. McKie, and Richard B. Mancke,
IBM and the U.S. Data Processing Industry: An Economic History (New
York: Praeger, 1983), pp. 50-51. For the Japanese story, see Sigeru
Takahashi, " "Early Transistor Computers in Japan," Annals of the History of

Computing , Vol. 8, No. 2, April 1986. I have also interviewed Dr. Takahashi
extensively on computer development in Hitachi, beginning on 9 and 21

January 1985.

10. Takahashi interviews.

11. Shibata interview, 9/19/85.

12. Hitachi Seisakusho, Yuka shoken hokokusho , March 1985, pp. 16-17;

Hitachi Ltd., "Outline of Hitachi. Ltd." (1984); "Introduction to Hitachi and
Modern Japan," p. 12.

13. These will be discussed in a later section.

71

14. A recent book on the Ml movement at several Hitachi factories
(although not inducting the Software Works) is lv.ai Masa^azu, Hitac hi-shiki
keiei kaku s hin: Ml undo no kenkyu (Tokyo, Daiyamondo-sha, 1SS3.

15. Hitachi Seisakusho, Sofutouea kojo no 10-nen no ayumi (10-year history
of the Software Works) (Kanagawa, 1979), pp. 118, 179-184.

16. Sofutouea Koio , p. 198, 202.

17. Nihon N'oritsu Kyokai (Japan efficiency association), ed., Hitach i no
leisan kakumei-- MST seisan ^shisutemu no zenbo (Hitachi's production
revolution -- the full story of the MST production system) (Tokyo, 1982), p.

32. MST stands for "Minimum Stocks/Minimum Standard Time.

18. Shibata and Nokoyama interview, 7/23/86.

19. Sofutouea Koio , pp. 51-52.

20. Takahashi interview. See also Sofutouea Kojo , tables on pp. 49-50.

21. Sakata interview.

22. Minamisawa Noburo, Nihon konpyuta h attatsu-sh i (Nihon Keizai Shimbun-
sha, 1978), chronology.

23. Shimada Shozo, "Hitachi no gijutsu (2); kaihatsu-ki (HITAC 5020)--

sofutouea," in HITAC N'uza Henshu linkai, ed., 20 nen no ayumi (Hitachi

Ltd., 1983), pp. 27-29. Also, Murata Kenro, "Hitachi no gijutsu: kaihatsu-ki
(HITAC 5020, 8500) -- hadouea," in HITAC Yuza linkai, p. 22.

24. Usui Kenji, "HITAC kaihatsu shi (2), p. 37.

25. Takahashi interview, 1/9'85; Usui Kenji, "HITAC kaihatsu shi (2),"

Computopia , July 1975, p. 37; Sofu touea Kojo, p. 53.

26. Hitachi Seisakusho, Kanagawa koj o 15-ne n no ay umi (1978), p. 40. Since

EDOS continued to build upon the RCA operating system, the mainframes
Hitachi has sold in Japan after 1970 are close to IBM but not compatible,

although machines Hitachi produces for export and overseas sales through
National Semiconductor are modified to be fully IBM compatible.

27. Sofutouea Kojo , pp. 54-56.

28. Sofutouea koi o, pp. 56, 130.

29. Hitachi memo to Cusumano, 21 August 1985.

30. Takahashi Shigeru interviews, 1/9/85, 1/21/85, 9/10/85; Yokoyama
interview, 9/1/87.

72

31. Hitachi Seisakusho, Hitachi Seisakusho shi . Vol. 3, 1971, pp. 55-56, 223-

224; Usui Kenji, "HITAC kaihatsu shi (2)," pp. 36-38; Kanaqawa koio 15 nen
no avumi (1978), pp. 45-47.

32. Minamisawa, pp. 154, 163.

33. Usui, "HITAC kaihatsu shi (2)," p. 36; Sakata interview.

34. Usui, "HITAC kaihatsu shi (2), p. 30. Footnote other sources.

35. Usui (2), p. 31; Sofutouea koio, pp. 50-51; Takahashi interview, 1/9/85.

36. Sakata interview, 9/10/85.

37. Usui (2), pp. 36-37; Sofutouea koio : pp. 17, 129.

38. Sofutouea koio , p. 23.

39. Sofutouea kojo, pp. 21-22; Kanaqawa, pp. 18-22, 69. The English

translation Hitachi uses is "Software Works," although the Japanese word for

"works" (koio) is usually translated as "factory" and has this connotation in

Japanese. An analysis of the Odawara Works can be found in Hitachi

Seisakusho Odawara Kojo, Odawara Kojo 10 nen shi (Kanagawa-ken, Hitachi

Odawara Kojo, 1977).

40. Sofutouea kojo , pp. 4-5, 8; Yokoyama interview, 9/1/87.

41. Shibata interview, 9/1/87.

42. Sakata interview.

43. Sakata interview, 9/10/85.

44. Sakata interview, 9/10/85.

45. Shibata interview, 9/19/85.

46. Shibata interview, 9/19/85. See also Sofutouea koio , p. 5.

47. Sofutouea koio , p. 113.

48. Shibata interview, 9/19/85.

49. Shibata interview, 9/19/85; and Sofutouea koio , p. 119.

50. Shibata interview, 9/1/87.

51. Sofutouea kojo ; Shibata interview, 9/1/87; Hitachi Seisakusho, "Hitachi
Omori Sofutouea Kojo annai" (Introduction to Omori Software Works) (ca.

1987).

52. Sofutouea Koio , p. 192.

53. Hitachi Software Works, Memo, July 1986.

73

54. This is a general sketch of the factory's organization based on "Omori
Sofutouea Kojo annai," pp. 6-7, 11, and Sofutouea koio , p. 200.

55 Shibata interview, 7/23/86; and Sofutouea kojo , pp 192-202, which
contains organization charts from 1969 to 1979.

56 Sofutouea koj o, pp 127-128.

57. Sofutouea koio , p. 128.

58. Sofutouea koio , pp. 164-165; Shibata interview, 9/19/85 and 7/23'86.

59. Sofutouea koio , pp. 160-161; 118-119; Shibata interview, 7/23/86.

60. Sofutouea koio , pp.4-11, 165.

61. Sofutouea koio , p. 156.

62. Sofu touea kojo , pp. 113-114; Hitachi Memo, "Table 1: History of

Production Control at Hitachi s Softv.are Works"'; Sakata interview; Shibata
interview, 9/19/85 and 7/23/85.

63 . Sofutouea kojo , p . 114.

64. Sakata interview; Shibata interview, 9/19/85 and 7/23/87.

65. IntervievNS with Shibata and Yokoyama

66. Shibata interview, 9/19/85.

67. Sofutouea koio , pp. 114-115.

68. Shibata interview, 9/19/85.

69. Sakata interview.

70. Frederick P. Brooks, Jr., The Mythical Man-Month : Essays pm Softvsare

Eng i neering (Reading, MA, Addison-Wesley, 1975), pp. 16, 31.

71. Shibata interview, 9/19/85.

72. Sakata interview. Also see Sakata Kazuyuki, "Sofutouea no seisan kanri

ni okeru yosoku giho no teishiki-ka -- sei-teki na yosoku oyobi koshoritu
suii moderu" (Formulation for Predictive Methods in Software Production
Control -- Static Prediction and Failure Rate Transition Model), pp. 277-283,

and "Sofutouea no seisan kanri ni okeru yosoku giho no teishiki-ka -- doteki

na yosoku: sakidori hyoka giho" (Formulation for Predictive Methods in

Software Production Control -- Dynamic Prediction: Quality Probe), pp. 284-

291, in Denshi tsushin gakka i ronbun shi (Transaction of the institute of

electrical and communications engineers. May 1974, Vol. 57-D, No. 5.

73. Shibata interview, 9/19/85.

74

74. Sofutouea kojo , p. 115.

75. This discussion is based on Hashimoto Yaichiro (Hitachi Software Works)
et al., "Sofutouea hinshitsu hyoka shisutemu 'SQE " (Software Quality
Estimation System SQE), Hitachi hyoron . Vol. 68, No. 5 (May 1986), pp. 55-

58.

76. See Michael A. Cusumano, The Japanese Automobile Industry:
Technology and Management at Nissan and Toyota (Cambridge, MA., Harvard
University Press, 1985), Chapter 6. There are also several other articles and
books on Japanese quality control practices, such as by Robert Cole and
Richard Schonberger, that support this observation as well.

77. Sofutouea kojo , p. 115; Shibata interview, 9/19/85.

78. Shibata interview, 9/19/85.

79. Sakata interview.

80. Sofutouea kojo , pp. 117-118. For applications software sold outside the
company, the design departments took until 1975 to set their own standards
for both customer estimates and the program-development process.

81. Kataoka Masanori, Domen Nobuyoshi, and Nogi Kenroku, "Sofutouea kozo
sekkei giho" (Software Structure Specification Method), Hitachi hyoron . Vol.

62, No. 12 (December 1980), pp. 7-10.

82. Definitions of reused code: Project Reuse Rate = Number of Reused
Steps divided by reused steps plus new steps plus revised steps times 100.

Cumulative Reuse Rate = Cumulative Number of Reused Steps from Version I

divided by Number of Steps in Current Version times 100. Shibata interview,
7/23/86.

83. Sofutouea kojo . p. 117; Yokoyama interview.

84. Sofutouea kojo , pp. 7-8, 124.

85. Shibata interview

86. Sofutouea kojo , p. 124.

87. Shibata interview, 9/1/87.

88. Hitachi memorandum, "Table 1.2 Background and Conditions Affecting

CAPS Development."

89. Regarding ICAS, see M. Kobayashi et al., "ICAS: An integrated
Computer Aided Software Engineering System," IEEE Digest of Papers--
Spring '83 COMPCON (IEEE, 1983), pp. 238-244; and Kobayashi Masakazu and
Aoyama Yoshihiko, "Sofutouea seisan gijutsu no saikin no koko" (Current
Topics in Software Engineering), Hitachi hyoron . Vol. 68, No. 5 (May 1986),

pp. 1-6.

75

90. Interviews with Shibata and Yokoyama, 7/23/86 and 9/19/85.

91. Kataoka Masanori, Hagi Yoichi, and Noqi Kenroku, "Sofutouea kaihatsu
shien shisutemu (CASD shisutemu)" (Computer Aided Software Development
System, CASD), Hitachi hyoron. Vol. 62, No. 12 (December 1980), p. 33.
Kataoka and Hagi were from the Software Works; Nogi was from Hitachi's
System Development Laboratory.

92. Interviev\s with Shibata and Yokoyama, 7/23/86.

93. Kataoka Masanori, Hagi Yoichi, and Nogi Kenroku, "Sofutouea kaihatsu
shien shisutemu (CASD sh'sutemu)" (Computer Aided Software Development
System, CASD), Hitachi hvoron . Vol. 62, No. 12 (December 1980), p. 33.

94. Kataoka et al., pp. 33-34.

95. Kataoka, p. 34.

96. Kataoka et al., pp. 35-36.

97. Shibata Kanji and Yokoyama Yoichi, "Sogo sofutouea seisan kanri
shisutemu 'CAPS " (Computer Aided Production Control System for Software),
Hitachi hyoron , Vol. 62, No. 12 (December 1980). p. 37.

98. Hitachi memorandum, "Table 1.2 Background and Conditions Affecting
CAPS Development."

99. Shibata Kanji and Yokoyama Yoichi, "Sogo sofutouea seisan kanri

shisutemu 'CAPS'" (Integrated computer-aided production control system for

software 'CAPS'), Hitach i hvoron . Vol. 62, No. 12 (December 1980), p. 37;

Hitachi memorandum, "Table 1.2 Background and Conditions Affecting CAPS
Development"; Shibata interview, 7/23/86. Omori makes greater use of

prototyping, which produces overall specifications of a program before the

actual modules and code are fully written. In systems software, Shibata has
felt that prototyping is not practical, since it requires too much time and
effort.

100. Shibata and Yokoyama, pp. 39-40.

101. Shibata and Yokoyama, p. 40-42. A version of CAPS was availabiefor

microcomputers and used at Hitachi's Omika factory, which designed systems
software for control computers, as well as at subsidiaries such as Hitachi

Software Engineering and Nippon Business Consultants. The s\ stem was not

sold commercially. (Shibata interview, 7/23^86.)

102. Shibata and Yokoyama, p. 42.

103. Interviews with Shibata and Yokoyama, 7/23/86.

104. Interview with Matsuzaki Yoshizo, Applications Software Manager,
Hitachi Software Engineering, 9/3/87.

76

105. Kobayashi et al.

106. Interviews with Shibata and Yokoyama, 7/23/86 and 9/19/85. Regarding
HIPACE, see "Apurikeshon shisutemu no koritsu-teki sekkei giho 'HIPACE'"
(Software Engineering Methodology for Development of Application Systems
'HIPACE'), Hitachi hvoron . Vol. 62, No. 12 (December 1980), pp. 15-20; for

EAGLE, see Hagi Yoichi et al., "Shisutemu kaihatsu shien sofutouea 'EAGLE'"
(Integrated Software Development and Maintenance System 'EAGLE'), Hitachi

hvoron. Vol. 68, No. 5 (May 1986), pp. 34.

107. Matsuzaki interview, 9/3/87.

108. Tsuda Michio, Senior Engineer at Omori Software Works, written
response to "Large-Scale Applications Software" survey, 2/20/87; and
Takahashi Tomoo, Department Manager at Hitachi Software Engineering,
written response tot "Large-Scale Applications Software" survey, 3/6/87.

109. Miyazoe Hidehiko (Hitachi Software Works) et al., "Apurikeshon
shisutemu no koritsu-teki sekkei giho 'HIPACE'" (Software Engineering
Methodology for Development of Application Systems 'HIPACE'), Hitachi

hyoron. Vol. 62, No. 12 (December 1980), pp. 15-20. Also see Nakao Kazuo
Hitachi System Development Laboratory) et al., "Shisutemu keikaku no tame
no shisutemu yokyu bunseki shuho 'PPDS' no kaihatsu" (System demand
analysis procedures for system planning PPDS), Hitachi hyoron. Vol. 62, No.
12 (December 1980), pp. 21-24.

110. Hagi Yoichi (Hitachi Software Works) et al., "Shisutemu kaihatsu shien
sofutouea 'EAGLE'" (Integrated Software Development and Maintenance
System EAGLE), Hitachi hvoron . Vol. 66, No. 3 (March 1984), pp. 19-24.

111. Hagi Yoichi et al., "Shisutemu kaihatsu shien sofutouea 'EAGLE'--
EAGLE kakucho-han 'EAGLE 2" (Integrated Software Development and
Maintenance System 'EAGLE' - the Enhanced Version of EAGLE, EAGLE 2),
Hitachi hvoron . Vol. 68, No. 5 (May 1986), pp. 29-34.

112. "Omori Sofutouea Kojo annai," pp. 14-15.

113. Source for this table is Hagi et al. (1986), p. 34.

114. "Omori Sofutouea Kojo annai," pp. 10-11.

115. See Hitachi Seisakusho, "'86 shisutemu/sofutouea no Hitachi gurupu"
(The '86 Hitachi group for systems and software)

116. Shibata interview, 9/1/87.

117. Interviews with Matsumoto Yoshiharu, R&D Department Manager;
Matsuzaki Yoshizo, Applications Software Department Manager; and Takahashi
Tomoo, Applications Software Department Deputy Manager, Hitachi Software
Engineering, 9/3/87.

118. Denji Tajima and Tomoo Matsubara (Hitachi Software Engineering), "The
Computer Software Industry in Japan," Computer . May 1981, p. 95.

77

119. Matsumoto interview, 9.'3/87.

120. Denji Tajima and Tomoo Matsubara, "Inside the Japanese Software
Industry," Computer , March 1984, pp. 36-39.

121. Denji Tajima and Tomoo Matsubara, "Inside the Japanese Software
Industry," Computer , March 1984, pp. 36-39.

122. Interviev\s with Matsumoto Yoshiharu, RE.D Department Manager;
Matsuzaki Yoshizo, Apphcations Softvvare Department Manager; and Takahashi
Tomoo, Applications Software Department Deputy Manager, Hitachi Software
Engineering, 9,'3/87.

123. Matsuzaki interview, 9/3/87.

124. Tajima and Matsubara (1984), p. 40.

125. See Michael A. Cusumano and David E. Finnell, "A U.S 'Software
Factory' Experiment: System Development Corporation." M. I .T . Sloan School
of Ma nagement. Working Paper «1887-87, 1987.

126. For a discussion of Toyota see Michael A. Cusumano, The Japanese
Automobile Indust ry : Tec hnology a nd Management at Nis san and Toyota
(Cambridge, MA: Harvard University Press, 1985). This comparison is also

examined in more detail in "Tov.ard the Strategic Management of

Engineering: The 'Software Factory' Reconsidered."

127. McN'amara estimate.

128. Shibata interview, 7/23^86.

813 Ids ^^

Date Due r^^^^h^

FEB 20

J£ o9'«a

^'^^
: 3 ;^

s

FEB 26 1^0

DEC 6l99t)

JAN 07 1991

JANli
^^'Y

Lib-26-67

MIT LIBRARIES

3 TDfiO DD4 T3t, 131

