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Abstract

This paper reports the findings of a field study on managing the development

of software applications used for decision making. The study is based upon a

sample of 108 systems that have been operational for at least one year.

Collectively, these systems represent a broad spectrum of complexity with

respect to decision making and computer technology. At one extreme are

stand-alone systems with simple decision making logic. At the other extreme

are systems with logic for highly complex decision domains. Some systems

are widely distributed throughout firms and linked to suppliers, distributors,

or customers.

The study gathers data regarding the origins of systems ideas, development

costs, project durations, management controls, and the composition of the

software development teams. Its develops measures to assess and categorize

systems in terms of two dimensions of complexity: that of decision making

or the knowledge embodied in a system, and that of the computer technology

used to build and deploy a system. Successful approaches to systems

development are found to be contingent on these two dimensions of

complexity.

( MANAGEMENT OF TECHNOLOGY, SOFTWARE , KNOWLEDGE-BASED SYSTEMS)





Introduction

What is the effect of decision making or "knowledge" complexity on

managing software development? To what extent does this type of

complexity determine how managers approach the development of a new

information system? What are the implications for management when high

levels of knowledge complexity are combined with high levels of complexity

in the computer technology of a new system? Can these two forms of

complexity be measured systematically across different systems?

Consider the experience of a large insurance company that began building an

expert systems for underwriting life insurance applications in 1987.* This was

a firm in which the centralized data processing department had traditionally

designed, staffed, and managed the development of all large-scale "strategic"

software applications. Development of the underwriting expert system,

however, prompted an important departure from this conventional practice.

In this case, business executives actively participated in setting the focus and

planning the higher level design of the system.

The leadership of this firm established a new organizational unit to house the

development effort. This new departn\ent, which later was incorporated as a

subsidiary, acted as a melting pot for different types of domain expertise and

computer expertise. Medical researchers and seruor insurance underwriters

were formally assigned to the project, as were programmers recruited from

throughout the firm. The "systems analysts" were individuals with medical

degrees who had become proficient in knowledge engineering. Programmers

recruited from across the firm worked closely with them to build systems. As

the the opportunity to market the new system to the rest of the insurance

industry was recognized, the new unit developed selling expertise. Medical

researchers and senior underwriters were formally assigned to the project.

These individuals, representing many discrete areas of insurance and

operations expertise, built applications "platforms" consisting of core

decision making code, databases, and administration procedures tailored to

^ Lincoln National Life Company, Fort Wayne, Indiana, described in Meyer, DeTore, Siegel,

and Curley (1992).
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produce specific systems for different market niches. Indeed, this firm's

experiences and approaches challenged much of our own thinking on how

best to organize and manage the development of decision making systems.

The "knowledge complexity" of the application had certainly affected

organization, staffing, development time, and cost of the project in ways that

were both similar and different to what one nught consider a techrucally

complex application.

We began this research to determine the role of decision making complexity

in the management of software development. Just as managers have come to

associate the technology complexity of a new system with the time, budget,

and staffing needed to build it, we hypothesized that the embodied knowledge

complexity of an application would have important implications for

managing its development. The following pages report a framework and

research findings that provide an empirical foundation for a contingent

approach to applications development.^

Assessing Knowledge and Technology Complexity

We content that management of software development must be approached

with an understanding of the embodied complexity of the target application.

Different management approaches work for different types of systems.

Understanding the type of system is imperative for formulating the

appropriate development strategy. We believe that this understanding can

be facilitated by a system of classification that considers a development project

along two dimensions of complexity: 1) the domain-specific knowledge and

decision making complexity supported by an application, and 2) the

* Prior studies on managing software developing includes Brooks (1975), who consider the

problems in team conununications, productivity, and effectiveness that were incurred as team
size increased for the IBM 360 systems software development effort. Cusumano (1989,1991)

reported the effectiveness of process and technical standardization in the "software factory"

approach employed by many large Japanese companies. Benbasat and Vessey (1980) and Zmud
(1980) examined the the difficulties in estimating the length of development time and cost of

large scale software efforts. Ruth (1988) found that the expected development costs of

knowledge-based systems could t>e used to revise or anticipate the size and composition of the

development teams.
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complexity of the underlying computer technology used to develop, integrate,

and diffuse an application throughout an organization.

Figure 1 shows these two dimensions of complexity and our own generic

labels for the types of systems they give rise to. Four actual cases from our

research sample illustrate each quadrant in that Figure:

• Personal Productivity Systems: a stand-alone PC-based application

made by a large airline company requires only a handful of "rules" to

effectively assess the tax implications of employee travel from foreign

countries back "home" to England.

• Knowledge Intensive Systems: a stand-alone PC-based application

developed by a large engineering services firm to provide decision

assistance for scheduling the operations of a large chemical plant. This

system has logic that incorporates supplier management and logistics,

manufacturing cost and quality, and production scheduling.

• Technology Intensive Systems: a sales force information system made

by a computer manufacturer automatically downloads new product

and component information to a global salesforce. The scope and

frequency of distributing these data makes the technical aspect of this

application highly complex.

• Strategic Systems: the insurer described above combines both

knowledge and technology intensity into a system that provides both

automatic underwriting for "simple" cases and decision assistance to

underwriters for complex ones. It incorporates rich logic from

underwriting, medical, and financial disciplines, and is delivered in a

distributed systems platform that accesses different types of

information needed for decision making from multiple external

sources.

Insert FIGURE 1 about here
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Our initial effort to develop measures for classifying a particular system along

these two dimensions of complexity was made through a pilot study that

involved intensive discussion with software managers of six large firms.

This initial study focused on knowledge-based systems in which expert

system shells and knowledge engineering were key aspects of development.

We attempted to isolate "what is important" in each complexity dimension

by having the software managers assign weights of importance to their own

lists of important activities, and then comparing weights between these lists

to work towards a final list in an iterative process. This took approximately

six months. The study was subsequently expanded to approximately thirty

other firms with operational expert system applications.

While the study of expert systems was the foundation of our research, we

believed that the utility of understand knowledge and technology complexity

extended far beyond applications with formal "knowledge bases" developed

with expert system shells or languages. Prompted by this belief, we broadened

the context and scope of the method so that it might assess knowledge and

technology complexity for any information system deemed by the company to

encompass sigiuficant decision making logic. In the cumulative sample

presented here, there are systems that employ shells and special languages,

but there are also sophisticated applications that are useful in decision

making capability developed in more general purpose environments such as

C, C++, or simpler spreadsheet style tools.^

Assessing Decision Making Complexity

Decision theorists (Shannon 1948) differentiate between the decision

processes, or logic, and the information, or data, used in that decision making.

There are three basic components at the core of decision making: the decision

maker's knowledge of the paradigms and heuristics of a given field(s); the

"raw" information used by the decision-maker; and the interpretation and

^ This framework is adapted from the work of Meyer and Curley (1991). Support in the

literature for focusing on these two types of complexity for understanding the differences in

information systems may be found in Newell and Simon (1972), Davis (1984), and Gory and
Scott-Morton (1971). Clancy (1985) also used "heuristic" or decision-making style

classification methods on a sample of early expert systems.
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synthesis of that information by applying domain-spedfic logic to resolve

uncertainty and come to partial or complete decisions. We amplified these

three basic into a set a variables to assess decision making complexity for a

given application.

The Breadth of Decision making Domain(s) . The breadth of the embodied

decision making areas in a system is a measure of the number of specific

distinct fields of expertise employed by the decision makers whose

reasoning is incorporated into an expert system. By examining the

domain content for a specific decision making process with knowledge

engineers and experts, we identified the number of specific domains or

distinct fields of expertise modeled into the system. * The tax system

described above has only one domain, tax law. In contrast, the insurance

underwriting system incorporates medical science, actuarial science, and

financial analysis. We scored systems as follows:

Description



respectively. Similarly, if more than one domain was identified, then

domain depth was assessed for each of the domains, and the final score

was derived by taking the highest of the individual domain depth scores.

We combined these data to produce a score as follows:

Depth



Decision making Domain Penetration. The degree of penetration by a

system into areas of decision making is a measure of the completeness of

computerization for each of the specific domains embodied in a system. A
particular decision maker may be a world authority in his or her field, but

the system in which he or she participated may orUy capture a small

portion of that expertise. Decision makers involved in the sample systems

were asked to assess the degree of domain penetration for each of the

embodied domains on the scale below. If multiple domains were

involved, each domain was evaluated for this measure, and then the

highest score was employed subsequent calculations.

Degree of Penetration



decisions, such as determining the credit worthiness of a loan applicant or

finding the reason why a machine broke down. Other systems, such as the

plant scheduling system, would allow users to do "what if" testing.

A system was evaluated for comprehensiveness depending on the

presence of these generic categories of outputs in the visual and /or printed

information outputs of the system, and scored as follows:

Solution Outputs



Level of

Ambiguity



production system was made to function for users. Additionally, we

distinguished between computer architecture (i.e. Intel versus VAX versus

Sparc versus IBM 4331, for example), and operating system type (DOS

versus Unix versus VMS versus CICS, (Deitel 1984)). These data were

scored as follows:

Platform Range



complexity calculation. One basic technology tool was scored as 1. An

additional point was assigned for each additional technology. The scores

for this variable ranged from 1 to 7.

Database Intensity . The majority of the systems we have encountered

used database management systems tools. Larger databases add to the

complexity of the development effort, requiring more extensive logical

design, database implementation, and in some cases transactions

processing. We measured the cumulative size of the underlying reference

databases accessed by the system in the course of processing. An initial

dividing point of one megabyte of data for size seemed reasonable, since

beyond this point developers must begin to worry about optimizing access

methods, transaction logging, access synchronization, and rigorous backup

and recovery mechanisms. We scored the data as follows:

Database Intensity



networks for the purposes of interacting with other databases or

applications on only a periodic basis would be classified as "infrequent."

Many decision making systems receive information at the beginning of

user sessions and then send results back to other systems at the end of

sessions. Lastly, some advanced decision systems continuously exchange

information with a variety of systems in the course of processing. These

would receive the highest rating in this measure.

The Scope of the Decision /Knowledge Base Programming Effort:

Harmon, Maus, and Morrissey (1988) considered the degree of difficulty in

encoding decision makers' expertise as a major aspect of systems

development complexity. Our first thought was to measure person-days

spent specifically in knowledge base (or its equivalent) development

might provide insight into this difficulty. We soon found in the pilot

study group that variations in programmer productivity between projects

made person-days unreliable as a comparative measure.

We decided to gather data regarding: a) the number of "rules" (since many

of the systems in the sample employed some form of rule specification as a

basic element of logic), and b) the total size of the "knowledge base" (which

in more complex systems will include "object" specifications as well as

"rules," or in others, binary program modules containing simple "if-then"

expressions in a language such as C). We differentiated between the

knowledge base itself and associated databases used by or vdthin the expert

system (the database portion is considered in a prior variable). Our

method for deriving an assessment was:

The Scope of the Decision/Knowledge base Programming Effort:



providers. Increasing the number of information sources involving

computer access increases development complexity. For example, one

information provider (internal or external to the organization) may

provide a series necessary data through a single interface module. In other

instances, a system may acquire many different types of data from many

different sources, each needing its own access module. We score the

variable as follows:

Diversity of Information Sources



Level of Diffusion



Technology Complexity = {(Diversity of Platforms * 10) +

(Technology Diversity * 5) +

(Database Intensity * 10) +

(Network Intensity * 10) +

(Decision/Knowledge base Programming Effort * 10) +

(Diversity of Information Sources * 10) +

(Diffusion * 6) +

(Systems Integration * 6)) / 2.4

Methods for Applying the Qassification Framework

This classification method was applied to a sample of 108 "successful"

information systems. ^ The operational definition of a successfully developed

system is one that had passed the design, prototyping, and testing stages, and

had been fielded as a working application and used within an organization

(and possibly by its suppliers, distributors, or customers) for the system's

intended purpose.

Gleaning insights from failures can be just as useful as the study of successes.

While we were able to get firms to identify some failures, in no case were the

data for them sufficient for our research purposes. This is why we

constrained the sample to installed, working successes.

The sample was gathered by convenience. We first sampled firms in the

United States and England. Our structured questionnaire was translated into

German by the Fraunhaufer Institute, and administered to firms in Europe.

The research instrument was translated into Japanese by the Nikkei

Intelligent Systems Journal and administered to more than 50 Japanese firms.

We translated these surveys into English with the help of graduate students

fluent in the language.

" The test study group of a half dozen firms was not included in the 108-member sample.
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A broad range of industries is represented: financial services, engineering,

transportation, sales, energy, health services, construction, and government.

Brief descriptions are provided in Appendix 1. For example, underwriting

expert systems for life insurance, property and casualty, and health

underwriting were typical of insurance company systems. In banking,

systems assisting in loan preparation and authorisation were included. A
variety of computer component assembly, machine tool configuration, and

product testing systems were developed in the manufacturing arena. A
number of systems were developed to assist in the selling of complex

products. In fact, the sheer diversity of knowledge-oriented systems that we

encountered reaffirmed the need to create a generic classification method as a

means of finding common learnings across diverse experiences.

A structured questionnaire was developed to gather data for specific factors

within the din\ensions of knowledge and technological complexity.'' The

data gathering process involved the completion of interview forms by a

number of key individuals associated with the respective systems: project

managers, domain experts, knowledge engineers, and key computer

programmers. The depth of the interviewing helped to insure the reliability

of the information collected. The majority of the data gathered were

concerned with objective and verifiable information. In the knowledge

complexity dimension, we used the education level and years of work

experience of domain experts who worked on a system as the facts behind our

measurement. Similarly, the specific number of information inputs and

solution outputs could be enumerated by project engineers. In the technology

dimension, the number of hardware platforms, the size of databases, and the

variety of different technologies used, the scope of the knowledge base

programming effort, and the levels of systems integration and diffusion of

the system proved reasonable to gather.

Insert Figure 2 about here

'^ The survey is computerized and the classification automated in an English language version

for personal computers using Oaris' FileMaker Pro.
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Appendix 2 contains the knowledge and technology complexity scores for

these systems. Figure 2 provides a visual mapping of the system on our

framework based on these scores. The range for knowledge complexity in the

sample was 33.10 to 100, with a median value of 57. The range for technology

complexity was 27.92 to 80, with a median of 49. We categorized the sample

into the four generic groups of systems shown earlier in Figure 1 using

median scores for each dimension of complexity. The distribution of systems

in each quadrant was as follows:^

Distribution of the Sample



a firm. "Suppliers" are those hardware, software, and computer services

firms which provide the company with computers, software tools, and

programming assistance. Our hypothesis was that as the knowledge

complexity of systems increased, we would find line affiliated expert decision

makers playing the role of von Hippel's "lead users".

We asked respondents to identify the primary origin of the system. The

categories and observed frequencies are shown below:

Origin Category



For systems initiatives involving complex, specific areas of decision making,

experts in the line units were excellent sources for important application

ideas. In terms of the framework, this applies to the Knowledge Intensive

and Strategic Systems quadrants. Many of these systems started as prototypes

created by "power users" on PC's with easy to use shells and database

management systems, and these were used to a limited extent as Personal

Productivity systems. Examples from the sample included a manufacturing

quality control application for the manufacture of computer disk drives, an

"intelligent" market research database application, and an insurance

underwriting system.

Conversely, when knowledge complexity is low, and technology complexity is

high, systems were more likely to be conceived by computer professionals

(the Technology Intensive quadrant of the framework). Clever data

processing staff initiated important applications within the confines of their

own domain or business decision making understanding. A system

developed for the Red Cross to schedule the recertification of the cardio-

pulminary resusitation (CPR) program is an example of this.

When both types of complexity are low, there are few education or

experiential impediments to either decision makers or programmers in

conceiving new uses of computers. This is the realm of end-user computing,

which is continuously empowering individuals with respect to the

application of computers to their work.

Project Duration and Cost

What did the research suggest about the impact of knowledge and technology

complexity on the duration and cost of systems development?

One would expect that the time and cost required to develop a system should

typically increase with the embodied knowledge and technological complexity

of the system. We also wanted to find which din\ension of complexity might

have a greater impact on duration and cost respectively. We expected that

knowledge complexity would exhibit a strong association with longer project

Page 19



durations than would technical complexity in the creation of a first working

version of a system. The reasons for this expectation is the time it takes a

team to correctly understand and model multiple domains of expertise, to

penetrate areas of expertise deeply, and to formulate strategies for resolving

uncertainty in the information entered into the system.

The effect of higher levels of technological complexity on duration and cost,

on the other hand, should be softened by the ever-improving productivity of

software tools. The nature of the systems in our sample tended to utilize tool

foundations that consisted of knowledge-based programming shells or

environments, database management systems, and networking and

comnnunications tools. While these tools are most productively used in the

hands of trained, experience computer professionals, they are clearly

becoming easier and more productive in the hands of less specialized

personnel doing applications development. In contrast to applications

development, the experiences of the managers in our sample showed that

applications integration, which means linking one of these knowledge-based

systems to older administrative and/or decision making systems in the

company, remains difficult, time consuming, and costly.

We recorded the development history timelines of each system, noting the

formal project start date (defined as when the effort was formally budgeted by

the organization), the completion of the working prototype of the system, the

completion of the first release of the system (where the application was placed

into "production mode", i.e. users employing the system on a regular basis),

and the completion dates of subsequent fielded versions of the system. These

data were then coded into the following six duration categories and scored on

an ascending scale from 1 to 6, with 1 representing the shortest time and 6

representing the longest. We also computed the mean values of the interval

categories to be used as class value marks in subsequent statistical analyses.

The distribution of responses was:
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Cumulative



Multiple regressions were performed between project duration and cost

respectively (using the interval category means) and the classification scores

for knowledge and technological complexity. The results dearly show that

both knowledge and technology complexity, as measured and determined

above, are strong predictors of the time and cost of fielding an initial working

version of a knowledge-based system.

The regression of project duration to knowledge and technology complexity

was significant at p = .0001 (n=101, df = 2, F = 10.71). Increasing the level of

knowledge complexity was also shown to have strong association with project

duration. (Knowledge complexity: C = .21, t-value = 2.94, p = .0041; technology

complexity: C = .13, t-value = 1.95, p = .0546). Modeling complex decision

making simply cannot be rushed.

For the budget required to field a first working version of a system as a

function of knowledge and technology complexity, the result was significant

at p = .0001 (n = 97, df = 2, F = 13.6). In this case, however, technology

complexity had a stronger association with project cost than knowledge

complexity (knowledge complexity: C = .9.31, t-value = 2.02, p = .0461;

technology complexity: C = 15.59, t-value = 3.45, p = .0008). Looking at the

systems in our sample, it became evident that intensive systems integration

and distributed database access were the most frequent causes of high

technological complexity. Achieving these two goals required large data

processing staffs working for many months to integrate the system with other

administration type systems in the company. This created the large budgets.

Figure 3 shows three means for each of the four quadrants: the elapsed time

required to complete the first working version of the system, the budget for

doing this, and the total cumulative cost for the development and

maintenance to date. Kruskal-Wallis tests performed on these data

confirmed that the differences in these for project duration and cost between

the four quadrants of our classification scheme were highly significant.^"

*° For project duration in developing the first working version, H corrected for ties was 12.8, df =

3, p = .005. For budget in developing the first working system, H was 22.18, df = 3, p = .0001 . For
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Insert Figure 3 about here

The data for budgets and time to fully integrated deployments of the

applications in the sample showed little variation for first release data in the

Quadrant I and Quadrant n (technologically uncomplex) applications.

However, for Quadrant HI applications, achieving full integration cost on

average about $500,000 and 25.5 months. For Quadrant IV applications, full

integration averaged more than $1 million and 30 months.

Organizational Locus of Project Control

What did the research show in terms of managerial control over the

development systems? When should line units control these projects?

When should data processing departments control development? Were

hybrid forms of control present in the sample?

The locus of management control over technical projects for both product

and process innovations has been framed in several basic ways in prior

research. Ginzberg (1980) considered the organizational contingencies of

information systems development in the accounting and financial

disciplines. Roberts and Berry (1985) posited different organizational

alternatives for new technical initiatives as a function of the technological

and market applications newness. In each of these works, corporate R&D is

contrasted with operating or line units in terms of the advantages and

disadvantages of their respective control in certain situations.

In the case of knowledge-based systems, the "operating division" is the

business department that will use the system. "Corporate R&D" is the firm's

central data processing department. We began with two hypotheses about the

locus of management control. The first hypothesis was that for successful

systems development efforts, one would find that greater levels of knowledge

total cumulative budget, H was 34.02, df = 3, p = .0001. For total time required to achieve a

fully integrated systems implementation, H v^as 14.02, df = 3, p = .003.
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complexity would require business unit control. This would insure

continuous and substantive access to decision making experts) and follows

the general trend of decentralizing applications development to user

departments.

Our second hypothesis was that greater levels of technology complexity

would require management control by corporate DP. Such control makes it

more likely that the project gets the programming and systems integration

resources it needs . "Experts" in the decision making area participate on a

part-time basis, suited to the more limited amounts of expertise required in

this category of systems.

If both knowledge and technology complexity are low, then we believed that

it would not matter who controlled the project so long as the individual

user/ developer was granted sufficient time to develop the system and used

software tools appropriate to his or her own skill level.

Lastly, we beheved that systems containing high levels of both knowledge

and technological complexity would usually be controlled jointly by operating

business units and corporate DP. In fact, we suspected that many firms would

create new organizational units to build and maintain strategic systems.

With separate budgets and their own reporting structures, these new units

would make it easier for decision making experts, analysts, and programmers

to work together in a manner and level of intensity sufficient to build the

system. In some cases, these new units might become profit centers if the

systems developed were marketable by the firm.

To test these ideas, we gathered data regarding the types of organizational

entities that controlled the development of the system in the sample. ^^ We
defined "control" as the deciding control over objectives, budgets, and project

performance. These data were categorized into three categories: existing

business departments, existing corporate DP departments, and new "hybrid"

departments formed to have both decision making experts and computer

^
' Three of the 108 systems in the sample did not provide this information.
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professionals. In some cases, these new departments were specialized

"Artificial Intelligence" applications groups, which, while ultimately

reporting to the vice president of information systems, enjoyed substantial

autonomy and were highly intrapraneurial. When development was

actually managed by an outside vendor contracted by corporate DP (which

occurred in four instances in the sample) or a business unit, the case was

deemed to be controlled by whomever did the contracting. A contingency

table was then generated based on the four groups from the classification

method and these three orgaiuzational types. The resulting X 2 (15.21, df = 6, p
= .02) shows a significant relationship between embodied complexity and

organizational locus of control over development.



As one crosses over into Knowledge Intensive systems, access to decision

nnaking experts becomes an essential ingredient for success. The strong shift

in our data towards business unit control confirms this. Technology

Intensive systems show a similarly strong shift to corporate DP control when

the mastery of complex software tools and systems integration assumes

primary importance.

Lastly, our data show that a company might consider forming new

departments for the development of Strategic Systems, systems where

decision making experts and programming experts must work in an

intensive and sustained manner. In our sample, these projects tended to be

"big ticket," large scale efforts. These new units, with their own space, their

own structure of authority, and performance reviews normally provide far

greater teamwork than do so-called "co-operative" projects characterized by

periodic interchanges by persons from different physical and organizational

locations. (Allen 1977)

Some Strategic Systems had unexpected results. For example, in the insurance

company mentioned earlier, a new department was formed to develop a risk

management system for the company's own insurance business. That system

has since been sold to over thirty other insurance compaiues. In another case,

a new department was formed in an engineering services firm to build a

family of highly specialized expert systems for the manufacturing sector. A
spin-off firm from an Asian investment firm has developed a highly

successful personal portfolio and investment management system. These are

cases of clear intrapraneurship.

Respondents also articulated the problems they encountered in development.

When DP departments controlled the development of Knowledge Intensive

applications, the most frequently dted problem was gaining the necessary

"access to the experts." Lacking such access, the systems suffered from

incorrect approaches to problem solving, inappropriate user interfaces, or

failed to provide sufficient depth in handling the "hard decision making

cases." Similarly, when business units controlled systems that were

technically complex, they sometimes encountered "technical show-stoppers"

that would take significant time and effort to circumvent. Frequently, this
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meant failing to share information or otherwise connect to other systems

within or external to the company. The lack of technical capability within

business units limited the effectiveness of the application.

Team Composition

How large were the development teams and what types of individuals

worked on the systems in our sample? Were team size and composition

associated with different levels of knowledge and technology complexity?

As one might expect, the relationship between the team size needed to

produce the first working versions of these applications and knowledge and

technological complexity mirrored that of project cost and complexity. The

range of team size in the sample was from 1 to 25 full-time person

equivalents. The multiple regression between team size and the two types of

complexity produced a result significant at p = .0001. (n = 108, df = 2, F= 17.67,

p= .0001). Team size increased v^th embodied complexity. A Kruskal Wallis

test on the difference in team size between the four quadrants of our

framework was also significant at p = .0001 (n = 108, groups = 4, df = 3,

H corrected for ties = 22.58, p= .0001).

With respect to the types of individuals assigned to development teams, the

literature has frequently cited particular "roles" in development (Harmon,

Maus, and Morrissey, 1988, Feigenbaum, McCordick and Nii 1988, Hart 1986,

Roberts and Fusfeld 1982). These include decision making experts (often

called domain experts), knowledge engineers (systems analysts who model

the logic and structure information flows in the application), and

programmers. We hypothesized that greater levels of specialization in

staffing roles would be required to build the most complex types of systems,

i.e.. the Strategic Systems having both high levels of knowledge and

technological complexity.

We observed four forms of team composition with respect to the roles

mentioned above. First, on some projects, there were distinctly separate

domain experts, knowledge engineers or systems analysts, and programmers.
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Second, in a limited number of projects, all three roles were performed by the

same exceptional, hybrid individual(s). Third, in some cases decision making

experts were sufficiently trained in computer systems design to do their own

knowledge engineering, and worked with programnners to implement their

designs. Lastly, in the majority of cases, programmers had taken additional

training in knowledge-based systems development and were able to perform

both the knowledge-engineering and programming roles with the domain

experts. The frequencies for the sample are shown in the following table.

Team Roles



2. the level of domain familiarity on the part of systems analysts would

also increase.

The latter would be necessary for systems analysts to understand what the

experts were talking about, and to correctly and fully model the decision

making process.

Respondents provided information regarding the number of decision making

experts involved in systems development. The largest number of experts

assigned to work on any system in the sample was 12. The regression between

the number of decision making experts and the knowledge complexity of

systems as assessed with our classification method was significant at p = .02

(n= 107, df = 1, F = 5.13 , p = .02).

Respondents also indicated the type of the participation of the "lead"

expert(s), be it informal and irregular participation (22%), part-time but

regular participation (65%), or full-time and formal assignment for the

duration of the project (13%). Full-time participation of decision making

experts was more likely to be present for the more knowledge intensive

applications. The fact that more than three quarters of the sample required

the regular or full-time participation of decision making experts to

successfully develop knowledge-based systems is itself an important finding

for stiucturing such projects. An organization's best decision making experts

are typically very busy performing their regular jobs. The cost of taking these

experts "off-line" for significant periods of time to work on software

applications is a cost that management must consider before embarking on

decision-intensive systems initiatives.

For those systems in which the knowledge engineering role was performed by

individual(s) other than the decision making experts, a clear relationship

between higher levels of knowledge complexity and domain familiarity on

the part of the systems analysts emerged. For those systems in the first and

third categories in the table above, we asked respondents to identify the level

of domain familiarity on the part of knowledge engineers at the outset of the

project according to a five point Likert scale (ranging from no familiarity to

very high levels of familiarity). The resulting regression between knowledge
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complexity and domain familiarity on the part of the knowledge engineers

was significant at p = .004. (n = 86, df = 1, F = 8.75, p = .004). Several examples

clarify this point. In a sophisticated manufacturing equipment problem

diagnosis system, the knowledge engineer had a masters degree in

mechanical engineering and substantial work experience; he needed this

background to understand the models and processes of the two PhD. experts

assigned to the project. Similarly, in the insurance underwriting example,

the two knowledge engineers both had medical degrees.

What were the differences among the programming staffs in the sample?

Except for the simplest of the Personal Productivity Systems (low knowledge

complexity and low technology complexity), the applications in our sample

required programming by professional programmers. We asked respondents

to categorize the full-time equivalent assignments of programming personnel

for the development of the first working versions of their systems according

to three types of individuals: applications programn^ers (using expert systems

shells, C++, LISP, or some other language), database management systems

specialists, and systems integration specialists (communications and

applications integration with other systems).

Programming staffs for systems with lower levels of technological complexity

(being Personal Productivity Systems and Knowledge Intensive Systems)

tended to be dominated by "applications programmers." The technologically

complex systems (Technology Intensive Systems and Strategic Systems)

tended to have fairly equal representation of applications programmers,

database specialists, and systems integrators in their respective teams. Staffing

differences in the four quadrants of the classification framework for these

three areas of specialization were found to be significant. The Kruskal Wallis

results (corrected for ties) are summarized in the table below (Group = 4,

df=3).
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Full time equivalents



rich foundation for initiating the development of ever more powerful

decision making applications and make the present research highly relevant

to such endeavors.
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Figure 1

The Classification Framework
Four Generic Types of Software Applications
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108 Software Applications

Classified by Knowledge and Technology Complexity
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Figure 3

Project Duration and Budget Means by
Classification Quadrant



Figure 4

Contingent Approaches for Planning and Lmplementation
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Appendix 1

Systems Descriptions

System Name
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FAST



MEDCLAIMS



SPA



Appendix II

Coinplexity Classifications

System Name
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