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PREFACE

The Center for Information Systems Research (CISR) is a

research center of the M.I.T. Sloan School of Management;

it consists of a group of Management Information Systems

specialist, including faculty members, full-time research

staff, and student research assistants. The Center's

general research thrust is to devise better means for

designing, generating and maintaining application software,

information systems and decision support systems.

Within the context of the research effort sponsored by

the National Science Foundation under Grant No. MCS77-20829,

CISR proposes to investigate the architecture of the

INFOPLEX Data Base Computer which is particularly designed

for large-scale information management. INFOPLEX applies

the theory of hierarchical decomposition in its design and

makes use of multiple microprocessors in its implementation

to obtain high performance, high reliability, and large

storage capacity. Research issues to be addressed include

optimal decomposition of information management functions

into a functional hierarchy to be implemented by a hierarchy

of microprocessor complex, and optimal physical

decomposition of an automatic memory hierarchy to support

the memory requirements of the information management

functions.
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This report discusses the INFOPLEX concepts, functional

and physical decomposition, and research directions.



ABSTRACT

The complexity, interdependencies, and rapidity of

changes of events in our modern society have accelerated the

need for more effective ways to store, process, and manage

information. Conventional computers are primarily designed

for computational purposes and are not well-suited for

information management. This report introduces concepts and

identifies research directions of a new computer

architecture, called INFOPLEX, which is particularly

suitable for large-scale information management.

The specific objectives of the INFOPLEX project include

providing substantial information management performance

improvements over conventional architectures (e.g., up to

1000-fold increase in throughput) , supporting very large

complex databases (e.g., over 100 billion bytes of

structured data) , and providing extremely high reliability.

By applying the theory of hierarchical decomposition, a

highly parallel database computer architecture can be

implemented by means of a multiple-microprocessor complex.

In particular, INFOPLEX utilizes a memory hierarchy which

can handle the storage and retrieval of a large volume of

data efficiently. The information management functions are

decomposed into a functional hierarchy to be implemented by



microprocessors. Decentralized control mechanisms are used

to coordinate the activities of the memory hierarchy and the

functional hierarchy.

The major research efforts of INFOPLEX include design,

modeling, and evaluation of an optimal memory hierarchy, an

optimal functional hierarchy and the associated distributed

control mechanisms. Implementation of INFOPLEX using

multiple microprocessors will also be investigated.
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INFOPLEX-Concepts and Directions

1. INTRODUCTION

Confronted by an ever more complex society, it has become

increasingly difficult to make decisions without sufficient

information. Due to their enormous storage capacity and

processing speed, computers have become a powerful tool for

storing, processing, and retrieving information.

1.1 A Picture of the Future -- The Information Utility

In one picture of the future, we can foresee the

evolution of an information utility (Madnick, 1977) where

personal computers can be connected to information nodes

(Figure 1) . Even though each personal computer may have its

own local database, a large shared database will still be

needed for a variety of economic or technical reasons.

Elementary versions of this system configuration already

exist today in a variety of forms, including certain airline

reservation systems and library information retrieval

systems

.

Another example of this system configuration is the New

England Energy Management Information System (NEEMIS) , which

was developed jointly by M.I.T. and IBM (Donovan and Jacoby,

1975). In NEEMIS each user's modeling (or statistical)

program is run on a different virtual machine (VM) and all
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the modeling programs access a shared database through a

database management system running on another VM (Figure 2)

.

Conceptually, each VM can be viewed as a stand-alone

computer. Therefore, we may view NEEMIS (Figure 2) as a

software simulated version of the information utility

depicted in Figure 1. Each modeling VM can be considered as

a personal computer, and the database VM can be viewed as a

database computer. NEEMIS has been effectively used for

decision support by energy policy planners and researchers

throughout the New England states. Therefore, the

feasibility and usefulness of such an information utility

is, to a certain extent, demonstrated by the NEEMIS system.

1.2 Desirable Capabilities of an Information Node

What capabilities should the information node in Figure 1

have in order to satisfy the demands of the users? We shall

examine three important requirements: Performance,

reliability, and size of the database.

Based upon our experiences with NEEMIS, in servicing a

user's analysis requirements, the personal computer may need

to generate many requests to the information node to

retrieve or update data items. If the number of users is

fairly large (e.g., 10,000) and the analysis extensive

(e.g., 100 database queries per second generated by each

personal computer) , the information node could receive over
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1,000,000 requests per second under peak load, well beyond

the 10-100 requests per second capacity of most current day

database systems. Therefore an information node must be

capable of an orderly expansion from handling current day

requirements to the requirements needed within the next few

years (1000-10,000 requests per second), and to the expected

requirements of the 1980's (up to 1,000,000 requests per

second)

.

As noted above, typical current-day high performance

database systems are capable of handling 10 to 100 requests

per second, four to five orders of magnitude below the

desired capability of an information node. Furthermore,

although trends in computer hardware indicate continued

decreases in cost, performance improvements in raw hardware

speed are only expected to improve modestly. Thus, the

performance improvement desired must be attained via novel

highly parallel architectures.

Since the information nodes are critical to the operation

of an information utility, reliability is a major concern.

Due to the size and complexity of the software and hardware

of conventional database management systems, it is difficult

to attain such high reliability. A new approach, based upon

more modular fault-tolerant hardware and simpler, less

error-prone software, is needed.



The information node must also be able to store all the

data needed by such a collection of users. Since there

already exist databases today with more than 100 billion

bytes of online data, it is reasonable to expect that there

will be future requirements for an online storage capacity

in excess of a trillion bytes.

Projections based on the cost/performance of current

storage device technologies (e.g., IBM 3850 mass storage

system), as well as more advanced experimental technologies,

indicate that it will be economically feasible to attain the

necessary storage capacities. But, no known existing

computer architecture can support the necessary volume of

database query requests nor provide sufficient reliability

for such a large system. This paper will describe a

research effort aimed at resolving this problem.

1.3 A Possible Solution — INFOPLEX

The INFOPLEX database computer architecture proposed by

Madnick (Madnick, 1975b) is a possible solution to the

requirements for effective high performance, high

reliability information nodes.

A key concept of the INFOPLEX architecture is

hierarchical decomposition. The functions of information

management are decomposed into a functional hierarchy.



referred to as the INFOPLEX functional decomposition. Each

subfunction within a level of the hierarchy is implemented

by means of a microprocessor complex. Highly parallel

operations within each level and among levels is a major

determinant of the high performance and reliability of

INFOPLEX.

A large capacity, cost-effective memory with rapid access

time is realized using a 'smart' memory hierarchy, referred

to as the INFOPLEX physical decomposition. With a high

degree of parallelism in operation, this 'smart' memory

hierarchy is able to support the memory requirements of the

INFOPLEX functional hierarchy. The control of the 'smart'

memory hierarchy is distributed, and microprocessors are

used to implement these control mechanisms.

By using both functional and physical decomposition, the

INFOPLEX database computer architecture is able to realize a

high degree of parallelism (thus high performance),

modularity, and reliability. Modular implementation of the

various functional and physical hierarchies is particularly

desirable in order to respond to, and take advantage of, new

information management techniques and memory technologies.

The INFOPLEX architecture is currently under study at the

Center for Information Systems Research (CISR) in the M.I.T.

Sloan School of Management. Other approaches to improve
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information management capabilities are possible. We shall

briefly discuss the merits and disadvantages of such

approaches in the next section. In Section 3, we shall

examine the INFOPLEX database computer architecture in more

detail. Section 4 summarizes our directions in the INFOPLEX

research.



2. RELATED WORK

The INFOPLEX is a new concept in system architecture for

information management. In the past, computers were

designed primarily for computational purposes. We now find

that information processing has become a major, if not the

dominant, component of computer usage. As Mueller (Mueller,

1976), President of System Development Corporation, noted:

"The computer industry has gone through three generations of

development to perfect machines optimized for 10 percent of

the workload.

"

More recently, several ideas have been suggested for

modifying the computer system architecture in order to

handle information processing more efficiently. These ideas

can be largely divided into the following four approaches:

(1) new instructions through microprogramming, (2)

intelligent controllers, (3) dedicated computers for

database operations, (4) database computers. Most of the

previous research activities in the field have focused on

the first three categories. The INFOPLEX belongs to the

fourth category. In the following sections, we shall

discuss the advantages and disadvantages of these various

approaches.

2. 1 New Instructions through Microprogramming
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The Central Processing Units (CPU) of most modern

computers (as in Figure 3) use the approach of

microprogramming in their design (Fuller et £l. , 1976).

That is, the internal registers and functional units used to

decode and execute the computer's instructions are

controlled by a much more primitive microprogrammed control

unit carrying out sequences defined in the high-speed

microprogram memory (see Figure 3). For example, the

microprogram determines how the 'multiply' operation is

actually accomplished, typically by means of a number of

shifts and additions. Thus, it is the contents of the

microprogram memory that determines the computer's

instructions as seen by a machine language programmer. This

approach is often called microprogramming, microcoding, or

firmware. By using a variety of microprograms, the same

hardware may take on the appearance of a number of different

computers; this is usually called emulation.

Conventional computer instructions are usually not well

suited to the requirements of operating systems and database

systems. Using firmware, it is possible to augment or

enhance the instructions. Such an approach has been

exploited extensively to support operating system functions

in many contemporary computers, such as the IBM System/370

Models 138 and 148 (e.g., virtual machine assist).

Firmware can be used to enhance otherwise conventional
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computers to make them more suitable for supporting database

processing. Instead of using inefficient subroutines, each

database operation may be executed as a single

microprogrammed instruction. This approach has been adopted

in several systems. One of the earliest efforts occurred as

part of the LISTAR information retrieval system developed at

M.I.T.'s Lincoln Laboratory (Armenti et al. , 1970), where

several frequently used operations, such as a generalized

List Search operation, were incorporated into the microcode

of an IBM System/360 Model 67 computer. More recently the

Honeywell H60/64 was announced with special instructions to

perform data format conversion and hashing corresponding to

frequently used subroutines of Honeywell's IDS database

system (Bachman, 1975). The performance advantages of this

approach are highly dependent upon the frequency of use of

the new instructions and the extent to which they fit into

the design of the overall database system software.

A more extreme approach is to define a completely new set

of computer instructions, via firmware. In the past

emulators have been developed that directly execute

high-level languages, such as APL (Hassitt and Lyon, 1976).

The Microdata REALITY System uses this approach to implement

a complete database system in the microcode of an otherwise

conventional minicomputer.

Since the basic hardware remains unchanged, the
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performance improvement using firmware is largely gained by

the higher speed of the microprogram memory (typically 2-10

times that of main memory) and the ability of microprograms

to perform certain basic operations, such as bit

manipulations, very efficiently. On the other hand, since

microinstructions are usually quite primitive, it may take

many microinstructions to perform a specific function. The

overall central processor performance improvement using

complete firmware emulation is typically in the range of 50%

to 500% (Frankenberg, 1977; Hassitt and Lyon, 1976).

Although such an improvement is attractive, it is not

sufficient to close the gap (of four to five orders of

magnitude) between current-day database system performance

and the performance requirements of an information node as

described in section 1.2.

2. 2 Intelligent Controllers

Another approach to improving information processing

efficiency is to use intelligent controllers. The

controller provides an interface between the main memory

and the devices (see Figure 4). Recently, more and more

intelligence has been introduced into these controllers.

For example, many controllers can perform the search key

operation themselves (Ahern ejt aj^. , 1972; Lang et al . ,

1977). As a matter of fact, some controllers are actually

based on specialized microcomputers or minicomputers.



14

Central
Processor

Main
Storage

Input/Output
Channel

Controller
(may contain a

microcomputer)

Disk

Figure 4. An Intelligent Controller



15

Two major types of intelligent controllers have emerged.

The first type specializes in automating the data transfer

between the storage devices, i.e., the physical storage

management functions. The second type is designed to handle

some of the logical storage management functions, such as

searching for a specific data record based on a key. This

latter type of device is sometimes referred to as a database

computer. In the following sections we examine several

examples of these two types of intelligent controllers.

2.2.1 Physical Storage Management

IBM's 3850 Mass Storage System as an example, uses an

intelligent controller to automatically transfer data

between high-capacity, slow-speed tape cartridges and

medium-capacity, faster moving-head disks (see Figure 5a).

From the point of the central processor, the 3850 appears as

a large number of disk units (Figure 5b).

The 3850's real disks are used to hold active portions of

the database, typically in units of cylinders (approximately

250,000 bytes). The controller maintains a record of the

cylinders that are currently stored on the disks. When a

request is received to read data from, say, virtual disk

2416 cylinder 36, the controller checks its storage location

table to see if that cylinder is currently on one of the

real disks; if it is, the requested data are immediately
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transferred to main storage. If not, the corresponding tape

cartridge (for example, cartridge 4868) is fetched and

scanned to locate the correct cylinder, the entire cylinder

of data is then transferred to an available cylinder on one

of the real disks, and the storage location tables are

modified correspondingly. The requested data are then

transferred from the disk to main storage as described

above.

When the requested data are already on the real disks,

the request can be satisfied in about 25 msec; otherwise it

may take 5 to 10 seconds. Except for this possible delay,

the 3850 functionally performs exactly like 5000 disks but

at only 2 to 3 percent of their cost. For applications

where only small localized portions of a very large database

are used at any time, the overall performance may be almost

the same as having 5000 real disks.

2.2.2 Logical Storage Management

This second type of intelligent controller is used to

perform associative or parallel searching (Langdon, 78).

Most parallel associative search strategies are based on a

head-per-track storage device technology (for example,

magnetic drums, LSI shift registers, and magnetic bubbles)

and a multitude of comparators, as depicted in Figure 6. As

each data record rotates, either mechanically or
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electronically, past a read/write head, it is compared with

a match record register, called the mask. If there is one

comparator per head per track, as in Figure 6, 1000

comparisons are done simultaneously; in this example a

database of 160 thousand 100-byte records could be searched

in about 10 msec, the rotation time for the storage device.

In terms of conventional sequential search technologies,

this is equivalent to reading and comparing one record every

60 nsec. In addition, the comparisons may be fairly

complex, involving multiple data fields of the record.

The CASSM Project (Copland et al. , 1973; Healy et al.

,

1972; Su and Lipovski, 1975; Su , 1977) was one of the first

associative memory hardware projects to recognize the need

for the data structures required for database systems and to

design a device from the outset to support them. CASSM is

specially designed to make use of sequential circulating

memories such as disk tracks, CCDs, shift registers, or

bubble memories. Data are organized as records which are

packed into files. A file is then divided into equal size

segments, each is then stored in a cell (e.g. a disk track).

There is logic on each cell so that all the records at the

same location on each cell can be simultaneously operated

on

.

The Rotating Associative Relational Storage (RARES)

design (Lin et al., 1976) is aimed at providing a high
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performance content-addressable memory for the realization

of a relational database (Codd, 1970). The RARES hardware

operates in conjunction with a query optimizer such as the

SQUIRAL relational query language (Smith and Chang, 1975).

Physically, RARES is connected to a CPU and buffer memory by

a high speed channel. RARES uses a head-per-track rotating

disk in which a relational tuple is stored orthogonally

across several adjacent tracks (a band) . A search module is

associated with each band to perform access operations on

the tuples in the band. The band organization greatly

reduces the complexity of sending relational tuples to the

CPU for processing. This is one example of how RARES was

carefully laid out to facilitate the operation of other

components. Another example of this is RARE ' s ability to

maintain relational tuples in sort order or to rapidly sort

tuples on a domain (i.e., on a record attribute) to

facilitate certain kinds of search operations.

The Rotating Associative Processor (RAP) (Ozkarahan et

al. , 1975; Schuster et al. , 1976; Ozkarahan et al. , 1977)

was also designed for a relational database. The basic RAP

storage mechanism is a cell. Each cell consists of a

microprocessor and a sequential rotating memory (e.g., a

disk track, CCDs , or bubble memories). The tuples of a

relation are stored as blocks of data on one or more cells.

RAP has a high-level assembly language that is used to write

RAP programs which execute relational queries. A RAP
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instruction is executed by all the cells in parallel. A

more recent RAP design (Schuster et £l. , 1976) also

incorporates a virtual memory system for permanent storage

of large amounts of data. Data are then "staged" from the

virtual memory onto the RAP cells for parallel processing.

Although the decline in the costs of comparator

electronics, due to advances in LSI technology, makes

parallel search strategies quite promising for the future,

they are only well suited to storage technologies that lend

themselves to low cost read/write mechanisms, and for

optimal performance and operation they tend to require a

fairly simple and uniform database structure (e.g.,

relational flat files) . To use these intelligent

controllers in conjunction with other storage devices, such

as mass storage, some "staging" mechanisms have to be used.

Furthermore, these intelligent controllers only support part

of the information management functions, much of the complex

functions of language interpretation, support of multiple

user interfaces, etc., of an information manage.nent system

cannot easily be performed in these controllers. Thus,

although these controllers may be well suited for certain

specific information processing activities, their

effectiveness in supporting an entire generalized

information management system is likely to be more limited.
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2. 3 Back-end Processors

The third approach is to shift the entire database

management function from the main computer to a dedicated

computer (See Figure 7). Such a computer is often called a

back-end processor.

The back-end processor is usually a minicomputer

specifically programmed to perform all of the functions of

the database management system. Although such a system

could be operated independent of any other computer ( stand

alone ) , we will focus our attention on the cases where the

back-end processor is connected to other processors or

computers, either directly to physically close systems

( tightly coupled ) or through a communications system to

physically remote systems ( loosely coupled or distributed )

.

There are many advantages to this approach, including the

following.

1. Low processor cost . Because of the processing

characteristics of database management software, a low-cost

high-performance minicomputer may perform as well as (or

better than) a high-cost traditional processor optimized for

mathematical calculations (for example, the ability to

perform a 64-bit floating point multiply in 1 microsec is

not generally needed in database processing.) By removing
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the database software load, the central processor can be

more fruitfully used to service the remaining work load.

The amount of load removable may be 40 to 50 percent or more

(Heacox et al. , 1975).

2. Sharing and distributed database processing .

Back-end processors can serve as shared repositories of

information accessible by all of the connected computers

while at the same time enforcing defined information

security constraints (Baum and Hsiao, 1976). The

DATACOMPUTER (Marill and Stern, 1975) operating as a loosely

coupled back-end processor through the ARPANET, an

international communications network, can serve as the

information repository for dozens of computers. In such an

environment, multiple back-end processors, each serving as a

database node, may be connected to provide distributed

database processing capabilities.

3. Low storage cost . By pooling the storage

requirements of many computers, more economical high-volume

storage devices may be used. Many of the minicomputers and

specialized processors on the ARPANET use the DATACOMPUTER

because of its large capacity and low storage cost per byte.

4. Compatibility and uniformity . A large corporation or

government agency may have dozens of different computers

(often from different manufacturers). Interchange of
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information between such computers has usually been awkward

because of incompatibilities between the computers and lack

of uniformity in the database. By use of the back-end

processor concept, the information may be conveniently

shared or interchanged among these disparate computers.

Back-end processors have evolved rapidly in recent years.

Some of the earliest experimental efforts include the

loosely coupled DATACOMPUTER (Marill and Stern, 1975),

developed by the Computer Corporation of America using the

DECSystem-10 computer, and the tightly coupled XDMS (Canady

et al. , 1974), developed by Bell Laboratories by modifying

the firmware of a Digital Scientific META-4 minicomputer.

The commercialization of back-end database processors is

proceeding down various paths, each offering different

advantages to the user. As an example, Cullinane Corp.,

developers of the IDMS database system software for

large-scale computers, has developed a back-end processor,

based on the PDP-11/70 minicomputer, to be attached to IBM

System/360 and System/370 computers. This facility may be

very attractive to users of the older System/360. Relieving

the 360, often a purchased rather than rented computer, of

the database processing makes additional capacity available

for the increasing application-dependent production

workload. This can extend the useful lifetime of the

installed computer and avoid a possibly costly conversion of
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the production programs if it were necessary to upgrade to

new computers.

In spite of all the advantages of the back-end processor,

they cannot be expected to provide the significant

performance improvements required of an information node

discussed in section 1.2. The main reason is that the

back-end processor is still a conventional computer whose

architecture has been designed for computational purposes,

not for information management.

2. 4 Database Computer

The fourth approach to providing improved information

processing efficiency is the database computer. The

database computer has most of the advantages of the first

three approaches. In many regards the database computer is

logically the next step in the evolution of system

architecture after new instructions, intelligent

controllers, and dedicated computers.

The difference between this approach and the third

approach (dedicated computer) is that the database computer

has a system architecture particularly suitable for database

operations while a dedicated computer merely adapts

conventional computers to database applications.
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There has been relatively little research on the

development of true database computers (as opposed to work

on intelligent controllers and/or dedicated back-end

processors -- which are sometimes referred to as database

computers). To the best of our knowledge, INFOPLEX is one

of the few system architectures in the literature

specifically designed to handle the very high database

performance required by an information node. Other database

computer research efforts include the DBC (Hsiao and Kannan,

1976) at the Ohio State University, and the GDS (Hakozaki et

al., 1977) at the Nippon Electric Co., Japan.
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3. INFOPLEX SYSTEM ARCHITECTURE

The INFOPLEX system architecture is based on the

hierarchical decomposition of a large information management

system. INFOPLEX uses both hierarchical functional

decomposition and hierarchical physical decomposition.

Figure 8 illustrates the INFOPLEX conceptual structure.

Each level of the functional hierarchy is implemented

using primitives defined within the next lower level. Only

the lowest level of the functional hierarchy interfaces with

the physical memory hierarchy, which is regarded as a very

large linear address space. The memory hierarchy (physical

decomposition) is realized by a spectrum of storage devices

and distributed control mechanisms that automatically manage

the transfer of information among the levels of the memory

hierarchy. By using multiple modules within a memory level

and by pipelining requests between adjacent memory levels, a

high degree of parallelism and reliability can be obtained.

The following two sections, 3.1 and 3.2, illustrate the

functional decomposition and physical decomposition in some

detail. Section 3.3 discusses implementation of the

functional and physical hierarchies and the distributed

control mechanisms employed. Section 3.4 summarizes the

major advantages of the INFOPLEX architecture.
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3. 1 Functional Decomposition

An information management system performs a spectrum of

very complex functions in response to user requests for

information. These requests are often expressed using very

high level languages and often come from many different

sources simultaneously. There are many ways that these

complex functions can be implemented but in our research

(Donovan and Jacoby, 1975) we have found the technique of

hierarchical functional decomposition to be very effective

for advanced information systems. Similar techniques have

been used successfully in operating systems (Dijkstra, 1968;

Madnick and Donovan, 1974), basic file systems (Madnick,

1970), and a wide range of complex systems (Pattee, 1973;

Mesarovic ejt al • , 1970).

This is the approach we shall use in INFOPLEX. The

information management functions are systematically

decomposed into a functional hierarchy, referred to as the

INFOPLEX functional decomposition. The functional modules

in the hierarchy are then implemented using multiple

microprocessors.
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3.1.1 Rationale for functional decomposition

The central idea underlying the hierarchical functional

decomposition approach involves decomposing the system into

a hierarchy consisting of a number of levels, such that each

level interacts only with the levels below it in the

hierarchy. Proper selection of the hierarchy allows design

or operating problems that previously impacted the entire

system, to be isolated to one or a few specific hierarchical

levels, and thereby more easily handled (Parnas, 1975).

Isolating the information management functions into

minimally interrelated modules facilitates the use of

multiple identical modules for performing the same function,

so that reliability and parallelism are enhanced.

Furthermore, this approach provides great flexibility in the

technologies used for iraplementating each type of functional

module. For example, a particular data structure may be

selected from a spectrum of indexing techniques for a given

module without affecting the design of other types of

modules.

3.1.2 Example of a functional decomposition

To illustrate the hierarchical functional decomposition

concept, we shall discuss a specific example of a functional

decomposition in this section. Figure 9 illustrates a
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plausible hierarchical functional decomposition. Each level

of the functional hierarchy is described below.

3.1.2.1 Entities and entity sets

At the most fundamental level, a database system stores

information about things, or entities. Also, it is usually

the case that entities represented in a database fall

naturally into logical groups, or "entity sets". The way in

which a database system (a) represents and stores

information about entities themselves, and (b) represents

information about the logical grouping of entities into

entity sets, forms the bedrock architecture of the system.

There are many schemes available for logically and

physically representing entities (i.e., coding, storing, and

addressing entities) and various algorithms for structuring

entity sets. The choice of implementation scheme at this

level affects the performance of the entire system but does

not affect how the functions of the other levels are

implemented.

3.1.2.2 Binary relations

All relationships among entities can be expressed in

terms of binary relationships between pairs of entities.

This functional level makes use of the entity level
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constructs to provide a collection of binary relations

(relations between pairs of entity sets) . An element of a

binary relation can be viewed as a triad, consisting of a

relation identifier plus two entities, each from one of the

entity sets participating in the binary relation. Thus a

binary relation can be viewed as a collection of triads with

the same relation identifier.

Perhaps the simplest possible implementation of a set of

binary relations would be as a sequential file of triads,

for example,

(HAS_SALARY_OF , SMITH , 1200)

(HAS_SALARY_OF , JONES , 1500)

• • •

(WORKS_IN_DEPT , SMITH , 02)

(WORKS IN DEFT , JONES , 07)

The difficulties with this approach are manifest: there is

great data redundancy and thus waste of storage (the

relation identifiers are stored in each triad); insertion of

additional triads would either have to be done out of order,

or else insertions and deletions would be extremely

time-consuming.

Triads could also be stored as linked lists,
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Alternatively hashing algorithms could be employed to locate

any triad, given two of its three components. The use of

linked lists can improve access speed and reduce storage

requirements. On the other hand, the use of hashing

algorithms would provide extremely rapid access, but would

be poorer in terms of storage space utilization.

Since a database may contain billions of triads, the

logical and physical structures of binary relations have

serious performance implications. Many implementation

schemes for binary relations are possible. Although the

choice of these implementation schemes has various cost and

performance implications it does not affect how the

functions of the next level are implemented.

3.1.2.3 N-ary relations

Conceptually, an n-ary relation may be thought of as a

table of data, with rows of the table (usually called

tuples) corresponding approximately to records in a

traditional data file, and columns (or domains)

corresponding to fields. Furthermore, n-ary relations may

be constructed out of sets of basic binary relations. For

example, the degree 4 relation EMPLOYE E_DEPT_SALARY_S EX, for

which a typical entry might be

(SMITH, 02, 1200, male)

,
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is semantically equivalent to (i.e., contains the same

information as) the three binary relations WORKS_IN_DEPT,

HAS_SALARY_OF and SEX, as illustrated in Figure 10.

We could build up n-ary relation tuples out of tuple-ids

of binary relations, as illustrated below, in Figure 11. In

this approach, the original data entities (SMITH, 01, 1200,

male) , would be stored in permanent binary relations, and

all other relations would be constructed out of binary tuple

ids. Tuple ids, being uniform binary numbers, are easy and

efficient to manipulate.

A number of other implementations of n-ary relations is

also possible. The point is, however, that once we have an

efficient implementation of binary relations, general n-ary

relations may be constructed in a straightforward fashion

out of the binary relations without actually having to

retreat -- conceptually or physically -- back to the level

of basic entities or entity sets. In other words, n-ary

relation functions (to manipulate n-ary relations) can be

implemented by appropriately combining binary relation

functions.

3.1.2.4 Links among n-ary relations

The various n-ary relations in a typical database would
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generally possess a number of logical interconnections. For

example, one relation might contain data on employees and

the skills each employee possesses, while another might

involve data on departments and the skills each department

requires to function. The logical relationship between the

tuples in these relations could be employed to extend the

database structure further, by incorporating a set of

"meta-relations" for storing information about such links

between the regular n-ary relations. The role of the

meta-relations would be to identify related tuples, and to

provide some semantic information regarding the nature of

the interrelationships. In the example cited above, it

would make sense to establish a meta-relation connecting the

appropriate tuples in the original two relations on the

basis of "common skill", as shown in Figure 12.

Under the implementation approach illustrated in Figure

12, meta-relations would themselves be n-ary relations. The

only difference between them and regular n-ary relations

lies in the interpretation of their entries. Therefore, all

of the previously designed mechanisms for building and

managing n-ary relations could also be used with the

meta-relations. Only the interpretation of the elements

within these relations would be different.

By incorporating linking information among the different

n-ary relations in a database, either permanently or
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temporarily, directly into the database structure itself, it

would be possible to generate more complex systems that

would be capable of presenting different interfaces to

different users, depending on the needs and objectives of

the users themselves.

3.1.2.5 Virtual information

It is not always necessary, or even desirable, that a

database contain all the information that users might wish

to access. Sometimes data interrelationships are

algorithmic in nature, such that certain values may be

unambiguously derived from others that are already stored in

the database. This gives rise to the concept of "virtual"

information (Folinus et aj^. , 1974) .

If an employee's BIRTH_DATE is stored in a database, and

the CURRENT_DATE is also available, then the employee's AGE

could be calculated by a simple algorithm and need not also

be stored. If this is in fact done, then the employee's AGE

would be an example of "virtual" data -- information that

appears (to the database user) to be stored there, but which

is not actually present as an entity in the database.

There are a number of advantages to "virtualizing" data

in a database. These include:
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- greater accuracy: for example, an employee's AGE

could be calculated as accurately as necessary if

included as virtual data, whereas it would always be

somewhat "old" if it were simply stored as a database

entity;

- elimination of updating: virtual data items

themselves never need updating;

- reduced redundancy: including, for example,

BIRTH_DATE, CURRENT_DATE , and AGE as three separate

items in a database is redundant, and inconsistent data

relationships can easily result if some of the items

are updated independently of others;

- savings in storage: in many cases, the database

storage space required to store items such as AGE

directly would be much larger than that required to

store the coded algorithm for calculating AGE from

other data.

One way of implementing a virtual information capability

is to extend the definition of n-ary relations to include

tuple identifiers ("ids") that would in fact not refer to

binary relation tuples, but rather would point to procedures

for calculating the virtual data items. Consider a simple

employee relation of degree four, containing real data items



43

NAME, BIRTH_DATE, and SALARY, plus a virtual data item AGE.

The organization of this 4-tuple would then appear as in

Figure 13.

3.1.2.6 Data verification and access control

Data verification is the process of checking entries into

a database for qualities such as reasonableness (e.g., a

person's age should be no greater than, say, 125 years), and

consistency (e.g., the sum of the months worked in various

departments by an employee should sum to the number of

months worked for the company) . Access control is the

process of controlling the database with regard to data

retrieval, update, deletion, database reorganization, etc.

For example, department managers may be granted

authorization to view the employee records of only the

employees working in their own departments; the database

administrator, on the other hand, may have access to all the

records in the database. The database administrator may

also be the only person with authority to reorganize the

entire database.

Access control also involves considerations such as the

identification of valid users through use of passwords and

other such techniques, mechanisms for allowing users to

specify the type of access (read only, read/write, execute

only, etc.) for files, and allowing users to segment files.
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so as to restrict parts of interconnected programs or data

files from certain kinds of access by certain specified

users (an example of a system that has implemented this

successfully is the MULTICS system)

.

Both data validity and access control could be

implemented in the hierarchical structure being discussed

here in a variety of ways. For example, the basic n-ary

relations could be further extended to include special

control and verification tuples. If data verification were

to be performed upon data entries in a certain domain of a

relation, that domain could be flagged in a "verification

tuple", and a data verification routine would be called upon

data insertion or update to check the appropriateness of

each entry (see Figure 14)

.

Similarly, control of access to various domains or tuples

could be performed by setting control bits in a special

control tuple or domain, and including, for example, an

address pointer to a list of authorized user passwords,

against which the current user could be checked. These

control tuples or flag bits would serve to describe certain

"views", or combinations of data elements, that each user

would be permitted to access. Alternately, they could be

used to describe elements, domains, tuples, or entire

relations that a user was not permitted to view.



46

ID

(name)

SMITH

(dept.)

02

(salary)

1 L g
( 12000 )

A

\

Passed to procedure

Address "p'

PROCEDURE

TO VERIFY

ENTITY ON

UPDATE OR

INSERTION

Figure 14. Verification and Access control



47

Note that these implementations would utilize the

mechanisms employed to provide virtual information as

discussed above (i.e., certain ids are used to point to

verification procedures, as they pointed to "virtual

information computation procedures" in the preceding

section) . Thus, the verification and access control

functions can be realized in terms of those responsible for

virtual information.

3.1.2.7 High-level language interface

The user interface, through the data manipulation

language, basically specifies the way in which the database

may be accessed by the users. In this regard, there are

three main approaches to manipulating a database,

corresponding roughly to the three basic models of database

organization (network, hierarchical, and relational.):

1. An applications programmer may wish to "navigate"

(Bachman 1973; Codasyl 1971) a database by using the

data manipulation language to trace through the data

groupings (relations) and interconnecting linkages

(links between n-ary relations) . This approach to

database manipulation is usually more complex than some

others, and demands a greater sophistication on the

part of the applications programmer. He must, for

example, be fully aware of the existence of all the
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links connecting the various data groupings, whereas

this knowledge is not necessarily demanded of

programmers using other data manipulation languages.

In return for the greater complexity, the navigational

approach usually offers greater accessing efficiency

and better overall database manipulation performance,

especially when dealing with large and complex

databases.

2. A user may wish to organize and manipulate the

database as a hierarchical tree structure, wherein the

logical interconnections between data groupings are

always one-to-many in nature. In a sense, the

manipulation of a hierarchical tree structure is a

special case of the general navigational approach.

Hierarchical structures do, however, allow a number of

simplifications to be made in designing the database

management system, as well as in the data manipulation

language. Furthermore, a surprisingly large number of

situations in the real world may be effectively

represented with a hierarchical tree data organization,

so it is worthwhile to treat hierarchical structure as

an important special case.

3. Finally, in many cases it is appropriate for the

applications programmer to access the database directly

in terms of its underlying binary or n-ary relations



49

(Codd, 1970; Codd, 1974). Such "direct" manipulation

may be made at a relatively low level, in terms of

individual relations and primitive operations (using

the relational algebra) upon them. Alternately, a

higher-level interface could be used to translate more

general-purpose commands (using the relational

calculus) into lower-level operations. Such low-level

accessing methods generally provide greater efficiency,

at the expense of greater programming detail.

3.1.3 INFOPLEX ' s approach to functional decomposition

The above discussions illustrate one possible

decomposition of the information management functions into

hierarchical levels. Other decompositions are possible.

For example, the work of (Senko, 1975; Yeh et ^1. , 1977; Toh

et al. , 1977; ANSI/SPARC, 1975) also decomposes the various

information management functions into several levels (e.g.,

(1) physical data storage, (2) logical data encoding, (3)

access path, (4) internal schema, and (5) external schema).

A common weakness of these functional decompositions,

including our example decompositon, is that although any

particular decomposition may make good sense and impose a

reasonable conceptual structure on the information

management function, there are no commonly accepted criteria

with which to evaluate any given decomposition.



50

A common qualitative criteria often used to decompose

complex functions into sub-modules is that of modularity. A

decomposition is considered to attain high modularity when

each individual module is internally coherent, and all the

modules are loosely coupled with one another. One of our

research focuses is to develop methodologies to formalize

this notion of modularity quantitatively, and to use it to

evaluate a given decomposition, thus enable us to develop

systematic techniques fCr obtaining an optimal functional

decomposition of the information management functions. A

particularly promising approach that we are actively

investigating is the Systematic Design Methodology (SDM)

(Huff and Madnick, 1978). The following briefly describes

this approach.

The SDM approach to system design centers on the problem

of identifying a system's modules, or "sub-problems", their

functions, and their interconnections. Using the SDM

approach, we begin with a set of functional requirement

statements for the INFOPLEX information management

functions. Each pair of requirements is examined in turn,

and a decision as to whether a significant degree of

interdependence between the two requirements exists is made.

Then the resulting information is represented as a

non-directed graph structure: nodes are requirement

statements, links are assessed interdependencies. The graph

is then partitioned with the objective of locating a good
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decomposition. An index of partition goodness is employed,

which incorporates measures of subgraph "strength" and

"coupling." The actual goodness index is taken as the

algebraic difference between the strengths of all the

subgraphs, and the inter-subgraph couplings. That is,

M=S-C, where S is the sum of the strength measures of all

subgraphs, and C is the sum of all the inter-subgraph

couplings

.

Once an agreeable partition is determined, the resulting

sets of requirements are interpreted as "design

sub-problems." From these design sub-problems a functional

hierarchy of the INFOPLEX can then be systematically

derived. This procedure is illustrated in Figure 15. For

details of this approach, refer to (Huff and Madnick, 1978),

3. 2 Physical Decomposition

As we have discussed in the previous section, the

information management functions of INFOPLEX are implemented

as a functional hierarchy, using microprocessors. This

systematic and modular approach entails highly parallel

operations and highly reliable information management

modules. To provide a high performance, highly reliable,

and large capacity storage system, INFOPLEX makes use of an

automatically managed memory hierarchy (referred to as the
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INFOPLEX physical decomposition)

.

In this section, the

rationale for and an example of an automatic memory

hierarchy are discussed. Then the INFOPLEX approach to

realize such a memory hierarchy is also discussed.

3.2.1 Rationale for a memory hierarchy

The technologies that lend themselves to low

cost-per-byte storage devices (and, thereby, economical

large capacity storage) result in relatively slow access

times. If it was possible to produce ultra-fast

limitless-capacity storage devices for miniscule cost, there

would be little need for a physical decomposition of the

storage. Lacking such a wondrous device, the requirements

of high performance at low cost are best satisfied by a

mixture of technologies combining expensive high-performance

devices with inexpensive lower-performance devices.

There are many ways that such an ensemble of storage

devices may be structured, but in our research (Madnick,

1973; Madnick, 1975a) we have found the technique of

hierarchical physical decomposition to be very effective.

Using this technique, the ensemble of heterogeneous storage

devices is organized as a hierarchy. Information is moved

between storage levels automatically depending upon actual

or anticipated usage such that the information most likely

to be referenced in the future is kept at the highest (most
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easily accessed) levels.

The effectiveness of a memory hierarchy depends heavily

on the phenomenon known as locality of reference (Denning,

1970; Madnick, 1975a). A memory hierarchy makes use of this

property of information reference pattern so that the

information that is used frequently would be accessible

through the higher levels of the hierarchy, giving the

memory hierarchy an expected access time close to that of

the access time of the faster memories. This approach has

been used in contemporary computer systems in cache memory

systems (Conti, 1969), in virtual memory demand paging

systems (Bensoussan et aj^. f 1969; Chu and Opderbeck, 1974;

Greenberg and Webber, 1975; Hatfield, 1972; Mattson et al.

,

1970; Meade, 1970; Ohnigian, 1975), and in mass storage

systems (Considine and Weis, 1969; Johnson, 1975).

Several measures of database locality and

experimentations with these measures are reported in a

recent study (McCabe, 1978). The observations from these

experiments are encouraging. In particular they indicate

that there is considerable locality of database reference.

As can be inferred from Figure 16, there are a large number

of instances where a record that has just been referenced is

referenced again very soon. For example, point X in Figure

16 represents the 175 instances where the same record is

referenced again after only 5 references were made to other
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records

.

McCabe's study gives further support for the use of a

memory hierarchy as an effective medium for storing very

large databases, as is required in INFOPLEX.

3.2.2 Example of a physical decomposition

We now discuss an example of a memory hierarchy, its

general structure, types of storage devices that it may

employ, and some strategies for automatic information

movement in the hierarchy.

3.2.2.1 General structure

To the user (i.e. the lowest level of the functional

hierarchy) of the memory hierarchy, the memory appears as a

very large linear virtual address space with a small access

time. The fact that the memory is actually a hierarchy or

that a certain block of information can be obtained from a

certain level is hidden from the memory user. Figure 17

illustrates the general structure of a memory hierarchy

consisting of six levels of storage devices. Some of the

devices that can be used in these levels are discussed in

the next subsection.

The lowest level always contains all the information of
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the system. A high level always contains a subset of the

information in the next lower level. To satisfy a request,

the information in the highest (most easily accessed) level

is used.

Storage reference is accomplished by supplying the memory

hierarchy with a virtual address (say a 64-bit address) , the

memory hierarchy will determine where the addressed

information is physically located. The addressed

information will be moved up the memory hierarchy if it is

found in other than the highest level of the hierarchy.

This implies that there is a high variance in the access

time of the memory system. This situation is alleviated by

providing multiple ports to the memory system so that a

pipeline of requests can be processed. Furthermore, the

inherent parallelism within each memory level and among

different memory levels provides high throughput for the

memory system as a whole. Since the functional levels are

designed with high parallelism of operation as one of its

major objectives, the processor making the request can take

advantage of the high memory access time variance. For

example, by making use of the expected time of response

(ETR) for a given memory request, generated by the memory

system in response to a memory request, the processor making

the request can schedule its activities accordingly.

Various schemes are used to make the automatic management of

the memory hierarchy efficient. Some of these strategies
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are discussed in a latter section.

3.2.2.2 Storage devices

Traditionally, computer direct access storage has been

dominated by two fairly distinct technologies: (1) ferrite

core and, later, metal oxide semiconductor (MOS) LSI

memories with microsecond access times and relatively high

costs, and (2) rotating magnetic media (magnetic drums and

disks) with access time in the range of 10 to 100

milliseconds and relatively low costs. This has led to the

separation between main storage and secondary storage

depicted in Figure 18.

Recently several new memory technologies, most notably

magnetic bubbles, electron beam addressed memories (EBAM)

,

and charge coupled devices (CCD) , have emerged to fill the

"gap" between the two traditional memory technologies. The

characteristics of these three particular technologies are

summarized in Table 1.

The evolution and increasing deployment of the above and

many other memory technologies have produced a more

continuous cost-performance range of storage devices, as

depicted in Table 2 (Madnick 1975a; Martin and Frankel 1975;

Jyers 1976; Wendley 1975). Note that these technologies,

which are arbitrarily grouped into six categories, result in
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Memory Characteristics Magnetic
Bubble

EBAM CCD

1. Storage

Representation

2. Bit density

3. Access Mode

4. Access Time

5. Shift Rate

6. Transfer Rate

7. Power per bit
(during memory
operation)

8. Cost per bit

9. Largest chip size
fcibricated

LO. Organization

Magnetic
Domain

10^ bits
per sq. in.

Sequential

.5-10 msec

100-500Kbs

100-500Kbs

2lJw

.02«?

100 Kbit
(Rockwell)

Major-minor
loop

Electrical
Charge

10^ bits per
sq. in.

Quasi-Random

3-30 ysec

N/A

1-10 Mbits
per sec

lOyw

.OOS-t

32 Mbit (Tube)

(GE)

Stand-alone or
shared
electronics mode

Electrical
Charge

10^ bits
per sq. in.

Sequential
or Block
Addressable

Sequential:
5-50 ysec

Block Access:

5 IJsec

1-10 Mbits
per sec

1-10 Mbits
per sec

50yw

.05*

64 Kbit
(Mnemonics)

Serpentine
Serial-

Parallel-
Serial, Block
oriented

TABLE 1 Characteristics of Magnetic Bubble Memories, EBAMs and CCDs
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storage devices that span more than six orders of magnitude

in both random access time (from less than 100 nanoseconds

to more than 1 second) and system price per byte (from more

than 50 cents per byte to less than 0.0005 cent).

This evolution has facilitated the choice of appropriate

cost-effective storage devices for the memory hierarchy

(Boyd 1978; Kluge, 1978). For example, for the memory

hierarchy discussed in the previous section, we might use a

device like the IBM 3850 Mass Storage as the mass storage,

traditional moving head disks as secondary storage, magnetic

drums as backing store, CCD or magnetic bubble as block

store, core or semiconductor RAM as main storage, and high

performance semiconductor RAM as cache.

3.2.2.3 Strategies for information movement

Various physical storage management and movement

techniques, such as page splitting, read through, and store

behind, can be distributed within the hierarchy of levels.

This facilitates parallel and asynchronous operation in the

hierarchy. Furthermore, these approaches can lead to

greatly increased reliability of operation. For example,

under the read through strategy (Figure 19) , when data

currently stored at level i (and all lower performance

levels) is referenced, it is automatically and

simultaneously copied and stored into all higher performance
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levels. The data itself is moved between levels in standard

transfer units , also called pages , whose size N (i-1, i)

depends upon the storage level from which it is being moved.

For example, suppose that the datum "a", at level 3, is

referenced (see Figure 19). The block of size N(2,3)

containing "a" is extracted and moved up the data bus.

Level 2 extracts this block of data and stores it in its

memory modules. At the same time, level 1 extracts a

sub-block of size N(l,2) containing "a" and level extracts

the sub-block of size N(0,1) containing "a" from the data

bus.

Hence, under the read through strategy, all upper storage

levels receive this information simultaneously. If a

storage level must be removed from the system, there are no

changes needed. In this case, the information is "read

through" the level as if it didn't exist. Since all data

available at level i is also available at level i + 1 (and

all other lower performance levels) , there is no information

lost. Thus, no changes are needed to any of the other

storage levels or the storage management algorithms although

we would expect the performance to decrease as a result of

the missing storage level. A limited form of this

reliability strategy is employed in most current-day cache

memory systems (Conti, 1969).
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In a store behind strategy all information to be changed

is first stored in L(l), the highest performance storage

level. This information is marked "changed" and is copied

into L(2) as soon as possible, usually during a time when

there is little or no activity between L(l) and L(2). At a

later time, the information is copied from L(2) to L(3),

etc. A variation on this strategy is used in the MULTICS

Multilevel Paging Hierarchy (Greenberg and Webber, 1975).

This strategy facilitates more even usage of the bus between

levels by only scheduling data transfers between levels

during idle bus cycles. Furthermore, the time required for

a write is only limited by the speed of the highest level

memory

.

The store behind strategy can be used to provide high

reliability in the storage system. Ordinarily, a changed

page is not allowed to be purged from a storage level until

the next lower level has been updated. This can be extended

to require two levels of acknowledgment. Under such a

strategy, a changed page cannot be removed from L(l) until

the corresponding pages in both L(2) and L(3) have been

updated. In this way, there will be at least two copies of

each changed piece of information at levels L(i) and L(i+1)

in the hierarchy. Other than slightly delaying the time at

which a page may be purged from a level, this approach does

not significantly affect system performance. As a result of

this technique, if any level malfunctions, it can be removed
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from the hierarchy without causing any information to be

lost. There are two exceptions to this process, L(l) and

L(n). To completely safeguard the reliability of the

system, it may be necessary to store duplicate copies of

information at these levels only.

Figure 20 illustrates this process. In Figure 20(a), a

processor stores into L(l), the corresponding page is marked

"changed" and "no lower level copy exists". Figure 20(b)

shows in a latter time, the corresponding page in L(2) is

updated and marked "changed" and "no lower level copy

exists". An acknowledgment is sent to (Ll) so that the

corresponding page is marked "one lower level copy exists".

At a latter time (Figure 20(c)), the corresponding page in

L(3) is updated and marked "changed" and "no lower level

copy exists". An acknowledgment is sent to L(2) so that the

corresponding page is marked "one lower level copy exists".

An acknowledgment is sent to L(l) so that the corresponding

page is marked "two lower level copy exists". At this time,

the page in L(l) may be replaced if necessary, since then

there will be at least two copies of the updated information

in the lower memory levels.

3.2.3 INFOPLEX' s approach to physical decomposition

In the previous section, we have illustrated an example

of a memory hierarchy that makes use of an ensemble of
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Figure 20(a) Store-behind (a)
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Figure 20(b) Store-behind (b)
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heterogenous storage devices. Although memory hierarchies

using two or three levels of storage devices have been

implemented, no known generalized automatic memory hierarchy

has been developed.

The optimality of a memory hierarchy depends on the

complex interactions among the memory reference pattern, the

device characteristics, and the information movement

strategies. Our approach to this complex problem is to

empirically study and characterize data reference patterns

at several levels (e.g. transaction level, logical data

level, and physical data level), to develop various

information movement strategies, and to design a prototype

memory hierarchy. The interactions among these components

are then to be systematically investigated by means of

analytic models and simulation models.

3.3 Distributed control and multiple-microprocessor

implementations

Both the INFOPLEX functional and physical decomposition

make use of distributed control mechanisms and multiple

microprocessors in their implementations. In the functional

decomposition, multiple microprocessors are used to

implement the information management functions as well as

the distributed control mechanisms. In the physical

decomposition, multiple microprocessors are used mainly to
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implement the distributed control mechanisms. The following

briefly illustrate these ideas.

3.3.1 Functional hierarchy implementation

As noted earlier, each level of functional decomposition

is implemented in terms of the primitives of the next lower

level (refer to Figures 8 and 9). A separate set of

microprocessors is used to implement each functional level.

Thus, multiple requests can be at different stages of

processing at different levels simultaneously. A view of

the multiple processor implementation of the hierarchical

functional decomposition is depicted in Figure 21. Each

processor level implements a particular information

management function. For example, while one request is

being checked for access rights by the Data Verification and

Access Control Module (Level 6), an earlier request may be

undergoing inter-relation navigation in the Relation Linkage

Processor Module (Level 4)

.

Furthermore, multiple identical modules at each level can

be used so as to enhance parallelism of operation and high

reliability at each level. For example. Level 6 in Figure

21, the Data Verification and Access Control Level, may be

implemented using three identical processors each capable of

performing the same security checking functions (See Figure

22). All the processors can operate in parallel. Thus,
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three different requests can be checked for access rights at

the same time, each using a different Data Verification and

Access Control Level processor. Using such multiple

interchangable processors at each level enhances reliability

since a malfunctioning processor can be removed from

service, and the system can still operate uninterrupted, in

a somewhat degraded mode, using the remaining processors

that perform the same function.

The inter-level queues maintain a pipeline of requests to

each functional level. All levels can be simultaneously

processing requests. This parallelism of operation among

different functional levels together with the parallelism of

operation within each functional level can provide very high

throughput.

Although such extensive use of processors has been quite

expensive in the past, the advent of low-cost

microprocessors makes such a system economically feasible

(Weissberger , 1977). Furthermore, since each level

implements only a limited amount of the total system's

functionality, very simple processors can be used.

3.3.2 Physical hierarchy implementation

As illustrated in the sample memory hierarchy (Refer to

Figure 17), a possible architecture of the memory hierarchy
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is to have data and control buses connecting each memory

level. The same philosophy as in the functional hierarchy

is employed to enhance system throughput in the memory

hiearchy. Simultaneous operation of all the memory levels

is possible via pipelining of memory requests at each memory

level. Parallel operation at each memory level is possible

using multiple memory modules (using some form of

interleaving)

.

The memory controllers at each memory level realize the

various distributed control functions of the memory

hierarchy. For example, a memory controller may consist of

a microprocessor complex that implements the various data

transfer algorithms between adjacent memory levels. A

memory controller may also incorporate an associative memory

for mapping of virtual addresses into their real

counterparts. Using such an associative memory, a memory

controller can quickly determine if the addressed

information is to be found in the particular memory module.

3.3.3 Distributed Control

The INFOPLEX functional hierarchy and physical hierarchy,

as described above, are based upon distributed control

algorithms. That is, each processor module only interacts

with neighboring processor modules (i.e., the next higher

and the lower level of the hierarchy) . There is no "central
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control" processor that must control all other processors

and the data flow. This approach eliminates potential

bottlenecks and the existence of critical reliability

elements in the system. These and other major advantages of

the INFOPLEX architecture are summarized in the next

section.

3.4 Advantages of the INFOPLEX Architecture

Compared with conventional computer architectures, the

INFOPLEX architecture has the following advantages:

(1) It is able to handle extremely high request rates

since it takes advantage of pipelining and parallel

processing in its architecture.

(2) Its hierachical decomposition has been explicitly

designed for information management. The

hierachical decomposition theory has been

successfully used by ourselves and others in the

design of operating systems, file systems, and

database systems. Thus hierarchical decomposition

is not only theoretically sound but also empirically

tested.

(3) It utilizes a highly decentralized control mechanism

to eliminate any potential bottlenecks that may
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occur due to centralized control.

(4) It provides both extremely high reliability. In

particular

,

a. the reliability is attained by exploiting the

particular characteristics of the memory rather

than brute force redundancy;

b. the system can operate with any single failure

of any processor or memory device, and no

information is lost or misused; it can also

operate in spite of most double or triple

failures; and

c. as a result of the above, no manual intervention

is required to cope with such failures.

(5) It can integrate new memory technologies easily by

adding or replacing a memory level in the memory .

hierarchy.

(6) It explicitly provides multiple interfaces to

different types of users, such as end users, system

analysts, system programmers and hardware

maintainers.
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4. RESEARCH DIRECTIONS

We plan to investigate the following major research

topics.

4.1 Optimal Hierarchical Functional Decomposition

Hierarchical decomposition has been used successfully in

designing file systems (Madnick and Alsop, 1969), operating

systems (Madnick and Donovan, 1974; Madnick, 1976), and

database systems (Donovan, 1975). Similar techniques have

also been used by other researchers in systems design

(Dijkstra, 1968; Parnas, 1974). However, the decomposition

of functionalities into different modules, whether they are

hardware or software, is usually based on the designer's

experience and intuition. The resulting modules may not be

optimal. Therefore, we plan to develop analytical tools to

be used in the INFOPLEX architectural design process.

One of the techniques we are investigating is the

requirement decomposition method (Alexander, 1964; Andreu

and Madnick, 1977), and the Systematic Design Methodology

(SDM) (Huff and Madnick, 1978). Using the SDM approach

(refer to figure 13.1 in a previous section), the functional

requirements of the INFOPLEX database computer are modeled

as nodes in a graph, and a link between two nodes indicates

that the corresponding functionalities are related to each
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other. The problem is to separate the graph into subgraphs

such that each subgraph is loosely coupled to other

subgraphs and strongly coherent. Each of the resultant

subgraphs corresponds to a module of the system. Many graph

partition algorithms exist (Hartigan, 1975), including an

algorithm we developed for putting highly correlated program

segments into pages (Chen and Gallo, 1974). We shall study

ways in which to apply these algorithms to our problem of

hierarchical functional decomposition. Specific issues to

be addressed include: (1) What are the objective function

and constraints of the graph partition problem in this

context? (2) What is a precise definition of the "link"

between two nodes? (3) How to systematically obtain a

functional hierarchy from the set of subgraphs?

The ultimate goal of this phase of the research is to

develop a tool that can help define the optimal INFOPLEX

hierarchical functional decomposition.

4.2 Optimal Hierarchical Physical Decomposition

The memory hierarchy in INFOPLEX is flexible in

incorporating new technologies and dropping old ones. A key

design problem in a memory hierarchy is to decide how many

memory levels (i.e., what types of memory technologies) are

needed and what the size of each level should be. Some

researchers (Arora and Gallo, 1971; Ramamoothy and Chandy,
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1970) have studied the criteria for admission of a new

memory level (with given cost per unit storage and access

time) to the memory hierarchy. However, they did not

consider queueing delays, the read-through, and the

write-behind operation.

As the INFOPLEX memory hierarchy is primarily used for

storage of very large databases, the nature of database

references has important implications on the optimality of

the physical decomposition. For example, we have observed

that database references exhibit localities of different

durations and periodicities (e.g., certain portions of a

payroll database may be heavily accessed, but this access

pattern may only occur weekly) . An optimal physical

decomposition will have to provide cost effective memory

levels to store information that is referenced with

different frequencies and locality patterns. We plan to

perform experimental and analytical studies of database

reference characteristics and to derive a scheme to optimize

the hierarchical physical decomposition of the memory

hierarchy that takes account of all the above additional

considerations as well as the special characteristics of

INFOPLEX.

The memory control unit at each level of the memory

hierarchy will be studied in detail including the various

algorithms for information transfer among memory levels.
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mechanisms for virtual address mapping using associative

memories and the communications protocols among these

distributed controls. An important research issue will be

the reliability implications and the degree of parallelism

realizable using these mechanisms. h preliminary design of

the INFOPLEX memory hierarchy is currently being used to

explore these issues.

4.

3

Multiple-Microprocessor Architecture and Protocols

The modules of the hierarchical functional decomposition

and hierarchical physical decomposition must be realized

using sets of microprocessors. It is necessary to identify

those characteristics that would be best suited to

implementing these modules in order to select the

appropriate type of microprocessors. The inter-processor

protocols must also be defined in more detail, with special

concern for high performance and high reliability. A

variety of interconnection strategies must be investigated,

including: (1) shared buses, (2) segmented buses, (3)

inter-bus queues, and (4) "pended" buses.

4.4 Performance Evaluation and Optimization

It is desirable to know how much can be gained in

performance by use of the INFOPLEX architecture in

comparison with conventional computer architectures. In
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other words, we wish to know what the expected performance

of the INFOPLEX architecture would be. In addition, we need

to formulate a set of decision rules that can be used by the

INFOPLEX modules to automatically select the "best"

algorithm, from among a set of available algorithms, to

accomplish a function under differing circumstances.

Therefore, a quantitative model of INFOPLEX is needed to

predict the performance and evaluate different design and

algorithm alternatives.

We plan to model INFOPLEX as a hierarchy of performance

submodels, each level in the hierarchical decomposition

having a performance submodel. Many of these submodels have

already been developed by researchers in the field

(Severance et al. , 1976; Cardenas, 1975; Rothnie, 1975;

Chen, 1975; Chen, 1976; Sarmento and Chen, 1977). What

needs to be done is to select appropriate models for each

level and organize them in a uniform manner.

4. 5 Reliability

There are two major types of reliability concerns in the

INFOPLEX design. One is related to the reliability of the

functional decomposition, and the other to the reliability

of the physical decomposition.

We have described how at each hierarchical functional
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level multiple microprocessors will be used in parallel to

process data requests. As a result, the system is composed

of a series of parallel microprocessors. It is desirable to

develop a reliability model that will allow us to estimate

the effective reliability of this microprocessor complex

under various failure assumptions.

In the physical decomposition's memory hierarchy, the

failure of a single memory level will not disrupt the

operations of the memory hierarchy. However, we would like

to be able to model the reliability of the system to answer

questions, such as what the probability is of information

loss due to a simultaneous failure in two portions of the

memory hierarchy.

In addition to modeling the reliability of the system, we

shall also investigate ways to improve the reliability of

the system.

4. 6 Interlocks

Various interlock mechanisms must be used in an

information system to coordinate update operations. In

designing INFOPLEX, it is necessary to develop interlock

techniques that lend themselves to a highly decentralized

implementation without adversely affecting performance or

reliability. A variety of interlock strategies have been
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proposed in the literature and used in current-day database

systems. We plan to investigate these strategies in light

of the special characteristics of the INFOPLEX architecture

to determine the most appropriate approaches for such a

highly parallel and decentralized system.
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5. CONCLUSIONS

The need for highly reliable information management

systems that can support transaction volume and storage

capacity several orders of magnitude higher than current

information systems calls for new architectures, both in

information management functions and the hardware that

supports these functions.

The INFOPLEX Data Base Computer architecture is a major

step in this direction. INFOPLEX makes use of the theory of

hierarchical decomposition to realize a highly structured,

modular architecture. The information management functions

are structured as a hierarchy and a highly modular

implementation of the functional hierarchy using multiple

microprocessors entails high degrees of parallelism and

reliability. An automatic memory hierarchy is used to

support the high performance, high capacity memory

requirements of INFOPLEX.

This paper discusses concepts of INFOPLEX. The main

objectives of INFOPLEX research are to develop an optimum

functional hierarchy and an optimum physical (memory)

hierarchy. We have discussed our research directions

towards these goals.
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