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INTEGRAL IDENTITIES INVOLVING ZONAL POLYNOMIALS

Gordon M. Kaufman

1. Introduction

Constantine [3] and James [5] have treated a wide variety of distribution

problems in multivariate analysis using hypergeometric functions F of matrix—
p q

argument and their expansions in zonal polynomials . The great advantage of

these two notions, defined in section 1 below^ is that they unify the mathemat-

ical characterizations of a wide class of multivariate density functions, func-

tions that otherwise would have to be expressed in inordinately difficult mul-

tiple series; e.g„ the non-central Wishart density^ the non-central multivariate

F density, the density of canonical correlations in the non-null case, etc.

Almost all of their results rest on three major properties of zonal poly-

nomials (See James [5] J(22), J(23), J(24)), The main purpose of this paper

is to record some additional properties of zonal polynomials that are needed in

order to do a Bayesian analysis of certain multivariate data generating processes

closely related to the multivariate Normal process. In particular, we show how

some of the integral identities shown here can be used (a) in the analysis of

the econometrician's simultaneous equations system from a Bayesian point of

view; (b) to give an explicit series representation for the characteristic

function of the generalized inverted beta density defined in section 5; (c) to

prove an analogue of one of Constantine' s major theorem's quoted in section 2

below; (d) to provide a further extension of an integral identity due essentially

to Bellman [2] (See Olkin [8] also) that is extremely useful in building Bayasian

extensions of natural conjugate families for the multivariate Normal process as

reported in Ando and Kaufman [1].





To foreshadow the applications that flow from some of the results of this

paper and to illustrate the kind of problem that generates interest in them^

suppose we wish to analyze the following set of stochastic equations Bayesianly:

~( J) ( i) ~( 1)

IZ +^L =}i ,
j=l,2,... (1.1)

where B and r are (m x m) and (m x r) coefficient matrices, fixed for all j,

£^-''^ is an (r x 1) vector of predetermined variables and y^-'-^ and u^^' are

(m X 1) and (r x 1) random vectors respectively. We assume that {u'^'',

2=1 ,2 , . . ,] is a sequence of mutually independent, identically Normal random

vectors with mean and PDS covariance matrix Z = h" ; and B is non-singular.

One observes (y ,
£^-^

) j=l,2,... but neither B, nor ^ "or h is known with

>* 'Vrf

certainty. As Bayesians we wish to regard B, C; ^ri*^ b ^^ jointly distributed

random variables, place a joint prior density on (B, T, h) and then do a variety

of calculations. Of particular interest to econometricians is the joint density

f\, f\^

°^ (r^ h) unconditional as regards B, the marginal density of T^, and the partic-

•-<-f -"V 'N* (*
1 )

ulars of blending the prior on (p, h, B) with objective sample evidence { (^ ,

^ ), j=l,2, . ,
.
,nj via Bayes Theorem to find the posterior joint density of

*V ^ 'N<»

(C; D^ '^) « Here we show how to calculate the first mentioned densities when

the prior on (p, h) given B = B is in the natural conjugate family' of priors

(Normal-Wishart) as defined in [ 1 ] and a pifior with kernel

-,t
e4tr i[|-Bl E[B-B] |ggt|Q! ^

4,, E > 0, a > , (1.2)

tsee Ref . [ 9 ] for a detailed discussion of the notion of natural conjugate

priors.
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is assigned to B with range set M . This is a "natural" family of normed

priors to assign to B. We leave the justification for assigning this class

to B and the details of prior-posterior analysis under the above assignments

to another paper that will deal more fully with (1.1)^ but show that the joint

density of (T, h) unconditional as regards B is expressible as a product of a

Wishart density and a hypergeometric function ,F, of matrix argument, while

the marginal of r is essentially yF-, with argument a complicated matric func-

tion of r. The function ,F, is a generalization of the classical Laguerre

polynomials, and Herz [4] shows that it is computable in terms of classical

Laguerre polynomials of single argument. The function „F, is a generalization

of the Gaussian hypergeometric function.

1,1 Notation

Throughout all matrices Z are understood to be (m x m) unless otherwise

stated. We denote the set of all (m x m) non-singular matrices by Mj^^ ^ and

the cone generated by the set of all (m x m) positive definite symmetric matrices

by h > 0. A tilde denotes a random variable; e.g. B. And Re T and tr T denote

the real part of T when T is complex and the trace of | respectively. We shall

have occasion to integrate over the real orthogonal group of order m (the set

of all orthogonal matrices of order m) and label it 0(m).

By J(B - W) we mean the Jacobian of the matrix transform from B to y.

The unique PDS square root of a PDS matrix | is written g2 and |R| denotes

the determinant of R. We also need the symbols





.[Jl

^11 '•• ^ij

h.
jl

h. .

JJ

and
^[ji

^+^,j+l ••• ^+l,m

The symbol y = ^(m+1) throughout. Also rj„(x) = „!*'"('""')
jj p(x-i(i-l)),

and for a partition k = (k^,, .
.
^k^) of the positive integer k into non-nega-

—mrm-1') "^

tive integers k^ > k2 > . . . > k^, Tj^Cx, k) = n'* ^ ^g^ r(x + k^ - ^(i-l)).

We remark that if, as is conventional, we define (x) = 1, (x) = x(x+l) . .

.

m
(x-Hi-1) and for a partition k, (x)^ = ^g^ (x - ^(i-l))k^, then (x) = rj^(x,K)/r^(x)

A formulae labelled with a letter refers to the same numbered formula in

the article by the author whose initial the letter is (see bibliography); e.g.

C(ll) denotes formula (11) in Constantine [3]. Formulae prelabelled with an

I are the main identities proven here; e.g. 1(1) through 1(6).

For notational compactness, whenever the argument of a symmetric function

appears as the sum of an arbitrary (m x m) matrix, say Z, and its transpose,

we shall write the argument as 2Z rather than Z + Z ; e.g. tr(Z + Z ) = tr 2 Z.

2. Zonal Polynomials and Hypergeometric Functions of Matrix Argument

Constantine [3] and James [5], discuss zonal polynomials in detail. Here

we give their definition, quoting Constantine, and state those of their prop-

erties needed in the sequel. Constantine [3] gives their definition as follows:

"Let S be a positive definite, symmetric m x m matrix, and \|f(S) a poly-

nomial in the elements of S, Then, the transformation





- 5 -

\lf(S) - \KL'^ S L'"-^) , L e GL(m) , (2.1)

defines a representation of the real linear group GL(m) in the vector space of

all polynomials in S. The space V, of homogeneous polynomials of degree k is

invariant under the transformations (2.1) and decomposes into the direct sum

of irreducible subspaces Vj^. = Ej^ 9- Vj^. where k = (kj^ ^k-, . . . ,k ), k, > k^ > ... >

k > 0, runs over all partitions of k into not more than m parts. Each V

contains a unique one dimensional subspace invariant under the orthogonal group

0(m). These subspaces are generated by the zonal polynomials , C (S) . Being

invariant under the orthogonal group, i.e.,

C,(H' S H) = C (S) , H 6 0(m) (2,2)
(\ — — — n. — —

they are homogeneous symmetric polynomials in the characteristic roots of S.

The zonal polynomials were defined above only for positive definite sym-

metric matrices S. However, since they are polynomials in the characteristic

roots of S, their definition may be extended to arbitrary complex symmetric

matrices. Furthermore, if S is a symmetric matrix, and R is a positive defi-

i 1.

nite symmetric matrix, then the roots of R S are the same as those of R^ S R2

where R^ is the (unique) positive definite square root of R. Hence, one may

1. 1

define C (R S) = C (R2 S R2).
K — — K — _ _

The fundamental property of the zonal polynomials is given by the follow-

ing integral, proved in [ 6 ]:

/ C (H' S H T) d(H) = C (S) C (T)/C (I) , C(6)

0(m)
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where J is the identity matrix, and d(y) is the invariant Haar measure on the

orthogonal group, normalized to make the volume of the group manifold unity„"

A property of interest here is for arbitrary (r x m) X,

r 2k ^^\ t
/ (tr X Q) dQ = E j^-r- C^(X t) . J(22)

0(m)

In order to prove Theorem 2 below, we need two additional properties of zonal

polynomials established by Constantine. Order the partitions of k lexicograph-

ically; e.g. if K = (k^,k2,. . .,k^) and t = (t,,t ...,t ) are two partitions o£

k, then define k > t if k = t, , . .
.
,k. = t

.
, k.,, > t.,, . Let Si,...,s denote

the characteristic roots of the PDS matrix S. Constantine [3] shows that if

"l ^^2 "m
monomials s, ,s^ ,...,s appearing in the expansion of C (S) into a sum of

such polynomials are ordered lexicographically, the term of "highest weight"
k, k
1 m ,

occurring is s, ... ,s and
i ' ' m

k k

C (S) = d s/,...,s "^ + "lower terms" . ,'2.3)

Here d is a constant resulting from the inversion of an expression of a
K ^ K

group character as a linear combination of zonal polynomials. It will cancel

when (2.3) is in use here and need not be explicitly defined.

Two additional properties of primary interest to us are (Constantine [3]

(11))

C (S) = d IS^^^I ^ ^ IS^^^I
^" ^ ... IS^"^!

"^ + "lower terms" CiLl}

and if T is diagonal, with diagonal elements t,,t2,...,tm
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'.'i V ' \,. 'i'- C ll'^V'"'' isj^ll'^''^.. Ii'"-'!'" * ... ecu,

The hypergeometric functions of matrix argument that we mentioned at the

outset are defined (see [3] and [5]) in terms of zonal polynomials like this:

Definition : For integers p and q

(ap ... (a ) C (|)
p^(ai,...,ap; b^,....b^, S) . ^^, Z

(, ) .,, %'
^ l,'

J(10)
J- K ^ K

where a,,..., a , b,,...,b are real of complex constants and for any given parti-

tion K = (kj,...,kj,
(^^K

^ iSl
^^2^^''^^\ ^"'^ (a),^ = a(a+l) ... (a+k^-1).

i i

Hypergeometric functions of two arguments are defined analogously:

Definition:

(a,)^ ... (a^)^ CJS) C„(T)
pF (a^,...,apj b^,...,bq; S, T) = ^5q E —^ ... (b'') \: c (I)

^"^^^^
K Ik q k k -

Herz [4] defined the above system of hypergeometric functions of matrix argument

in terms of Laplace and inverse Laplace transform and used them to extend many

classical univariate formulae in an elegant fashion;

p+l^q(^l^---^^p' 0:5 b^,...,bq; -Z' ) |Z|"«

™ h >

and

/q+l^^l'-'->%' ^i'-'-^^.' 0:5 -h) |h|

H(2.2)

= ^7r J ^ = = p^(3l'-"^^pJ^'--->q'-| )lil d|

Re Z >
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Integration in the latter integral is over all symmetric Y where Z = X + i Y.

The expressions in H(2.1) and H(2.2) are defined for all negative definite matri-

ces and in addition are complex analytic in some region of the space of all com-

plex symmetric matrices (See Herz [4J section 2).

The relation between Herz' inductive definition and that of Constantine

given above is easily established using the following theorems due to Constantine:

Theorem Cl : Let V be complex symmetric with positive definite real part and T

be arbitrary complex symmetric. Then provided Re a > ^{^-^)

,

e-''^=l Ihr-^C^(hT) =r,(a, K) iirc^if'p
h >

Theorem C2 : The Laplace transform of Ihl*^
'*' C (h) is for Re a > 7,

f e-'' ^ I \ury c^(h) dh = r^to, K) i^r^ c^(f s
h >

and the corresponding inverse transform is

P2'n'(ni"l)

e^'^ n Ivf^C (V-^) dV
^m(m+l) J

'=' K =
(2^^^ Re V >

^
'hr-''c(h)

r„(a, k)
'=' K^='
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with integration being over y = ^ + i X with X > and fixed and Y ranging over

all real symmetric matrices in the latter integral.

Theorems Cl and C2 play a central role in the theory and will be used repeat-

edly. In addition, we shall have frequent need for a lemma of Herz and so state

it here:

Lemma H(1.4) : Let Mj^ be the space of all k x m matrices
_, k > m, and q* be an

element of the Stieffel manifold V^ ^; i.e. the collection of all m-tuples of

orthonormal k-vectors. Then corresponding to the decomposition of almost all

1.

T e Ml, into T = Q* r2 with R > and Q* e V, we have J(T -*• (Q*. R) ) =

3. Summary

For a convenient overview of the main identities proven here, we summarize

them below„ The first is an analogue of the main theorem of Constantine [3]

quoted as Theorem Cl here. That is, Theorem Cl gives us the Laplace transform

of C (h T) |hj ^, while Theorem 1 of this paper gives the Laplace transform of

C (h T)|h| ^, Besides enabling us to derive the Stieltjes transforms of

rather complicated functions such as C (- C h[h-hl;] ^ ?) \\l\ l!}"*"!!!!

^

(see 1(6)), 1(1) may be used to find moments of the inverted multivariate beta

density.

Identity 1(2) is a slight generalization of Theorem Cl that plays an inter-

mediate role in one or two of the proofs while identities I(4b), 1(5), and 1(6)

play an important direct role in the Bayesian analysis of (1.1). However,

1(2) is also useful in generating further extensions of natural conjugate

families of the type dealt with in [1]. We remark that 1(5) stands



.- !
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in somewhat curious relation to C(6) inasmuch as averaging over 0(m) does not

split the integrand into a product of zonal polynomials.

1(1) For R complex symmetric with positive real part and T arbitrary complex

symmetric, provided a>k, +7-I,

h >

e-tr Rh |h|a-7c^(h-l T) dh

- v«. k) c^ai) III''""'' jij igfj^i'^'^j^^

where
i

&Jct, k) = n^°'('"-^'» .-g^ r(a-kj-i(m-i))= n^^'""^^ .5^ r(a-7-k.4(j+l))

1(2) For Z complex symmetric with positive real part and T arbitrary complex

symmetric, provided a > - (k^+1),

f C^(h I) e-^^ ^ i Ih^+^rn-^ Ih^^^^''^^..
|

^[-1]
|

""-l""-
dh

h >

-1 "°'"'^1 t"
''i*'^i+l

e^ia, k) c^(z T)
III ^22 ll[j]l

where

ejcc, k) = ni"'^'^-^) ^n^ r(a+kj4(j+i)) .

1(3) Let K5 = ib^,...,bj, K = (k^,.,.,k^), k[ = k. + 6-, and T be arbitrary

complex symmetric. Then for V > 0, p > k^ + 7 - 1; and a > P - (kl-6„,+l)
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Ihl'^
'

m 6,-6..
p-7

_ 1
I
Q

I

ni ^
i
^

i +1

h > |h+v|

I(4b) For |, G, H > ^,'^ e M and a > 0,

^-tr f B B*^- tr H B G B*^- t^ 2 z*^ B . ^t.a
^g

M

where t] and | are diagonal matrices with diagonal elements t] , and | . su

that E.n. = X.d. + 1. Here the \. and d. are the characteristic roots

_i -JL

of \(f
2 H \(f

2 and G respectively.

1(5) For Z e M , R, G, H > and | and n as defined above,
^ = m^m-* ='='== 5: =!

'

r C (-2 R2 z'^Q - HQ # G R2 q'^) dQ = ttV" C (-R d'^Z^i"^ Z t]"'^)

J "^
___ ____ _ (>2"''' K - - - - - -

0(m)

1(6) For C*^ e M , il;, V > 0, a > 0, and a > 7,— m^m ± = =

r e'*^^
h V |b|

^ (.
gt

h[h+t] h C) dh

ch

2 r (a^m, K) |v|-("-^'"> kl'^'^'^'^C (- CS-V^[4+I]"VV 9
.1 - 1 _i

where A is the matrix of characteristic roots of ^ 2 v ^
2





- 12 -

4. Proofs of 1(1), 1(2), and 1(3)

We now prove the analogue of Theorem Cl mentioned in the previous section.

Theorem 1 : Let R be complex symmetric with positive real part and let T be an

arbitrary complex matrix. Then provided a > k^ + 7 " 1>

tr
I

h
I

a-7
c (h-1 T) dhe
K

h >
1(1)

= B^(a, CJ|T) iBl'""'' -si Ie^JV'"'^""' •

Proof ; We follow the general outline of the proof of Theorem Cl

.

First set R=I. Define the integral with R=I as g(T). The function g(T)

is clearly symmetric; i.e. g(|) = g(Q X q'^),9 ^ ^C"^)' Then transform from h

to Q b Q and integrate over 0(m) using (2.2) to give g(T) = [g(I)/C (I)] C (T)

.

To evaluate g(I)/C (I) = S„(a, k) let T be diagonal. Now if we expand g(T) =

5^(a^ k) C (T) using C(ll)^ we find that the coefficient of the first term
HI ^ —

in the expansion is d 6 (cc, k) • Notice, however, that if we expand C (h T)
K^K m ' ' '

"^

K =

using C(ll) and then integrate over h > that the first term is

.„,„ 5„fa, o =d^ r e-"5 ibrM(6-vij|'^"^(K-bi^V^"^
h >

(h-l)[H|''m ^^ ^

To evaluate 6 (a, k) define V = h and partition V and h into
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V =

,[j]

=21

vtJ]
= 12

^[J+1]

h =

.[J] h[J]
=12

M
^21 ='[j+l]

1 < j < m-1

erminentalThen V^^^ = (h^J^ - h^^ ^p+il ^Zl"')"'^'
^'^'^ ^^ ^ well-known det

identity, |b| = |h[j+i]| [h^^^ - h^J^ h"^,^^^ hp^^|, so that for j = l,2, . . . ,m-l,

IM^^^I = l^[j-fi]l Ibl

-1
Consequently the product of determinants on the RHS

of (4.1) may be written as

|h| |hj2]l l^[3]l

k ,-k
m-1 m

l[m]

This allows us to write

&Ja, k)
-tr h

hj jS2 l^[j]l
'' ''h

h >

Using a simple method devised by Olkin [7] to prove an identity of Bellman [2],

we may directly evaluate SmCo;^ k) .

Define an upper triangular matrix L with t.. > such that h = L L • Parti-

tion h and L as

hN]

h[J]
=21

2l2

'[J+1]

h h

h
hr .^, T

and L^ (m-j) x (m-j)

Then

t •

m

^[j+1] = h h ^"^ l^[j+i] = i=j+i ^ii
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m
As J(h -> p = 2"*

-n^ /J.,

2 ii
6^(a, k) = 2'"

e ^-^

iS, i
"> 'it

m ^72 m ^/j^

where 7^ = a-kj^ and r^.j^.^ = ^j-i'l^j; j=2,...,m. This is easily verified to

equal

Provided a > kj^ + ^(m-1) the integral exists since k._-, > k.^ j=2,o..,m.

I-

To evaluate g(T) when R^|^ define R = U U where U is lower triangular;

i.e. u^. = if i < j. Transform from h to u'' h U = W in (4„1) and note that

J(b-.H) = lyl"'"*^* = lEl"*'"'-'", and

Doing the appropriate substitutions yields 1(1).

Corollary 1 ; Let Z be complex symmetric with positive real part and let T

be an arbitrary complex symmetric matrix. Then if a > "(ki+l)^

/ C,(hT) e'^^^i |h|"-^ Ihtl^l'l"'^ ^ |h[-]|'-dh

h >

i /• 1 \
"^ 1(2)

= e(a, k) = n'*"'^'"'^^ jHj r(a + i(j+l) + k.)
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Proof : Follow the pattern of the proof of Theorem 1. Set Z=l and define the

integral above as h(T). Then transforming from h to Q h Q , Q e 0(m) and inte-

grating over 0(m), h(T) = [h(I)/C (I)] C^(T). To evaluate e^(cc, k) = [h(I)/C (I)j,

let T be diagonal, expand both C (T) and C (h T) , then integrate the first term— K — K — —

of the latter expansion over h > 0, and match terms.

We find that

ejcc, K) = f e-'' ^ \h_f-^ Ih^^^l'^""' ... |ht'"^|''"dh (4.2)

h >

and evaluate it as follows: let t be a lower triangular matrix with t.. > and

m "* m-i+1
transform from h to t. This has J(h -» t) = 2 .JIi t.. , so

,m r -^ ii ™ 2a-i 1 '^h-h^ 2 2(k2-k3)

ejcc, k) = 2 / e \ui -, n T,, n t. .

^ 11
2(k ,-k ) m 2k

^ m-1 m' '"
V

r.

.

n T. .

J_
11

^
11

m-1 m-1 m' — m
JT T. . n T. . dx

n
im(m-l)

J"
.n^ r(a + k. +i(j+i))

Then we evaluate the integral with Z/^I by transforming in (4.2) from h to

Y = ^'^ R ; where ^ is upper triangular and ^ ^^ = |- This has J(h -* Y) = |^|"^"^^^

lir^C^+l) and

Substituting gives 1(2)

„
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By putting Theorem 1 and Corollary 1 together we obtain an integral iden-

tity that may be regarded as a Stieljes transform of C (h" T) |v+h|'''^"^ .

Theorem 2 ; Provided p>kj^ + y - l,a>|3 - k, - 1, Vis complex symmetric

with positive definite real part, and T is arbitrary complex symmetric,

r -1 N^'^
/ C (h ^ T) l^J dh

^>2 --
1(3)

yP^ ^) V0=-P^ ^) -1
, ,

-(cc-?+\) m k -k
=

FjS) V^ V \l\ jSz lY[jil

Proof : Consider the iterated Laplace transform

J e-''^^ |hjP-^C^(h-l T) J e-^^i^ Ili^-^'dhdR .

h > q R >

Integrating first with respect to h, this is by Theorem 1,

^'dR

R >

Now integrating with respect to R using Corollary I, the integral becomes

bj?, k) eja-p, k) Cjy T) |Y| j22 l^[j]l • ("^-^^

On the other hand, integrating first with respect to R gives

h
p-7

hio i^-^^i

Matching (4.3) and (4.4) proves the theorem.

-1 T^ lil dh . C^-^)
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Theorem 2 admits of an easy generalization; in place of the iterated

Laplace transform used in the proof of Corollary 1, consider

f e-^^S^ |h|P-^C^(b-^ T) J
e-t^i^ lir^

h > q R >
= - - - (4.5)

^}
|R[j]|^j"^J+l dh dR

for 5. - S- ,1 > O. Integrating first with respect to h, the integral is

R > q

where k' = k. +6., and by Corollary 1 this equals
J J J

6(p, k) e(a-p, k) c^(v t) |v| -n^ Iv^jjl
^

However, if we integrate (4 5) with respect to R first, the integral is by

Corollary 1,

h > q |h+v|

where k= is the partition (5,, = ,,,5 )» And so we obtain
o ^ 1' ^ m

Corollary 2 ; Let Kg = (5j^, , . . ,6^) , k = (k^,.,.,k^), kl = k. + 6^, and | be

arbitrary complex symmetric. Then for V > 0, p>k, +7- 1, and a > P
- (k|-6jjj+l),

/ C rh T) — -Ho (h+V)r.i dh

h > q
|h+v|

8JP, k) e^(a-p. k) 1
-(a-p+k^-&„) m ,S'"j+l

^ a.(a. .5)
'«'= =^ 1 = ' ^=^'=tJi'

dh

This is 1(3) .
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5. Characteristic Function of Inverted Multivariate Beta Density

Identity 1(1) gives us an easy method for finding nxDments of the inverted

multivariate beta density. First we derive a formal expression for its char-

acteristic function in terms of 2F0 ^^^ then derive first and second moments

using 1(1) o

r

We say that the random (m x m) matrix U has inverted multivariate beta

density iB(I, a, p) if

-1 lUF'^
iB(l, a, P) = B^ (a, P) I ^^ , a, p > i7 - 1

ji+up^

rjoc) r^(p)
where ^^(a, P) = — , .— . The characteristic function of iB(I, a, P) iS;

for A complex symmetric and Re A = 0,

e"'^^ y |U|^-^ r (a+P) ,

= ^ = ^
"

(5.1)

Proof : Define for Re A = and a, P > 7 - 1,

-tr A U
I

,cc-y

l3(A, a, P) = B;^a, P) /
I

,J ''=

u>o li"^!

Then as j^FQ(a+p5 -U) =
|
I+U

|

" ^"^"^
^ ,

'For another way of deriving first and second moments of iB(I, cc, P) see
Martin [7].
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Ib(a, a, P) = B;\a, P) J e-'^ 4 y |y|a-7
iFo(a+P; -y) dy

u > q

and this equals (5.1) by virtue of definition H(2,l).

Expression (5.1) for the characteristic function of y is not in a form con-

venient for computing moments of U. Theorem 1, however, gives us an easy way of

finding them. Since the characteristic function

, -tr AU, «1^ ~k" 1,
^^^ = =) = k?0 kl ^^'^"^ 4 y) = k?0 ^ kT ^^^K^'^ y^^ '

K

matching coefficients of appropriate powers of elements of A in the two expan-

sions will give the moments.

Write (5.1) as an iterated Laplace transform

1

U > (5.2)
rm(«)VP) J o^o(-4 y) e-^^ ^ i |yr^

/ -tr Z
,

ia+3-7 J
/ e = |zj dU dZ

z > q

Then by definition H(2ol), (5.2) is

" z > q

A generic term in the expansion of (5.3) in zonal polynomials is

-^^^ ^ C (-AZ_-b e-'^'^^= |z|^''dZ_
k: ?„,(?) J K

Z >

and by Theorem 1, provided p > k - y - l, this term is
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5^(P. k) (a)

^^^K^-^ y)> = k: r (p) ^K<-^>

A little algebra shows that

and

5,(P, (D) (a)(1) ^ 5JP. (2,0)) (a)(,^o) a(a+i)

r^(P) P-?' ' rn,(p) - .

"
(p-7) (P-7-1) '

5JP, (1,1)) g^, ,) a(a4)
r^(P) (P-7) (P-74)

so as

E(-tr A y) = E C.^U-A U)

we have immediately

E(y) = ^ i ' (5.4)

To find variances and covariances of the u. .s observe that

E(-tr A U)^ = E C^2 0)*^"= 2^ + ^ C^^ ^^(-A U)

(5.5)

Q:(a+1)

(p-7) (p-7 TT '^(2,o)<-^>*(F7?#75T<^(i,i)<-4> •

Expanding C,„ „,(-A) and C,, ,,(-A) in terms of the elementary symmetric
(^ ^u ) — (I y I ) =

functions of the latent roots of -A gives (See James [3] and Martin [7])

C r-A^ r a2 +i L ^ (a..a..+2a^) (5.6)C(2,0)( ^) = ill ^ii +3 i=l ji^i ^ ii- JJ ^J

and

C(i,,i)<-^> =f i^i j?i ^^ii^JJ "ij^ •
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Substituting (5,-6) and (5.7) in (5.5) and then computing E(u. . u ) 1 < i, j, /,
3- J Zp

p < m by matching terms on both sides of (5.5) yields

Var(u..) = ^—'—
^^'

(p-7)^ (p-7-1)

CovCu,,, u ) . a[3a-(p-7) (2a-l)]
^ ,^. ^

^•^ 3(p-7)^ (p-7-1)

and all other covariances are 0, Martin [7] obtains (5.8) in a quite different

wayo

6. Some Additional Laplace Transforms

The identities of this section were motivated by a desire to find explicit

expressions for several densities that arise in a Bayesian analysis of the system

(l»l)c In the next section we show how the identities 1(4), 1(5), and 1(6) apply

when a prior density of the form f(B) CI |b B |'^ exp - H[B-B] G[B-b]'' is assigned

to B with range set M and a Normal-Wishart (natural conjugate) prior is

assigned to r, hJB.

We first define the Laplace transform L-'g of g(B) with domain M as
'^ ° °^=^ m,m

t
'

e" = = g(|) dB, Z e M^^^, and prove

M

Lemma 6.1 : Let g(B) = e"'"'' 2 1 £ I*" |b b' P and h(B) = e"^"" ^ 1 1 g(B)j |, G,

y > and a > 0. Then

Log = 2''"
r^(a-lim) |g h|'^""^"'^ ^F^ (a4mj ^mj - g'^ Z^ H'^ Z) I(4a)
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and

L°h = 2- r,(a4-) |^|-^^^'">
,Fi (a+l-; ^mj -'' -^ -1

n ? I z) i(^b)

where t) and | are diagonal matrices defined by (6.5 ) below.

1. 1

j2Proof: Transform from | to y = H^ B g^, This transform has J(B -* W) =

|hJ 2 Igl 2 . Then transform from W to y = Q |2 ^ q e 0(m) , R > 0. By

-m i
Lemma H(l .4) , J(^ ^ y) = 2 |r|"2 so that Log is

2- ,G H|-to4-)
f e-'^ I |R|«-i J e-^^

2[|i g"^ z' n'hq
,q^ ,,,(,^^^

R > 0(m)

The inner integral is absolutely convergent and possesses an expansion in zonal

polynomials (J(27) and definition H(2.1)) that allows us to write it as

R >
(6.2)

By Theorem Cl,

R >

"
= |E|^"^ C^(- E Q'2 z'^ H"^ Z G"i)

(6.3)

= rn,(ct-ii"i, k) c^(- q'-" z"" h"-^ Z)

and substitution of (6.3) in (6.2) gives L^g.

1.

To evaluate IPh, define W = Q ^^ | § where Q, § £ 0(m) and

t -i -i9AQ=^2y^2
^ ^ diagonal ,

e D e*" = G , D diagonal .

(6.4)
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Then J(B -» W) = \i\'^ and

tr 2 z'' B + tr H I G 1^ + ^ I b'' = tr 2[i^^z^f2q^]v + tr D w'^A W + tr W^^W

As D and A are diagonal

tr D w'^A W + tr w'^W

i"j "''J"'J "
i^j

"^^ =
i^j '"i^J ^ »"iJ •

Define ?. and Hj. 1 < 1, J < m, so that i^^. = \ . d . +1 and then write

tr D ^ 4 W + tr ^*^ W = tr I W g W*^ , (6„5)

where | and 3 are (m x m) diagonal matrices with diagonal entries P. and ti^ 'j

respectively. Substituting the RHS of (6.5) in the integral after transform-

ing from B to W and then applying Log yields L^h.

We now use Lemma 6.1 to prove Theorem 3 (1(5)) which is also needed in the

analysis of the system (1.1).

Theorem 3 : For Z e M^^^ ^, |, H, H > 0^ and | and g as defined in (6.5) .

J
C^(-2 S^ Z'' q - H 5 R^ G R^ q^) dQ = -^j^ C^(-R d'^z'^I'^Z 3"*) 1(5)

0(m) ^1^

Proof: Without loss of generality, set ij/=I in the integrand of L°h, expand

"tr 2 Z B - tr H B G R
6 = = = = === in zonal polynomials, and transform from B to (Q, R)

with I = Q r2, Q e 0(m), R > 0. Then L°h may be written as

?"'" ? V 1 / r -tr R
, ,a4

^ kko I kl I I ^ = III '

0(m) R>0 (6^6)

C (-2 Z"^ Q r2 - H Q R2 G R^ q"^) dO dR .
K — — — — — — — — — — =:
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Matching (6.6) with L*h as shown in I(4b) of this section,

/
/ e"""^ = |r|^"2 C^(-2 |2 z" q - H Q R2 G R2 q'^) dQ dR

0(m) R >

r^Ca^m, k) _, .1
= —

(iiio— 'k^- all V

where ^ and tj are as defined in (6.4). Now define the function

0(R|Z, G, H) = / C^(-2 R2 z'^ 9 - H 9 R2 G R^ Q*^) dQ

(6.7)

0(m)

We may write the LHS of (6.7) as

e"""" = |R|^'2 <I)(R|z, G, H) dR , (6.8)

R >

-i. t -1 -i
Examine Theorem CI with y=I and T = - Q^Z | Zr|2. The theorem then

states that for p > 7 - 1, T complex symmetric,

J
e"^"" i |||P"''

C^(E |) d| = r„(P, k) C^(p . (6.9)

R >

If we set p = a-l^m and compare the RHS of (6.9) with (6.7), by the uniqueness

of the Laplace transform, <I'(R|Z, G, H) = ,V \ C (R T) , and this proves the
- - - - '2'"''^ K - -

theorem.

Theorem 3 is the key to 1(6) and we prove the latter by evaluating

J J e-^^^^ |hr-*e-^^2h|c'^-tr[h4t]||^|^^t|a,3,,

h > Mm,m (6.10)

V, \|; > 0, a, a > ,
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two ways. Integrating first over M^^ ^ using Lemma 6.1 gives the integral as

a-i
Ihl^ 2

z""" r to-f^i") /

^'^^
= = IT- iFnfa+i'"; i^i - c^hih+^y'^h c) dh

h>0 l^+ll
= = (6.11)

Now integrate (6.10) over h > using the definition H(2.1):

e-t-i||' |BB^|Q= J e-^^^X |y|-iQFQ(h[-2B C^ -IB^]) dh

h >

(6.12)

J, ifn
Transforming from | to ^ = ^ | with J(B - W) = j^l^ and then to (Q, |) with

W = Q R2, Q e 0(m), R > 0, we may write the RHS of (6.12) as

r„(a4«> Lv|-<^^">
1*1"'"^"'

<,,„,

e'""^ =
lil'^'^

^FQ(a+im; -2 %^Z%-^ Q R^G R2q'') dQ dR

R > 0(m)

t t -1 -i -i -1 -i
where Z =C V t ^

> ^ = t ^'' t ^ } and G=I. By expanding j^Fq in the inte-

grand immediately above in zonal polynomials using definition J(10) and apply-

ing Theorem 3 we may write this integral as

r„(a4".) r„(a4n.) |v|-<^^°' |ir<"^""m^ '^ ' m^

(6.14)
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-i -1 -i t t -1 -J^
where A is the matrix of characteristic roots of \|f

2 y ^ ^ and Z = C V ij; 2

,

Matching (6=11) and (6.14) gives

e'^"" = - ^ ^a^ lF,(a+i"'5 i^i ' ^^ h[h-ht]"^ h C) dh
I K_i_i I

Cti^in •'••'• ____ ___
h>0 l^-^l

(6.15)

= 2">rja4m) |V|-^"^™^ lll"^^'^'"^- 2Fl(a-^im,a4-;i^,,|^(A+I)'z) ,

Expanding both sides of (6.15) in zonal polynomials and matching terms gives 1(6):

= 2»r„(a4„, K) |vr<°^»>u|-fa*i»> c (- c'v-it-i[4+i!-'fV's)

7. Application to Simultaneous Equation System (1.1)

We now apply the results of the last section to the simultaneous equation

system (1.1)= Suppose that a (natural conjugate) Normal-Wishart prior with

kernel

e-tr h
I |hp(v-l)g4tr hi[-C-B P]y[-C-| ?]")

|h|2^

(7.1)

V, e > 0, V > ,

is assigned to (^ h) given B=B. If we then assign a prior f(|) to | in order

to find the prior of (I^_, h) unconditional as regards | and the prior of g uncoa-

ditional as regards B and h, we must first integrate the joint density of

(r, h, B) over M_ and then over M and h > 0.
=' -' = m^m m^m = =
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A "natural" class of priors to assign to B is, as stated in the introduction

f(B) ^e-i^^^ltl-lJltli^' iBB^r , i, E>0, B.M ,a>0.

f^ *\#

Then the kernel of the density of (T, h) unconditional as regards B is propor-

tional to

^itr h
I ,h,i(v+r-l)

J ^^^^
^4tr b([-C-| ?]y[-C-| ?j' )

,3^ ^ ^, ^,^

M

Transforming from B to W = B E^ and defining

-i i _t _i t -i

the kernel (7.1) may be written as

g-itr h e |j^ji(v+r-l)
.
^4tr h C V C*"

. r e-'^[^E' ="^^^ " *'^ * =
='"*'" ^^^^' |y/|^dW

M
m^m

Defining, for Q e 0(m) and 6 € 0(m),

-i -i t
A = Qi^^h|2Q ^ A diagonal

,

p = e*^ G ^ . P diagonal
,

and f . and ri . such that f . n . = \.d.+l, 1 < i, j < m we find the kernel by using
1- 'j ^1 'j 1. J ^ — •* —

Lemma 6.1:
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(r, h)ai w(€ + r V r*", v+r) ^F^Ca-ti"^; i^i n'^i^ c''h-c]|'-^[4 r'^h-c]'^)

where W(e + C Y r , v+r) is the Wishart density with parameter (§ + C Y C ^ v+r)

To illustrate further the ideas developed here we now show that the mar-

ginal density of T can be written in terms of jf, times a deterrainental factor.

In order to keep the algebra simple^ we do this for the special case when f(B)

is assigned so that B=0 and E=I. Then the kernel of the marginal density of

r is proportional to

/ / ^*" ^'^
' [-C-B P]Y[-C-B if) |j,|i(v+r-l)

h > M
(7.3)

. e'^^ il l' IB b'^I'^ dB dh

which is in turn proportional to"

J
e-^r tlf

1^
^t|Q!

^F^(i(^+r)j 4|"^-C-| ?]V[-r-B ?]') d| .

Tii^m

If we transform from B to W = ij/2 b, and expand -|-e [-r-\Jf ^ W P]V[-r-i|f ^ W Pj ,

we may rewrite the argument of ,Fq immediately above as-K [2\j/2WPVr +

.1. t -i t t f -1 -i|2wPVPW|2] where K = ^[e + C V C ]• Setting | = P V T K "•

| 2
^-It J-

g=^ and G = P V P and then transforming from W to (Q, R) with W = Q R^,

Q e 0(ni), R > 0, the integrand is essentially that of (6.13), so the kernel

of the marginal density of r is, using Theorem 3 as in the development of (6.14),

'Using j^FQ(a; -A) = |l-iA|"^.
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where Z is as defined immediately above and t] and ^ have definitions parallel-

ing (6.5).

If in place of the prior on B used above we assign a prior

tr i B[P y P'^JB 1^
^t

f(B) = e
^^

I ^L- V r j^ g g a

t-,i
to B, by transforming from | to W = B[P V P ]^ , setting the V of (6.10) equal

to 2^[| +C y C ] and the a of (6.10) equal to ^(v+m) ^ we find that the kernel

of the marginal density of r is identical to (6.10) with C = [P V ?^]^ P V r*".

It follows from (6.14) that the kernel of the marginal density of r is^

with this prior,

ll +C V g'^l"^^"^'") ^P^(i(v+r-hn), a-t^mj Jm; z''[A+l]'^ Z)

t t— t t-1-—where Z =[|VPj2pvr[e+CVc] t ^ and ^ is the matrix of character-

-1 t -1 --
istic roots of ^ ^[e + P V T ] \|f

^

.
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