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Abstract

A dynamic model of capital/financial markets is developed. A surprise is a stopping

time that is not foretellable. We show that if agents' preferences exhibit a kind of time

complementarity, then between ex-dividend dates a viabie price system can make discrete

changes only at surprises. Under the same preference condition, when the information in

the economy can be modeled by a Brownian motion, a viable price system is an Ito process

between ex-dividend dates. The martingale characterization of a viable price system

originated by Harrison and Kreps (1979) is extended to our economy. This martingale

result is independent of the time complementarity of preferences alluded to above.





1. Introduction

Much of the empirical work in financial economics and accounting concerns the response of

capital/financial asset prices to information. The null hypothesis in this work is typically that the

capital/financial markets are efficient in the sense that prices rapidly adjust to new information or

surprises. The evidence to date has been largely interpreted as confirmation of this null hypothesis

(e.g. Fama (1970) and Patell and Wolfson (1984)T^ The construction of, and hence this interpreta-

tion of, the market efficiency tests has often been justified on intuitive grounds; for example, if the

stock price of a takeover candidate is found to make big changes in response to the announcement

of the takeover, stockholders are assumed to react to the information and the announcement takes

them by surprise (see Jensen and Ruback (1983) for a survey of the empirical works on the market

for corporate control).

To justify the intuitive interpretation of market efficiency test, we need a dynamic model of

capital/financial markets. Is it true that prices can make discrete changes only at new information

or surprises! To answer this question, new information or surprises will have to be mathematically

defined and their linkage to prices formalized. Huang (1985) is the first paper in that direction.

He considers a continuous time economy with a time span [0,1], where consumption is available

only at two dates, and 1. Using a long-lived asset as the numeraire, he shows that the sample

path properties of a viable price system for long-lived assets are solely determined by the way

information is revealed. A surprise is a stopping time that is not predictable. A price system can

have jumps only at non-predictable stopping times, i.e. surprises.

The first question this paper addresses is to what extent can the results of Huang (1985) be

generalized to accommodate consumption over time. Intuitively, if agents' consumption preferences

change drastically over time, then the prices for long-lived assets can have jumps even at times of

no surprise. On economic grounds, we expect agents' consumption preferences to exhibit some sort

of time complementarity: a unit of consumption now and a unit of consumption an instant from

now should be almost perfect substitutes. With this kind of time complementarity of consumption,

it can be shown that between lump-sum (random) ex-dividend dates prices for long-lived assets can

make discrete changes only at non-predictable stopping times. At lump-sum (random) ex-dividend

dates, prices adjust downward by the amount of the dividends only when there are no surprises at

that time.

For more than a decade financial theorists have been led to believe that Ito process represen-

tation of price processes is a good model for capital/financial markets not only because the tools

involved are well-developed, but because the sample paths of an Ito process resemble the price

'Several anomalous and apparently persistent departures from the null must be explained in terms of test design to sustain

this conclusion (see, for discussion, the June/September, 1978, issue of the Journal of Financial Economics).



chart of a typical common stock between (lump-sum) ex-dividend dates. That is, for most of the

time, a typical common stock price moves up and down fast and in small steps.

Given that we have formulated a dynamic asset trading model, the second question addressed

in this paper is under what conditions will a viable price system be an Ito process between ex-

dividend dates. Sufficient conditions are that the information in the economy can be modeled by a

Brownian motion and that agents' preferences exhibit the sort of time complementarity alluded to

above.

Note that Huang (1985) has demonstrated the relationship between a Brownian motion in-

formation and Ito process representation of a viable price system. His result is numerated in a

long-lived asset. The result reported here is in units of the natural numeraire, the single consump-

tion commodity.

We also generalize the martingale result originated by Harrison and Kreps (1979) in the context

of our economy. A price system for long-lived assets is viable if and only if it and its accumulated

dividend process, both in units of a long-lived asset, follow a martingale under some probabil-

ity measure which is uniformly absolutely continuous with respect to agents' commonly endowed

probability. This generalization is valid in a very general economy without the sort of time com-

plementarity needed for previously mentioned results.

The rest of this paper is organized as follows. Section 2 formulates the economy. Main results

are in Sections 3 through 5. Section 6 contains discussions and concluding remarks.

2. The formulation

In this section we model a dynamic pure exchange economy under uncertainty with a time span

[0,1]. Taken as primitive is a filtered probability space (n,7,F,P), where each u E fl denotes a

complete description of the exogenous uncertain environment, where Jis the tribe of distinguishable

events, where the SltratioD,'^ F = { J,; i 6 [0, l]}, is the commonly endowed information structure of

agents, and where P is the common probability measure on (H, 7) held by agents in the economy.

We assume that F satisfies the usual conditions:

1 right-continuous: V< G [0, 1), 7t = As>f J^, s G [0, 1];

2 complete: V< € [0, 1], Ti contains all the P-null sets.

We will also impose the conditions that agents learn the true state of the nature at time 1 and

that now [t = 0) is certain. Mathematically, these entail that 7\ = 7 and that Jo is almost trivial.

There is only one perishable consumption commodity in the economy which can be consumed

at any t G [0, 1]. We take the commodity space to be the space of integrable variation processes

that have right continuous paths, denoted by V . (All the processes will be adapted to F unless

otherwise mentioned.) By definition, for each i' G V we have:

*A fihration is an increasing family of siibtribes of 7.



(/
dv[t)

I

< oo, (2.1)

where E{) denotes the expectation with respect to P. The intended interpretation is that v{u!,t)

denotes the accumulated consumption from time to time t in state u. Let V+ denote the space

of nonnegative integrable increasing processes that have right continuous paths. It is clear that V+

is a generating cone of V and we denote the order defined with respect to it by >.

It is assumed that the spot market for the consumption good is open all the time.

Remark 2.1. Since each v € V is right continuous and of bounded variation, it has left limits.

Thus V is a space of RCLL (for right continuous with left limits) processes.

Remark 2.2. It is easily checked that ii v eV then E{v{t)) < oo Vf e [0, l].

Before proceeding, some definitions are in order. Let A' be the space of RCLL processes such

that

ess sup^^_,
I

x{u!,t) \< oo,

where the essential supremum is taken with respect to the probability measure P. We denote the

nonnegative elements of A' by A'+, the positive cone of A'. The order on A' generated by A^ is also

denoted by >. Let A'++ be a subset of A'+ satisfying the following: Vj- €. A'++ there exists c 6 9f+,

c ?£ such that P{x{t) > c} = 1 V^ G [0, 1].

Now consider the bilinear form tp : V x X >-^ ^.

V'(u, a:) = E

Proposition A.l in Appendix I shows that ip separates points, and places V and A' in duality. Let r

be the strongest topology on V such that its topological dual is A', a Mackey topology; cf. Schaefer

(1980, p.l31).

Returning to economics, we shall assume that the economy is populated with agents from a

set A, a generic element of which is denoted by a. Each agent a G A is characterized by a utility

function f/^ : V t-^- 9i that is concave, r-continuous, and strictly increasing, the last of which is in

the sense that UQ{v+y) > Ua{v) Vy G V+ and y ^ 0. We also assume that Ua has marginal utilities

bounded below away from zero. Formally, let dUa{v) denote the set of r-continuous supergradients

of Ua at V, which is nonempty by Theorem 14B of Holmes (1975). We assume that there exists

7a e -X'++ such that Vv G V

^ > 7a ^x E dUa{v).



Remark 2.3. An example of a r-continuous, strictly increasing, and concave utility func-

tion having marginal utilities bounded below away from zero is given by U : V i-^ ^, U{v) =

-^(/(o.iJ^COc'i'lO). where x G A'++.

It is assumed that there are a finite number of long-lived securities traded in the economy, which

are indexed by j = 0,1, 2,..., J. Each long-lived security is represented by an element Dj e V+,

where Dj{u.\t) denotes the accumulated dividends, in units of the consumption commodity, that a

holder of a share of security j, from time to time /, has received during that period in state ui.

We shall assume that Do{t) = V< G [0, 1) and that Dq{\) is bounded above and below away from

zero. All the long-lived securities are traded ex-dividends. Thus without loss of generality, we also

assume that Dj{0) = Vj = 1,2, . .
.

, J.

An admissible price process for the single consumption commodity {I3{t)) is an RCLL process

bounded above and below away from zero. A consumption plan is an element of V.

An admissible price system for traded long-lived securities is a J -|- 1-vector of integrable

semimartingales^ denoted by S = {Sj{t)\j = 0,1,..., J}. Since these securities are traded ex-

dividends, Sj{l) = Vj.

Given admissible price systems for the single consumption commodity /9 and for long-lived se-

curities 5, an admissible trading strategy is an J-f l-vector of predictable processes'* 9 = {9j{t)\j =

0, 1, . .
.

, J} satisfying the following conditions:

1

ess supj^^,t
I

6j{u!,t) \< oo, (2.2)

where as before the essential supremum is taken with respect to P;

2 there exists v gV, v{0) =0 such that

e{tfs{t) =

(2.3)
e(0)'^S{0)+ f e{sfdS{s)+ [ 0{s)e{s)^dD{s)- f /3{s)dv{s) V/G[0,1]

Jo Jo Jo
a.s.

and

e(l)^AZ)(l) = Ai;(l) a.s., (2.4)

where ^ denotes inner product, and where AD{() and Av{t) denote the jumps of D and v at

f, respectively.

Equations (2.3) and (2.4) are the natural budget constraints, while (2.2) is a technical restric-

tion. The budget constraints can best be understood when 6 is left continuous. In that case, we

'For the definition of a semimartingale see Jacod (1979, p. 29). It is also shown there that for stoctiastic integ^rals to be
well-defined and have nice properties it is necessary that the integrators be semimartingales; Jacod (1979, pp. 27S-279).

*For the definition of a predictable process see Jacod (1979, p. 4).
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interpret 6{t) to be the portfolio held from t— to t before time t trading takes place. Thus 6{t)'^ S{t)

is the value at time < of a portfolio carried from t— into t, excluding dividends received at time t

and before time t trading and consumption. That it is equal to the right-hand-side of (2.3) is clear.

Let S[^,S] denote the space of admissible trading strategies with respect to the pair of ad-

missible price systems {/3,5). It is easily checked that 0[/?,5] is a linear space by the linearity of

stochastic integrals.

In relations (2.3) and (2.4), the process v is said to be financed by 6, meaning obviously

that if the strategy 6 is followed, a consumption pattern represented by v can be dynamically

manufactured. A consumption plan t; € V is said to be marketed if v — v{0) is financed by some

e e e[/?,5]. A price of v at time is l3{0)v{0) + 6'(0)"^5(0). Let M be the space of marketed

consumption plans. By the fact that Q[/3,S] is a linear space, A/ is a linear space.

Remark 2.4. Since 6 G 6[/?, 5] is predictable and bounded, the stochastic integrals in (2.3) are

well defined. See Dellacherie and Meyer (1982, Chapter VIII) for details.

3. Viability when the consumption good is the numeraire

Following Kreps (1981) we shall say that a pair of price systems {l3,S) is viable (with respect

to A) if it can be supported by some agent from the set A. Formally, {/S, S) is viable if there exists

a E A and Va &V such that Vq is f/a-maximal in the set

{veV : /?(0)u(0) + 6»(0)'^5(0) = and u is financed by 9 for some d G 6(^,5]}.

Note that the definition of viability is taken as primitive in this paper. The readers are referred to

Kreps' paper for a host of related issues.

In this section we shall give characterizations of a viable pair of price systems, where the single

consumption commodity is taken to be the numeraire. In this case, the consumption good price

process is unit throughout, and we shall refer to a viabie price system as a viable price system for

the long-lived securities.

A necessary condition for a price system to be viable is that the single price law must hold

for all the marketed consumption plans. In such event, there exists a linear functional tt : M i—> 3?

that gives prices at time zero of marketed consumption plans; that is, Vm G M, 7r(m) = m(0) +

6(0)^5(0), where (m - m{0),6) are associated. We call tt the current price system for M.

A r-continuous linear functional t/' : T i—* 9f is said to be strictly positive if tp{v) > Vv E V+

and V ^ 0.



Proposition 3.1. Suppose that S is viable. Tlien n has an extension to all ofV denoted by t/), which

is strictly positive, r-continuous, and can be represented as

ii{v)^E\[ x{t)dv[t)\ VuGV, (3.1)

V-Mo,il )

with X € A'++

.

Proof. This assertion is a direct consequence of the definition of viability.

I

The linear functional of (3.1) not only gives prices at time zero for marketed consumption

plans, but also provides a way to represent a viable price system over time.

We shall assume throughout this section that S is viable.

Proposition 3.2. For every j = 0, 1, . .
. , J, we have

E[!lx{s)dD,[s)\7t)
Sjit) =

E(f:i xis)dDAs)
I 7t] - fn xis)dD,is)

V<g[0, 1], a.s..

xit)

E (/J x{s)dDj{s)
I

7^-j'^x[s)dD,{s)
(3.2)

x{t)

where RCLL versions of the conditional expectations are taken (this is possible because F is assumed

to be right continuous; cf. Meyer (1966, pp. 95-96)).

Proof. See Appendix II.

I

If we interpret the process {x{t)} to be the marginal utility process, then Proposition 3.2 is

just the famous relation: the price of a security at time t is equal to the conditional expectation at

that time of the sum of products of its future dividends and the ratios of marginal utilities. This

relation underlies much of the modern asset pricing theories; see, for example, Lucas (1978) and

Rubinstein (1976).

Remark 3.1. From now on we shall always take an RCLL version of any conditional expectation

that appears.

Several corollaries are immediate:

Corollary 3.1. The process {So{t) + .Do(0} ^^ bounded above and below away from zero.

6



Proof. From Proposition 3.2 we know that V< G [0, 1)

E{x{l)Do{l)\7t)
5o(0 =

-^^
a.s. (3.3)

From Proposition 3.1 we know that x is bounded above and below away from zero. The assertion

then follows from the assumption that Do{\) is bounded above and below away from zero.

I

Corollary 3.2. The process {x{t)} is a semimartingale.

Proof. From (3.3) we can write

g(x(l)Do(l)|7,) ^,^,„ ,, _
'^'^=

Soil) + Doit)
"''^'"''^ ""

The numerator of the above expression is a martingale and the denominator is a semimartingale,

which is bounded away from zero. A generalization of Ito's formula shows that {x{t)} is a semi-

martingale; cf. Dellacherie and Meyer (1982, Mil. 27).

I

Let m e M and let {5^(0} denote its implicit ex-dividend price process. Given that S is a

vector of semimartingales, a natural question is whether {5„i(i)} is a semimartingale.

Corollary 3.3. Let m E M. Then {Sm{t)} has a representation as (3.2) and is a semimartingale.

Moreover, let m — m(0) be financed by 6. Then

S,„{t)=^e{tyS{t) + e{tyAD{t)-A{m{t)-7n{0)) V< € [0, 1] a.s.

Proof. Applying the arguments found in the proof of Proposition 3.2, we can easily get

E [Ii^{s)dm{s)
I

Tij -
J^ x{s)dm{s)

Srn [t] = -^ ^ Vf G [0, 1] a.s.

The numerator of the above expression is a semimartingale, since it is the sum of a martingale and

a bounded variation process. Corollary 3.2 shows that the denominator is a semimartingale too.

The first assertion then follows from an application of the generalized Ito's formula.

The second assertion follows from the fact that S is viable.

I

When a price system is viable, we have stochastic integral representations for it. Moreover,

the implicit ex-dividend price process for any marketed consumption plan and the shadow price

process {x{t)} are semimartingales.



4. Changing numeraire and martingales

We shall show in this section that if a numeraire is appropriately chosen, then the viability of

a price system for long-lived securities necessitates that 5, the price system, plus its accumulated

dividend process, both in units of the numeraire, is a martingale under a probability measure on

(n, 7), which is uniformly absolutely continuous with respect to P. The converse is also true under

some regularity condition.

Henceforth let (/?,5) denote a pair of admissible price systems when the single consumption

good is the numeraire, that is, 0{t) = 1 Vf G [0, 1]. We will first show that S is viable if and only

if the pair of price systems {f3* ,S*) is viable, where V< £ [0, 1]

and

S;it) = p*{t)Sj{l) Vj = 0,l,...,J a.s. (4.1)

This could be anticipated. In a Walrasian economy, changing numeraires ought to be economi-

cally neutral, since only relative prices are determined. This statement is not, however, always true

in economies with infinitely many commodities. We will need to employ some special structures of

our model.

We first show that (/9*,5*) is a pair of admissible price systems if and only if (/?, 5") is.

Proposition 4.1. (/3*,5*) is a pair of admissible price systems if and only if {/3,S) is a pair of

admissible price systems.

Proof. Suppose first that (/3,5) is a pair of admissible price systems. The fact that /?* is bounded

above and below away from zero and therefore admissible follows from Corollary 3.1. An application

of the generalized Ito's formula shows that 0* is a semimartingale. The same formula also implies

that S* is a semimartingale. Finally, the fact that S* is integrable follows from the above-proven

fact that /3* is bounded above.

The proof for the converse is identical, so we omit it.

I

Let 0[/?*,5*] be the space of admissible trading strategies given that the pair of admissible

price systems is (/9*,5*).

The following proposition shows that the two spaces &[/3* ,S*] and ©[/?, S] are equal. Its proof,

being tedious and involving a lot of machinery in stochastic integration, is delegated to Appendix

III.

Proposition 4.2. e &[0,S] if and only if 6 £ 6[/3*,5*]. Moreover, v - v{0) is financed by 9 given

{13, S) if and only if it is financed by 9 given (/?*,5*).



Let M* denote the space of marketed consumption plans given (^*,5*). A corollary is imme-

diate.

Corollary 4.1. m E M if and only if m e i\/*.

Proof. This is a direct consequence of the fact that 0[/?, 5] = 0[/?*,5*].

I

We shall henceforth use M to denote both M and M*

.

The following proposition shows that (/?*,5*) is a pair of viable price systems if and only if

(/?, S) is one.

Proposition 4.3. {l3* ,S*) is a pair of viable price systenis if and only if (/?,5) is a pair of viable

price systems. The linear functionals associated with two pairs of viable price systems, n and n*

,

that give the prices at time zero of marketed consumption plans are linked by

Proof. Suppose first that (/?, 5) is viable. There must exist some a E A and Va E V such that Va

is ?7Q-maximal in the set

{vEV : /3{0)v{0) + e{0)'^S{0) = and v - v{0) is financed by some E e[/3,5]}.

By Proposition 4.2 and the fact that (3{t) = 1 Vi e [0,1], we know the above set is equal to the

following set:

{vEV : (3*{0)v{0) + e(0)^5*(0) = and i- - v(0) is financed by some 6 E e[l3\S*]}.

Therefore, Vq is still i/Q-maximal in the above set. By the definition of viability, the pair (/?*,5*)

is viable.

The proof for the converse is identical.

The proof for the rest of the assertion is easy.

It will be demonstrated in the sequel that 5* is closely related to martingales. Before proving

this main result, we need a proposition and its corollary.

Putting

v*{t)^ I ^'{s)dv{s) WtE{0,llvEV,
J[o,t]

and denoting the implicit ex-dividend price process of m € Af given (/?*,5*) by 5^, we have:



Proposition 4.4. Suppose that the pair {0,S) is viable. Let m G M. There exists x* € A'++ such

that

E(j.^x*{s)dm*{s)
I
7t]

5;(') = ^

—

^^ ,

^

/ X (4-2)

E (/J x*{s)dm*{s)
I
7,) -

/o'
x*{s)dm*{s)

= — ^ V<e[0,l], a.s.

Proof. Since tt* = /3*(0)n, it* has an extension to all of V denoted by t/'*- It is clear that xp* can

be chosen to be /?*(O)0:

^*{v) = f3*{0)E I [ x{t)dv{t)] VvgT, (4.3)

where we recall that x € A'^.+ .

Now putting

x*(t) = ^x{t) V<G[0,1], (4.4)

a;* is strictly positive, bounded above and below away from zero.

We can rewrite (4.3) as

V'*(i') = E i [ x*{t)dv*

Applying the same arguments to prove Proposition 3.2, it is straightforward to verify (4.2).

I

The interpretation of (4.2) is identical to that of (3.2), except that the numeraire here is not

the consumption commodity. The following corollary is instrumental to the first main theorem of

this section.

Corollary 4.2. The process x* defined in (4.4) is a martingale under P.

Proof. We note that almost surely

D*o{t) = V«g[0, 1)

= 1 iit= I

and

s^{t) = i /e[o,i)

= if f = 1

by construction. From Proposition 4.4 we have

^(^*(1)I^<)_5.^(^)^1 V«€[0,1) a.s.
x*{t)

10



That is,

E{x*{l)\7,) = x*{i) V<€[0, 1) a.s.

Naturally E{x*{l)
\ Ti) — x*{l) a.s. since x* is adapted. These simply say that x* is a martingale.

I

When appropriately numerated, the shadow price process is not only a semimartingale, it is a

martingale!

Some definitions are in order.

A probability Q on (O, 7) is said to be uniformly absolutely continuous with respect to P if

the Radon-Nikodym derivative dQ/dP is bounded above and below away from zero, denoted by

P ?« Q. A martingale measure is a probability measure Q on (H, T) with Q ^ P such that S* + D*

is a martingale under Q.

Here is our first main theorem of this section:

Theorem 4.1. Suppose that (/?, S) is a pair of viable price systems. Then there exists a martingaie

measure Q. Moreover, S^ + m* is a martingale for all m G M under Q.

Proof. It follows from Corollary 4.2 and Dellacherie and Meyer (1982, VI. 57) that

_E[l'x*{s)dm*is)\7t)

_
E[jlx'(l)dm'{s)\7)

~
^)

_ E(x'{l){m*{l)-m'{t))\7t)

x*{t)

Next note that E{x*{l)) = 5o(0) = 1. Thus if we put

Q{D)= ! x*[^,l)P{du) 'iBe7,
J B

Q is a probability measure on (fi, J) uniformly absolutely continuous with respect to P. Therefore

(4.5) can be written as

S*^{t) = E*{m*[\)-m*[t)\7i) Vie [0,1] P - a.s.,

where E*{) denotes the expectation under Q\ cf. Gihman and Skorohod (1979, p. 149). Since P
and Q have the same null sets, the above expression holds with Q probability one.

I

When the pair of price systems (y9,5) is viable, after an appropriate change of numeraire, the

implicit price process for a marketed consumption plan plus its accumulated dividends will be a

martingale under some probability uniformly absolutely continuous with respect to P.

11

V< € [0, 1] P - a.s. (4.5)



Remark 4.1. Since P and Q have the same null sets, we shall from now on use a.s. to denote

almost surely for both, unless otherwise mentioned.

Their proofs being straightforward, the following corollaries will simply be stated.

Corollary 4.3. S* is a vector of supermartingales under Q.

Corollary 4.4. Let mi, m^ he such that mj(l) - mj(^) = m^il) - rn2{t) a.s. for some t G [0, 1].

Then

•^niilO — •^m^(0 ^®- ^"^ therefore S^iit) = Sm^ii) ^-s.

At any time t e [0, 1], if the future accumulated dividends in units of So + Do are equal for

two marketed consumption plans, they must have the same price at that time.

Conversely, let (/9*,5*) be a pair of admissible price systems with SqII) + D^lt) = 1 V/ € [0, 1]

a.s. The following theorem shows that, under some regularity condition, for (/?*,5*) to be viable,

it suffices that there exists a martingale measure.

A proposition is first needed. Let M denote the space of marketed consumption plans given

Proposition 4.5. Suppose that there exists a martingale measure Q and that

E{snp |5;(0l)<oo vy.

<elo,i]

Tien the single price law holds for all m G i\/* and denoting the ex-dividend price of m at t by

S*^{t) we have

S*,{t) = E*(^l'0*{s)dm{s)\T^. (4.6)

Proof. Let E ©[/3*,S*] be a trading strategy that finances m. Then an implicit price process for

m is

5m(0 = e{t)^S*{t) + (3'{t)e{tyAD{t)- l3*{t)A{m{t)-m{0)) ^t e [0,1] a.s.

Equations (2.3) and (2.4) then imply that

S;^{t)= f /9*(s)dm*(s) - f e{syd{S*{s) + D*{t)) V^€[0,l], a.s.

12



Given the hypotheses that (/3*,5*) is viable and that E'(sup,gro^i]
|
SUt) |) < oo, it is easily verified

that

E*l snp \S;{t) + D;{t)\] <oo Vj,

where E*{) is the expectation under Q. The Davis, Burkholder, and Gundy inequality (cf. Jacod

(1979, 2.34)) then implies that

E*{[S* + D\S* + D*]i)-^ <oo, (4.7)

where {[S* + D* , S* + D*]t} is the quadratic variation process of {S*{t) + D*{t)}. (For the definition

of the quadratic variation process see Jacod (1979, 2.31).) Equation (4.7) as well as Jacod (1979,

2.48) ensures that

E* (^' e{s)^d{S*{s) + D*{s))
I
7t) = 0.

This in turn implies

S:,{t) = E*^'f3'{s)dm{t)\7ty

which is independent of 9. Thus the single price law holds and (4.6) is valid.

I

Here is our second main result of this section:

Theorem 4.2. Suppose that the conditions in Proposition 4.5 are vaiid. Then (/?*,5*) is viable.

Proof. Putting

we have

E*
I / I3*{t)dm(t) 1=^1/ m0*it)dm(t) I VmG M*,

.^(0-^(^1//) Vf€[0,l] U.S.,

r I [ 0*{t)dm{t)] =eI [ ai)(3*{t)dm{t)

where we have again used Dellacherie and Meyer (1982, VI. 57). From Proposition 4.5 we know

that the two sets

{veV :^(0)^5*(0) + /3*(0)u(0) =0, where v is financed by some eee[/3*,S*]}

and

{m&M*:E'l[ ^{t)^*{t)dm{t)] = 0}

are identical. Now define

(01 ^veV.

13
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It is quickly checked that a G A, since f3* ^ is bounded above and below away from zero. It then

follows from the separating hyperplane theorem that the pair of price systems (/3*,5*) can be

supported by Ua and thus is viable.

I

Whenever the regularity condition posited in Proposition 4.5 is satisfied, the existence of a

martingale measure is equivalent to the viability of (/9*,5*) and therefore the viability of (/?, 5).

The combination of Theorems 4.1 and 4.2 is a generalization of the martingale result of Harrison

and Kreps (1979). They consider an economy where consumption is available only at two dates.

Here, consumption is allowed at any time in [0, 1] and agents can consume at rates as well as in

gulps.

Once we have the martingale characterization of viable price processes S^,m e A/, it is easy

to see that the sample path properties of 5*„ depend both upon the way information is revealed

over time and upon the sample path properties of m*. All the results of Huang (1985) can be

generalized in a straightforward manner to show the interrelationship among 5*,, ni* , and F. We

leave this exercise to interested readers.

The sample path properties of 5^ are not the most interesting objects in our economy, however.

In the economy considered by Huang (1985), consumption is available only at two dates, time

and time 1. Since the consumption good is not available all the time, it is thus not unnatural to

take a long-lived security as the numeraire. In the economy we are currently considering, the single

consumption good is available all the time. The natural objects of interest ought to be the sample

path properties of S^- In particular, given the popularity of Ito process formulations of financial

markets, it is important to see under what conditions Sm is an Ito process. Examining (3.2)

we can see that the sample path properties of the price process of a marketed consumption plan

depend not only on its accumulated dividend process and the information structure as captured

by the conditional expectation, but also on the sample path properties of x. This is natural, since

embedded in the sample path properties of a: is a sense of time complementarity of consumption

exhibited by preferences from the the set A. Given that viability is defined with respect to A,

nothing can be said about x except that it is bounded. To say something interesting about x and

therefore about Sm,rn e A/, we have to consider a subset of A. This is the subject to which we

now turn.

14



5. An alternative formulation

Let H denote a subspace of A' such that each h E H is a continuous process.^ Let H+^ =

^n-^++- Define a bilinear form (/> : V x /f h^^ 9f by

4>{v,h) = E\ f h{t)dv{t)] .

Now identify equivalence classes of elements of V such that ui,t;2 belong to an equivalence class if

and only if

<f>[vi-V2,h) = ElJ h{t)d{vi{t) - V2{t))\ =0.

Denote the space of equivalence classes oi V by M . Then (p places "V and H in duality. Let r* be

the strongest topology on "l^ such that its topological dual is H, a Mackey topology; cf. Schaefer

(1980, p. 131).

Let A C A he such that each Ua,<y € A is r*-continuous. Note that the preferences of

agents from the set A exhibit the following sort of time complementarity of consumption: a unit of

consumption now is almost a perfect substitute for a unit consumption an instant from now. This

is so because the siadow price process is continuous.

Remark 5.1. Note that time-additive utility functions are not r*-continuous, since consumption

at adjacent dates are perfect nonsubstitutes; cf. Huang and Kreps (1983).

Suppose from now on that S is viable with respect to A. Still denote by M the space of marketed

consumption plans. The following proposition can be viewed as a corollary of Proposition 3.2.

Proposition 5.1. Let m e M. Then {5„,(<)} is a semimartiDgale and can be represented as

E (/o h{s)dm{s)
I

J, j
-

/o h{s)dm[s)

S,nit) = -^ -^ V< € [0, 1] a.s.,

where h E H.++

Now we are ready to examine the interrelationship among the accumulated dividend process

of a marketed consumption plan, the sample path properties of its price process, and the way

information is revealed. Some definitions are in order.

A process h is continuous if for almost every ui S Q, h{ij.\ ) is a continuous function of time.

15



A stopping time is a map T" : n -*• 3Ju {00} such that {T < t} E 7i for all t £ 9?, where we have

used the convention that 5) = / V< > 1. A stopping time is said to be predictable if there exists a

sequence of stopping times (r„)^i such that r„ < T a.s. and r„ < T, limr„ = T on {T > 0}. This

sequence of stopping times is said to foretell T. (For detailed discussion of predictable stopping

times see Chapter IV of Dellacherie and Meyer (1978).)

The idea of a stopping time is that of the first time some given random phenomenon occurs. To

be more precise, any stopping time T can be interpreted as the debut of the set {{t^co) : t > T(u.')};

cf. Dellacherie (1978, IV.51). "The existence of a foretelling sequence means that this phenomenon

cannot take us by surprise: we are forewarned by a succession of precursery signs, of the exact time

the phenomenon will occur;" cf. Dellacherie and Meyer (1978, IV.72).

Thus an event whose first occurrence is a predictable stopping time is not a surprise. On the

other hand, an event whose first occurrence is not a predictable stopping time may take us by

surprise with a strictly positive probability.^

We make the following regularity assumption throughout the rest of this section.

Assumption 5.1. The informatioD structure F is quasi-left continuous. That is, let T be a

predictable stopping time and let {T„ }^i be any increasing sequence of stopping times foretelling

T. Then

00

n=l

An information structure satisfying the above assumption is also termed "having no time of

discontinuity" by probability theorists. It is known, for example, that an information structure

generated by a Markov process is quasi-left continuous, provided that the semigroup is nice; cf.

Meyer (1963, Theorem 10).

The following proposition shows that the price process of a marketed consumption plan can

be discontinuous only at either surprises or lump-sum ex-dividend dates.

Proposition 5.2. Suppose that m € M. Let T : H -^ [0, l] be a stopping time. IfS„,{T) ^ Sm{T-)

on a set of strictly positive probability, then either T is not predictable or ni(T) ^ m{T—) on a set

of strictly positive probability.

Proof. Suppose this is not true. From Proposition 5.1 and Meyer (1966, VI.T14) we know that

S„i{T—) — Sm{T) a.s., a clear contradiction.

*More precisely, a totally inaccessible stopping time is a surprise with probability one. See Dellacherie and Meyer (197

IV.78) for details.
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Between (random) lump-sum ex-dividend dates, the price process of a marketed consumption

plan can have discrete changes only at non-predictable stopping times, or equivalently, at events

that are not foretellable.

Proposition 5.3. Suppose that T : n i— 9? is a predictable stopping time. Then

5„.(r)-5„,(r-) = -(m(r)-m(r-)) a.s. VineM.

Proof. When T is predictable, we know

EU h{s)dm{s) \7t) = E(f h{s)dm{s)
\ Jr-) a.s.

The assertion then follows immediately from Proposition 5.1.

I

At lump-sum ex-dividend dates, which can be random, the price process would drop by the

amount of the dividends when there are no surprises.

Before proceeding, a definition is in order.

Definition 5.1. An information structure is said to be continuous if all the stopping times are

predictable.

Remark 5.2. For an equivalent definition and extensive discussions of a continuous information

structure see Huang (1985).

The following is a direct consequence of the above definition and Proposition 5.3.

Corollary 5.1. Suppose that F is continuous. Then for any stopping time T

S,n[T) - S„,{T-) = - {m(T) - m[T-)) a.s. Vm G M.

When the information structure is continuous, the ex-dividend date behavior of a price process

is dictated by its dividend process. On the other hand, when a dividend process is continuous, the

behavior of its price process is solely determined by the way information is revealed. Thus it can be

the case that dividends and information work against each other and there won't be price changes

at lump-sum ex-dividend dates.

For stopping times Ti and T2, the set

[TuT2) = {(u;,0 e n X [0,1] : Ti{oj) < t < Tii^o)}

is called a stochastic interval; cf. Chung and Williams (1983, p.29).

The following proposition shows that when the information structure is generated by a Brow-

nian motion the price process of a marketed consumption plan is an Ito process in any stochastic

interval within which the dividend process is continuous.
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Proposition 5.4. Suppose that F is a Brownian motion filtration, that T\,T2 are two stopping

times with < Ti < T2 < 1, and that m G M is a continuous process on [Ti,T2). Then {5„,(u),f);

{oj,t) E [T'i,T2)} is an Ito process.

Proof. First we note that a Brownian filtration is a continuous information structure; cf. Proposi-

tion 5.1.1 of Huang (1985). From the hypotheses and Corollary 5.1 we then know that {5„, (oo'.f);

{u>,t) G [Ti,T'2)} is a continuous semimartingale. By the defining properties of a semimartingale,

{5„i(tc',f); {oj,t) G [Ti,T'2)} can be written as the sum of a local martingale and a process of

bounded variation. It follows from Dellacherie and Meyer (1982, VIII.62) that the local martingale

part can be represented as an Ito integral, therefore continuous. The bounded variation part is

thus also continuous. Hence the price process is representable as the sum of an Ito integral and a

continuous bounded variation process, and by definition is an Ito process.

I

Huang (1985) has shown in an economy where consumption is available only at two dates

that a price process can be represented as an Ito integral when the information structure is a

Brownian filtration. The above proposition is a generalization. When agents' shadow price process

for consumption is a continuous process and when the information structure is generated by a

Brownian motion, the price process between lump-sum ex-dividend dates will be an Ito process.

Since there can be at most a countable number of (random) lump-sum ex-dividend dates, for most

of the times, the price process of a marketed consumption plan is an Ito process.

The results of this section depend largely upon the fact that agents' preferences are r*-

continuous. This assumption can be defended on economic grounds. The 7*-continuity of pref-

erences means that consumption at adjacent dates are almost perfect substitutes, which captures

an intuitively appealing notion of time complementarity of consumption preferences over time.

For more discussions on the issues of time complementarity of consumption see Huang and Kreps

(1983).

6. Concluding remarks

It should be clear that results of Sections 3 and 4 do not depend upon the hypothesis that the

time set is continuous. When the time set is any countable subset of [0, 1], we simply change the

integration signs to be summation signs. No interesting sample path properties of a viable price

system for long-lived securities are available.

All of our analyses can be generalized in a straightforward manner to accommodate heteroge-

neous beliefs, as long as agents' endowed probability measures are uniformly absolutely continuous

with respect to one another.

The results in this paper are strongly colored by the assumption that the consumption space

of agents is the whole space. That is, negative consumption is allowed. This assumption is crucial
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in establishing that the current price system for marketed consumption plans is representable as a

r-continuous linear function when a pair of price systems (,9, S) is viable with respect to A and the

results thereafter. The fact that relaxing this assumption may significantly change our results is

evident from Jones (1984). What further restriction on A is needed for our analysis to go through

when agents' consumption set is the positive orthant remains an open question. It seems that some

sort oi properness of preferences may be needed; cf. Mas-Colell (1983).
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Appendix I

Proposition A.l. The bilinear form ^ : V x A' i— 3?

xl'iv.x) = E i x{t)dv{t)

separates points.

Proof. Let a:i,X2 € A' and xi ^ xg. Since xi and X2 are RCLL processes, we know that there must

exist t e [0, 1] and B £ 7t with P(B) > such that

xi(oj) ^ X2{oj) Voj e B.

Without loss of generality we assume that xi(cj) > X2(w) on B. Define v : 11 x [0, 1] i-^ D? by

Then

ip{v,xi) - ^p{v,X2) = E
[ / (xi(s) - X2(s))dv(s)

V-ao,il /

= E{{xi{t)-X2(t))lB)>0.

Thus V separates points in A".

Next let V eV,v ^0. Then there must exist t € [0, 1] and Bi e Tt with P{Bi) > such that

v{u>,t) 71^ Voj € Bi. Without loss of generality we assume that v{t) - v{t-) > on Bi. Take the

following cases.

Case 1. Suppose that v{u),s) = v{ui,t) for all s € [t,l] and for almost every u e Bi. Define

X : n X [0, 1] K-. 3? by

x{u,s) = Isj x[M] ('-',«) •

Then x € A' and

ijiv,x) = E{lBA^'{i)-'^'it-))) >0-

Case 2. Suppose that
|
v{s) - v{t) |> v{t) - v{t-) Vs G [f, 1] for almost every uj E Bi. This is

impossible by the right continuity of v.

Case 3. There exists e > such that the optional random variable T^ : n 1—» [0,oo] defined by

Te = inf{s e[t,l]:e <\ v{s) - v{t) \< v{t) - v{t-)},

where we have used the convention that Tf = 00 if the infimum does not exist, is finite on some

^2 e J with B2 C jBi and ^(^2) > 0. Define x : fi x [0, 1] h^ 9? by

x{u,s) = 1b,1[<_j^)(w,s).
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Since [t,T() is a stochastic interval, x is adapted, and by construction it is RCLL; cf. Chung and

Williams (1983, Chapter 2). That is, x € A'. Then

rp{v,x) = E
{

x{s)dv{s)]

= E (iBAyiT,) - v{t-)) > 0.

Combining the above three cases, we have shown that A' separates points in V.

I

Appendix II: Proof for Proposition 3.2.

Proof. Consider long-lived security j. At time zero, (3.2) is certainly true, since t(0) = 1 by the

fact that the consumption commodity is taken to be the numeraire. Thus if (3.2) is not true, there

must exist t e (0,1] and B e Tt with P{B) > such that (3.2) is violated for t on B. (This

follows from the fact that both sides of the equality of (3.2) are right continuous.) Without loss of

generality, we assume that on B:

E (// x{s)dD,{s)
I 7,)

x{t)

We define

Okioj, s) - yuen,k = i,2,... ,j - l,i + 1, . .
.

, J,

Ojiuj^s) = -1bx(,,i](w,s)

v{uj,s) = 1bx[mi(w,s) {Sj{u,t) - Dj{uj,s) + Dj{ijj)).

As defined, 6 is bounded and predictable, the latter of which follows from the fact that 6 is left

continuous; and v is an integrable variation process.

We claim that 6 finances v. The fact that {d,v) satisfy (2.3) and (2.4) for s e [0,1] and on

n \ B and for s e [0, t] on B is obvious. On J5 for s e [t, 1], we have

^(0)^5(0)+ r0iuydS{u)+ r e{u)^dD{u)-v{s-)
•Jo Jo

=Sj{t) - S,{s) + Dj{t) - D,{s-) - vis-)

=5,(0 - Sj{s) + Dj{t) - Djis-) - Sj{t) + Dj{s~) - D,[t)

= -Sj{s) = ej{s)Sj{s) = 6[s)'^S{s).
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It is also clear that 0{l)'^AD{1) — At;(l). Thus v is financed by 6 and v is marketed. The price of

V at time zero is zero. But we note the following

iiv) = E i [ x{s)dv{s)
)

= E (x{t)Sj{t) - f x{s)dDj(s)j

'x{t)E[j^x{s)dD,{s)\Tt) /•!

> E
I ^—^^ ^ -

J^
xis)dDAs)

a contradiction.

Appendix III: Proof for Proposition 4.2.

Proof. Let 9 G G[/?, 5] finances v EiV. We want to show that v is financed by 9 given (/9*,5*). It

is clear that 6{iyAD{1) = Av{l) a.s.. We are left to verify that

9{t)^S*{t)^9{0)"^S*{0)+ f 9{s)^dS*{s)
Jo

+ [ l3*{s)9{sfdD{s)-
I

I3*{s)dv{s) Vf G [0, 1] a.s. (A.l)
Jo Jo

Now define

and

The process

G{t) = e{tfAD{t) - Av{t)

G*{t) = ^*{t)G{t).

9{tyS{t) + G{t)^9{0)^SiO)+ f e{sfdS{s)+ [ e{sfdD{s)-v{t) V<e[0,l] a.s. (A.2)
Jo Jo

is a semimartingale, since the first integral on the right-hand-side is a semimartingale (cf. Theorem

IV.20 of Meyer (1976)), and the second and the third terms are processes of bounded variation.

Here we remark that {^(<)^S(/)} may not be a semimartingale since if D or v is not continuous,

then it is not right continuous, which is a defining property of a semimartingale. Now using the

differentiation rule for semimartingales (cf. Corollary IV.23 of Meyer (1976)) we have
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d{e{t)^s*{t) + G*{t)) = d (r (0 {e{tfs(t) + G{t)))

= /3*{t-)d (e{tfs{t) + G(o) + {e{t-)^s{t-) + G{t-)^ d/3*(t) + d[/3\e^s + g],, (a.3)

where [•,] denotes the joint variation process (cf. Jacod (1979, 2.31)). The second term on the

right-hand-side of (A.3) can be rewritten as:

(^e{t-fs{t-) + G{t-)^di3*{t) = (^e(t)^s(t) + G{t) - e(t)'^AS{t) - e(t)^AD{t) + Ai>(o)d/?*(0

= d{t)^S{t-)d/3*{t), (AA)

where the first equality follows from (A.2) and the second equality follows from the definition of

G{t).

We can rewrite the third term on the right-hand-side of (A.3) as:

d[l3\d^S + G], = e{t)^d[/3\S]t + e{t)^d[p\D], - d[(3\v]t (A.5)

by Theorem IV. 18 of Meyer (1976). Applying the differentiation rule for semimartingales again we

get:

dS*{t) = d{/3*{t)S(i))

= /3*{t-)dS(f) + S{t-)dl3*{t) + d[l3\S],. (A.6)

Finally, we substitute (A.4) and (A.5) into (A.3) and use (A.6) to get:

d (e{tfs*{t) + G*(o) = e{t)^ds*{t) + 0*{t)e[tYdD(t) - i3*{t)dv{t), (aj)

where we have used the fact that

/3*{t-)dD{t) + d[l3\D],= (3*{t)dD{t)

and

I3*{t-)dvit) + d[l3\v]t = /3*{t)dv{t);

cf. Corollary IV.23 of Meyer (1976). Equation (A.7) is just the differential form of (A.l). Thus 6

finances i; given (0*,S*). This naturally implies that ^ e e[/?*, 5*]. The arguments for the converse

are similar.

The proof for the rest of the assertion is easy.
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