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ABSTRACT

High density clusters are defined on a population with

density f to be the maximal connected sets of values x with f(x)> c,

for various values of c. It is desired to discover the high density

clusters giver, a random sample of size N from the population. Using

this clustering model, there is a correspondence between clustering

and density estimation techniques. A hybrid algorithm is proposed which

combines elements of both the k-means and single linkage techniques.

This procedure is practicable for very large number of observations,

and is shown to be consistent, under certain regularity conditions, in

one dimension.

KEY WORDS: High density clusters; K-Means clustering; Single linkage;

Density estimation; Asymptotic consistency; Hybrid clustering.





1. INTRODUCTION

The high density model for clusters (Hartigan 1975, p. 205)

assumes that observations x. , x , . . . , x are sampled from a population

with density f in p dimensional space, taken with respect to Lebesgue

measure. High density clusters are maximal connected sets of the

form {x lf(x)> c} , taken for all c. The family T of such clusters

forms a tree, in that Ae T, Bs T implies A=>3, B =s A or AH 3 = c .

A sample hierarchical clustering T on x. , x.,..., x nay now be

evaluated by how well it approximates T, on the average. It may be

asked whether or not the sample clusters converge to the population

clusters in some sense. The procedure T,. is set-consistent for T if

for each A, Bel with AO B = $ , there exists A^, B e T with

A
N
oAn{ x

L

,....,x
N } , B

N
oBn{ xr ....,x

N
}, A

N
HB

N
=$ ,

with probability approaching 1 as N-v <» .

Standard hierarchical techniques begin with clusters consisting

of single points, and successively join pairs of clusters which are

closest according to some measure of distance, to obtain new clusters.

The process terminates when a single cluster remains. Complete linkage

(Sorenson 1948) defines distance between clusters to be the maximum

distance of pairs of points in the clusters, and it is not set-consistent

(Hartigan 1977a). Average linkage (Sneath and Sokal 1973) uses distance

between clusters as the average distance between pairs of points iv the

two clusters, and sampling experiments (Hartigan 1979) suggest it is not
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consistent either. Single linkage (Sneath 1957) defines distance

between clusters as the closest distance between pairs of points in the

two clusters. Single linkage is set consistent in one dimension but not

in higher dimensions. There is empirical evidence and some theory

(Hartigan 1979) to suggest that single linkage is consistent in a weaker

sense.

Density estimates generate clusters, namely the high density clusters

corresponding to the estimates. Single linkage corresponds to nearest

neighbour density estimation (Hartigan 1977b), in which the density

estimate at a point x is inversely proportional to the volume of the

smallest closed sphere including a sample point. This density estimate

is inconsistent in the sense that fM (x) does not approach f(x) in proba-

bility. An improved density estimate, and perhaps improved clustering,

is obtained by the kth nearest neighbour density estimate: the density at

point x is inversely proportional to the volume of the smallest sphere

containing k sample points. Such a density estimate is consistent at a

point x if f is continuous at x and k-> °° as N-> °° . More generally,

1 M
kernel estimates of the form —Z BL

T
(x, x.) might be used (see,

N i N 1

for example, Wegman 19 72) .

Although the statistical justification of these density estimates

.2
require N very large, the number of computations is usually 0(N ) which

begins to be onerous for N over 250. In addition, the actual computation

of high density cluster from the density estimate may be formidable. A

variation of kth nearest neighbour from which clusters may be constructed

is due to Wishart (1969); the density at observation x. is kth nearest
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neighbour density, points x. and x. are connected if x. is among the

k closest points to x. , or if x. is among the k closest points to x.
_

and the high density sets with this measure of connectedness are clusters.

2
The computational expense of this technique is 0(N ). For related tech-

niques, see Ling (1973) and Jardine and Sibson (1971).

A hybrid clustering technique is proposed here which combines the

k-means (Hartigan and Wong 1979) and single linkage clustering techniques.

At the first stage, k-means is used to construct a variable cell histogram

(with k cells) which provides uniformly consistent estimates of the under-

lying density (Wong, 1980). At the second stage, the high density clusters

corresponding to the computed estimates are obtained by applying single

linkage to an appropriate distance matrix defined on the k cells. A

detailed description of this method is given in Section 2. The number of

calculations is 0(Nk). In Section 3, it is shown that the hybrid algorithm

is set-consistent for high density clusters in one dimension, under certain

regularity conditions. Some empirical evidence are given in Section 4 to

show that hybrid clustering is a useful tool for identifying high density

clusters.
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2. THE HYBRID ALGORITHM

The algorithm consists of two stages: At the first stage, the

observations are clumped into k clusters by k-means, so that no movement

of an observation from one cluster to another reduces the within cluster

sum of squares. A histogram estimate is then constructed on the k regions

defined by the k-means partition. At the second stage, the distance

between neighbouring clusters is taken inversely proportional to the

density estimate at a point halfway between the cluster means, and single

linkage is applied to the distance matrix to obtain the tree of high

density clusters corresponding to the histogram estimate of the density.

In one dimension, the algorithm works as follows: a histogram consisting of

k intervals in constructed on the k clusters obtained by k-means; in the

second stage, using the computed density estimates, neighbouring clusters

are then joined successively to give the tree of sample clusters. Since

the k-means procedure provides a practicable and convenient way of

obtaining a k-partition of multivariate data, the generalization to p

dimensions (p >1) is immediate.

2.1 The K-means step

A k-means partition will be taken to be a partition into k clusters

such that no observations can be moved from one cluster to another without

increasing the within cluster sum of squares. There are a number of ways

of reaching such a partition by transferring observations to reduce within

cluster sum of squares (see, for example, Fartigan and Wong 1979); the



number of computations is usually proportional to Nklp where N is the

number of observations, k is the number of clusters, I is the number of

iterations reallocating all observations, and p is the number of dimensions.

The asymptotic properties of k-means as a clustering technique ( as N

approaches °° with k fixed) have been studied by MacQueen (1967), Hartigan

(1978), and Pollard (1979). In this application, however, it is usee

primarily as a density estimation procedure.

The asymptotic properties of k-means as a procedure for providing a

histogram estimate of the density are given in Wong (1980). In one dimension,

the following density estimate is shown to be uniformly consistent in

probability:

Lemma (Wong 1930, Corollary 7):

Let y » ...., x^ be a random sample from some population F on [a,b] .

Suppose that the density f is four times dif f erentiable and is strictly

positive on [a, b ] . Consider a locally optimal k-means partition of the

sample with k^ clusters. Let n. be the number of observations in the jth
3

cluster (j = 1, . . . , k )

And let x. and WSS . respectively be the sample mean and within cluster sum

of squares of the jth cluster (j= 1, ..., k
T )

.

Define the pooled density estimate at a point x between neigbouring cluster

means ;•: . , and x. by :

j-1 J

3/2
f
N

(x) = (n. + n ) / N (12WSS.*)
2

, x < x <x. (j=2,..., k^)

3/2 j.

= (n + n.,)' / N (12WSS *K , a <x <x
±

;

3/2

1;
N

n. ,)' /N (12WSS, *) \ x < x <b,
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where WSS.* = WSS.+ WSS. , + k(n . + n. ,) . (v. - x ,)
2

.

J J j-1 J 3-1 1 3-1

1/3
Then provided that k = o ( [N/log NJ ),

sup

N
a <x <b |f„(x) - f(x)| = o_(l).

Unfortunately, the univariate results cannot be easily generalized

to the multivariate case. However, let us assume that in many dimensions

(R
, p >1), the ith cluster consists of a regular isotope of volume v. centred

9 /

on the cluster mean x.. Then WSS. in. v. and n. «f(x.)v.. It follows
l ill ill

that f("j x n.
1+p/2

WSS."P/2 , and hence ~
.

1+p/2
WSS

.

~

p/2 can be
i l l ' ii

interpreted as an estimate of cf(x.) where c is some proportionality

constant. And for adjoining clusters i and j, it is conjectured that a

consistent oooled estimate of the densitv at v . .
, the micnoint between x .n i

and x . , is given by

f fe
±

.) «(n
±
+ n.)

1+p/2
/ [WSS. + WSS. + k(n. -n

.
) -d

2 £
± , x ) ]

?/2
,(2.1)

where d is the Euclidean distance. (Note that when p = 1, f (v,,) is the

estimate given in the Lemma.) The assumptions are plausible in two

dimensions ss k-mean clusters are likely to be regular hexagons when k is

large, but in three or more dimensions, it is not clear that the best

partition is into regular isotopes. Here, the within cluster sums of

squares are being used to measure the volume of the clusters, which is

acceptable if all clusters are approximately the same shape. The volumes

could be computed directly but at great computational expense in many

dimensions. Much work has yet to be done to prove the conjecture for two

or more dimensions.
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2.2. The Single linkage step

The k-means step produces k clusters with cluster means :;,...., >- .

X K

The single linkage step constructs hierarchical high density clusters or.

the k clusters using the density estimates f obtained in the k-means step.

The following property of single linkage recommends its use in this cluster-

formation stage of the algorithm: At a given distance level D*, any two

objects in the same single linkage cluster can be connected by a chain of

links of objects such that the size of each link is no greater than D*.

Thus, if the distances between connected clusters are reciprocal to the

density estimates f
tT , every resulting single linkage cluster corresponds

to a maximal connected region of the form { x ! f„(x) > c }.

Hence, a distance matrix is computed for the k clusters as follows:

Two clusters i and j are said to be connected if x. ., the midpoint between

x. and x is closer to x. (or x.
1 j i J

) than any other cluster mean. If clusters

i and j are connected, then D(i,j) = f (x . . ) ; otherwise D(i,j) = °° .(See

(2.1) for definition of f
N

) . Single linkage clusters are then computed from

this distance matrix to give the sample high density clusters.

Next, we will examine the asymptotic consistency of the hybrid

algorithm for high density clusters.

- 7 -



3. CONSISTENCY OF HYBRID CLUSTERING

FOR HIGH DENSITY CLUSTERS

Let f denote a density on [a,b] such that I Xjf(x) >c} is the

union of a finite number of closed intervals for every c >0. Let T be

the tree of population high density clusters defined on f. Let x, , . . . . ,x

be a random sample from f and let T„ T be the hierarchical clustering specified
N

by the hybrid algorithm.

Theorem : Suppose that A and B are any two disjoint high density clusters

T. Assume that f is positive and has four bounded derivatives in [a,b]

1/3
Then provided that k = o ( [N/log N] ), there exist A B sT with

N -\ -\ a

A = A n (X., , ,XrT } , B,.=3 3(){ X1} .... ,:v T } . n D ._,
N 1' ' N ' N 1 N , and A B = $ , with

probability tending to 1 as N -»- °°.

Proof : Since T is the tree of high density clusters for f (see Lemma)
,

this theorem is a direct consequence of the Lemma, which states that

sup
a<x<b jf('x) - f (x)

|

= o (1). (3.1)
- - >, p

By definition, for any two disjoint high density clusters A and B in T,

there exist z> and \> such that

f(x) > X for all x £ A u B, (3.2)

and A and 3 are separated by a region V, where

f(x)<X- 3e for all x e V. (3.3)

m



From (3.1), we have
sup

{ a £ x<b | f(x) - f
N
(x)

|
< e }- 1p

r

Thus, it follows from (3.2) and (3.3) that for N large, with high

probability,

f„(x)>X- e fcr all x eAUB, (3.4)

and f (x) <A - 2 e for all x e V. (3.5)

Since A and B are disjoint, it follows from (3.4) and (3.5) that high

density clusters of the form {x \
f„(x) fc. A - z] separate A and B. The

theorem follows.

The above theorem shows that the hybrid algorithm is set-consistent

in one dimension, for densities f on [ a,b ] which are positive and have

four derivatives, and for k-means partitions into k
T
clusters where

3
k log N/N-> °°

, k > <»
, as N-> °° .We conjecture a similar result will

hold in two dimensions. The higher dimensional case requires further study;

empirical results suggest that hybrid algorithm is useful for identifying

high density clusters.
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4. EMPIRICAL VALIDATION OF THE HYBRID ALGORITHM

The hybrid method was applied to various generated data sets to

test for its effectiveness in specifying high density clusters (Wong 1979)

.

Results of three of the experiments, one using univariate data and the

other two bivariate, are reported here.

1. Experiment One : In this experiment, 1000 observations are drawn from

the univariate normal mixture ^N(0,1) + 'sN (3,1). This data set is

useful in showing the performance of the hybrid algorithm when two high

density clusters are separated by a region of moderate density. The

density estimates ever the intervals between the k=40 cluster means are

1

/3
plotted in Figure A. (A rough rule of thumb for k is 7(N/log N) .).

Although the minimum density between the modes is more than half the

density at the modes, the hybrid algorithm would still produce a

hierarchical clustering which clearly indicates the presence of two modal

regions (see Figure B)

.

2. Experiment Two : Here, a sample of size 1000 is taken from the bivariate

normal mixture h BVN [(0,0), (J ?)] + h BVN [(3,3), (J ?)] . There are
'J 1 U -i.

two widely separated spherical clusters in this data set. The density

o -1
estimates (fv (x) n. WSS.. ) over the k=40 clusters obtained by k-means,

and the resulting hybrid clusters are given respectively in Figures C and

D. As do most other hierarchical clustering algorithms, the hybrid method

identifies correctly the two distinct rrodes in the population.
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3. Experiment Three : In this experiment, the sample of size 1000 from

, mixture JjBVN [(0,0), (

9

Q
°) j + JjBVN [(0,6), (jj

°)]resembles two

elliptical clusters with a moderate amount of noise points between them.

The hybrid algorithm identifies the two clusters correctly (see Figures E

and F) , while all of the standard joining techniques like single linkage

and complete linkage fail to do so.

The CPU time consumed on the IBM 370/58 in the three examples are

10.9, 12.6, 16.8, seconds respectively. Hence, the hybrid algorithm :;

be considered as a practicable and consistent method for identifying

density clusters.
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