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Abstract

This report is the fourth in a series of reports on basic existence theorems in net-

work synthesis. The parameter representation of the time and frequency domain

functions derived in earlier reports in the series has been used for an investigation of

the delicate problem of transmission of narrow pulses through finite passive networks.

The report starts by stating and proving the necessary and sufficient condition for a

transfer function to be rational. A simple and computationally appropriate relationship

between the parameter function U(O, X) and the time function, which eliminates the inte-

gration, is then established by means of the so-called corner theorems. Due to dis-

continuous time derivatives, the Stieltjes integral representation has to be used. The

U(O, X) function is then approximated in such a way that the famous phenomenon of

"ringing" is completely controlled. A rational transfer function is obtained from the

approximated U function by means of an interpolation procedure. Some illustrative

examples are given. The important question of minimum number of elements is treated

in connection with the correlation of the number of extremal points of the U function

and the number of poles of a rational transfer function.

Finally, rational approximations of transfer functions are obtained by means of a

powerful nonlinear process of summability which contains the Pade summability as a

special case. The subject will be continued in Part V of this series (Technical Report

No. 270).
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ON BASIC EXISTENCE THEOREMS IN NETWORK SYNTHESIS

IV. TRANSMISSION OF PULSES

Necessary and Sufficient Condition for a Transfer Function
to be Rational. On the Transmission of Impulses. On "Corner"
Theorems. On the Question of Minimum Number of Elements.
Ringing. Rational Approximations of Transfer Functions by
Means of a Nonlinear Process of Summability.

This report is Part IV of a series of reports which partially describe the progress

in this field. Part I appeared in the Quarterly Progress Report, January 15, 1952;

Part II appeared in the Quarterly Progress Report, April 15, 1952; Part III has been

published as Technical Report No. 233.

Section IV- 1

A Basic Theorem on Rational Transfer Functions

The necessary and sufficient condition for a transfer function to be rational. Con-
struction of rational transfer functions. Simple and multiple poles. Discrete networks.

IV- 1. 0 Introduction. In previous issues of the Quarterly Progress Report, references

1 and 2, we produced a series of theorems concerning transfer functions. These

theorems have a constructive character; they lead to the simple "lattice" structure and

demonstrate its generality for both concentrated-element and distributed-element net-

works. All these theorems are derived from a parametric integral representation of

Laplace's direct and inverse transforms. See references 1 and 2.

Part III of these notes deals with the network constructions derived from "monogenic

functions" having singular lines in the s plane. The singular lines are generated by an

everywhere dense distribution of poles or sets of poles along such lines. The pole

distributions have bounded density distribution functions. From this density distribution

function we are able, by means of a series of basic theorems of existence, to construct

the corresponding transfer function associated with such a singular line of pole distribu-

tion. Conversely, from a given transfer function we can find the corresponding density

distribution function associated with prescribed lines which will constitute the natural

boundaries of the monogenic representation of the given transfer function. In Part III,

-1-



reference 3, we have shown, with ample constructive detail, the existence of singular

lines which are formed by pole-zero chains. Discrete-finite networks can be derived

from such pole-zero configuration by constructing sequences of pole-zero chains along

those lines whose poles become denser and denser as the sequence index tends towards

infinity. The limiting pole-zero chains have a density distribution function which is

equal to the one corresponding to the given transfer function. The construction of such

pole-zero chain sequences is shown in Part III.

From a formal point of view, the monogenic" approach to transfer functions is a

quite correct and illuminating process. As a matter of fact, Part III provides the

foundation of the so-called potential-analog methods. From a practical point of view,

however, the monogenic approach is inconvenient for producing a good approximation of

one actual case, due to the fact that it necessitates, generally speaking, a very large

number of pole-zero chains, and consequently a large number of network elements.

In Part IV, a set of existence theorems is produced in such a way that we do not need

such pole-zero chains everywhere dense along the line. Here, we shall produce isolated

singularities which do not crowd themselves in the limiting processes. We shall

illustrate these ideas by considering the problem of pulse propagation. In this problem

we find very important clues concerning the fundamental question of "the minimum

number of elements" which are required in a synthesis process.

IV-1. 1 The basic mathematical tool needed throughout the discussion conducted in

Part IV is the integral representation of transfer functions and its inverse transforma-

tions. Let f(t) and F(s) be functions satisfying the requisites indicated in section 1,

reference 1. The notation and the meaning of the literals intervening in the following

integrals are the same as those used in reference 1.

We will use the fundamental set of integrals

f(t) = 2 ey t U(y, k) [cos Xt dX + sin Xt dy]

LF(s) =T [d¥+ d\(s-y) + X

00

U(y, ) = e - Yt f(t) cos Xt dt

We shall make continuous use of the set of integrals 1, (IV-1. 1) for the particular

contour r 0 . This contour is a semi-infinite line parallel to the imaginary axis of the

s plane, a line which is located at a distance y = yo = constant, from this axis. Let co

-2-



Fig. 1,(IV-1.1)

The contour r.
0

be the abscissa of

Then, the contour

integrals 1, (IV- 1.

convergence of F(s), as used in connection with Laplace transforms.

r' must satisfy the condition Co,< yo' See Fig. 1, (IV-1. 1). The

1) can then be written as Stieltjes integrals as

f(t) = 2 eO t

2(s -
F(s) =

)cos Xt d(y, X)

0) f d(y0 ), X)
r (s -y)2 +x

00

U(Yo, X) = cos Xt dT(y 0o, t)

0

2, (IV-1. 1)

U(yo, X) = f
o

-y t
e cos Xt dT(t)

where the distribution functions are given by

( 0, X) =

T(y 0 , t) = f
U(-Y, o) dj

f(.L) e d

4,(IV-1. 1)

T(t) = f(i) dui 5, (IV-1. 1)

Sometimes we shall make use of this set of integrals when rF coincides with the

-3-
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positive part of the imaginary axis of the s plane. Then, o = 0

2f(t) = 
r I

cos Xt d4t(O, X)

(s) = 2s | d~(O, X)
F( s) = 2 2

Tr J s 2+ 

U(O, ) =j cos t dT(t)

O

with the corresponding expression for the distribution functions.

IV- 1. 2 We must recall a property of the distribution function associated with transfer

functions.

1) Let F(s) be a transfer function. Then, as was shown in Part I, reference 1

U(y, X) = Real F(s)) 1, (IV-1. 2)

2) The integrals 1,(IV-1. 1), or their equivalent forms, 2, 4, and 6,(IV-l. 1),

express, among other things, the necessary and sufficient condition for a function to be

transfer. The center integral in each set tells us the method for constructing a transfer

function from a given U(y, X) function. The corresponding discussion is conducted in

references 1 and 3. It is convenient, however, to illustrate with a simple example the

nature of these integrals. Consider the function

1 oo > a> 0 Reals - a' 2, (IV-1. 2)

This function is not a transfer function because it has a pole to the right of the imaginary

axis. Let us compute the real part of 2, (IV-1. 2), say along the imaginary axis o = 0.

We have

1 o--a
Real a2 2 a

sa ((r a) +2 

and form the distribution function along ro; cr = o = ; = X

3, (IV-1. 2)u(o, ) = -a
a +X 

Our aim is to construct a transfer function from 3, (IV-1. 2) which is to be taken as a

density distribution function.

Since 3, (IV-1. 2) remains regular and bounded for all values of X, then the integral

-4-
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for F(s) in 6, (IV-1. 1) exists as a Riemann integral.

Hence, by direct computation

00oo

F(s) = XF(s) = 2 2 dX a dX 4, (IV-1.2)

By partial expansion of the integrand and by using the well-known integral

cadx - 5, (IV-1. 2)
a +X

one gets

F(s) = - a 6, (IV-1. 2)

which is evidently a transfer function.

One can at once verify the property 1, (IV-1.2) for the transfer function F(s) in

6, (IV- 1. ).

We have

Real F(s) = a 7, (IV-1. 2)
(o-+a)2 + X

Hence, along the contour o on the imaginary axis

Real F(s) 2a
a + k

as it should be.

Of course

Real (- a) and Real ( a)

coincide only along the imaginary axis of the s plane. Therefore, the property

1, (IV-1. 2) is not valid for the function l/(s-a).

The reader must note the transforming effect of the integral 6,(IV-1.1) in the genera-

tion of transfer functions. In the illustration above we start from a function definitely

not transfer and the result of the integration is a transfer function. A generalization of

this simple illustration will be used in a subsequent set of theorems.

3) Finally, we shall recall to the reader that when the density distribution function

is regular and bounded in the immediate neighborhood of every point of the imaginary

axis, the corresponding transfer function F(s) has no singularities on the w axis. The

converse property is true. If, for example, F(s) has poles (which must be simple) on

the imaginary axis, then U(O, X) has impulses with finite area at such points, and

conversely.

We will make continuous use of the first two integrals 2, (IV-1. 1) taken along a
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contour F o . If the distribution function remains regular and bounded in the immediate

vicinity of every point on the r o contour, then these first two integrals exist in the

Riemann sense. Otherwise, they must be taken in the Stieltjes sense. For transfer

functions, we have shown in reference 1 that the density distribution function is neces-

sarily regular and bounded in the immediate vicinity of every point of the contour F 

when yo > 0.

IV-1. 3 We proceed to the formulation of a set of theorems concerning the necessary

and sufficient condition for a transfer function to be rational. For a reader who is

accustomed to dealing always with rational transfer functions, the main theorem will

appear trivial, but when we start with a synthesis problem in the time domain, this

main theorem is far from trivial. It plays a primary role in the theory of networks.

For a better presentation we shall first consider two separate cases:

(a) Transfer functions having simple poles only

(b) Transfer functions that may have poles of multiplicity other than 1. (General

case. )

IV-1. 3, 1 The direct theorem is almost obvious; it reads: "Let F(s) be a rational

transfer function whose numerator is a polynomial of degree n, oo > n > 0, and whose

denominator is a polynomial in s of degree m, oo > m > 0. Then, the distribution

function is necessarily a rational function."

To prove the theorem we set

Real F(s) = Real L[Q ) Pn(S Qm Pn () Q (S)

2 [ Qm( )IZ

which is evidently a real rational function.

Now, the theorem follows from the property 1, (IV-1. 2) which states that

U(y, X) = Real F(s)) sEi

IV-1. 3, 2 Let us study the converse proposition. We will show that if U(y, x) is a real

rational function, which satisfies the conditions

(a) to be bounded for all values of y > 0

(b) to be symmetric with respect to the real axis

then the transfer function generated by U(y, X) is a rational function. The reader may

find the reasons for these stipulations in reference 1. The condition of symmetry in (b)

is immediately satisfied by assuming that U is a function of X 2 , X real. Therefore

we can write

An (, X )
U(y, ) = 2 1, (IV-1. 3, 2)

Bm(Y, X )m
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where A is a real polynomial of degree n in X2 and B is a real polynomial of degree m

in X2 . The condition (a) of boundedness is satisfied for m n.

For mere convenience we first prove the theorem for the case in which all the roots

of Bm((y, 2) are of multiplicity one. The general case is considered in subsection

IV-1.4. In proving the theorem it is enough to take a contour Fo, = ¥o = constant,

as can be seen from reference 1. The following notation will be used.

Let us denote the roots of

Bm(Yo, k2) = 

by 2, (IV- 1. 3, 2)

22 2
I1l' ' '' Im

and the corresponding Encke roots (the roots with opposite sign) by

2 2
Xk= -k 3, (IV-1. 3, 2)

Finally, we will assume, without loss of generality, that the contour To is placed o the

right of the abscissa c of convergence. That is yo > co.

By partial expansion of 1, (IV- 1. 3, 2), yo = constant, we can express

A 2 k=m

U(Y ) = K 2 Kk 4, (IV- 1. 3, 2)
Bm(y, X k-l +Xk

The constant Ko is different from zero only when m = n; otherwise it is zero. K1

Km are, respectively, the residues at the poles.

The transfer function associated with the rational distribution 4, (IV- 1. 3, 2) can be

found by using the second integral of 2, (IV-1. 1). Since yo > Co, then the integral given

above exists in the Riemann sense. Hence we get

AF(s) = A + +KkJ (AZ + 2) (+2 + Z) 5, (IV-1. 3, 2)

where momentarily we set A = s - yo.

By new partial fraction expansion one gets

2( +X 2, ) (d2 2 2=l) dZ - XZ h 2 !22a2X + Z6, (IV-1. 3, 2)( 2 + k) (d+x) A 2 x X 2 X2 x+2

By using the integral 5, (IV-1. 2) we get, after simple operations,

Kk
k-m ( xi, 7ZF(s) = s + (.Yo+Xk) \7, (IV-1. 3, 2)
k= 1

-7-



which is a rational function. Then, the theorem is proved for simple roots in X2 of Bmm

IV-1. 3, 3 Expression 7, (IV-1. 3, 2) provides a simple method of constructing the rational

transfer function corresponding to the rational distribution case of simple poles,

4, (IV-1. 3, 2). Both roots and residues depend on the selection of Fo, but the function

F(s) remains invariant as a whole with the position of Fo, provided that Fo > co. The

condition of boundedness of U(yo, X) implies that c o .< 0. Consequently yo can be made

equal to zero or negative. Hence, the expression 7, (IV-1. 3, 2) and the invariances of

the poles of F(s) assure the zero or positive value of

Real (--y + Xk)

2
The reader must note that in Eq. 7, (IV-1. 3, 2) we have k and not Xk. This means

2
that in 7, (IV-1. 3, 2) Xk must be taken as the root of Xk which has zero or negative real

part.

We close this subsection with the following numerical example.

Along yo = 0 (imaginary axis) the following density distribution function is given:

u(o, x):= _(x2 _ 1)(X2 _ 9)( 2 - 25)
U(O' X) 6 4 1, (IV -4l v.3,3)

1.498 k - 25.98 X + 147. 44 X + 45

Proceeding in order we find

2 2
L1= = -0.290

2 2
2 -X2 =8. 816 + i5. 08

2 2
3 = X3 =8. 816 - i5. 08

K0 = -0. 6675

K1 = 1. 8607

-i13. 820
K2 =5.09 e 82

+i13. 820K 5. 09ei3

From which we get

3.46 1 595 e+ 6l 12 1 595 e 6 l 12
F(s) = -0. 6675 + s 5 + +

s + 0. 538 -i75 + 1595e +i75 s + 3. 185 e 7 s + 3. 185e

The rational function given above is a rational transfer function. The negative constant

term is a positive resistance in the longitudinal branches of the corresponding lattice

structure. See references 1 and 3.
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IV-1. 3, 4 In accordance with the direct theorem given in subsection IV-1. 3, 1, the real

part of the transfer function F(s) in 7, (IV-1. 3, 2) must coincide along Fo with

4, (IV-1. 3, 2). As an exercise, the reader may verify that this is the case, observing

that

1) Because of the real character of U(y o , X), the residues Kk and the roots k2 must

necessarily appear in conjugate pairs.

2) The real part of the sum of a pair of terms in F(s) containing Kk, Kk, Xk' Xk is

given by

Real /k + Kk/k (Kk + k) + Kkk +k k

(s - yo) + Xk (s- Y )+ k X4+ Ik+X [Xk Xk]
S=y 0 +iX

3) The term above is equal to the sum of the terms

Kk Kk

2+ 2+ 2 -2+ k +X

in 4, (IV-1. 3, 2).

IV-1. 4 We now proceed to prove the general theorem concerning the existence of

rational transfer functions.

Theorem 1, (IV-1. 4) "The necessary and sufficient condition for a function F(s) to be a

rational transfer function is that F(s) shall satisfy an integral representation of the type

1, (IV-1. 1) or the equivalent form 2, (IV-1. 1), together with a rational density distribu -

tion function in X2 whose distribution function along the contour r is bounded."

For the allocations of the contour r and the definition of the distribution function,

the reader may consult the general theorem on transfer functions, as given in

reference 1.

Proof. It is sufficient to prove the theorem for the contour o and for yo > co. Under

these circumstances 2, (IV-1. 1) exists in the Riemann sense.

I. The condition is necessary. The proof of this part was given in subsection

IV-1. 3, 1.

II. The condition is sufficient. Let U(Yo, X) be represented by the rational expres-

sion

A(o, x2 )U(o|, ) --- , (IV - 1. 4)

with n < m < o because of the boundedness of the distribution function.

In general, Bm(yo, k ) may have poles of multiplicity higher than one. Let us denote

the p poles of

-9-



Bm(Yo, X) = 0

2
1l occurs a1 times

2.
C2 occurs a2 times

2, (IV-1. 4)

By partial fraction expansion, expression 1, (IV- 1. 4) can be written as

2
)p occurs a timesp p

subjected to the restriction

al + a2 + . . + ap= m

An(yo, X2 )

Bm(Y, X2 )

j=ak

j=l

Kk, 

( - tk )

Kk , j )j 1

An(Yo oo)

o = Bm(Yo O)

akj+1 + KO

- 2 ak An(Yo, )

B(Y X )
m 01

As in section IV- 1. 3, 3 we use the Encke roots of 2, (IV- 1. 4), so that finally we write

U(y Z) An(o' x)
Bm(Yo, X2 )

k=p

Ko + z
k= 1

j=ak

j=l (2 + ak j+l(XZ + X)k)

The corresponding transfer function F(s) generated by this density distributionfunction

is given by

k=p =ak

F(s) = Ko +Z Z Ki 2S
k=1 j=l

r0

Jo ( z +

dX

2 ak- j+l 2 2Xk) (x2 + ,4)

Now the sufficient condition of the theorem will be proved, if we can show that the

integral
cc

I(Xk, q) = 2 J
k ir

dX

(X2 + X2)q (2 + 2)

-10-
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3, (IV-1. 4)

Kk, j 4, (IV-1. 4)

5, (IV-1. 4)

6, (IV- 1. 4)
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is a rational function of for all finite values of q as

0< q a k - + 1 <0

To show that this is so, we start with the integral

I(Xk, 1) = ,4 2 2 2 kkj' (X2 + X2 )(X + 2) ,4+ Xk

which was computed in 7, (IV-1. 3, 2).

Now let us consider two cases:

(a) If U(y o , ) is bounded for every point on Fo, then
2

a uniform function of Xk. Hence, by differentiation of 8,

gets
00

I(Xk 2) dX
k' wJIT0 (X2 + X2 )2 (X2 +4 2)

By successive differentiation with respect to Xk, and

in order to simplify the writing, one gets

3,4 + 9a + 8a2

2k x 2 x a(,d+a) 3

15,43 + 602a + 87,a 2 + 48a 3

I(Xk, 4) = 3 xa 7

3 3 X 2 X a(,+a)4

105,4 + 525A3a + 103,a2 + 9754a3 + 384a 4

I(k, 5) 4 5+a
4' 2 X a ( +a)

the integral 8, (IV-1.4) defines

(IV- 1.4) with respect to Xk, one

+ 2k k

Xk( + Xk)X3P + X 2~
9, (IV- 1. 4)

by momentarily setting Xk = a

I( 6) 94545 + 567044 a + 14074 3 a2 + 1827042a3 +
I( k' 6) = 5 1a1 6

5!' x 2 xa (,+a)

126454a 4 + 3840a5 10, (IV- 1. 4)

[3-5-7-9... (Zq - 3)] q- 1 + ... +

(Xkq) = (q-l)' X Z( q - l) X a (

[2-46 ...

(2q- 1) (,+a
(.J+a

(Zq - 2)] aq - 1

where a = Xk, A = s - O

Expression 10, (IV-1.4) shows that the integral 6, (IV-1.4) represents a proper rational

fraction for every positive integer value of q, having a denominator of q degree and a

numerator of degree (q-l). The substitution of expressions 10,(IV-1.4) for each

integral in 5, (IV- 1. 4) finally shows that F(s) is a rational function having a denominator

of degree m, (m = a 1 + a2+ ... + ap) and a numerator whose degree is n such that

n m. The equality sign applies when Ko = 0. Consequently, the sufficient condition

-11-
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of the theorem, corresponding to case (a), stated above, has been proved.

(b) In this case we consider that the rational function U(yo, X) may have one or

several sets of poles, at most equal to m in number, along the contour F.

Under this assumption the integral 2, (IV-1. 1) exists in the Stieltjes sense, as we

have shown in reference 1. To prove the theorem we first proceed to write down the

rational function U(y 0 , X), Eq. 1, (IV-1. 4) in two parts: the one containing the poles

located on the contour Fo, and the one whose poles lie outside r o . This last part is

regular, and we have considered it under case (a). Consequently, we must now show that

the remaining group of terms of U(yo, X) which have poles on o0 also contribute rational

terms for F(s) in Eq. 4, (IV-1. 4).

The corresponding Stieltjes integrals can then be evaluated in the manner explained

in Parts I and II (references 1 and 2), where one finds the corresponding rational

expressions for these cases.

This concludes the proof of case (b) and therefore of the sufficient part of the exist-

ence theorem 1, (IV-1. 4).

We close this section with the following remark. In the previous discussion we have

generated rational transfer functions by giving an arbitrary rational density distribution

function along a contour Fo in the s plane. When the contour To is selected to the right

of the imaginary axis of the s plane, then the given density distribution function must be

regular and bounded for every point of the contour o
O'

-12-



Section IV-2

On Transmission of Impulses. Basic Ideas.

Definitions and nomenclature. Window functions and window distributions. The density
distribution function U(O, X) associated with impulses. Heuristic approach. Polygonal
skeleton. Corner theorems.

IV-2. 0 Introduction. Sections IV-2, IV-3, IV-4, and IV-5 of this report deal with a

formal study of a fundamental problem of network synthesis: the transmission of

impulses through a finite, passive, discrete, and linear network.

The reader will have a concrete idea of the problem in question from the following

explicit formulations.

Let: uo(t, 0) denote the unit impulse of time at t = 0;

f(t) be a real bounded single-valued function of time having the following prop-

erties: given the constants to and 6 such that 0 < to < +oo, 0 < 6 < to, then

I - 0 for t < t 6 

f(t) = A 0 for to - 6 < t < t o + 6

I 0 for t o + 6 < t < +o

1, (IV-z. 0)

Hence f(t) is a function which lasts 26 units of time. We will consider that 6 is

small in comparison to to, so f(t) can be looked upon as a narrow impulse train which is

delayed to - 6 units from the origin. We are particularly interested in single narrow

pulses.

_/UNIT IMPULSE

-- Uo (to) F(s)f t)

A_ -J, -_ - - - 1 I 

to -'I

t - Lo7o. I .

Fig. 1, (IV-2.0)

The proposed problem and the vicinal tolerance E.
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Now, let us investigate the possibility of finding a finite, discrete, passive, and

linear four-terminal network, whose transfer function will be denoted by F(s), such that

its output under the excitation of uo(t, 0) reproduces a prescribed function f(t), given

above, inside a prescribed vicinal tolerance E.

By vicinal tolerance E we mean that the graph of the output function of such a net-

work must be completely contained in the vicinity of E along the graph of the function

f(t) and the time axis. Figure 1, (IV-2. O0) illustrates the problem in question and also

gives the graphic interpretation of the E vicinity of the graph of f(t).

IV-2. 0, 1 The solution of the problem above has both formal and practical importance.

It is of formal importance because, particularly in the case when f(t) has the shape

of a single, all-positive, large spike of short duration, as in Fig. 1, (IV-2. 0, 1), it shows

the existence of window functions and window

function distributions. These distributions con-

stitute a convenient mathematical tool which has

been introduced in network analysis in order to

show the existence of finite, discrete, passive

networks which are capable of transforming a

prescribed excitation function into a prescribed

output function, inside a prescribed vicinal tol-

erance E. Very little will be said in Part IV

about window functions and their distribution.

Here, we shall lay the foundation of certain

Fig. 1, (IV-2. 0, 1) principles which will be used in Part V in te

An isolated single-spike response. theory of window functions.

The practical importance of the solution of

our problem comes from the increasing use of

pulses in the transmission of intelligence. Past experience has taught us that trans-

mission of impulses through networks is generally perturbed by the phenomenon of

"ringing," the term used to describe the presence of highly oscillatory spurious oscilla-

tions which may almost completely wipe out the presence of the transmitted pulse. The

problem of controlling this oscillation is discussed in section IV-4 of this report.

IV-2. 0, 2 The main objective of section IV-2 is the formal and heuristic evaluation of the

density distribution function U(O, X) associated with narrow pulses. A generalization of

the study of the U(O, X) will be carried out in section IV-3, under the light of the corner

theorems.

IV-2. 1 Pulses and pulse trains. We begin with some definitions.

The term "pulse" will be used in its ordinary connotation: an almost unidirectional

current of voltage of relatively short duration.

"Pulse train" will mean the recurrent succession of a finite number of similar

pulses.

-14-



IV-2. 1, 1 Symmetric and antisymmetric pulse components. Let g(t) be the function
represented by a narrow pulse of duration 26 and delayed to - 6 units of time. In general,
the function g(t) is not symmetric with respect to the point t = t . See Fig. 1, (IV-2. 1, 1).

o
The pulse function g(t) can always be decomposed into the symmetric pulse components

g2 (t) and the antisymmetric pulse component gl(t). Both functions, g2 (t) and gl(t), have

the same delay to and width 26 as the original pulse.

Let us introduce the auxiliary variable

x= t - to 1,(IV-2.1,1)
We have the relations

g(to + X) = gl(to + X) + g2 (to + X)

with

g(t 0 + x) + g(t o - x)
gZ(to + ) = 2

+ x)= g(t + x) - g(t° - x)

2, (IV-z2. 1, 1)

IV-2. 1, 2 Window pulse and window function. Definition 1, (IV-2. 1, 2): "A single spike-
like, symmetric, tailless pulse of finite duration 26 = a, which is always positive, or

always negative, will be called a window type of pulse. The function which represents
this pulse will be called a window function."

The important elements of a window function are its duration, called "aperture;" its
mean delay to; its height H, and its enclosed area A. Note that the definition does not
specify a definite form of the spike. Figure 1, (IV-2. 1. 2) is a graphical illustration of
the definition. The enclosed area A of a pulse is considered here as an intrinsic

invariant element of a window function.

If one lets the aperture of a pulse tend to zero, then the height H of the pulse

increases without limit in such a way as to keep an invariant enclosed area. Therefore,

the limit of such a process transforms the pulse into an impulse. Conversely, a window

function may be considered as the finite spreading, or dispersion, of an impulse.

The reader may note that window functions are defined as "symmetric pulses." This

restriction is necessary because we wish to keep such windows as functions which are
closed under the operation of the sum. Nonsymmetric pulses, for example, can be
decomposed into the symmetric and antisymmetric components. By definition, the

antisymmetric pulse is not a "window" because it attains positive and negative values.

Thus, if we define a nonsymmetric, single, all-positive spike as a window function, it

would be the sum of one which is a window and one which is not a window function.

Finally, we should add a few words about the term "window." The term is tempo-

rarily adopted for the lack of a better name, and because of the scanning effect of this
function in certain operations of integration in which we can "see" the result of such

integrals through these pulses.

-15-
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IV-2. 1, 3 Window distributions. Definition 1, (IV-2. 1, 3): "A successive time distribu-

tion of a finite number of nonoverlapping and nondisjointed window functions is called a

'window distribution'." The individual pulses may have different signs and enclosed

areas. Figure 1, (IV-2. 1, 3) gives a graphical illustration of a window distribution. The

"coverage" of the distribution is evidently

n

an
k=l

The reader may note that pulses with lateral oscillations and nondisjointed pulse trains

enter into the category of "window function distributions."

The present report does not cover more

roniind in the thenrv of window finctions and

its distributions. Part V and the following

parts will cover the corresponding theories

and application of these concepts. Part IV

deals almost exclusively with the study of the

possibility of finding a solution of the problem

presented in section IV-2, so as to prepare

the ground for future parts.

We shall consider, here, pulses in general,

but particular emphasis will be given to sym-

metric pulses, because of the definition of

window function, and not because these last

Example of f(t). pulses have a particular important application.

IV-2. 2 The density distribution function U(y 0 , X). We shall begin with a formal study of

the determination of density distribution functions which correspond to pulses, in partic-

ular to symmetric ones. We shall compute density distribution functions, U(Yo, X), along

the contour T o . Continuous use will be made of the case y = 0, which corresponds to

density distributions along the imaginary axis of the s plane.

In computing the function U(y 0 , ) we shall use expressions Z, (IV- 1. 1) and 6, (IV- 1. 1).

In section IV-2 we shall consider that the pulses produce a function T(t), see Eq. 5,

(IV-1. 1), uniform and bounded for all values of t. Hence 6, (IV-1. 1) and related

equations exist in a Riemann sense. The computation of U(Yo, X) when these integrals

exist in a Stieltjes sense will be made in section IV-3.

IV-2. 2, 1 The function U(y 0 , X); its amplitude and phase-deviation associated functions.

Let f(t) be a nonsymmetric pulse of length 26 and mean delay to, as shown in

Fig. 1, (IV-2. 2, 1). The area of the pulse is A. Let fl(t) and f 2 (t) be, respectively, its

antisymmetric and symmetric components. The function f(t) may admit positive and

negative values.

-17-



Under the assumptions of the last subsection we can write

U(Yo, X) = f
0

-y t
e f(t) cos Xt dt

1,(IV-2.2, 1)
t +6
0

t -6
o

e u f(t) cos Xt dt

Let us introduce the auxiliary variable

t -t =x
0

2, (IV-2. 2, 1)

After routine algebraic operations we get

U(yo, ) = e ° ° {a(yo, X) cos

where

a(y, X) = 2 [f 2 (x)

6

13(yo, X) = 2 [f2 (x)
O

t o X + (Yo, X) sin to

cosh (yox) - f(x) sinh (yox)] cos Xx dx

sinh (yox) - fl(x) cosh (ox)] sin Xx dx

3, (IV-2. 2, 1)
X}

4, (IV-2. 2, 1)

The functions a and can be recognized at once in 3,(IV-2.2,1) as the partial envelopes,

respectively, of the oscillations cos Xt 0 and sin Xt o .

By simple trigonometric steps, the function U(yo, X) can also be written as

U(yo, X) = e oto [(

where

)]2 + [(Yo' }cos [to - 0(Y, )]

5, (IV-2. 2, 1)

tan 0(Yo, X) = a(o, X) 

Hence, we are able to state the following theorem:

Theorem 1, (IV-2. 2, 1): "The density distribution function of a pulse is formed by a

damped oscillation (yo = damping) whose amplitude is

2 + 2

whose frequency, in X, is to, and whose phase deviation function is equal to 0(y o , X)."

-18-
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IV-2. 2, 2 Most of the future discussion is concerned with the function U, above, for

¥o = (o along the imaginary axis of the s plane). Here, expressions 3, (IV-2. 2, 1),
4, (IV-2. 2, 1), and 5, (IV-2. 2, 1) reduce to simpler forms.

U(O, X) = {a(O, X) cos Xto + 3(0, X) sin Xto)

= /[(0, X)] + [P(0o X)] 2 cos [to

1, (IV-2. 2, 2)

- (0, X)] 

6

a(O, X) = 2 f2 (x) cos Xx dx

(0, ) = -2 fl(x) sin Xx dx

2, (IV-2. 2, 2)

IV-2. 2, 3 The following particular cases have an illuminating meaning.

Case A. Symmetric pulse [fl(x)_ O]

U(O, X) = a(O, X) cos Xto

cos Xx d

(O, ) = 2 f(x) cos Xx dxJo
Case B. Antisymmetric pulse [f2 (x) 0 ]

U(O, X) = (O, X) sin Xt0

P(0, X) -2 f(x) sin Xx dx

I
I

1, (IV-2. 2, 3)

2, (IV-2. 2, 3)

The reader must note the fundamental property of symmetric and antisymmetric

pulses.

(a) The phase function 0(0, X) disappears.

(b) The oscillations in both cases have a constant frequency which depends only

on the delay and not on the width of the pulse.

IV-2. 3 Particular examples. A further discussion on the functions U(O, X) will be

greatly facilitated for the reader by the actual computation of the functions which cor-

respond to particular pulse shapes. The aim of these examples is to make the reader

acquainted with several characteristic elements of such functions. These elements play

-19-
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a basic role in the evaluation of tolerances and in the introductory discussion to the

questions of unicity, and other important properties. The discussion of these aspects

will be given in later sections.

A set of typical examples of pulse-wave shapes has been selected. Details of the

computation of the corresponding U(O, X) are omitted for brevity. Only the final results

are given. The graphs of the functions U(O, X) are not scaled plots of the actual graphs

of the functions. Here, the graphs are intentionally exaggerated in order to emphasize

the characteristic elements of the functions in which we are particularly interested.

Scaled plots of these functions can be found, for example, in reference 4.

IV-2. 3, 1 Examples, symmetric pulses.

A. Rectangular pulse. See Fig. 1, (IV-2. 3, 1). After simple computations we obtain

the density distribution function as

U(O, X) = A cosin t 1, (IV-2. 3, 1)

The important characteristic features of the graph of this function are:

1) The function oscillates with constant frequency and variable amplitude a(O, X).

The constant frequency, which is equal to 2rr/to, depends only on the delay time to, and

it is independent of the width pulse, provided to > 6.

2) The position of the zeros of the amplitude function depends only on the pulse width

and is independent of the delay to . The envelope zeros are given by

X K = K; K = integer
0, K 6 

3) The envelope function shows a decay, as measured with the decay line, which

decreases inversely with the first power of X, as A/X6.

B. Symmetric triangular pulse. See Fig. 2, (IV-2. 3, 1). The density distribution

function is given by

U(0, X) = A 2(1 - cos cos Xt 0 2, (IV-2. 3, 1)
(6A) °

Here

1) The oscillations have a constant frequency 2r/t o.

2) The position of the zeros of a(O, X) depends on 6. They are given by

2rr
0, K = K; K = integer

3) The function a(O, X) shows a decay line decreasing with the second power of as

2A/( 6x) 2 .

C. Symmetric trapezoidal pulse. See Fig. 3, (IV-2. 3, 1). Here we get

U(0, F A 2 n A ( 1
U(0, X) =A a2:) C 'in X sin X Cos Xt 3, (IV-2.3, 1)

262 2 02

-20-
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A=28h = AREA

(UIOX) HAS AN OSCILLATORY CHARACTER

Fig. 1, (IV-Z. 3, 1)

Rectangular pulse.

-

A = 8h =AREA

U(O,X) (OSCILLATES)

POINT
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LINE OF

Fig. 2, (IV- 2. 3, 1)

Triangular pulse.
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, (0, X) SHOWS BEATINGS

DECAY LINE OF a(0O,X)
----------- - - -

A
DECAY AS A 2

8 A

Fig. 3, (IV-2. 3, 1)

Trapezoidal pulse.

Fig. 4, (IV-2. 3, 1)

Half-cosine pulse.

-22-

2 r

t
4,-

t4.

J

6

t

28,

--

I - I-128 e
toAREA

A = AREA

,'Yl! lo,

8+81

A = AREA

T ='~_____ _ _ _ _ __ .... _A ;^-") ^ | ^ | o_J ^ - _A ;^-")
I I% I 11 '.1 / I Z I HX - A-_^ ^s /- S l ^lL L�LU�IL �'

v



I

Fig. 5, (IV- 2. 3, 1)

Complete cosine pulse.

A new characteristic feature of the envelope function is shown in this example. The

function a(O, X) presents a beating phenomena. There are two different sets of zeros of

the envelope function

21r

0, K1 + 6 K1;

K1, K2 = integers 4, (IV-2. 3, 1)

X - K-
0, K 2 6- 6 2

The characteristic features of 3, (IV-2. 3, 1) are:

1) Oscillations of constant frequency 2/to

2) Beatings in the envelope function; note that the position of the first zero of

a(0, ) in this example lies somewhere in between the first zeros of a square and a

triangular pulse of the same aperture 26, respectively

3) The function a(O, X) shows a general decay as

4A

(6This line of decay does not touch all partial maxima of a, ). Different relative

This line of decay does not touch all partial maxima of a(O, X). Different relative

maxima show a cyclical line of decay. For example, the smaller partial maxima show

a line of decay which is a sort of displacement of the line given above.

D. Cosine (half) pulse. See Fig. 4, (IV-2. 3, 1). Here

U(, ) A 4 cos 6 os Xt 5, (IV-. 3, 1)U(O = , v- . l

The - (X6)I

The reader may observe a similar over-all behavior as in the first two cases except

-23-



for a new characteristic feature: the displacement of the line of decay. Here, the line

of decay is given by

A

[(2)2 (X6)2]

It shows two vertical asymptotes at X6 = +/2. Note that the function a(O, X) remains

regular at these two points. For large values of X, the decay line decreases as X2

E. Cosine (complete) pulse. See Fig. 5, (IV-2. 3, 1). Here we have

U(O, X) Ar 2 sin (x6) cos Xt 6, (IV-2. 3, 1)

[z -(sx)] (xs)

The corresponding graph shows some familiar characteristics of the previous examples.

The reader may note

1) Displacement of the decay line at X6 = +_r

2) The decay lines are attenuated as 1/x 3 for large values of .

We close this subsection IV-2. 3, 1 by remarking that the characteristic analytical

elements, which were individualized in the discussion above, will play a basic role in

the syntheses of networks which transmit impulses.

IV-2. 3, 2 In this subsection we will produce a few examples of antisymmetric pulses.

Antisymmetric pulses of the type here presented are frequently called "doublets." The

letter A here represents the area of each lobe. (Total area = 0.)

In a condensed form we have for the density distribution function

U(O, X) = -p(0, X) sin Xto 1, (IV-2. 3, 2)

the values:

A. Rectangular doublet. See Fig. 1, (IV-2. 3, 2).

U(O, )= A(1 - cos sin Xt 2, (IV-2. 3, 2)

B. Triangular doublet. See Fig. 2, (IV-2. 3, 2).

U(O X) = 216A sin - (1 - cos2 )j sin Xt0 3, (IV-2. 3, 2)

C. Sinusoidal doublet. See Fig. 3, (IV-2. 3, 2).

2

u( 0, X) 2 sin X6 sin Xt 4, (IV-2. 3, 2)

D. Sine-squared doublet. See Fig. 4, (IV-2. 3, 2).

U(O, X)= A 4w (1 - cos X6) sin t 0 5, (IV-2. 3, 2)

[4W2 - (6)2] (X6)
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ENVELOPE FUNCTION

ENVELOPE DECAY LINE

Fig. 1, (IV-2. 3, 2)

Rectangular doublet.

2r .a!.Pa
B B

Fig. 2, (IV-2. 3, 2)

Triangular doublet.
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Fig. 3, (IV-2.3, 2)

Sinusoidal doublet.

DISP

FUNCTION (O,X)

Fig. 4, (IV-2.3, 2)

Sine-squared doublet.
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Fig. 1, (IV-2. 3, 3)

Pulse with rectangular components.

The density distribution functions U(o, ) corresponding to antisymmetric pulses

differ from the ones corresponding to symmetric pulses in these main points:

1) They oscillate as sin Xt0 instead of cos Xt o .

2) The function -(0, X) is zero at = 0 and its successive zeros are displaced with

respect to Q(O, X).

Otherwise, the reader will find in the graphs of this last set of examples the familiar

characteristic features discussed in the last subsection.

IV-2. 3, 3 In this subsection we produce two illustrative -examples of nonsymmetric

pulses. The corresponding expression for U(0, x) is given in Eq. 1, (IV-2. 2, 2). Here,

the oscillations show a variable frequency deviation 0(0, X). The envelope function con-

tains both (O, X) and p(O, X). The reader may note that if the zeros of a(O, X) and 1(0, X)

are not coincident, then the corresponding envelope function may not present zeros.

This is often the case.

A. Pulse with rectangular components. See Fig. 1,(IV-2.3,3). After simple routine

computations we get

U(0, X) = A SA1 (1 - cos k6) + A2 sin k6 cos [Xt + (0, )]

where

A1 (1 - cos X6)
tan 8(0, ) = A sin 6

2ZSnX

1, (IV-2. 3, 3)
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ENVELOPE FUNCTION Vra2.2

,

J(O,X)

Fig. 2, (IV-2.3, 3)

Pulse with sine-cosine components.

The corresponding functions fl(t), f2 (t), a2 + 2, and tan

Fig. 1, (IV-2. 3, 3). The oscillations corresponding to cos [It 0

in this figure.

B. Nonsymmetric pulse with cosine and sine components.

0(0, X) are shown in

- 0(0, k)] are not shown

See Fig. 2, (IV-2. 3, 3).

Here

2

U(0, X) =

tan 0(0, X) =

r4 sin2 X6
2 +

[2 _ (X6) 2 ]

(4A 2

[(12)2

2, (IV-2. 3, 3)

r 2 A 1 [(T)2 (86)2]2 
tan X6

8A 2 [Z - (6) 2 ]

IV-2. 4 Pulses of exponential type. In the last discussion we have considered

pulses of small finite duration. For completeness we will consider two typical pulses

which show a predominant high spike, but possess infinitely long tails of negligible

height so that they may be looked upon as practically finite pulses. The examples con-

sidered here are the exponential "gaussian" pulse and the exponential pulse whose sides

are given by e-alt-tol . These types of pulses do not show a uniquely definite aperture

26. A conventional definition for their apertures must be introduced.

The U(O, X) function associated with these pulses shows an envelope function which

shows no oscillations and possesses a decay line of fast attenuation.
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IV-2. 4, 1 The gaussian pulse is formed by the function

-(t-t )Za
f(t) = Ke ; K, a = constants 1, (IV-2. 4, 1)

We can define its aperture conventionally by the distance between the crossing points of

its maximum tangents with the time axis. See Fig. 1, (IV-2. 4, 1). The constants K and

a can be determined in terms of the pulse area A and its conventional aperture 26 as

defined above. Elementary computations yield the analytical expression of a gaussian

pulse of area A and aperture 26.

The corresponding expression for the pulse function is

2

A 2 6 )f(t)= - e 2, (IV-2. 4, 1)

It must be noted that the pulse as defined above is not zero for t < 0. Under the assump-

tion that 6 is small, and to > 6, then we can neglect the value of 2, (IV-2. 4, 1) for t < 0.

Using this approximation, it can be shown that the associated density distribution

function is given by

X262

U(O, X)Ae 8 cos Xto 3, (IV-2. 4, 1)

This type of pulse has a monotonic decaying envelope. See Fig. 2, (IV-2. 4, 1).

IV-2. 4, 2 The second example of the exponential type of pulse having an area A and a

conventional aperture 26 is given by the expression

f(t) = A e~--~

It-to 
6

1, (IV-2. 4, 2)

The corresponding density distribution function is given by

2, (IV-2. 4, 2)U(O, X)= A Cos Xt
1 + (6) 2 cos to

The conventional aperture 26 is also defined by the maximum tangents of the pulse.

See Fig. 1, (IV-2. 4, 2).
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Section IV-3

The Corner Theorems

Stieltjes integral aspects of the density distribution functions. Discontinuities in the
function f(t), in its first, second, and so forth, derivatives. Polygonal pulse skeleton.

IV-3. 0 Introduction. In the previous sections we have developed the integral represen-

tation of the density distribution functions U(O, X) in a general case, and in particular

for the case of time functions which represent pulses. We have associated with the

function f(t) two forms of time distribution functions. They are given by

t

t(t) = e 'o ff( ) d 

or alternately

T(t) = f(p) dp.

1, (IV-3. 0)

For the cases when t(t) or T(t) happens to possess uniform continuity for every value of

t in the interval 0 < t < oo, then the integral expression 3, (IV-1. 1) for the function U(O, X)

exists in the Riemann sense. The examples worked out in section IV-2 for particular

pulses show the application of these integrals as Riemann's integrals.

We will now consider the possible existence of discontinuities and other singularities

of the function f(t) and in its derivatives, in which case the integrals 2, (IV-1. 1) for

U(y o , X) would exist in the Stieltjes sense. The study of the Stieltjes integrals above is

of canonic importance in the foundation of the network theory, particularly in the time-

domain synthesis aspects. The integrals 1,(IV-2.2, 1) yield a series of "corner" theorems

which establish a direct analytical link between certain analytical entities of the function

f(t) and the nature and position of the generating singularities of the function U(y, X). The

denomination corner in connection with these theorems will be justified during the first

part of this discussion.

IV-3. 0, 1 The scope and analytical detail of the corner theorems developed in Part IV

are limited to the study of pulses. This is, in fact, not a severe restriction. The ideas

and methods presented here can be extended with extreme ease to other, more general,

situations.

In the study of pulse transmission, corner theorems are needed mainly to suit the

following two purposes:

(a) To reveal the character of the singularities of U(O, X) from the pulse time

function

(b) To provide a method of rapid and accurate computation of the function U(O, X),

particularly in determining the simple characteristic elements of U(O, X), which were
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emphasized in the particular examples given in section IV-2.

IV-3. 0, 2 In spite of the analytical simplicity of the integrals 4, (IV-2. 2, 1) which yield

the amplitude functions a(O, ) and (O, X), the evaluation of these integrals for arbitrary

narrow pulses is far from being a simple problem. In fact, it is very hard, in general,

to get an exact value of those integrals. Approximate methods of integration must be

used. In the case of narrow arbitrary pulses, we must proceed with utmost care in

obtaining approximate expressions for the function U(O, k). It has been found that negli-

gibly small deviations from the exact value of U(O, ) may produce an intolerably strong

convergence phenomenon in the solutions of certain time-domain synthesis problems of

pulse transmissions.

Corner theorems are useful in showing the correct way in which the function U(O, X)

has to be approximated.

A heuristic discussion of the methods of approximate evaluation of U(O, X) can be

based on corner theorems, as will be shown in section IV-4.

IV-3. 1 A convenient way to introduce the reader to corner theorems is by means

of simple examples. Let us take a pulse, as in Fig. 1, (IV-3. 1), a, for which we try to

compute the function U(O, X). As before, we will use the auxiliary variable x defined by

t - t = x 1, (IV-3. 1)

In computing the U(O, X) by means of the integrals 3, (IV-1. 1) or 2, (IV-2. 2, 2), we will

naturally be tempted to obtain a quick approximate evaluation by approximating the pulse

shape by a series of superimposed rectangles, as in Fig. 1, (IV-3. 1), b, or better by a

polygonal approximation as in Fig. 1, (IV-3. 1), c. The selection of such polygonal

approximation methods may be a sound procedure, or may be a complete mistake,

depending on whether we want to approximate the function U(O, ) for small, medium, or

(a) (b) (c)

Fig. 1, (IV- 3. 1)

A pulse and its polygonal approximation.
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very large values of X. For the purpose of explaining the basic ideas concerning corner

theorems, we will momentarily assume that we are interested in the ranges of X in

which the polygonal pulse approximation in Fig. 1,(IV-3. 1),b, or in Fig. 1,(IV-3. l1),c, is

valid. The term corner theorem is used because the density distribution function U(O, X),

in the case of polygonal pulses, depends exclusively on the corners of the polygon. The

objective of the following three subsections is to show that this is truly the case.

IV-3. 1, 1 For completeness we will start the discussion with the case in which the pulse

is reduced to an impulse of area A, delayed to units of time. As was already shown in

Part I, reference 1, of these notes, the integrals 2, (IV-1. 1) and 2, (IV-2. 2, 2) exist as

Stieltjes integrals. The function T(t) is here a step function of height H at t = to .

Hence

U(O, X) = f cos Xt dT(t) = A cos Xto 1, (IV-3. 1, 1)

The envelope function 2, (IV-2. 2, 2) is therefore also a Stieltjes integral

a(O, X) =f cos kx dT(x) = 1 2, (IV-3. 1, 1)

since T(x) is an impulse at x = 0.

The function U(O, X) = A cos Xto obviously corresponds to the transfer function

- st
F(s) = Ae 0 3, (IV-3. 1, 1)

as was shown in one example in reference 1. Hence, impulses in the function f(t)

correspond to a transcendental transfer function generated at s = oo by an essential

singularity of the exponential type. These results are, of course, very well known.

IV-3. 1, 2 Let us consider in this subsection the continuous pulse and its rectangular

skeleton which are given by Fig. 1, (IV-3. 1), a and b.

1) First, take the continuous pulse. The time function f(t) representing this pulse

is, by construction, at least of class C I . (Derivative of f(t) is finite and continuous for

all values of t, to -e < t < to + xu. ) Hence, the integral expression for U(O, X) can be

written as

§ 6

U(O, >X) = cos Xt f f(x) cos Xx dx + sin Xt0 f f(x) sin Xx dx

= sin X6 f(6) - 2 0 sin Xx f(x) dx) cos Xt

+ (1 - cos k6) f(6) - 2 (1 - cos kx) f(x) dx} sin Xto
X - T 1 

1, (IV-3. 1, 2)
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where

f 1 (x) = fx) - - (odd)

f2 (x) 2f-- - (even)

Hence

f(x) = f'(x) + f'(-x)

f (x) = f(x) - f(-x)
2

2, (IV-3. 1, 2)

2) Let us suppose now that fl(x) is not of class C I and assume that there is a finite

set of isolated points in which the first derivative of the pulse function shows impulses,

as for example, in the case of the rectangular skeleton in Fig. 1, (IV-3. 1), b.

Extending previous ideas, let us introduce the time distribution function associated

with the derivative

(I) =T (x) = f'l() d I

T(I)(x) = f2(1i) d

so~~~~~~~~~~~~~~~~

3, (IV-3. , 2)

The functions above show a finite jump at the points of impulse behavior of f (x) or f (x).

Hence, Eq. 1, (IV-3. 1, 2) has a Stieltjes extension as

U(O, ) = a(O, X) cos Xt + P(O, ) sin Xto

where

a(O, X) = - J sin Xx dT2 (x)

M(0, X) = (- (1 - cos x) dT (I)(x)

4, (IV-3. 1, 2)

These expressions lead to a simple computation of the envelope functions corresponding

to pulses which have a contour formed by a rectangular skeleton. For example, for the

pulse in Fig. 1,(IV-3.1),b, we have for the function f'(x), f (x), and f'(x) distributions of

impulses whose areas are equal to the heights of the jumps. Here, the Stieltjes integrals

4, (IV-3. 1, 2) are given, in general, by
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k=n

,(0, ) = k_ J(2),k sin X6k

k=l 

k=n

(0 X) = - , E J(1), k (1 - cos k6k)
k=l

5, (IV-3. 1, 2)

where J(2 ), k and J( 1 ), k are the resulting jumps of the function f 2(x) and fl(x), respec-

tively. In the particular case of the example, n = 5 and all J( 2 ), k are negative. See

Fig. 1, (IV-3. 1, 2).

IV-3. 1, 3 Let us consider again in this subsection a uniform continuous pulse and its

polygonal skeleton as in the example of Fig. 1, (IV-3. 1), a and c.

Take the continuous pulse first. Here, let us assume that the pulse function f(t) is

of class CI I . Hence, a new integration by parts is permitted.

The functions a(0, X) and (O, X) given by the bracket parenthesis in 1, (IV-3. 1, 2)

become

a(O, ) = sin X6 f2 (6) -2 (1 - cos X6) f(6)
X

(1 - cos Xx) f(x) dx

2 2sin k6
(o, AX) = (1 - cos X6) fl(6) - + 6 sin X ) f(6)

+ (1 + - sin xXX) f(x) d
-iio 6k

1, (IV-3. 1, 3)

Let us now suppose that f(x) is not of class C I I and assume that there is a finite set

of isolated points in which the second derivative shows an impulsive character, as for

example, in the polygonal pulse case in Fig. 1, (IV-3. 1), c.

Equations 1,(IV-3.1,3) admit a Stieltjes extension when we introduce the time distri-

bution functions associated with the second derivative as

x

T (II ) = I([L) d4

2, (IV-3. 1, 3)

The functions 1, (IV-3. 1, 3) can then be written as
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2 2 (1 - cos x d)
a(O, ) = sin X f2(6) + , (1 - cos 6) dT(II(x)

3, (IV-3. 1, 3)

2 ( + x - sin X)dT (x)
(0, ) = (1 - cos kS) fl(5) +T )( x )d )f 0 k )dT~~~~~~~~

These last integrals render a simple solution in the case of polygonal skeleton pulses.

Figure 1, (IV-3. 1, 3) shows the even and odd pulse components which correspond to the

polygonal pulse in Fig. 1, (IV-3. 1), c. The procedure to be followed is given in

Fig. 1, (IV-3. 1, 3) in a self-explanatory manner. In determining the magnitude and sign

of the pulses of the second derivative, the graphs must be continuously followed in the

direction a to c, d to f.

Let 6(2) k' 6(1), j be the set of points of derivative discontinuity in f2 (x) and f(x)

respectively, and 1, .. ., p and y, . . .,q be the angle jump at each corner of the

polygon. The angles must be counted as shown in the figures.

If one uses the notation

tan k+l - tan k = I(2), k k= 12, . , p

tan Yj+l - tanyj = I(1) j; j = 1, 2, . . . q

(the integers p and q are not necessarily equal)

4, (IV-3. 1, 3)

then, after performing a simple algebraic operation, the Stieltjes integrals 3,(IV-3.1,3)

immediately yield

k=p

sin X f 2 (6) + 2 2), k(1 -
k=l

cos X6( 2), k)

j=q

(1 - cos UX) f1 (6) + I(1), j

j=l

sin Xk6(1), j
+ (1),j - 5, (IV-3. 1, 3)

k=p

Z (2), k = 0;
k=1

j=q

I (l),j 0
j=l

IV-3. 2 We proceed in this section to state the first corner theorem. The theorem

follows at once from all previous discussions. We will explain the notation. Suppose

we have a pulse f(t) which is of the general polygonal type. This pulse may contain

isolated pulses of finite area, rectangular partial components, and ordinary polygonal

pulses. The pulse function can be written as

-37-
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f(x) = f(o)(X) + f(I)(x) + f(II)(x)

in which f(0 )(x) contains all the impulses, f(i)(x) represents the rectangular parts of the

pulse, and f(II)(x) represents the remaining polygonal parts of the pulse. Let us divide

in odd and even parts in the following way:

f(o)(x) = f(0), (x) + f(o), 2(x) 

f(I)(x) = f(I), 1 (x) + f(I), 2 (x) 2, (IV-3. 2)

f(II) ( x) = f(II), 1(x) + f(II), 2()

Now let us introduce the notation for the points

the like, of the last function as follows:

corresponding to impulses, jumps, and

61 i; 62 j; i = 1, 2, ... , h; j = 1, 2,
8i;6, j;i =, Z ..

6 1, k; 62,1;k = 1, 2, . . ., m; I = 1, 2,

6 1 r 2, ; r =, , p; s = 1, 2, .
i,~~ r' , 2 ..

They are respectively the set of points where:

First, the functions

f(o), 1 (x); f(o), 2 (x) have impulses

whose areas are respectively denoted by

D , i= f(0), 1 [61, i(+)]- f(0), 1 [61, i()]

The symbols, 6 i(+) and 61 i(-) etc., mean approaching from

respectively.

Second, the functions

f(I), (x); f(I) 2(x) have jumps denoted by

4, (IV-3. 2)

the right and left,

5, (IV-3. 2)

Third, the functions

fiII), 1 (); fII), 2 (x) have jumps denoted by

I1, r= f I I ), 1 [61, r(+)] - fii), [621 r(-)]
I2, s fII), 2 [1, s( + )] f ' II), 2 [62, s ( )]
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By applying the results of the last subsections to the functions 2, (IV-3. 2), we obtain a

theorem which here is given as a condensation of several particular cases.

Corner theorem. Let f(t) be a general polygonal pulse function which satisfies the

requisites of the previous sections (t - to = x). The density distribution function U(O, X)

associated with this function is given by

U(O, ) = a(O, X) cos Xto + (0, ) sin Xt0

where

j=g I=n

a (0, X) = D, - J ,1 sin 62
j=l 1=1

s=q

+ 2 I2, s [ - cos X62,s]

s=l

i=h k=m

P(o, ) = Dl, i k J1, k (1 - s 61, k)
i=l k=l

2r
+ ( 1 6 , r)

rII, r k
r= 

IV-3. 3 The extension of the results and theorems for cases, in which the second, third,

etc., derivatives have discontinuities can be carried out immediately. For the purpose

of Part IV, we shall make an explicit extension of the corner theorem to the case in

which the second derivative is discontinuous. Pulses whose skeletons are formed by

appropriate quadratic curves may produce examples of this situation. A simple example

of a quadratic skeleton approximation of a symmetric pulse is illustrated in Fig. 1,(IV-3. 3).

Fig. 1,(IV-3.3)

Pulse with discontinuous second derivative.
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IV-3. 3, 1 Let us introduce the time distribution functions associated with the third

derivative:
T(III) = f' (X ) di

T(III)= x

2o

1, (Iv-3. 3, 1)

The reader will find that for a function of class CII I , one gets

2(O, z) = sin x6 f 2 + 2 (1 +
a(0, X) X 2 (6) (1 - cos X6) f(6) + (

X

2 0

-2Jo

2
P(0, X) = (1 - cos

6 sin X6) f~(6)
2

(1 + x- sin Xx f(x) dxX 

X6) fl(6) - . (I + 6
sin 6) f;(6)

1 k

+ 6 + 6 - (1- cos6)] fi(6)'K 2 X2 1

f6
XO

x x+ 12 12 (1 - cos x f'j,(x) dx2 J

2, (IV- 3. 3, 1)

If the pulse function possesses a discontinuous second derivative, then the expressions

above have a Stieltjes integral representation of class CI .

2 2
a(0, x) = sin X6 f 2(6) - (1 - cos X6) f(6)

sin + x )dT(III)) 2 W

p(o, x) = 2 (1 - cos X6) fl(6) - 1

2 1 2 1 - c(- x+ 2x - -
0 2 I

+6 sin 6) f\(6)
x fPI(6)

os x) dT?(III)(x)
2 I

3, (IV-3. 3, 1)

IV-3. 3, 2 The Stieltjes integral representation 3, (IV-3. 3, 1) produces simple direct

solutions in case of quadratic skeleton pulses.

Let

61,; 6 2v; = 1, 2, ... , a; 1, (IV-3. 3, 2)
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be the set of points at which the pulse function components fl(x) and f 2 (x) have discontin-

uous second derivatives. At these points, the second derivative has jumps denoted

respectively by

R1, = f [6 1, (+)] - f [6 1, (-)]

2, v [62, v(+)] -f2[62, ()]

2, (IV-3. 3, 2)

For quadratic skeleton pulses the Stieltjes integrals in 3, (IV-3. 3, 1) become

6

2 J (-X

v=P

sin Xx dT(I)(x) 2 1 + 

v=

[ + 1 2 1 - Cos XX] d (III)(
-X------- 1 (X)

(L +1 2p.= 1

3, (IV-3. 3, 2)

1 - cos X6 1,

The addition of these expressions to the corner theorem 7, (IV-3. 2) produces a more

general theorem which covers pulse skeletons containing rectilinear and quadratic arcs.
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Section 4

Heuristic Analysis of Pulses, with Particular Attention to Symmetric Pulses

Simple basic ideas of approximation. The double-trapezoidal frame. Maximum tangent
theorem. Beatings and displacement. Exponent of decay.

IV-4. 0 Introduction. The principal objective of this section is concerned with the

direct evaluation of the characteristic analytical elements of the function U(O,X) which

are associated with arbitrary pulses, particularly the symmetrical ones. Approximate

solutions will be obtained for U(O, X).

The evaluation of the functions a(O, k) and (0, X) is, generally speaking, a hard and

delicate problem. In sections 2 and 3 we have given several formulas which permit the

analytical computation of the functions a(O, ) and (O, X). Now, we want to use those

expressions in designing simple and reliable approximate methods of computation.

The reader may notice, from the examples given in section 2, that the shape of the

graph of U(O, ) is changed considerably by minor changes in the pulse shape. This effect

is particularly strong for values of X following the first zero of the envelope function.

In the process of network synthesis for the reproduction of pulses, the actual form of

the function U(O, X) is of primary importance, if one wishes to avoid pulse distortion and

intolerable network ringing.

The basic characteristic elements of the U(O, X) function we want to determine with

accuracy are:

1) The position of the first and a few subsequent zeros of the envelope function

2) The actual shape of the envelope function in its first few cycles

3) The presence of beatings and the actual shape of the envelope function in the first

beating group

4) The line, or lines, of envelope decay; the law of decay

5) The displacement of the lines of decay.

In the following discussion, we develop heuristic methods which directly produce

these characteristic elements without performing the direct integration for the deter-

mination of U(O, X).

IV-4. 1 The behavior of U(O, X).

IV-4.1,1 The interval 0 < < T/26. For simplicity we shall consider symmetric pulses.

The extension of these results to nonsymmetric pulses can be done with ease by following

methods similar to the one presented in this section.

Let us consider the integral 1, (IV-2. 2, 3) which produces the value of the envelope

function a(0, X) for symmetrical pulses.
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a(O, X) = 2 f(x) cos Xx dx 1, (IV-4. 1)

For a fixed value of X, the cosine term has a period equal to 21r/X. Hence, this period

decreases as X increases. Figure 1, (IV-4. 1) shows half of the function f(x) and a set of

cosine curves, which correspond to the particular values of given as rr/86, rr/46, and

-r/26. All of these values are contained in the interval 0 < X < rr/26.

Our aim is to discuss the effect of the cosine term, for 0 k< 1rr/26, in relation to

the factor f(x) in 1, (IV-4. 1). We will do that by considering pertinent values of X.

(a) 0 < X < r/86. We can see at once that in this interval the cosine term varies

slowly in the interval 0 < x < 6. The cosine term for X = r/86 is shown in the figure. In

this interval the function a(0, X) is practically independent of the pulse wave shape of

pulses of equal area. Hence, for all spike-like pulses we can write

a(0, ) A s in 6 0 < < /86X6 

because we can use a square pulse approximation.

(b) r/86 < < r/26. For a fixed value of X in this interval, the term cos Xx starts

changing rather fast for values of x in 0 < x < 6. The waveform of the pulse starts

having effect on the integral. The reader can immediately see that for the pulse used

in the figure, a double trapezoidal pulse skeleton renders a high degree of approximation.

See Fig. 2, (IV-4. 1) and insert the trapezoidal skeleton in Fig. 1,(IV-4.1). In subsection

IV-4. 2 we shall give the corresponding expression of the function a(0, X) derived from a

double trapezoidal skeleton.

Fig. 1, (IV-4. 1)

The interval 0 < X < r/26.
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Fig. 2, (IV-4. 1)

Trapezoidal approximation.

The reader can immediately see that no zero of the envelope a(O, X) can occur in the

interval 0 < X < rr/2 6.

IV-4. 1, 2 Interval r/26 < X < 2/6. This interval is of interest because it contains

the first zero of the envelope function a(O, X) corresponding to spike-like pulses.

Figure 1,(IV-4.1,1) suggests at once the existence of the first zero and the means of com-

putation of its approximate position. From this figure we see that when X exceeds the

value r1/26, then the term cos Xx starts chopping up the function f(x) into a positive and

a negative part. The variation of the function a(O, X) is now attributed both to the

decrease of cos Xx in 0 < < x and to the chopping effect of cos Xx. This situation

suggests that in the vicinity of X = r/26 the function a(O, X) has an inflection point. We

shall show later that this is actually the case. As the period of cos Xx decreases in our

interval, we see from the figure that there exists a position of cos Xx, such that the

function f(x) is chopped into two parts of opposite sign. Then the first zero of the inter-

val 1, (IV-4. 1) takes place. Using a double trapezoidal pulse approximation, we can

obtain the position of the zero with good accuracy. See subsection IV-4. 2 and subsequent

subsections.

IV-4. 1, 3 We will consider here values of X > 2/6. From Fig. 1, (IV-4. 1, 1) we see

that the chopping effect of the term cos Xx becomes increasingly stronger. New zeros

of the envelope function must take place, although their exact positions are not easy to

visualize.

The reader may note that we can still use the double trapezoidal pulse as an approxi-

mation of the pulse chosen as an example. In general, however, we must use a poly-

gonal skeleton containing as many corners as there are points of rapid tangent variation.

The use of the corner theorem expressions for a(O, X), which were developed in section

IV-3. 1, will tell us at once whether or not beatings are present in the envelope function

a(O, X) after its first zero. The reason is that each corner produces a damped trigo-

nometric term of different frequency.

IV-4. 2 Double trapezoidal pulse approximation. The shape of pulses in which we are

most interested in the study of window functions admits a double trapezoidal skeleton as

its approximation. For this reason, we will produce some discussions on such pulses.

Let us consider a double trapezoidal pulse of the kind indicated in Fig. 1, (IV-4. 2).
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The application of the corner theorem, plus some algebraic manipulations renders

U(O, X) = a(O, X) cos Xto

4
a(O, X) =

X2

{h 1 61 6) sin 6 1)

62 1 d 1, (IV-4. 2)

+ in 2 sin 2 2)j}

For convenience, let us introduce the auxiliary variables

6 sin ( 6-62)

s ink 2 2tan (X) = 6 sin 2 

sin 2

M = h 62 + hI1-
/sin (. 6_2- 61 )

2 1\ )t 2

2

2, (IV-4. 2)

N = (6 + 62)2 + (62 + 6) (
( 62 +61)2

62 + 6 1

2

By means of these introduced quantities we finally get

o(O, ) = {(/iM i} sin [(X) + v())] 3, (IV-4. 2)

The quantities M, N, C(X), and v(k) are called the long-beating amplitude, the short-

beating amplitude, the long-beating phase function, and the short-beating phase function,

respectively.

For a given pulse, the functions M, N, pu(x), and v(X) can be computed with ease.
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Fig. 1, (IV-4. 1, 1)

The interval Tr/26 < X < /6.

IV-4. 2, 1 Consider now the interval 0 < X < T/86.

Fig. 1, (IV-4. 2)

Trapezoidal pulse.

Here the quantities

62 - 61
2

6 - 62
and 2

Z

are small, so we may write

a(O, X) h1(6 1 + 62)

6 +6
sin 2

+ h 2 (6 + 62 ) 6 + 6

2

6+62
sinX 2

-A 6 + 62 A = area of the pulse

2

since in this interval

61+62 61 + 62
sin sin 2 2

61 + 62 6+ 62
x 2 x -

as we have shown in subsection 4. 1.

IV-4.2,2 The "tangent theorem" in the vicinity of = T/26. The intermediate member of

1, (IV-4. 2, 1) shows that for small values of X the double trapezoidal pulse is equivalent
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to a double rectangular pulse. This is also true for spike-like polygonal pulses. A

quick glance at Fig. 1, (IV-4. 1) tells us that there is not much difference if we replace

the double trapezoidal pulse by a double rectangular pulse of equal area. By using the

corner theorem in Eq. 5(IV-3. 1, 2)

k=n

e(O, X) J2 , k sin Xk6 for X 1, (IV-4. 2, 2)
Jzk 2, k , 6

k=l

Let us introduce the auxiliary variable y defined by

6k = - (1 + y6) 2, (IV-4.2, 2)

We then have

sin X6 2 k = sin -26 + Y62 ,

2 k + Y62, k)

since the hypothesis makes the areas small. Hence

a(0,2 k) 2 k(1 + 3, (IV-4. 2, 2)
2 Lk=l 2, k 2, k (1 + y) (1 + 6y)

k= 

since the pulse area

k=n

A= J2, k 6 2, k
k= I

Hence, the property follows:

Theorem 1, (IV-4. 2, 2) "In the vicinity of the point X = Tr/26 the envelope function a(O, X)

behaves almost linearly, having a tangent

da(O, X) da d= 2 6A = const" 4, (IV-4. 2, 2)

Sometimes it is convenient to use normalized units in drawing the plots of the function

a(0,k). If we normalize our units

0 = 2~, 26 = 1 and A= 1

as is frequently done (see ref. 4), then the envelope a(O, cr) for all pulses has the same

maximum tangent, d(O, o-)/dl 1 = - 2, corresponding to an angle = 120" at the point

a = 1/2. The value of the function a(O, X), at the point X = r/26, which is equivalent to

0 = 1/2, is given by
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a(0, X) = A-; (in normalized units)

The expression 3, (IV-4. 2, 2) tells us that the inflection point of a(0, X), in the first cycle

of the envelope, lies approximately in the vicinity of the point X = rr/26.

Theorem 1,(IV-4.2,2) has important practical application in the plotting of the function

a(O, X). Inspection of the envelope curves in reference 4 tells us that the linear part of

this envelope function is rather large for all spike-like pulses.

IV-4. 2, 3 Positions of the first zeros of (O, X). The first zeros of the envelope function

a(O, X) can be located with ease directly from the pulse shape without performing the

integration 1, (IV-4. 1). For spike-like pulses the double trapezoidal skeleton approxi-

mation renders accurate enough results.

To make a simple explanation, we will begin by considering tailless spike-like pulses.

These pulses, like the half cosine, square, parabolic, triangular, and other such pulses,

can be approximated very closely, for the purposes of this subsection, by means of a

simple trapezoidal pulse; that is, 62 = 6, h2 = 0, and h = h. Hence, Eq. 1, (IV-4.2)

can be reduced to

1 4h ( 6/61a(0, ') X2 6 s- 1 sin 2 ) 1, (IV-4. 2, 3)

The zeros of a(0, X) are thus given by the set of points

K1 62+ K1; K 1 = 1, 2,...1(1 6+61

2, (IV-4. 2, 3)

XK2 6- K2; K 1, , ...
2 6-61 2 2

from which it follows that the first zero is located at (K 1 = 1)

2wr
6 + 61 3, (IV-4. 2, 3)kl 6+61

Some examples are now given.

1) Square pulse. 61 = 6, 1 = wr/6 (norm. 1 = 1.0).

2) Triangular pulse. 61 = 0, k1 = Zw/6 (norm. -1 = 2.0).

3) Half-cosine pulse. To find the zero, we first draw the pulse and then the trape-

zoidal skeleton and measure 61 from the graph. For example, if we draw the cosine

pulse such that 6 = 0. 5 and A = 1, we find, by graph measuring, 61 = 0. 16. Hence

k1 : 3 .02 (Cr1 = 1.51)

In section 2 we found that the exact value is 1 = 31 (rl = 1.5).

Formula 3, (IV-4. 2, 3) cannot be applied to pulses with tails. Double trapezoidal

approximation is then to be used. We proceed as follows: From the graph of the
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trapezoidal skeleton, we measure the quantities h, h i , h2 ; 6, 61, 62. By means of

Eq. 2, (IV-4. 2), we calculate the functions 1(X) and v(X) and make the plot of

.L(X) + v(X) = 0(x) 4, (IV-4. 2, 3)

Then the intersection of 0(X) with the lines at 1T, 2r, 3, ... gives in order the zeros of

the envelope function.

IV-4. 2, 4 Envelope beatings and displacement. The first few cycles of the envelope

functions a(O, X) can be computed from its polygonal skeleton. For spike-like pulses,

the double trapezoidal frame is quite adequate. By means of measuring the quantities

h, hi h2; 6, 61' 62' from the graph of the pulse we can easily compute the graph of a(O, X)

for the first group beating. The zeros of a(O, X) can be computed as in subsection

IV-4. 2, 3. The values of the maxima are given by /iI; see Eq. 2, (IV-4. 2).

The graph of the function a(O, X) produces an important analytical entity: the dis-

placement Xd. This quantity enters in the computation of the tolerance E to which we

referred in section 2. Examples of functions U(O, ) showing displacement have already

been given.

For arbitrary pulses we can estimate the displacement Xd as follows. Compute the

first and second group beating of the envelope function a(O, X) as was indicated above.

Plot the lines of decay corresponding to the greatest and smallest amplitude beatings in

each group. Then choose a decay line between these two decay lines. This middle line

is conventionally called the average decay line. Fig. 1, (IV-4. 2, 4) shows graphically

the corresponding procedure. The quantity Xd is estimated as one-half the horizontal

displacement of the decay lines L 1 and L 2 .

Fig. 1, (IV-4.2, 4)

The "displacement" decay line.
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IV-4. 3 The tail of the function a(0, X) and its exponential decay. The polygonal frame

approximation of a pulse fails to produce reliable functions a(O, X) for relatively large

values of X. The graphical construction in Fig. 1, (IV-4. 3) clearly shows that the values

of X after which the polygonal representation starts to fail are those at which the

cos Xx have a period of the order of magnitude equal to the horizontal projection of the

roundness of the pulse at the corners. Let this pro-

jection of the roundness of the fast-changing corner,

as measured from the graph of the pulse, be denoted

F FASTEST by AxC1' etc. Then, the value of X, say, Xth' which

constitutes the threshold of failure, can be estimated

by

X Tt
th xI

AhXc 1
1, (IV-4. 3)

0

Fig. 1, (IV-4. 3)

The threshold value Xth.

The justification of this threshold value selection

depends on the rapid chopping effect of cos Xx in the

slow variation intervals of the pulse. The contribu-

tion of these intervals to the integral 1, (IV-4. 1) is

practically negligible. Only at the fast variation

intervals, the corners, the chopping effect does not

make the integral expression for a(O, X) equal to zero.

We will agree to call the interval beyond the point

Xth, that is, Xth < X < co, the "tail" of the function

a(O, X) of the function U(O, X).

IV-4. 3, 1 In the beginning of the tail part, the polygonal frame of the pulse has to be

abandoned in order to compute the function a(0, X), or U(O, X). In this part the quad-

ratic skeleton frame can be used. This quadratic frame has a constant second derivative

in the vicinity of the corners. Consequently, the function a(0, X) or U(0, X), can be

approximated by using the integrals given in 1, (IV-3. 1, 3) assuming that the second

derivative is zero except in the vicinity of the corners. Fig. 1, (IV-4. 3, 1) shows a

simple symmetric pulse. The corresponding a(0, X) is given, when we use the notation

indicated in this figure, by

a(O, ) H1 2 (6 1 - 61) + H 1 3 (sin kX61 - sin X6 1)
X X 1

2 2 3(sin
X X

- H 32 (6 3 - 3 )- H2 (sin X6

- sin X6 2 ) 1, (IV-4. 3, 1)

- sin X6 3 )

for the first part of the tail.
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In this expression, particularly the second term in the first line is of numerical

importance. The terms in 1/xk practically cancel to zero. This means that the tail
decays practically as X .

IV-4. 3, 2 If one wants to go further into the tail of a(O, X), we must consider also the

variation of the third, fourth, etc., derivatives. From the point of view of network

synthesis, the actual shape of the tail of the pulse is quite unimportant. The only

important analytical element in which

we are nterestea I te exponent oI

decay of the envelope decay line. That

is, in the computation of the pulse

tolerances which were mentioned in

section 2, we must know the exponent

"r" of decay (decay as X ).

We have seen, from the corner

theorems and from the examples in

section 2, that the exponent of envelope

decay is related to the highest discon-

tinuous derivative of the pulse function.

In a future discussion we shall assume

that for a given pulse we know the class,
I II

say, CI , C I , etc., of the function which

represents the pulse. For this class

the exponent r can be immediately

found.

We close section 4 by remarking

that from the heuristic analysis of

Fig.d1,ticvframe api pulses in this section, and from the
Quadratic frame approximation of a pulse.

results of the corner theorems, we

can construct directly, with a good

approximation, the graph of the function a(O, X) in its first cyclic group. The zeros,

displacement, maximum tangent, and exponent of decay can also be extracted directly

from a given pulse. This situation ends the analysis of arbitrary pulses from the point

of view of the present investigations.

In this section we have considered symmetrical pulses. The analysis can easily be

appropriately extended to unsymmetrical pulses.
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Section 5

The Analytical Character of U(O, X)

The transcendental analytical character of the functions U(O, k) and F(s), associated with
pulses of finite duration. The rational approximation UN(O, X) for such pulses. Two
basic questions.

IV-5.0 The first part of this section contains the discussion of the nonrational character

of the functions U(O, X) and F(s), which are associated with a pulse of finite duration.

The transcendental analytical character of U(O,X) or F(s) can be brought into evidence by

different simple procedures.

For example, one well-known method is to show directly the transcendental char-

acter of the Laplace transform F(s) of a given pulse f(t) of finite duration. As a con-

venient means of illustration we will follow this procedure.

The transcendental character of F(s) is due to two main reasons:
- st

(a) The delay to introduces a factor e in the transform.

(b) The pulse itself can be expressed as the difference of two displaced time

functions, which identically cancel out after the pulse length 6.

For convenience several examples are given here.

f(t) F(s)

-st
Square pulse H x e sinh 6

s s

-stTriangular pulse H e 1 - 4 sinh

2-e
Half cosine H x 6 sinh s

2 2

where H is the pulse height.

The corresponding density distribution function U(O, X) can be evaluated by setting

s = +iwo, = X and then taking the real part. The function U(O, X) is obviously transcen-

dental. A table of Laplace transforms will provide numerous examples.

IV-5. 0, 1 The above procedure is defective from the point of view of our approach to

network synthesis. We have in Parts I, II, and IV of these notes given general theorems

of the existence of transfer functions. These theorems establish the necessary and.

sufficient condition for a function to be "transfer." From the sufficient part of the

theorem we know that given, except for certain requirements, an arbitrary density
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distribution function U(O, X), we can find the corresponding transfer function. Hence,

from this point of view it is preferable to show directly the transcendental character of

the function U(O, X). That is exactly what we intend to do.

The function U(O, X) is a bounded real function of the real variable X. The proof of

the transcendental character of the density distribution function U(O, X) must be based on

these premises only. The following proposition settles the situation.

"Let (O, X) be a real, single-valued, bounded function of the real variable X. The

number of maxima and minima must necessarily be finite if (O, X) is rational." Of

course, this is not a sufficient condition. This proposition shows the nonrational char-

acter of U(O, X) associated with a delayed pulse of finite duration because the function

U(O, x) has an infinite number of maxima and minima for such pulses. Hence the non-

rational character of such a U(O, X) is proved.

IV-5. 1 In the construction of finite, discrete networks the corresponding density dis-

tribution function must be rational because of the basic existence theorem given in

section 1, Part IV. Therefore, we must approach the function U(O, X) by some function

U *(0, ) which is rational, in such a way that the corresponding time function f*(t)

approaches f(t) inside the tolerances, as is indicated in section 2.

In accordance with the theorem in the last subsection, a first necessary step in

obtaining our goal is to cut the function U(O, X) in such a way as to leave a function

U *(0, X) which has a finite number of maxima and minima. The form of the graph

immediately suggests that we must keep the lobes which are contained in the first few

cycles of the envelope function of U(O, X) and disregard the remaining part of the function.

The syncopated (mutilated) U(O, X) is indicated in Fig. 1, (IV-5. 1).

It is obvious that such a syncopated U(O, X), say U*(0, X), is not, in general, an

algebraic function, in spite of the fact that U*(0, X) contains a finite number of points of

maxima and minima.

Fig. 1, (IV-5. 1)

The syncopated U(O, X) function.
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IV-5. 1, 1 In connection with the suggestion of using U*(O, X) in the synthesis process,

we are automatically confronted with two basic questions:

A. Let f (t) be the inverse time function which corresponds to U*(O, X) and which

can be expressed by one of our basic integrals

f*(t) = J cos Xt [U*(O, X) dX] 1, (IV-5. 1, 1)

Now, it remains to prove that: Given a vicinal tolerance E, it is always possible to find

a zero of the function a(O,X), say, at X = XN' such that if one cuts the function U(O,X) after

this point, the resulting syncopated function UN(O, X), where N represents the point of

syncopation, is such that the following condition is satisfied:

= f(t)- f(t) cos Xt [U(, ) - U*(O, )] dX 2, (IV-5. 1, 1)

for every value of t in the interval 0 < t < oo.

B. Let UN(O, X) be the syncopated function as above.

Now, it also remains to show, that for every value of N it is possible to find an

algebraic rational function, say UN R(O, X), having the same zero-point distribution and

the same distribution of extremal points as U (0, k) in the interval 0 < X < XN, and

approximately the same maxima and minima values as UN(O, k), so that the substitution

of UN(O, k) by UN R(0o, ) in 2, (IV-5. 1, 1) still satisfies this condition.

The existence of such a rational function as U R(O, X) is required by the funda-

mental theorem of Part IV, a theorem which states the necessary and sufficient condi-

tions required to obtain a realizable rational transfer function F (s).

IV-5.1,2 The process of syncopation of U(O, ) into U *(O, ) makes sense if, and only if,

the two basic questions A and B above are answered in the affirmative. We will show

that this is so.

In fact, the corresponding theorems connected with these questions are of funda-

mental importance in the theory of finite networks. They are so basically important

because these properties constitute two of the canonic theorems of physical network

existence of the so-called window function. A report on such functions will be published

in the future.

Section 6 of the present report is dedicated to the discussion of question A. Section 7

is concerned with question B.
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Section IV-6

A Basic Theorem Leading to the Evaluation of Errors and Vicinal Tolerances

Characteristic waveform factors. Relative errors. Tolerances. Riemann's zeta func-
tion. Typical examples.

IV-6. 0 Introduction. The main objective of section IV-6 is to prove the affirmative

answer to question A, which was raised in the last section.

A basic product of the corresponding discussion is the establishment of the analytical

relations which connect the analytical elements of the given pulse and the prescribed

vicinal tolerance with the index N of syncopation in such a way that the conditional

relation

E = f(t) - f(t) cos Xt [U(0, ) - UN(0, )] d 1, (IV-6. 0)

is satisfied for every value of N greater than a certain fixed one, say, for N No .

The final objective of this section has a synthetic character. That is, first, we must

find such a number as N . Second, we must construct the syncopated function UN(0, X),

for N No , which satisfies 1, (IV-6. 0).

IV-6. 0, 1 An exact evaluation of the error committed by means of the integral repre-

sentation 1, (IV-6. 0) is very hard to perform and perhaps the result is irrelevant in

connection with arbitrary pulses. It is irrelevant because it would come out, generally

speaking, as a complicated mathematical expression, which would not show an explicit

practical structure connecting the error committed with the analytical elements of the

prescribed pulse. Several examples have shown this practical inconvenience.

If, however, we are satisfied with the evaluation of certain bounds of the error com-

mitted, bounds which are not necessarily the least upper bound of E, but fairly close to

it, then we can obtain, as it is shown in this discussion, a very simple and practical

expression of the error. This simple expression allows us to produce a definite answer

to the question of the establishment of prescribed tolerances. The present discussion

will be directed towards obtaining the bound expressions as we have described them

above.

Our main interest resides with symmetric narrow pulses because of their relation

to window functions. The present discussion is concerned with such symmetric pulses.

There is no particular difficulty in extending the results of section IV-6 to nonsymmetric

pulses.

IV-6. 1 The average decay line. The difference U(0, X) - U (0, X) represents a func-

tion which is equal to the tail of the density distribution function U(0, X). A typical
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tail is illustrated in Fig. 1, (IV-6. 1).

In order to produce a simple expression for the error committed, we will assume

that the tail of the density distribution function decays along a certain average line of

envelope decay. This average line is placed in the middle of the upper and lower decay

lines. This average line is therefore a displaced line. The equation of this average

decay line is given by a general expression

K 1, (IV-6. 1)
( + Xd)r

where K = constant, r = decay exponent, d = displacement as measured from the upper

decay line. The modified decay line is shown in Fig. 2, (IV-6. 1). The reader will find

the justification of this substitution in the following evaluation of the errors.

IV-6. 1, 1 We will compute first the contribution to the integral 1, (IV-6. 0) from one

arbitrarily placed lobe of the envelope. The lobe is located between

X X ,< X ; > N 1 (IV-6. 1,1)

In doing this computation we will introduce a set of constants, kl, k2, k 3, s, and r, which

are associated with an arbitrary symmetric pulse. These parameters are associated

with and characterize a given pulse.

Fig. 1, (IV-6. 1, 1) shows one lobe of the envelope function placed between X and

kv+ 1 ' v > N. The needed notation is indicated in this figure. To fix the position of this
lobe we will introduce the parameter kl, as follows

k 16X = Trv; v = integer 2, (IV-6. 1, 1)

The value of k can evidently be found from the position of the first envelope lobe by

setting v = 1. Hence

k =Ir 3, (IV-6. 1, 1)1 6X

The value of k can be expressed in terms of the pulse elements. For example, a trape-

zoidal approximation of a pulse, as in Fig. 2, (IV-6. 1, 1), leads to the following expres-

sion for X1

6+ 64, (IV-6. 1, 1)I 6 + 61

See Eq. 4, (IV-2. 3, 1). This last expression yields the following value of kl

k 1 + 5, (IV-6. 1, 1)

More accurate expressions for k can be obtained by using double trapezoidal pulse

frames in the determination of X1. For spike-like pulses the expression 5, (IV-6. 1, 1)

has enough accuracy. We now proceed to the evaluation of hv, the amplitude of an
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DECAY LINE

LINE

LINE

X

Fig. 1, (IV-6. 1)

The typical graph of the function U(O, X) - U*(O, X).

K
AVERAGE DECAY LINE AS K = CONST.

,/ (X +d) r

Fig. 2, (IV-6. 1)
Modified tail for purpose of computation.

DECAY LINE

-AhyA/5 /|
'1Ti .I

I/ \

28

fI (to)

+ 8 + 8 +t
a 8 8 

Fig. l, (IV-6. l, 1)

A lobe of the envelope function.

Fig. 2, (IV-6. , 1)

Trapezoidal frame.

-58-

6

6
..

:::

0

"CY .1j

0

X.
XA.,

-- - - wr C*

- ~ ~ ~ ~ ~ ~~~s 

X .___.

y

;f- 
A q

/y'/_ V 1



envelope lobe. See Fig. 1, (IV-6. 1, 1).

By using a simple trapezoidal pulse frame, we immediately obtain, from

Eq. 3,(IV-2. 3, 1), the corresponding expression

4f(t o ) kc, v(6 - 61)
h = . sin v 2( 2

c, %(6 - 61)

4f(to)(6 + 61) Xc, v(6 - 6 1) 6 > 6

Xc (62 -6) 2 
6, (IV-6. 1, 1)

when f(to) is the pulse height. Xc v is defined in Fig. 1, (IV-6. 1, 1).

The expressions 6, (IV-6. 1, 1) suggest at once how to develop a more convenient

empirical estimate of the height h, which can be used in connection with pulses leading

to an envelope decay of exponent r and a displacement Xd.

Let us introduce a constant k 3 defined by

7, (IV-6. 1, 1)Area of ulse
3 f(to) 6

We now propose for h a more general empirical expression
%;

f(t o ) k 3h = k2
v (X , + d)r6 2(>c, vd

8, (Iv-6. 1, 1)

in which k2 remains to be determined. Xc, vis the value of X at which the

the lobe takes place; Xd is the displacement and r the decay exponent.

For example, for a simple trapezoidal pulse frame

f(t o ) x (61 + 6)
3 f(to) 60

61

maximum of

9, (IV-6. 1, 1)

By direct comparison of Eqs. 6, (IV-6. 1, 1), 8, (IV-6. 1, 1), and 9, (IV-6. 1, 1) one gets

for k 2: d = 0, r = 2.

k 2 sin [X c,(6 - 61) 4
2 2 X sin 2 = 2 

6 1 1 - !
i~~~~~~~~~ _662

6 > 61

26

since sin kc, N (6 - 61)/2 = 1 at the center of the lobe; see Fig. 1, (IV-6. 1, 1).

If one lets 61 -. 6, as in a square pulse, then the limiting value of k 2 is given by

62
k2 6+6 6

1
X = 6X

C,v C, v

-59-

_1 1 _ 



Hence

k = 4 2 for 6 > 61
61

62

k2= 6X for = 

Now, we proceed to compute X v

By using 2, (IV-6. 1, 1) together with the notation of Fig. 1, (IV-6. 1, 1) one gets

x = + v IT + 6 (v + 1)
kc, V = k 16 + 2k 1 6 - k6 ( + 11, (IV-6. 1, 1)

Xc represents the center of each envelope lobe, which corresponds to the average line

of decay in Fig. 2, (IV-6. 1).

The displacement is measured from the graph of the function U(O, X) when this

function is constructed from the given pulse following the heuristic procedure given in

section IV-4.

For convenience of mathematical notation we shall introduce a constant s defined by

2 d k 6
s- d 1 + 1

1T

hence

( c, v + Xd) = k1 (v + 2sI1

12, (v-6. 1, 1)

Finally one gets

2 r kr f(t o ) 6 r- k k3
h r(2 +v r(2v + s)r

By means of this expression we can immediately write

envelope lobe of a(O, X), indicated in Fig. 1, (IV-6. 1, 1).

h cos Y -
v

the expression

Hence

2 r kr f(to) b k2 k 3

+ )r 3cos k by
Tr r(zv + s)r I

for the v-th

14, (IV-6. 1, 1)

By using our present notation, the value of Xto becomes

Xto = ( + ) to + yt X < < +1 k I6 2 0 v+

Thus, a general expression for the v-th envelope lobe of the density distribution function

becomes

0 f(t ) k k 3
2 r kr 6 r-1

U () X) o: 2 3 1 cos k1 6(X - XC, v) cos [kiTr ( + ) to + t

-60-

10, (IV-6. 1, 1)

13, (IV-6. 1, 1)

15, IV 6 1, 1)

16, (IV-6. 1, 1)



IV-6. 1, 2 We propose here to compute the contribution to the integral 1, (IV-6. 0) of the

v-th, v > N, lobe of the function U (0, X), which is shown in Fig. 1,(IV-6. 1, 1). Our prin-

cipal aim is to establish an upper bound, not necessarily the least upper bound, of the

contribution of the v-th lobe to the integral 1, (IV-6. 1, 1).

For v > N, see Fig. 2, (IV-6. 1), we have

2 r+l f(to) k1 kZ k 3 6

v r+l (2v + s)rIT

xI
v

1, (Iv-6. 1,2)

where

v + l

I = V

V

os k1 6(X- c, v) cos ( + ) to + yto] cos Xt dX 2, (IV-6. 1, 2)

It can be seen at once, by using Fig. 1, (IV-6. 1, 1), that the

always remains positive for Xv< X < XV+ 1 . Now, on account

integral above is simply equal to

=k =j v+
lI =

first cosine factor above

of 15, (IV-6. 1, 1) the

cos k6( - Xc, V) cos Xto cos Xt dt

Hence, Iv attains an upper bound at t = to, because the integral is necessarily positive.

Using

2 cos 2 Xto = (1 + cos 2 Xto)

we get

Xv

cos [k l 6( - C, v)] d + v+ cos [k 1 6( - Xc, v)] cos 2t dX

The last integral becomes negligibly small on account of the cancelling chopping

interaction effect of cos 2Xt and the slow variation term, cos [k l 6( - kc, ] 

Consequently, by direct integration of the first integral, one gets for the bound

1
I <BoundI = -

v v k1
4, (IV-6. 1, 2)

Hence, we finally get from 1, (IV-6. 1, 2)

r-l k k r-2
2 r+k 1 k2 k 3

5v f(TD r+l ( r0 Tr (zv + s) r
; v>N 5, (IV-6. 1, 2)

IV-6. 1, 3 The expression 5, (IV-6. 1, 2) leads at once to the evaluation of the relative

error committed when we substitute U(0, X) by U (0, X). The use of Eq. 1, (IV-6. 0)

renders the required expression of the relative bound of this integral.
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The bound is given by

V=00 1=c0

~ EW Z N r1+ 2 3
1

v= f(o) r+lN k k3 6 
1, (Iv-6. 1, 3)

These results suggest immediately that this relative error can be expressed in

terms of the generalized zeta function of Riemann.

IV-6. 2 The zeta function of Riemann. Using the notation of these notes,

ized zeta function of Riemann is defined by

(r, a) 2

v (a+v)r 2

The ordinary zeta function of Riemann is attained for the particular value

is
00

( 1)= n= v +
n= 1

the general-

1, (IV-6. 2)

of a = 1. That

2, (IV-6. 2)

The use of the letter n is immaterial in the last expression. The discussion of the

analytical character and properties of the above function is outside the scope of these

notes. The reader is referred to a regular text on analysis, in particular, to reference 5,

where a formal presentation of the subject can be found. For the purpose of these notes,

it is quite unnecessary to consult such a treatise.

IV-6. 2, 1 The series 1, (IV-6. 2) converges uniformly in any domain in which r = + iT;

> 1. In our case r is real. Hence our formulas can be used for r >,2.

A numerical tabulation of the function

0o

5(r)Z; 1r
n=l n

can be found, for example, in reference 6. For the application of these formulas to some

examples we will use a few values of the function above. Certain numerical values are

here reproduced for convenience

C(r)
1. 645...

1.202...

1. 0823...

1. 036...

1, (iv-6. 2, 1)

IV-6. 2, 2 The functions (r, 0) and (r) show simple analytical connections for par-

ticular values of a = s/2. For example, a = 1/2; ( s=l),
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V=00

(r ) = Or2 + ) r 1 + + r - 1) (r)
2 V =O (Zv + r 3r 5r

IV-6. 3 The relative bound of the error. The relative bound of the error 1, (IV-6. 1, 3)

can be expressed in terms of the zeta function of Riemann simply by setting

v=N-1 v=Oo

v-O (v 2 v=N (v + Z 1r

Let us introduce the notation

r 1v=N-1

Then we finally get

f(o kr-2 T (N, ) 2, (IV-6. 3)
f(t) 1 r NkZ k 3 r

IV-6. 3, 1 The expression 2, (IV-6. 3) is the relative error committed when we use the

syncopated function UN(O, X) instead of U(O, X). This expression is clearly equal to the

tolerance defined in section 2 of Part IV. It establishes a relationship between the error

committed and the number of lobes, N, of the function U(O, X) which we must preserve.

This tolerance is expressed in 2, (IV-6. 3) in terms of simple elements of the pulse.

Now, we can produce an affirmative answer to question A of section IV-5. By

observing the bracket parenthesis in 1, (IV-6. 3), it can be seen at once that the function

Tr[N,(s/2)] tends to zero, and rather fast too, for r 2, when N increases without

limit. Hence, it is possible to find a value N such that for a given pulse the tolerance

can be made smaller than a prescribed positive quantity.

IV-6. 3, 2 We proceed here to compute the function Tr[N, (s/2)] using N as a variable.

The quantities s and r are parameters. For the purpose of these notes, we shall

choose the following set of values, r = 2, 3 and s = 1, 5/3, 2, because these values are

more frequently found in the examples given in section 3 of Part IV.

We will compute as an illustration the value of the parameter s, which corresponds

to several typical pulses.

A. Consider a pulse which shows a zero displacement in the corresponding envelope

decay line of the density distribution function U(O, X). For example, for the triangular

pulse, one gets s = 1 from 12, (IV-6. 1, 1), since kd = 

B. Half-cosine pulse. See subsection IV-2. 3, 1, example D. By considering

Eqs. 5, (IV-2. 3, 1), 3, (IV-6. 1, 1), and 6, (IV-6. 1, 1), one gets
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X1 6 =T +2

r =2

2
kl =

1 3

Xd6 2

from which we obtain s = 5/3.

C. Complete cosine pulse. See subsection IV-2. 3, 1, example E. By using a

similar procedure as in B, above, one finds s = 2, and r = 3.

We now compute a few important members of the family of functions Tr[N, (s/2)],

taking N as an independent variable. We assign to r and s values from the previous

computation.

Figure 1, (IV-6. 3, 2) shows several curves representing the function r[N, (s/2)].

The reader may notice, that (a) for a given constant value of r, all the members of the

function almost coincide for all large s and N values; (b) the numerical values of the

functions decrease as r increases for the same values of N and s.

IV-6. 4 Error computations. The set of curves Tr[N, (s/2)] and the formulas developed

in section IV-6 allow us to make a rapid computation of the relative error which is com-

mitted when the function U(O, X) is syncopated after the N-th lobe of the envelope function.

See Eqs. 1, (IV-6. 3), 5, (IV-6. 1, 1), 9, (IV-6. 1, 1), 10, (IV-6. 1, 1), and 12, (IV-6. 1, 1).

We shall apply these formulas to several different pulse shapes. Results are given in.

the next subsections.

IV-6. 4, 1 The following pulse constant values are computed for a pulse having a ratio

6/to = 10.

Pulse Constants

Pulse shape kl k2 k3 r s

Triangular 1/2 4 1 2 1

Half cosine 2/3 4. 4 4/Tr 2 5/3

Complete cosine 1 4. 1 2 3 2

The reader will not have any difficulty in extending this table for other pulse shapes.

IV-6. 4, 2 The evaluation of the committed errors can be computed at once for the

pulse shapes which were used as examples. The results are given by the graphs in

Fig. 1, (IV-6. 4, 2).

IV-6. 4, 3 Figure 1, (IV-6. 4, 2) shows that the error committed by using the function

UN(0, X) instead of U(O, X) decreases very rapidly for a syncopation after the first few

envelope cycles. For large values of N, say, after N = 6, the error decreases rather

slowly.
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Fig. 1,(IV-6. 3, 2)

A few members of the family Tr[N, (s/2)].
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Fig. 1,(IV-6.4, 2)

Typical tolerances for a few different pulse shapes.
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The exponent r of envelope decay has a pronounced effect on the magnitude of the

committed error. This is apparent from the set of curves shown in Fig. 1, (IV-6. 4, 2).

The curve at the bottom has an r = 3. For practical pulses the parameter r does not

exceed the value 3.

The reader must notice that the formula 1, (IV-6. 3) cannot be applied for r = 1

because of the divergence of the function (r, s) for r = 1. However, an expression for

the bound of the error committed when r = 1 has been developed. Such a formula makes

use of a still more generalized type of Riemann's zeta function: a function of the Lerch

type

2nrix
(x, a, r) = eni

n=0 (a+n)r

See, for instance, reference 5, page 280.

Unfortunately, the corresponding error expression is quite impractical for the

purpose of numerical computation. Therefore, we omit such formulas in the present

notes.

IV-6. 4, 4 The analysis in this section shows that question A, which was raised in

section IV-5, has an affirmative answer. That is,

(a) We can replace UN(0, X) by U(0, X).

(b) The error committed in the time domain by this substitution tends to zero as

N -- oo.

(c) The rate of the error decrease is fast enough for practical purposes of network

design.
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Section IV-7

First Consideration of the Rational Approimation of the Density
Distribution Function UN(0, X)

The rational transfer function FN R(s). The correlation between the number of extremal

points of U(yo, X) and the number of poles of a rational transfer function. Construction

of the function UN R(0, X) .

IV-7.0 Introduction. The direct objective of this section is to prove the affirmative

answer to question B in subsection IV-5. 1, 1. For convenience, we will repeat here the

principal aspects of this question.

Let UN(0, X) be a syncopated U(0, X) function such that the index N is large enough to

satisfy the tolerances prescribed in the previous section.

Now we shall show that there is a rational distribution function, say U R(0, X)

which has: (a) the same zero-distribution, (b) a similar distribution of extremal

points, and (c) approximately the same values of the maxima and minima as UN(0, X).

The function U R(0, X) is such that the substitution of UN(0, X) by UN R(0, X) in

Eq. 2, (IV-5. 1, 1) still satisfies this condition.

IV-7. 0, 1 The rational transfer function F (s). Once such a function as UR(0, )
N,R * N,R ,

is constructed, we can produce the rational transfer function, say FN R() which char-

acterizes a network, capable of transforming the unit impulse into a prescribed output

pulse, as was indicated in the basic network synthesis problem of section IV-2.

The function FN R(S) is constructed from UN, R(0, X) by using the fundamental exist-

ence theorems on the rational transfer function already discussed in section IV- 1. This

fundamental theorem states that if UN R(0, X) is an arbitrary rational bounded function

satisfying a set of simple conditions, the associated transfer function, which is given by

FN R(S) = 2 N R dX 1, (IV-7. 0, 1)

is rational and physically realizable as a four-terminal network. (The realizability of

FN, R(S) is a consequence of the general basic theorems discussed in reference 1.)

IV-7. 0, 2 The principal aim of section IV-7. The principal aim of this section is there-

fore to show how we can constructed the function U R(0, X) and F R(s). During

the discussion tending to obtain these functions, we will obtain some important side

products. These side products will serve as a basis for two important questions.

1) The unicity of the function FN, R(S)

2) The question of the minimum number of elements needed for the realization of a

network having FN R(S) as a transfer function.

In section IV-8 of this report we shall deal specifically with the clarification of these

questions.

-67-



IV-7. 1 The correlation between the number of extremal points of U(y o , X) and the

number of poles of a rational transfer function. In section IV-5 we have shown the

transcendental analytical character of the density distribution function, which is associ-

ated with a finite pulse of finite duration. If one wants to construct finite passive linear

networks for the transmission of such pulses, then it is necessary to produce rational

density distribution functions. A first step was taken toward the production of rational

density distribution functions in sections IV-5 and IV-6. This first step was the synco-

pation of U(O, X) into UN(O, X) in order to obtain a finite number of points of maxima and

minima. This is a necessary condition for UN(O, X) to be rational.

We shall open the discussion of this section by showing the connection between the

points of maxima and minima of UN, R(O kX) and the number of poles of the function

N, R(0, X).

IV-7. 1, 1 The rational transfer function R(s). Let us assume, for simplicity of nota-

tion, that R(s) is a rational transfer function, like F R(s), which has m < poles at

the left of the imaginary axis. Multiple poles of R(s) are counted in accordance with

their multiplicity. The assumption that R(s) has poles only to the left of the imaginary

axis is made because of the bounded character of the density distribution function U(O,X),

which is associated with a spike-like pulse. However, this assumption does not change

the situation of the basic properties which are discussed in this section.

The position of the poles of R(s) implies ( see ref. 1): (a) c < , c = abscissa of

convergence and (b) the boundedness of U(O, X).

IV-7. 1, 2 Isometric plots of the function U(O, X). Let us now consider the s-plane

associated with a function such as R(s). In this plane let us place a contour ro in the

right half-plane far from the imaginary axis. We are going to displace this contour ro

from the right half- to the left half-plane and observe, in each particular position, the

graph of the function U(yo, X). An illustration is provided by Fig. 1, (IV-7. 1, 2), where

a sort of isometric plot of the s-plane is shown for two simple poles of R(s). The magni-

tude and direction of the residues at these poles are indicated by the arrows emanating

from each pole. The figure shows the graph of the density distribution function U(y o, X)

for six different positions of the contour r o . We observe three extremal finite points.

As we get closer and closer to the poles, the positions of two of the extremal points

move respectively toward each of the poles and the extremal values increase without

limit. When the contour r o is aligned with the line of the poles, then the value of U(y, )

becomes infinite at the poles. The third extremal point of the graph of U(yo, X) lies

continuously along the real axis of the s-plane. Fig. 2, (IV-7. 1, 2) shows the graph of

U(Yo, X), y = 0, for five simple poles, having real residues with sign alternation. We

observe here an alternation of the extremal values of U(O, X). The real pole produces

an extremal value at X = 0. The complex poles also produce extremal values at this

point in such a way that these extremal values coincide at X = 0.
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Fig. 1,(IV-7.1,2)

Isometric plot for two simple poles of R(s).

()

Fig. 2, (IV-7. 1, 2)

The function U(O, X).
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IV-7. 1, 3 Upper and lower bounds to the number of extremal points (heuristic proofs).

The analytical correlation between the extremals of U(y o , X) as yo sweeps the s-plane

and the number of poles of the rational function R(s) can easily be established.

Consider, for example, that the function R(s) has m simple poles. Let p = number

of real poles and 2q = number of conjugate poles. Hence

p + 2q = m

The function R(s) can be written as

1, (IV-7. 1, 3)R(s) =Es k/Xk

1 k

See section IV- 1.

A straightforward computation renders the following result

Re [R(s)] =

j=p

U(yOX) = 

j=1

A.
J

Xj

(Yo + Xj)

X + (o + Xj)
0 i

k=q

k= 1

X K k + L k

X + X2Mk + Nk

where

1 (k k 
Kk-= 2 -¥Io + (Ak+ Ak)

Xkkhk

Lk= o = o4(Ak + ¥+ Ak) + 2 k
Xk kk

Ak

Xk

Xk)]

1 k + Akk +

+ 2 (AkX + kkX
0 2 k k k ~A ) 

k k
Ak+ 

+ (AkX + AkXk)

Mk ( + X k) + ( + Xk)

Nk = (o + Xk) ( o + k)
2, (IV- 7. 1, 3)

The degree of the common denominator of the function U(Yo, X) is equal to 2m, as one

can easily check. Hence, the total number of poles of U(y o , X) is equal to 2m. The func-

tion R(s) contains only 2m poles, since it is formed only by the poles of U( oy, X) having

negative or zero real parts.
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The derivative of Eq. 2, (IV-7. 1, 3) is given by

dU(y0 ,X) j=p A )2

dX X ( X 2

j=l [X2+(o + )z]

k=j (X4 + MkX + Nk)Kk - (XZKk + L ( + Mk)
+ 4 2 2

k=l (4 + Mk 2 + Nk) 2

A simple computation renders the value 4m- 1 for the degree of the numerator of

Eq. 3, (IV-7. 1, 3). Consequently, the maximum possible number of extremal points of

the derivative would be equal to 4m- 1. The number of zeros of the numerator of

Eq. 3, (IV-7. 1, 3) depends on the position of yo, since the coefficients Kk, Lk, Mk, and

Nk depend upon y ( see Eq. 2, (IV-7. 1, 3). We may observe from Eq. 3, (IV-7. 1, 3) that

the point X = 0 on rF is always an extremal point of U(yo, X) for every position of the

contour r o . Consequently, the number of lateral extremal points of U(Yo, X) on ro can-

not exceed 2m- 1. This number constitutes the upper bound of the number of extremal

points.

The actual number of extremal points of U(y, X) depends on the particular position

of r because the coefficients Kk, Lk, Mk, and Nk depend on yo. Besides, some of the

roots of the final numerator of Eq. 3, (IV-7. 1, 3) may become complex as ro sweeps the

plane. Some other roots may disappear because the coefficient of the highest power of

X in the final numerator of Eq. 3, (IV-7. 1, 3) may become zero for certain positions of

the contour r
o

A lower bound to the number of extremal points of the function U(y,X) can be obtained

by the following simple method of reasoning. The function R(s) in Eq. 1,(IV-7. 1, 3)

behaves as

Ak/Xk
R(s) +

s+ Xk

in the immediate vicinity of the pole at Xk. Hence, when the contour Fo moves in the

immediate vicinity of such a pole, we can observe in this vicinity, at most, two extremal

points, (one maximum and one minimum), or at least one extremal point, depending

upon the direction of the complex quantity Ak/Xk. By considering all the poles of R(s)

we can sum up these results as follows: Let ro sweep the s-plane as before. Then the

number of extremal points of U(y o , X) cannot be less than p + q when Ak/Xk are all real

quantities, and not less than p + Zq when Ak/Xk are all nonreal quantities.

These heuristic results on the number of points of maxima and minima of U(Yo, X) on

Fo are enough to support our future investigation. However,- we must remember that

this discussion on extremal points is not quite complete. A general study of the critical

points of density distribution functions are outside the scope of this report.
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IV-7. 2 Construction of the function UN (O, X). The discussion in the last subsection

illustrates the correlation between the number of extremal points of U(y, X) and the

number of poles of a rational transfer function. We are now going to apply the above

discussion in the solution of the following problem.

Let us assume that UN(O, X) is the syncopated function from U(O,X) such that the index

N is large enough to satisfy the tolerances prescribed in the sense of section IV-6.

Now, we want to construct the function UN R(O,X), which is associated to the rational

transfer function FN, R(S), such that UN, R(0, X) approximates UN(0, k). See subsection

IV-7. 0.

IV-7. 2, 1 Conditions for UN R(0, ). The method of extraction of UN R(0, X) from

UN(0, k) consists of a procedure of interpolation. A graphical illustration of the method

is convenient. Fig. 1, (IV-7. 2, 1) shows the graph of the functions U(O, k) and UN(0, K).

The function UN(0, k) is constructed as follows:

(a) UN(0, X) = U(O, K); for 0 -< X kN (N = 3 in Fig. 1, (IV-7. 2, 1))

(b) UN(0, k) has one extremal point for N < < 0

(c) UN(0, X) shows monotonic behavior after this last extremal point, and finally

* constant
(d) UN(0, X) _ constant , where r is the exponent of envelope decay.

kX-oo

The function U R(0, X) is extracted, by construction, by the rational interpolation of

the function UN(0, X) at the zero, extremal, and infinite value points. This is graphically

illustrated in Fig. 2, (IV- 7. 2, 1).

Let us use the notation

kk' k = 1, 2 ... , n

to indicate the zero points of UN(0, k) and

e
j, j = 0, 1, m

to indicate the extremal points of UN(0, K).

Then, by construction

(a) UN, R(0, Xk)= UN(0, Xk)= 0; k= 1, 2, ... n

(b) 0, 1 '..., m(b) UN, R( Xj)= UN(0, Xj); i = 1, (IV-7. 2, 1)

*X constant
(c) UN R(O, ) onstant

NK, R Xr
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Fig. 1,(IV-7.2, 1)

The functions U(O, X) and UN(O, X).

Fig. 2, (IV-7. 2, 1)

UN(0, ) = UN, R(0, ) at the zeros and extremal points of UN(0, ).
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IV-7. 2, 2 The interpolation procedure. We shall now begin with the description of the

procedure of interpolation. The function U(O, X) is an even function of X. Hence, it can

be written in terms of X2 . The function UN, R(0, ) must be a function of X also. In

accordance with the general existence theorems of section IV- 1 we shall write

UN R~~' Pn(X2 )
Q X) ) 1, (IV- 7. 2, 2)

N, R(0, X) (
Qm(k2 )

where Pn and Qm are both real polynomials in 2 of degree n and m, respectively.

The polynomial Pn(X 2) is constructed uniquely at once as follows:

P2 1n (2 ° 2 2 o
P n(X) = ( ) ( X1 ) ( 2 - 2 ) .. ( 2 Xn ) 2, (IV-7.2, 2)

Two properties follow:

A. Pn(X2 ) and UN(O, X) have, by construction, the same set of zero points.

B. Pn(X2 ) and UN(, X) have the same sign for every value of X.

As a consequence, the expression

Pn(2 )
cn 3, (IV-7. 2, 2)

UN(, X)

remains positive and different from zero for all finite values of X.

The value of the expression 3, (IV-7. 2, 2) can be obtained by direct computa-

tion. The graph of this function shows, for the class of U(O, X) in which we are inter-

ested, a slow varying curve with a definite monotonic increase for large values of X.

Figure 1, ( IV- 7. 2, 2) shows a typical behavior of the graph of the function 3, (IV- 7. 2, 2).

The asymptotic behavior of the function 3, (IV-7.2, 2) can be found at once. By con-

sidering Eqs. 1, (IV-7. 2, 1) and 2, (IV-7. 2, 1) one gets

Pn(X2 ) (1)n 2r
n~~c~~ = - ~~~~~~4, (IV- 7. 2, 2)

UN(0, )_ constant

where r is the exponent of envelope decay (r = 2 for most cases).

IV-7.2, 3 Determination of a linear equation system for the unknown quantities q m-1'

qm2 .'. , q The evaluation of the function UN, R(O X) (see Eq. 1, (IV-7.2, 2)) is
now reduced to the approximation of the function 3, (IV-7.2, 2), Fig. 1, (IV-7.2, 2), by

a polynomial of degree 2n + r. This polynomial can be constructed by a process of

interpolation at a convenient set of points, as suggested in Fig. 1, (IV-7. 2, 2). The

close relationship between the maxima and minima of the function UN(O, X) and poles

of the associated transfer function suggests that the set of points of interpolation

can be selected as the set of extremal points of UN(O, X). This selection is convenient,

but it is not necessary as we shall see later on. The selection of the set of points
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I
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MONOTONIC
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Fig. 1, (IV-7. 2, 2)

Typical graph of the function Pn(X2)/U*(O, X) for symmetric pulses.

For this particular case the points of interpolation 0, l, ... i Xm 1

corresponding to the extremal points of UN(O, X), are equally spaced.

In the general case the set of points of interpolation must not neces-

sarily be equally spaced.

e
Xj, j = 0, 1, . m leads to the establishment of some minimal properties of networks.

These minimal properties will be studied in the next sections.
e

Let us use the set of points X.j, j = 0, 1, .. , m as the points of interpolation.

Because of the asymptotic behavior of the function UN(0, X), we must set

2n + r = 2m 1, (IV-7. 2, 3)

This implies that r must be an even number. Since we are dealing with a problem of

approximation, this is not an objectionable limitation.

Let us write

Q ( X 2 ) = q XZ m + q 1Xz(m- 1) + + qlk + q 2, (IV-7. , 3)2 m Z12Qm( ): qmX - +..+q 1 X +q9 0 , (IV-7.2, 3)

We proceed to the determination of the m+ 1 coefficients q .' . qm by means of the

interpolation condition

Qm_ = 0 X 2 (eZ 032(-1)" ((X 2 x i).. (X. -

m X) e 3, (IV- 7. 2, 3)
UN(0, X )

N 3
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The coefficients qO and qm are computed at once since

022 02 
X X ... Xn

q0= UN(O, 0)

and

qm = (n (- 1 )nconstant - uo)
lir [UN(0, X)]XZm-2n

I _, [UN hY .

4, (IV- 7. 2, 3)

The coefficient qm is, of course, a positive quantity because the constant indicated in

Eq. 4, (IV-7. 2, 3) has the same sign as (-l) n .

The rest of the coefficients ql, q2' . . qm1 are determined by the following set

of linear equations.

2(m-1) + q 2(m-2) + + q
qM_1j + - 2 j + lj.. 

em 2xim)- (q + m j 5, (IV- 7. 2, 3)
-(90+9,Xj

for j = 1, 2, ... , (m-I).

The system shown in Eq. 5, (IV-7. 2, 3) is potentially equivalent to the determination

of the unknown quantities qm 1' qm2' . q 1 , provided the determinant of the system

does not vanish. We shall show that this is the case in the next subsection.

IV-7. 2, 4 Proof that the system determinant does not vanish. We now proceed to show

that the determinant of the system of Eq. 5, (IV-7. 2, 3) does not vanish. The proof is

somewhat cumbersome but otherwise straightforward.

However, it is rather involved to carry through this proof when we use the compli-

cated notations which are used in Eq. 5, (IV-7. 2, 3). We therefore momentarily change

some of the notations for simpler ones as follows.

Set

m-l=h

e2

Pn(X)> = 2, hnj = e O+ m )2
Yj e - (q 0 +qm 

UN(O, X.) m j
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The system 5, (IV-7. 2, 3) becomes

h h-i h- h-2
qh[l + qhl[ 1 + qh-2 +

h h- h-2
qhZ h + qh-122 +

h h-1 h-2
qhh + qh-lh qh-Zh

1, (IV- 7. Z, 4)

The system determinant can be written as

h h-1
}1 }~1

h h-l
Z2 B2

h h-1
Phh

h-1 h-2
I 1 1l

h-l h-Z
42 CL2

h-1 h-Z
Bh ¢h

2, (IV- 7. 2, 4)

Now, take the set formed by the (h-l) quantities

*.... ' h 1
3, (IV-7. 2, 4)

where we have omitted the 1Lh terms. With the above set let us form the symmetric

functions

ah- =1

ah-_ = (-1) ({1 + 2 + 4l3 + ... + 1h-I)

ah- 3 = (1) (1a + V1O13 + - * + l~h-1

+ 1"2 3 + . . + 2 %h- 

+ h-2 h 1)

ah 4 = (_1)3 (11213 +
1 112

+ 141 WL

a0 = (- 1 ) h -

2 + * * + F1 Fl 2 l>h- 1 +

ZNt4 + -+ 1' 3 - +
4 +. ... + p. .3h_ +

+ 4h- 3 -h- h- 1)

.12 3' *3 -

The equation of h-1 degree formed by these symmetric functions as coefficients

-77-

4, (IV- 7. 2, 4)

+ ql1" = l

. . + ql1" = Z

... + qpth = Yhj

... Ill

... �L?

... 4h

= 4 i 2 ' . . .

41, L21 ~L3 N I



h-1 h-2 h-3
jI +ah_2 -L +ah 3 h3 +... + a l + a 0 = F1 J)

has the numbers [l1 Il, . , a roots.

a root of the above equation.

Hence

5, (IV- 7. 2, 4)

The quantity plh' on the contrary, is not

h-1 h-2 h-3
F l(k) = k +ah-2Nk +ah_3 k

= 0
+ . . + ak+ aOf(

Ad 0

for k= 1, 2, ... , h-1

for k = h

6, (IV- 7. 2, 4)

Now, consider the last determinant in Eq. 2, (IV- 7. 2, 4).

and addition of columns we obtain

By simple multiplication

h-i h-2
P 1 [i 1 . . .

h-i h-2
[L2 PZ ..

h-1
"lh

1

1

h-2
Ph

h-2
-[ ... 1

h-2
P-2 ... 1

h-2

0 h- 2 1

Ph- ... 1

0Fl h-2
Fl(ph) P-h .. 1

h-Z

F 1(1 ) 12'''F ([Z) [Z ...

1

1

1

h-2
F () h

= (-1)

h-2 h-3
P-1 P-1 .

1

h-2 h-3
-2 P2

h-2 h-3
h- 1 h- 

7, (IV-7. 2, 4)

where Fl(ph) 0 because of Eq. 6, (IV-7. 2, 4).

We will now expand, in a similar way, the last determinant

Take the set of quantities

1 ' -Z * ' h- 2

in Eq. 7, (IV- 7. 2, 4).

8, (IV- 7. 2, 4)

Here we also omit n -1 Let us form the symmetric functions associated with the set

8, (IV-7. 2, 4). One gets
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bhZ 

bh- 3 = (- 1)2 (1P2 + ' + 1'l'h-2

+ . . . +

+ Fh-3Ph-2)

bh 4 = (- 1) 3 (1 g 2 F 3 + ... + F'l2zlh-2 +

+ ... + Fh-4Ph-3'h-2)

( h -2(-1)- '1 2F3 ' * h-Z

9, (IV-7. 2, 4)

Let us form a polynomial of h-2 degree, whose coefficients are the symmetric functions

above

F2( ) h-2 h -3
F2(L) =B + bh-3 ~1 + ... + bl, + b 0 10, (IV- 7. 2, 4)

The quantities >Lj, p 2- '' h-2 are, by construction, roots of the polynomial above.

But k- 1 is not a root of such a polynomial. Consequently,

Fz(k) = + bh3 + ... + bl'k + b0

0;

k= 1, 2, ... ,

k= h-1

h-2

11, (IV- 7. 2, 4)

By a similar operation of multiplication of columns by the set of symmetric functions

9, (IV-7. 2, 4) and appropriate addition of columns, one obtains

h-2 h-3
'1 I'l ...

h-2 h-3
1t2 112 ...

1

1

h-2 h-3
F'h-1 'h- 1

= () h - 2 F 2(Ph 1 )

h-3 h-4
'I1 l1 . .

h-3 h-4
F2 112 ...

h-3 h-4
F'h-2 h-2 '''

1

1

1

12, (IV-7. 2, 4)

Now, we can repeat the procedure once more to expand the last determinant in

Eq. 12, (IV-7. 2, 4). We form here the set of symmetric functions with the numbers

''* * h-3 13, (IV-7. 2, 4)

Let us call the symmetric functions
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Ch_3 = 1 
h-3

Ch_4 = (-1) ( + + 3 +''' + h-3 )

c = ( 1) h-3 1
= (- F'1 92 3 ... h-3h

14, (IV-7. 2, 4)

We then form the polynomial of h-3 degree

F () = h- 3 + c h-4
F3() = p + Ch_4BJ + ... + ClF + C0 15, (IV- 7. 2, 4)

F ( = h-3 + h-4
F3(P') = k +Ch-4g'k + ... + ClF k + Co

k= 1, 2, ... , h-3

k = h-2
16, (IV-7. 2, 4)

from which we obtain

h-3 h-4
B1 B1

h-3 h-4
gF2 P2 ...

h-3
Nh- 2

h-4
%h-2 ..

1

1

= (1) h - 3 F 3 (1'h 2 )

h-4 h-5
F'1 Vt1

. 1

h-4 h-5
F'2 F2

h-4
Fh-3

h-5
F'h- 3

17, (IV-7. 2, 4)

The same process of expansion can be used with the last determinant of Eq. 17,(IV-7.2,4),

resulting in successive new determinants. The process will terminate with the expan-

sion of a second-order determinant

12 1

18, (IV- 7. 2, 4)

To be consistent we will use the same method used in handling the last determinant.

Here, the symmetric functions have to be formed only by the quantity F'1. The symmetric

functions are 1 and -l1'

The resulting polynomial is

Fh(') = F - L1

Hence

F'1 1

= (-1)(z - F'1 )
~z 

The determinant of Eq. 2, (IV-7. 2, 4) can therefore be expanded as

= ( 1 )h(h1/ 2 ' Ilh F (h) F 2 (h_ 1) ... Fh(d'l) 19,(IV-7.2,4)
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Now, since

'k 0, k = 1, 2, .. ., h

(See Fig. 1, (IV-7. 2, 2)) and every factor

Fl(oh ), r, w Fh(al )

is, by construction, different from zero, we finally conclude that

A 0 20, (IV- 7. 2, 4)

which was to be proved.

Hence, the property: No matter how we select the set of intermediate points of inter-
e e e

polation, say x1, X2 .. m, X the system 5, (IV-7. Z, 3) always has a solution.

IV-7. 2, 5 Determination of the unknown quantities qm 1l qm2' .' . ql1 ' Explicit solu-

tions for the unknown quantities ql, . . qm- 1' Eq. 5, (IV-7.2, 3) or Eq. , (IV-7.2, 4),

can easily be obtained.

We will consider the solution of the system of Eq. 1, (IV-7. 2, 4) instead of that

of Eq. 5, (IV-7. 2, 3) because of its simpler notation. The procedure of solution of

1, (IV-7. 2, 4) will be facilitated if we exchange this system for an equivalent one whose

coefficient matrix is the transposed matrix of Eq. 1, (IV-7. 2, 4). The transposition is

performed by means of a linear transformation. Several steps are required in the solu-

tion of the system 1, (IV-7. 2, 4) for the unknowns ql, q2 ' . . qh' We will denote, for

convenience, each step by means of a Roman numeral.

I. Auxiliary matrix to obtain the transposed system.

Let

B = [bg, k] =

b1, 1 bl, Z ' b, h

b2, 1 b2, 2 '''. bz, h

b bh, 1 h, ... bh, h

1, (IV-7. 2, 5)

The elements of this matrix are going to be determined.

II. The auxiliary system for bg k'

Let us multiply the first equation of 1, (IV-7. 2, 4) by b k'

bz, k' and so on. Let us then add these equations. One gets

the second equation by

h h

ygbg, k qh gbg,I ga~~~~l gb k + qh-l 
g= 1

k ~( Eg bg,k)
g= 1

l bg k) + .

h
g lg, k)

g= I

Z, (IV-7. 2, 5)
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The coefficients bg k g = 1, 2, ... , h; k = integer, will be determined by the

following conditions: (a) All the coefficients of qh' qhl . . ' qk- 1 qk+l' . .. q must

be zero in Eq. 2, (IV-7. 2, 5). (b) The coefficient of qk must be equal to one.

That is

h

0 i hbg k
g= 1

h

ig -lbg, k
g=l

h

g bg, k

g=l

h

E Bgbg, k
g=l

3, (IV-7. 2, 5)

The system of equations 3, (IV-7. 2, 5) is potentially sufficient to determine the h

unknowns b1 k' b2 , k . bh k' provided the determinant of the coefficients is different

from zero. The two following properties of 3, (IV-7. 2, 5) can be seen at once.

1. The system determinant of 3, (IV-7. 2, 5) is exactly equal to the determinant A of

the original system 1, (IV-7. 2, 4). Hence, system 3, (IV-7. 2, 5) has a nonzero unique

solution for the unknowns b , k'b k' .' . bh, k

2. The coefficient matrix in Eq. 3, (IV-7. 2, 5) is equal to the transposed matrix of

the original system 1, (IV- 7. 2, 4).

Now, Eq. 2, (IV-7. 2, 5) renders directly the value of the unknown qk by virtue of con-

ditions (a) and (b).

Hence

h

qk = Ygbgk 4, (IV-7. 2,5)

g=1

Consequently, we have transferred our main problem to the problem of solving the

system 3, (IV-7. 2, 5) for blk, bZ, k ... bh, k'

The only reason for forming the auxiliary system 3, (IV-7. 2, 5) is that this auxiliary

system facilitates the required algebraic manipulations.

III. The determinant expression for the unknown quantities bj k k fixed.

The determinant expression for one unknown, say bj, k' is, after a simple cancella-

tion of common factors, given by
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h-I h-1 h-I
II1 ... jI 0 j+l

h-I
· ' ° h

h-2 h-2 h-2 h-2
[[1 ''' [j-1 0 ~j+l ''' h

k-1 k-1 k-i k-i
[1 . . j 1 1 [ j+l ... h

P1 ''' [[j-1 0 [[j+l ' ' 'h

1 ... 1 0 1

- fj

h-I h-l h-i h-1
j-1 [[... j j [j+l

h-i
''' Bh

h-2 h-2 h-2 h-2
[1 ''' Pj-1 Fj ILj+l *''

k-i k-l k-l k-l
[L1 ''' [ j-1 j [j+l ''

'I1

1

h-2
h

k-i
1Lh

* . .j-I fLj [j+l

... 1 1 1 1

5, (IV-7. 2, 5)
IV. The symmetric function and auxiliary polynomial.

Consider the set of (h-l) quantities

6, (IV-7. 2, 5)

Note that the quantity Lj. is omitted in this set.

Now, construct the h symmetric functions associated with the set above. They are

Sh-l= 1

Sh-2 = (-1) ( 1

1 Z2
Sh 3 = (-1) ( 1 i

J 3
Sh_4 = (-1) (1

.L2+ + + j +j+ Lj+ + h)

L2 + + l 1 j - + l[j+l + ' + + + l% )

2L3 + '' ' + 111j- + l[[Z[j+l + ' 1 + '' +* h-Z1-lh)

Ll[[[3 X ... X tjl [[j+l X ... h)
S o = (-1) (

7, (IV'- 7. 2, 5)

The upper index j indicates that the quantity [[j has been omitted.

Now, let us introduce a polynomial of (h-l) degree, which is constructed as follows

j =h-i h-2 h-3 h-3 
G() = [. + Sh-2 p +Sh-3 + ... +i 8, (IV-7. 2, 5)

The polynomial in Eq. 8, (IV-7. 2, 5) has, by construction, the property

I= O

G( i )

0

for i = 1, 2 ... , (j-l), (j+l),

9, (IV - 7. 2, 5)

for i = j
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V. The solution for bj k
j, kw

Consider here the determinant expression 5, (IV-7. 2, 5) for b k Now, we multiply

the first line of each determinant in the numerator and denominator by Sh 1' the second

line of both determinants by Sh_2' the third line of both determinants by Sh3' and

so on. The last line of each determinant is thus multiplied by SO.

We then add each resultant line to the first line of each determinant in the numerator

and denominator, and write down the remaining lines to form both determinants. Now,

after canceling obvious factors in the remaining lines of both determinants, one gets

G( ...) G(j_1) Sk-_ G(j+) ... 

h h-2 h-2 h-2
IL I . . Pj. 1 j+ 1 . . . 'h

k-i k-l k-i k-l
... Lj- 1 j+l ...

Pl * * Pj_1 °j 'j + 1h

1 ... 1 0 1 __. 

G( i) *.*.* G(j_1) G(j) G(tj+1) ... G(h)

h h-2 h-2 h-2 h-2
'' .. J_ 1 j j + 1

k-l k-I k-l k-l k-l

L .1 'j j+l ..j j+l h

1 ... 1 1 1 ... 1

10, (IV-7. 2, 5)

Note that every element of the first line in both determinants is equated with zero,

except the term Sk- 1 in the numerator and the term G(pj) in the denominator.

By expanding both determinants by the elements of the first line and canceling out

the common minor determinants, we obtain at once the following simple and elegant

solution for bj k
j, k j

Skl

bj,k iI, (IV-7.2, 5)

An alternative and more useful form is evidently given by

i

j 
12,(IV-7. 2 5)
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VI. The solution for the unknown quantities qi, i = 1, 2, .. ., h.

The h unknown quantities qk, k = 1, 2, ... , h are now obtained at once from

Eqs. 4, (IV-7. 2, 5) and 12, (IV-7.2, 5).

The explicit formula is

h Skl

qk Yj k= 1, 2, ... , h 13, (IV-7. 2, 5)

j=1 pj G(ij)

because the letter with which we designate the finite index of the summation is imma-

terial.

VII. The explicit solution for qk in terms of the notation of the system 5,(IV-7. 2, 3)

is

m-l

(a) qk =

j=l

e 2m) Sk_ 1

)+qm j~.2m) _ __
e ] 

for k = 1, 2, ... , m- 1

?2?2 ?2
A.1 2. .. n

(b) q0 UN(O, 0)

(-l)n

(c) qm = 1)
lir [UN(0, X)] kr

Remarks: It is important to recall that the quantity m - 1 = h, in formula 14,(IV-7.2,5)

and others, represents the number of points of interpolation which are different from

X = O,and X = o-. The total number of points of interpolation, including those at X = 0

and X = , is m+1.

The minimum number of points of interpolation includes at least X = 0 or X = co. This

makes m= 1 a lower bound.

For m = 1, formula 14,(IV-7 .2,5 (a)) has no meaning. We only need to apply formulas

14,(IV-7.2,5 (b) and (c)) to determine q and qm. Examples of the application of formula

14, (IV-7. 2, 5) will be given in a following subsection.

IV-7. 3 Illustrative examples. Before proceeding further with the theoretical aspect

of the approximation of the function U(O, X) by rational functions, it is convenient to

recapitulate the previous part with the help of some simple illustrative examples.

The examples will be divided into two groups. The first group illustrates the appli-

cation of the general theorem on rational transfer functions which was considered in

section IV- 1. The second group illustrates the application of the above interpolation pro-

cedure to some illuminating cases.
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IV-7.3, 1 Group I.

Example I.

Let the density distributionfunction along the imaginary axis, U(0, X), be given as

(x 2 - 1)(x 2_9)
1, (IV-7.3, 1)

0.809Xk4 + 0.0625X 2 + 1.8

(See Fig. 1, (IV-7.3, 1).) The problem is to find F(s).
Following the indications given in section IV-1, one gets

(a) Denominator roots

11, 2 = -0. 03861 il.4905

(b) The Encke roots produce

X1 = -1.229e 4 5

X2 = -1.229e+4 5

(c) The partial fraction coefficients are

A0 = 1.235

A 1 = 6.81 /204 °

A 2 = 6.81 /155.7 °

(d) The transfer function is then

F(s) = 1.235 +
5.56e-il 100

s + 1.229e 4 5

5. 5 6 ei 1 0
+ i4 5

s + 1. 229e i4 5
2, (IV-7. 3, 1)

Example II.

Given

-(x 2 - 1) ( 2 9) (2 _ 25)
U(O, X) = .498 6 4 2

1.498X6 - 25.98k4 + 147.4k2 + 45

(See Fig. 2, (IV-7.3, 1).)

After routine computations one gets

1 = -0.537

X2 = -3. 187ei 7 5

3 = -3.187e
3

3, (IV-7. 3, 1)

K0 = -0. 6675

K2 =

K 3 =

1.8607

5. 09e-i13.82 °
5.09e

5.09e+ i1 3 82

U(O, X) =

K4 =
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ASYMPTOTIC BEHAVIOR

Fig. 1, (IV-7.3, 1)

The graph of U(O, X), Eq. 1, (IV-7. 3, 1).

3.55

Fig. 2, (IV-7. 3, 1)

The graph of U(O, X), Eq. 3, (IV-7. 3, 1).
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From which

3.46 1.595ei 6 1 1 595ei6 12
F(s) = -0.6675 + s + 053 + s + 3. 185e + 7 5

s +t 3. 185e s + 3. 185e~i 5
4, (IV-7. 3, 1)

IV - 7. 3, 2 Group II .

This group of examples is intended to illustrate the use of formulas 14, (IV-7. 2, 5).

We will consider some simple cases. The objective of the examples is to construct a

rational approximant to U(0, X) as described in this and previous sections. Since we

want to illustrate only the manipulation of the formulas we may as well use the two

previous examples as follows.

1. From the function U(O, X), or its graph, we extract:

(a) The set of zero points, say Xk

(b) The set of maximum points, say X.

(c) The values of U(O, 0)

(d) U(0, j) and lim [U(0, ) ].
X-oo

1, (Iv-7. 3, 2)

From these data, and only these data, we will reconstruct the original function

U(0, X) by using the formulas 14, (IV-7.2, 5).

Example III.

Take the density distribution function 1, (IV-7. 3, 1). The data required by expression

1, (IV-7. 3, 2) are

io = e
1 = 1; X2= ; X1 = 1.55

U(O, 0) = 5; U(O, X1 ) = -1.397. U(o, ) m=2U ,). 8 0 9 ;X-oo

A. We have

r = Zm - Zn = 0

h=m-l = 1

Then we have the index

B. Construction of

j = 1, so that the summation reduces to its first term.

P2 (X2 )

P 2 (X2 ) = (-1) 2 ( 2 1) (X2 9)

C. Construction of Q 2(X 2 )

1 2

(a) q - u(o, ) 1.8

(-1)2
(b) q3 = lim = 0. 809

X-oo U(O, X)

-88-

__



e

(c) Computation of Y1 at 1

e

P2(k )

Yl e
U(OX 1 )

e4(q +q2 ) = +
- (qO+ q2 X = +0. 15

1 1
(d) The symmetric function Sh 1 = S0 =

i
(e) G(p 1 ) = 1

Hence we have

1

Yly1
ql = e 2 0. 0625

1

as it should be.

Example IV.

Take the density distribution function, 3, (IV-7. 3, 1), of example II.

The data required in 1, (IV-7. 3, 2) are

m= 3; n= 3

o o = e

I ' 2 ' 3 3 = 5; ' 1 = Z. 12,
e
X = 3.55

U(o, 0) = 5; U(O, X1 ) = -1.015; U(0, X2) = 0.675

U(O, X)x. --- 0.6675

The following results are obtained in order:

A. r = 2m - 2n = 0; h=m-1 = 2; hence j = 1, 2

B. Construction of Pn(X2 )

P 3 (X2) = _(X2 _ 1) (X2 _ 9) (X2 _ 25)

C. Construction of Qm(X2 )

02 02 2
()1 2 13 4

(a) qO = U(o 0) 

(b) q3 = 1.498

(c) Y1 = 137.5;

1

(d) S1

Y2 = -2249

1
= 1, SO = -12.5;

2 2

S - 1, S 0 - -4. 5
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(e) G(1 L) -8.1(e) G(1.t) = -8.1
2

G(p.2 ) = +8. 1

1 2

S S 
q = Yl e + Y 2 e2 = 147.4

q2 = = -25.9

Hence we have

Q3 (X2 ) = 1.498k 6 _ 25. 9X 4 + 147.4X2 + 45

as it should be.

Example V.

This example is intended to illustrate one case in which the possible number of
extremal points obtains the lower bound described in the beginning of subsection
(IV-7. 1, 3).

The selected density distribution function is

U(O, ) = 1 
1 +X

2, (IV-7. 3, 2)

The graph of this function is represented in Fig. 1, (IV-7. 3, 2).

n=I
m=3 o I
h=2 ' = -
r=4

Fig. 1, (IV-7. 3, 2)

The graph of U(O, X), Eq. 2, (IV-7. 3, 2).

e
In this case h = 2 and hence j = 1,2. However, we have one extremal point at = 1.1

at our disposal. By direct computation we find at once that

P1 (X)= -1(X 2
- 1)

1 1
q 0 2 q3 =2

This example was worked out by Mr. N. DeClaris.
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0

-I

, .08185

'-1.3776

Fig. 2, (IV-7.3, 2)

The graph of U(0, X), Eq. 4, (IV-7. 3, 2) .

In order to show that ql and q2 are both zero, independently of the points we choose

for interpolation, one will observe that Y1 - 0 and Y2 - 0. Hence, the interpolation

formulas 14, (IV-7.2, 5) still are potentially sufficient for determining the rational

function approximation.

Example VI.

As a final example let us select a transfer function having its 5 poles and 4 zeros

distributed in the complex plane in a transmission-like manner.

F(s) = (s 2 2s + 2) (s 2 - 2s + 10) 3,(IV7.3, 2)

(s+l) (s + s + 5)(s + Zs + 17)

The real part is

X8 - 32.667X 6 + 282.33X4 - 650.67X2 + 188.89
U(O, ) =0 8 6 4 2 

0.02614X - 0.9150X + 11.974X6 52.026X + 123.95X + 188.89

4, (IV-7. 3, 2)

See Fig. 2, (IV-7. 3, 2).

Following the procedure indicated above, we get:

2
m = 5, n = 4, r = m - Zn = 2, h= 4. X = 

zeros: 1 = 0.338 zeros: .3 = 8.912

= 3.085 20. 335
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extremal points:
e

L'I = 1.5 U(o, 1) = -0.87515

U(o, 2) = 1.08185

U(oj, 3 ) = -1.3776

U(O,4) 

A. Construction of P4 (0A)

P4([) = ( - 0.338) ( - 3.085) ( - 8.912) ( - 20. 335)

B. Construction of Q5 (ip)

(a)
0.338 3.085 8.912 20.335 

1 188.97

(b) q5 = ( 3 1 ) = 0.02614

(38.25 

(c) Y1 =

Y2 =

104.71

262.79

Y3 = -11652

Y4 = -660614

(d) Symmetric functions

1

S
2

S
3

S

-2538.25 -692.25 -268.125

718.35 531.55 235.75

-52.2

1

-48.2

1

-39.5

1

Coefficient values obtained

Coefficients Exact Values Approximate Values

Difference

188.89

123.95

-52.026

11.974

-0.9150

0.02614

188.96

123.88

-51.995

11.966

-0.9147

0.02614

+0.07

-0.07

-0.031

-0.008

-0.0003

e
L2 = 5.5

e

L3 = 14.2

e

4 = 32.5 0.9446

So

SO

S2

S3

(e)

4

S

-117.15

107.65

-21.2

1

Errors

q5

+0.037

-0.057

-0.060

-0.067

-0.033
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IV-7. 4 Concluding remarks. We shall give a brief condensation of the results obtained

in section IV-7. At the same time we shall analyze the standing of the problem of

rational representation of U(O, X) in the light of these results.

The discussion will reveal that the analysis carried on in section IV-7 does not com-

pletely cover the solution of the problem of rationalization. Specifically, the limitations

of the analysis are mainly concerned with the analytical character of the polynomial

Qm( 2), which is obtained by the process of interpolation already described.

The complete clarification of the problem of rational representation of U(O, \) will

be carried on in the last section, IV-9. The starting point of the discussion of section

IV-9 is the set of conclusions at which we are arriving in this subsection, IV-7.4. The

material presented in the next section, IV-8, will produce some results that are needed

in the clarification of the question of tolerances.

IV-7. 4, 1 Let us start the discussion by reviewing the examples of the last subsection.

All of these examples show that it is possible to construct both U(O, X) and F(s) from the

given data required by the expression 1, (IV-7. 3, 2). By inspecting these examples we

note that in all cases we have selected functions which originally were rational and which

satisfy the conditions of network realizability.

Now a question still open is the following: If we have given an arbitrary set of quan-

tities and points for the data required by 1, (IV-7. 3, 2) and construct from them the

rational approximation in accordance with the method described in section IV-7, what

can we say about the realizability of the rational functions obtained?

We shall now illustrate the possibilities of a failure. Figure 2, (IV-7. 2, 1) shows

that the function

Pn(X2)
UN(O, X)

1, (IV-7.4, 1)

from which the polynomial Qm(X 2 ) was constructed, is necessarily a positive nonzero

function of X . The polynomial Qm(X ) is constructed by a process of interpolation

through the points corresponding to the extremal values of UN(O, X).

By the process of interpolation described in

subsection IV-7.2, 5 we can be sure that the

INTERPOLATION as / graph of Qm(X2 ) coincides with 1, (IV-7.4, 1) at

___ / the points of interpolation. Nothing else, how-

(o/ ) / \\ Ad Qm(Xh ever, can be said about the behavior of Qm(X )

for other points. Some possible ways in which

\ \ / " '®, - ( ) may run are indicated in Fig. 1,(IV-7.4, ).

0o `' x1 X2"r X3 X4 .----- Xn It can be seen at once that if Qm(X2 ) has the

graph indicated as curve 1 in the figure, then

Fig. 1, (IV 7. 4, 1) such a polynomial may be quite acceptable,

The function 1, (IV-7. 4, 1) and provided the magnitude of the oscillations around
possible behaviors of Qm( 2 ). Pn(X2 )/UN(0, X) are small enough. On the other
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hand, curve 2 must be repudiated because it implies a considerable distortion of the

envelope of the function U(O, X) with the corresponding serious distortion of the time

pulse, which is the origin of U(O, X). In the case in which Qm(k2 ) crosses the X axis,

the situation becomes still worse because it means that the rational approximation of

U(O, X) has one or several poles along the X axis. Such poles are, as was shown in

section IV-2, also poles of F(s). Since these poles are situated along the imaginary

axis, the corresponding time response possesses periodic components which are not at

all present in the original pulse. Thus this condition is not acceptable for the problem

in question. Consequently the process of interpolation fails in such cases to produce

constructive solutions for Qm(X2 ).

IV-7. 4, 2 The failure described above is not intrinsic to the process of interpolation

itself. The examples with rational functions presented above indicate that it may produce

completely correct solutions. Let us then trace the cause of possible failures.

The fundamental cause of failure resides in the selection of the data required by

1, (IV-7. 3, 2). An arbitrary selection is, in general, not potentially sufficient for deter-

mining a polynomial Qm(X2 ) which approaches Pn(X2)/UN(O, X) with minor oscillations,

as in curve 1, Fig. 1, (IV-7.4, 1). The correct determination of the degrees of the poly-

nomials Pn(X 2 ) and Qm(X2 ), particularly the latter one, are of primary importance for

the solution of the problem in question.

The criterion we need for fixing the degree of Pn(X 2) rests on the number of zeros

of the syncopated function UN(O, X). The degree of Qm(X2 ) is determined by the number

of maxima and minima of UN(O, X) and its behavior when X-oo.

The selection of the extremal points was used because of its correlation to the

number of poles of UN(O, X). In subsection IV-7. 1, 3 we have established certain bounds

relating the number of poles to the number of extremal points of UN(O, X). The criterion

for establishing such bounds and particularly the actual number of poles needed in

UN(O, X) requires, however, more information in the s plane than is obtained from a

set of isolated points along the imaginary axis.

Section IV-9 is devoted to the correct establishment of all of these questions.

Besides, it introduces a set of important theorems which provide a more rigorous

approach to the study of the analytical character of UN(O, X).
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Section IV-8

The Removal of a Lobe of UN(0, X) and Its Effect

on the Tolerance. Ringing.

The time response associated with a lobe. The effect of the suppression of consecutive
lobes of UN(0, X). Ringing.

IV-8. 0 Introduction. The rational approximation of the density distribution function

U(O, X) requires the syncopation of this function by the removal of its last part, starting

from a prescribed zero of the envelope function a(O, X). In section IV-6 we have com-

puted the error which is committed by this syncopation. On the basis of the bounds for

this error we have established a relation between the tolerance and the number of zeros

of the remaining envelope function a(0, X). In other words, for a prescribed tolerance

we can find the zero point of a(O, X) at which the cutting must take place.

The process of syncopation of U(O, X) produces the function UN(0, X), where N

indicates the last number of the zero ordinate that we must preserve in order to remain

inside the prescribed tolerance.

In this section, IV-8, we are confronted with a new and important question. Its state-

ment is as follows:

Consider the function UN(0, X). Suppose that we remove one of its lobes. By lobe we

mean a half-cycle of oscillation, leaving a function as is illustrated in Figs. 1, (IV-8. 0)

and 2, (IV-8. 0).

Now, we are going to show that by the removal of such a lobe the remaining density

distribution function

.UN(0' X) - L(n, )}

produces a time response which is necessarily outside the prescribed tolerances.

Since we are primarily interested in the computation of the bounds of the error com-

mitted by the removal of a lobe, say the nth one, we shall introduce some approximations

that will simplify the computations.

IV-8. 1 The time response associated with a lobe. We shall now compute the error

committed by the suppression of the nth lobe. The notation of sections IV-3 and IV-4

will be used.

Let f(t) be the time function which represents the original pulse. Let t o be the delay

and 26 be the pulsewidth. The error committed in the time domain is given by

2
en(t) = - L(n, ) cos Xt d 1, (IV-8. 1)n0
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a(O,X)

N=2

Fig. 1, (IV-8.0)

The function UN(O, X) with
a lobe removed.

Fig. 2, (IV-8.0)

The function L(n, X) representing
the removed nth lobe.

This error can be expressed directly in terms of the function U(O, X) and f(t) because

f(t) = 
20

U(O, X) cos Xt dX

The contribution to this last integral between Xn and Xn+l is also equal

Hence
fX+l

En(t) =2

n

U(O, X) cos Xt dX

to the error.

2, (IV-8. 1)

We shall also use the basic expression

6"

U(0, X) = 2 cos Xto f0 f(x) cos x dx

= a(O, X) cos Xto

The starting point in evaluating the error is to

U(O, X). The zeros of U(O, ) originating from cos Xto,

find the positions of the zeros of

see Eq. 3, (IV-8. 1), are given by

Xnto + n; n = O, 1, 2, .no 2 4, (IV-8. 1)

Hence, the nth lobe is placed between Xn and Xn+ .

Let us introduce a new variable defined by

Xto =(n+l) rr + y 5, (IV-8. 1)

See Fig. 2, (IV-8. O0). Combining 2, (IV-8. 1) and 3, (IV-8. .1) with 5, (IV-8. 1), we obtain

the following expression for the error:
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Xn+l
En(t) -4 n + l

n

cos t o) cos Xt° f(x) cos (to dx dX

cos to cos Xto
5f/ to

f(x) cos (Xto x )d d(Xt o )
E d

coS to [(n+1) + y]} cos [(n+l)lrr + y I { f(u) cos [(n+l)l + y] u du}

6, (IV-8. 1)

where

x

t

Let us now consider the integral

I /t 0

11 =
1

f(u) cos [(n+l)i + y]u du

This integral depends, of course, on the particular shape of the pulse. Since we are

only interested in a bound of n(t), it is convenient to evaluate this integral in an

approximate way, preferably independent of the actual pulse shape. This can easily be

done in the case in which 6/t o , the ratio of the pulsewidth to its delay, is small. We

are particularly interested in such cases. We may assume, then, that f(u) suffers small

changes in the interval 0 < u < 6/t o . From the discussion of sections IV-4 and IV-5 we

know that we can set f(u) = f(u)u= 0 for the interval 0 to 6/t o .

I 1 f(t o )

since

sin [(n+ 1)- + y] t-
0

7, (IV - 8. 1)(n+l)rr + y

f(U)u=o = f(U)x 0= = f(t o )

The expression 6, (IV-8. 1) now takes the form
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Cost [(n+l) Tr + y} cos [(n+l) +y]
+/2

sin [(n+l)rr + y] t

(n+l)a +y dy

+'rr/2

/2
[(n+l)r + Y]}cos y

sin [n+l) Tr ]+6 y cos n+1) 1T

x (n o] ody
(n+l1) T

8, (IV-8. 1)

since 6/to is small and (n+l) r >> y; -Tr/2 < y < rT/2.

By elementary trigonometric manipulation and the cancellation of terms containing

odd integrand functions one gets

4 f(t 0 ) n (-1) n+ l)l +Tr/2
En (t) (n+l) os) 2 f

y sin (
0

cos t) cos y dy

cos y dy}

From a table of integrals one gets

cos t ) cos y dy =

sin (t )

t - 1
t

o

- sint + IT
2 2

t-+1
t
0

sin ( ) 
0Tt~

y sin Y) cos y dy =

COS Ftt )
0

sin tt+ )T] ( + I) cos + I) ]

+to 2

0t +
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In order to express the error in

introduce the functions

terms of the envelope of the oscillation we shall

( ° )

qn(t) = sin

Yn (t) = cos

si

+ -

t I
t
o

sin I(t + 1 1

- . I L - J
0

) COS

sin i(t ) (t o
L . I --1 , --- - 0 

Z3-)i t +1)2f Cos
tJ 

( r0

[t 0
1) :g~

2

0 I
t 4n(t )tn

tan ~n- n(t)n

9, (IV-8. 1)

Using these functions we finally get the following expression for the relative error:

En(t)

fo ( t )

4 ( 1)n+l

Tr (n+l) r

4 (1 )n+ l

4 (n+1) rr

b(t ) os (n+l)Tr - O /(t ) sin t (n+l) 

10, (IV-8. 1)

4bn2(t) + (to) 'ng(t) cos [(n+1)r t + n]
n n~~~~~~~

o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.

and

] fo(t) n l r (t) + t6 2 (t )
0M

IV-8.2 The effect of the suppression of consecutive lobes. Our next concern is

to observe the time response of a density distribution function of the shape indicated in

Fig. 1, (IV-8. 0). A graphical illustration will well serve our main objective.

We are going to remove, in succession, the lobes at n = 0, 1, 2, ... In

particular, the index values n = 0, 1, 3, 5, 7, 15 have been chosen as suggestive examples.
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Let us take a pulse of aperture 26 = 0.2, delayed the normalized time interval,

to = 1. Hence
o

6- = 0.1t 1, (IV-8. 2)

Eq. 9,(IV-8.1)

Consequently,

shows that the functions Opn(t) and n(t) have the same order of magnitude.

for /to = 0. 1, the term (n(t) 6/to) can be neglected. Hence, we can set

En(t) 4 ( 1 )n+l t 

fo(t) r (n+l)r 4n tco

Figures 1, (IV-8. 2),

2, (IV-8. 2)

2, (IV-8. 2) and 3, (IV-8. 2) show the graph of the functions

sin [(t- I) ] sin [(t+ ) 2]

-+ 3, (IV-8. 2)(t + t 
2 ~~~~~2

sin [(n+l)t 16

2 (n+l) rT 4, (IV -8. 2)

and the envelope

5, (IV-8. 2)T(n+l) in(t)
for the selected values of n.

Figure 4, (IV-8. 2) shows graphically the effect of the removal of successive lobes

from the function UN(O, X). The original pulse, which is represented by dashed lines,

serves as a reference. The solid line represents the time response of the syncopated

UN(0, X) function. Analytically, the original pulse has the representation

f(t) = 2 U(O, X) cos Xt dX

while the response corresponding to the syncopated function corresponds to

f(t) - En(t) = 2 [U(O, X) - L(n, \)] cos Xt dX

IV-8. 3 The effect of the suppression of one single lobe. The curves of Fig. 4,(IV-8. 2)

have an important theoretical significance. Their practical value is perhaps rather

unimportant, except in their interpretation in connection with the so-called ringin'g

effect. In this subsection we shall concentrate on the theoretical significance of the

curves in the problem of rational approximation of a density distribution function U(O,X).
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n =o

PULSE

(a)

n =3

(c)

1.0 -'

0.9

0.8-

0.7

0.6

0.5

0.4

0.3

0.2 /

0.1 0-1 0.3 0.5 0.7 0.9 1.0 i 1.5 1.6

.. --- _ --- _____ __ ----

(e)

0.9- 

0.8 -

0.7

0.6-

05- 

0.4- 

0.3 -

0.2 -=5 - \

0.I

0.
0.1 0.3 0.5 0.7 09 1.0 . 1 1.3 1.5

(d)10 fln50.7

0.5

0.4

Cd)

1.2

1.I - n= 15

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3J-

0.2-

0.1- 0.1 0.3 0.5 0.7 0.9 10 . 1.3 1.5

…oF7'¥- 7' - --l~-rt-,- t-..t -, -- -- t--1

(f)

Fig. 4, (IV-8. 2)

Effect of the removal of a lobe of UN(O, X) in the transmission of pulses.
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The different graphs in Fig. 4, (IV-8. 2) show the strong effect of the "main" lobes

of U(O, \) in the transmission of pulses. The omission of one of the lobes produces a

strong oscillation of relatively large amplitude. The oscillation appears at the expense

of the energy of the pulse, as is quite lucidly shown by the figures. In other words, the

removal of a main lobe tends to spread out the pulse for all values of t, particularly in

the interval 0 < t < to , which corresponds to the delay of the original pulse.

The strong effect on the tolerance of the suppression of a lobe is self-explanatory

from the last set of figures. For, suppose we have selected a tolerance for the trans-

mission of a pulse in the sense indicated in sections IV-1 and IV-6. This tolerance

determines a number N, which is equal to the number of zeros in the first group of

zeros of the envelope function a(0, X). With N we fix UN(O, X), which is the part of

U(O, X) which must be preserved in order for the response to stay within the prescribed

tolerance.

Now, the curves in Fig. 4, (IV-8. 2) show clearly that the suppression of the lobe of

UN(0, X) is accompanied by the presence of a strong oscillation, "ringing." The smaller

the number n of the suppressed lobe, the greater is the oscillation which appears in the

time domain. This oscillation has a large amplitude, which is capable of overpassing

the original tolerance lines. Therefore, the solution would be inacceptable as far as

the tolerance goes.

The results given above indicate that:

(a) It is basically important to keep the whole UN(O, X).

(b) The lobes of UN(0, X) are basically important. (That is why they are sometimes

referred to as "main" lobes.)

(c) The rational approximation of UN(O, X) by UN, R(O' X) must be such that it pre-

serves all points of maxima and minima of UN(O, X).

IV-8. 3, 1 Note on the least number of network elements. Conclusion (c) is of funda-

mental importance in the question concerning the "least" number of network elements

which is required to transmit a given pulse within a prescribed tolerance.

In the first part of section IV-7 we presented heuristic reasoning which shows the

connection between the poles of the required transfer function associated with UN, R(0,X)

and the number of extremal points of UN(0, X).

This relation was not, however, established as a one-to-one correspondence. We

have only established certain bounds for the required number of poles. We have also

shown the possibility of determining a rational approximation of UN(O, X) based on its

set of zeros and its sets of extremal points.

A more accurate estimation of the "minimum" number of required elements for a

given tolerance will be given in section IV-9. There we shall bring together the lower

and upper bounds discussed in section IV-7; and in doing so, the minimum number will

be found. The mathematical procedure followed in section IV-9 is straightforward and

does not use the methods and results which were obtained in section IV-7. However,
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the mathematical ideas and results of section IV-9, although complete by themselves,

are difficult to interpret and evaluate without the results of section IV-7.

IV-8. 4 Ringing. Introduction. We shall now turn our attention to a problem of practi-

cal importance. The results of the previous subsections have thrown a certain light on

the understanding of the so-called ringing effect. By "ringing" we shall understand the

presence of small or large undesired time oscillations which may appear as part of the

response. The ringing tends to be almost ubiquitous in the transmission of impulses

and it also appears at sharp discontinuities in the transmitted signal.

We have to distinguish between two main sources of ringing:

(a) It appears as a result of a mathematical phenomenon of convergence which

usually is inherent in a certain synthesis procedure. One example is the ringing pro-

duced at the points of sharp discontinuity of the time function. It is typical for almost

all direct mean-square methods ("Gibbs phenomenon").

(b) It appears as a result of the presence of spurious humps in the function UN R(0,X).

There may exist, of course, other sources of ringing. In this subsection, IV-8.4,

we shall present a heuristic study of ringing belonging to this class (b). Ringing as a

convergence phenomenon at sharp discontinuities has been considered in references 7

and 8.

IV-8.4, 1 The difference function D(O, X). For simplicity in the explanation we are going

to assume that the function U(O, X) has a slow average behavior. The case of fast oscil-

lations of U(O, X) has already been treated in a previous subsection, where the transient

response of a single lobe was found.

Let us assume that a density distribution function U(O, X) is given, as indicated in

Fig. 1, (IV-8.4, 1), curve a. In the rational approximation UR(0, X) of U(O, X), humps

may often appear. They correspond to the deviation between U(O, X) and UR(O, X).

j X . a ro--D

_ X , I I ' £ V ______
0.YI i x

i~~~~~~~

I I

i I PLY ° X~~~~~~~r-- X

i~
I I 

0o

o
,o

5s
P

Fig. 1, (IV-8.4, 1) Fig. 2, (IV-8.4, 1)

The appearance of humps in the The difference function D(O, X).
rational approximation of U(O,X),
UR(O, X).
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Let us introduce the notation

D(O, ) = U(o, X) - UR(0, X) 1, (IV-8.4, 1)

This function is indicated in Fig. 2, (IV-8.4, 1). The difference in the time responses

obtained by applying a unit impulse to system functions generated by U(O, X) and UR(O, X)

is given by
k=n

6(t) = j, j+l(t) 2, (IV V-8.4, 1)

k=O

where n is the number of humps and

j (t) =)2 aj+l D(O, ) cos Xt dX 3, (IV-8.4, 1)

aj

The following discussion has two objectives:

(a) the approximate evaluation of the integral 3, (IV-8.4, 1);

(b) the formal procedure of network correction to avoid the corresponding ringing.

We start with an approximate evaluation of the integral 3, (IV-8.4, 1). For definite-

ness we shall assume n = 3, as in Fig. 2, (IV-8.4, 1). Also, it is convenient to combine

the integrals as follows:

do

63 4(t) = D(O, X) cos Xt dX

a3

and

'4

a2
0, (t)= 2 D(O, X) cos Xt dX

a0

4,(IV-8.4, 1)

IV-8.4, 2 An approximate solution for the ringing originating from one single hump of

D(O, X). Let us consider the first integral in 4, (IV-8.4, 1): An approximate solution

will now be given.

Figure 1, (IV-8.4, 2) shows the part of D(O, X), say D3 4(0, X), between ka and Xa

The vertical scale has been exaggerated intentionally.

Let us decompose the function D3, 4(0, \) into its even and odd parts, denoted respec-

tively by De (O,X) and D 0 (0,k). The following notations will be introduced
3,4 3,4 

X + Xa3 23, 4"4 3

Xa4 - 3X 2 = 1, (IV-8. 4, 2)

3 4 3 
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One gets the solution

3, 4 (t) = M3, 4 (t) cos 3, 4 t - N 3 , 4 (t) sin X3, 4 t

M3 4 (t) + N3 4 (t) cos [3, 4 t + 03, 4 (t)]

where

A

M 4 (t) = 4 f D 3 (0, x) cos xt dx

3, 4 (t) = 3 4

N 4(t) 4 Do (0, x) sin xt dx

tan 3, 4 (t) =

N(t)

M(t)

2, (IV-8. 4, 2)

The integrals for M(t) and N(t) have analytical structures analogous to the integrals

for a (0, X) and p(O, X) in sections IV-2 and IV-4, except for the interchange of t and X

and the factor (2/Tr). Hence, the application of the heuristic procedures and methods of

section IV-4, enables us to find the values of the envelope components M(t) and N(t).

We can, therefore, assume that the solution of the first integral in 4, (IV-8.4, 1) is

completed.

Thus the ringing function 63 4 (t) is the same in shape as the density distribution

function U(0, X) which corresponds to a time impulse of equal shape D 3 , 4(0, X), except,

of course, for a constant factor and corresponding change of independent variable. When

the hump is symmetric with respect to X3 , 4' the function N(t), as well as 0(t), vanishes.

Then the ringing has an instantaneous oscillation of M(t) amplitude and constant fre-

quency.

+ 
a -

I I

// ~OOD COMPONENT

/ \/ \\

"~ -_-I .. -- "-p- EVEN
\ / COMPONENT

'/ I

xa

Fig. 1,(IV-8.4, 2)

The function D 3, 4(0, X) and its

even and odd components.

Fig. 1, (IV-8. 4, 3)

The function D, z((0, X) and its

even and odd components.
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IV-8.4, 3 An approximate solution for the ringing originating from two consecutive

humps of D(0, X). Let us now consider the second integral in 4, (IV-8. 4, 1). Figure

1,(IV-8.4, 3) shows the part of D(O,X), say D 0 2(0,X), between ka and ka . The verti-

cal scale has intentionally been exaggerated. The function D 0 2(0, \) contains two humps

of opposite signs. The objective of this subsection is to obtain an approximate solution

for the corresponding ringing.

Let us decompose the function Do0 2(0, X) in its even and odd components, say

De (0, X) and D (0, X).
0,2 ° 0, 2
The following notations will be introduced

X + X 2x 2ag a 0, 2

k - k = 2 1, (IV-8.4, 3)
a 2 a 0

0, 2 =

Once we make the decomposition of the double hump into its odd and even components,

the solution of the second integral 4,(IV-8.4, 1) becomes the same as 2, (IV-8.4, 2),

except for the notations. Hence

60, 2 (t)= M, 2 (t) cos X, 2t - N0, 2 (t) sin 0, 2t

2, (IV - 8. 4, 3)

= /M 2 (t) + No Z(t) cos [X, t + O2
2 (t)]

where the values of M 0 , 2' N0, 2 and 00, 2 are the same as those in 2, (IV-8. 4, 2), except

for the notations.

Similarly as in the previous subsection, the values of the envelope components can

easily be obtained by using the heuristic procedures and methods of section IV-4. Con-

sequently, we have obtained formally the solution of the function 2, (IV-8. 4, 3). By the

application of the simple rules of section IV-4 we can find the actual shape of the

envelope functions M0, 2 (t) and No, 2 (t).

IV-8.4, 4 Remarks. A few remarks will be added here concerning the functions

63, 4 (t) and 60, 2 (t).
The response 63, 4 (t) results from an isolated hump. The odd component is small.

Hence, the main effect is produced by the term

M3, 4 (t) cos X3, 4t

The function M 3 4 (t) has a maximum value at t = 0. It changes slowly and its behavior

can easily be predicted from the heuristic methods of section IV-4.

The response 60, 2 combines in one the effect of two consecutive humps. Since the

even component is small for the shape used in Fig. 1, (IV-8. 4, 3), the main effect is
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produced by the term

-No, 2 (t) singX0, 2 t

The function N(t) is zero at t = 0, but attains a maximum between to and its first zero.

The general behavior of No, 2 (t) can easily be predicted from the heuristic methods of

section IV-4.

IV-8. 5 Ringing suppression. Lattice structures. This last subsection of section

IV-8 is concerned with the formal aspect of the problem of the suppression of undesired

ringing, which is due to humps in the density distribution function.

The method of correction is based on the additive property of the density distribution

function and on its lattice realization.

Let us assume that we have a certain density distribution function which is equal to

the algebraic sum of several components. This relationship can be written

k=N

U(O, X) = Z Uk(O,X)

k= 1

1, (IV-8. 5)

We shall show that we can construct a four-terminal lattice structure in which the net-

work elements generated by each component are individually represented.

Consider the kth density distribution function Uk(O, X). Decompose it in its nonnega-

tive and nonpositive components, U(+)(O, X) and U( )(O, X), as is indicated in the basic

theorems given in references 1 and 9.

The lattice elements corresponding to each index k are given respectively by

(1), k(S ) = T

Z(z) k(S) = s

. 0 d P)(X)
2 2+ 2

c d4()(k)

s 2 + 2

2, (IV-8. 5)

(+)(X) = U(+)(o, X) dX

(k-(X) = Uk-)(O, X) dX
-r* v~~~~~

3, (Iv-8. 5)

Due to the additive property of the density distribution function we obtain the structure

shown in Fig. 1, (IV-8. 5). This lattice structure is equivalent to the one formed with

the complete components U(+)(O, X) and U(-)(O, X).
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Z(2),1 Z(2 ,2 Z{2),k Z(2),N
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z(),2 II

{} -------------

Z:2),l . -- Z (2),N

Fig. 1, (IV-8. 5)

Lattice structure showing the individual components.

IV-8. 5, 1 The procedure for suppressing ringing. The suppression of undesired ringing

of the hump type follows immediately from the last results. Let us assume that we want

to realize a lattice network corresponding to a given density distribution function, as, for

instance, U(O, X), shown by the solid curve in Fig. 1, (IV-8.4, 1).

Suppose that in the process of rational approximation we obtain for UR(O,X) the dotted

curve in the same figure. The humps which produce some spurious ringing are shown.

If we want to suppress the ringing we take the difference between the two curves, as

shown in Fig. 2, (IV-8.4, 1). By reversing the sign of this last graph and by separating

the nonnegative and the nonpositive components we can find the corresponding imped-

ances which will correct the lattice structure associated with the function UR(O, X).

S
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Section IV-9

Rational Approximants to Transfer Functions

Obtained by a Nonlinear Process of Summability.

Absolute monotonic components associated with a transfer function. Power series
expansion of Heaviside type. Kronecker theorems. Analytic continuation of F(cr). Non-
linear summability and Pade tables.

IV-9.0 Introduction. In this section, we shall continue with the discussion of the

rational approximation and character of transfer functions, particularly of those associ-

ated with the transmission of impulses.

There are three main objectives of this section:

A. The establishment of a set of additional theorems that can serve as criteria for

testing whether a transfer function, when it is expressed by its integral representation,

is or is not a rational function;

B. The application of these theorems and other results to the rational approxima-

tion of a given transfer function;

C. Further elucidation of the question of "minimum" number of elements.

Section IV-9 is, in fact, a continuation of the study of sections IV-2, IV-7, and IV-8.

The discussion under objective A is an extension of the material presented in section

IV-2. Objectives B and C are extensions of the results of sections IV-7 and IV-8.

IV-9. 0, 1 The positive part of the real axis of the s plane as the contour r. Consist-

ent with the previous study, we shall again base the future discussion on the density dis-

tribution function which characterizes uniquely a given transfer function. As we have

pwviously shown, this density distribution function is equal to the real part of the trans-

fer function taken along a contour line r. The contour r can be chosen in an arbitrary

way in the s plane, except for a set of conditions which have already been given.

In section IV-9 we are interested in density distributionfunctions along the positive

part of the real axis of the s plane. This selection has no particular meaning. It is

used just to facilitate the derivation of the results; not because of any intrinsic property

of this distribution.

IV-9. 0, 2 Mathematical tools used. The main mathematical tools that are used in this

section are:

(a) introduction of absolute monotonic components associated with a transfer func-

tion;

(b) power series expansions of density distribution functions along the positive real

axis of the s plane;

(c) introduction of a nonlinear summability that transforms these power series into
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rational functions. This nonlinear summability contains, as a particular case, Pade

table expansions.

IV-9.0, 3 A summary of section IV-9. The main results of the investigation of this

section can be summarized as follows:

(a) development of "test" theorems which permit us to find whether a given transfer

function, when expressed in integral representations, is or is not a rational function;

(b) methods of "filtering" out the rational part of a transfer function if this rational

part exists;

(c) construction of a sequence of rational approximations of given transfer functions;

(d) proof of the existence of certain "supports" for the rational expansions and their

implications on the question of the minimum number of elements.

IV-9. 1 Complete monotonic components of a transfer function. We have shown in ref-

erences 1 and 2 that if the function

O t<O

f(t) <
0O t>O

is single-valued and bounded in the interval 0 < t < oo, then its Laplace transform F(s)

is necessarily a transfer function.

The well-known integral representation of F(s) is

F(s) = -e f(t) dt 1, (IV-9. 1)

Let us introduce the time density distribution function

T(t) = f(T) dT 2, (IV-9. 1)

Then F(s) can be expressed by the Stieltjes integral

F(s) = e s t dT(t) 3, (IV-9. 1)

as was shown in references 1 and 2.

If we consider the function F(s) along the positive real axis of the s plane, s = a,

we have

F() = e- t dT(t) 4, (IV-9. 1)

Since this integral is real, we have

F(r) = Real F(s)] s=r 5, (IV-9. 1)
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Consequently, the integral 4, (IV-9. 1) produces the density distribution function of F(s)

when attains the limiting position along the positive real axis.

IV-9. 1, 1 The function f(t). In general, f(t) may take positive and negative values when

t varies in the interval 0 < t < o. Let us construct the nonnegative functions

f(t) when f(t) > 0

0 when f(t) < 0
1, (IV-9. 1)

-f(t) when f(t) < 

0 when f(t) > 

so that

f(t) = f(+)(t) - f(-)(t) 2, (IV-9.1, 1)

Associated with the above nonnegative functions we can construct the nonnegative, non-

decreasing distribution functions of time, defined as

t

T(+ )(t) J f(+)(T) dT

T~(t) f(-) d
T( )(t) = f( )(T) dT

3, (IV-9.1, 1)

With the aid of these functions the integral 4, (IV-9. 1) can be written

F(c) = F(+)() - F(-)(C)

where
00

F (a') =j} e tdT(+)(t) 4, (IV-9. 1, 1)

F()(-) functions, (-)(t)

Both functions, F(+)(c-) and F(-)(o-), are absolutely monotonic functions, as we shall see

in the next subsection.

IV-9. 1, 2 Some definitions. The complete monotonic character of F(+)(r) and F(-)('r)

is a result of a basic theorem on the theory of such functions. In the remainder of this

section we need only a few properties of absolutely monotonic functions. A detailed dis-

cussion of this subject is, therefore, not justified. In what follows, we shall assume

that the reader is acquainted, or can become acquainted, with the general properties of
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these functions. Reference 9 is suggested as a good textbook on the subject.

For convenience, we shall present a few definitions and needed properties. The

definition adopted here for completely monotonic sequences is the one that is analogous

to the Hausdorff definition of completely monotonic sequences. These sequences will

play an important role in the window-function theories of reference 8.

Definition 1, (IV-9. 1, 2) A function G(o-) is completely monotonic in the interval 0 a-

< if it satisfies the condition

(_ 1)k G(k)(T) O

where G(k)(c) stands for the k derivative of G(ar).

Definition 2, (IV-9. 1, 2) A function H(o-) is absolutely monotonic in the interval 0 < ae < oo

if it has nonnegative derivatives of all orders such that

H(k)(O) > O, k = O, 1, 2, ....

Examples of complete and absolute monotonic functions in the interval 0 < a < o are

given, respectively, by

G

00

H(ra-) = J e a-t d(t)/0
1, (IV-9. 1, 2)

where a(t) and (t) are nondecreasing functions in the interval 0 < t < oo.

A simple computation of the derivatives shows that

(-1)k G(k)(r) tk e r t da(t) > 0

t
k

H(k) = tk e+ t d(t) > 

since both integrals are nonnegative by the definitions of a(t) and (t).

Absolutely and completely monotonic functions have certain simple relations.

Examples 1, (IV-9. 1, 2) illustrate this situation. The function G(a-), which is completely

monotonic in the interval 0 < a < 0o, is absolutely monotonic in the interval 00o < x 0.

A converse situation exists for H(a-).

IV-9. 1, 3 A basic theorem on complete monotonic functions. The complete monotonic

character of F(+)( -) and F ( - ) (r -) is a consequence of a basic theorem on such functions.

We have the
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Theorem 1, (IV-9. 1, 3) (Bernstein) "A necessary and sufficient condition that the func-

tion G(c-) is completely monotonic in the interval 0 < o < o is that G(T) admits the

integral representation

G(T) = e da(t)

where a(t) is a nondecreasing function in 0 < t < oo, and the integral converges in

0 or- < oo." It

The sufficient condition follows at once by the successive derivation of G(o-) as per-

formed in the last examples. The proof of the necessary condition is not simple and it

is omitted here.

Now the proof that F(+)(c-) and F(-)(-) are completely monotonic sequences follows

at once from the fact that both T(+)(t) and T(-)(t) are, by construction, nondecreasing

functions. These results lead to the following theorem and corollary of transfer func-

tions.

Theorem 2, (IV-9. 1, 3) "Let F(s) be a transfer function. Then F(O-) is always express-

ible as the difference of completely monotonic functions."

Corollary 1, (IV-9. 1, 3) "Let f(t) represent a nonnegative pulse (as considered in

previous sections) whose associated transfer function is F(s). The F(Tr) is necessarily

a completely monotonic function."

Theorem 2, (IV-9. 1, 3) and particularly corollary 1, (IV-9. 1, 3) have a significant

theoretical importance in a future discussion.

We shall close this subsection by reminding the reader that the transfer function of

an impulse of finite area and finite delay is a completely monotonic function. This

simply follows from the expression
-at

Ae 0

where A is the impulse area, and to is its delay.

IV-9. 1, 4 A connection between complete monotonic functions and complete monotonic

sequences. In the study of impulse transmission we shall make use of a few properties

of completely monotonic functions. In this subsection we consider a connection between

complete monotonic functions and complete monotonic sequences. We begin with the

definition of such sequences. Let

{a} n = 1, 2,...
0

represent a given sequence of numbers. Let us construct with its elements the differ-

ences defined by the well-known expression
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00oo

kn = ()m( m)(n+k-m)
k=0

where (k) stands for the binomial coefficients and k = 0, 1, 2, .. .

Now we give the following

1, (IV-9. 1, 4)

Definition 1, (IV-9. 1,4) The sequence {an} is completely monotonic if its elements

are nonnegative and its successive differences satisfy the condition

(-1) k Ak a 0n

(See reference 9, page 108.)

Complete monotonic sequences can always be represented by the

integral

a = xn dK(x)
n

finite moment

2, (IV-9. 1, 4)

where K(x) is a nondecreasing bounded function in the interval 0 • x < 1. (See reference

9, page 108, theorem 4a.)

Among the complete monotonic sequences we are interested in a particular class, a

"minimal" complete monotonic sequence, which is represented by 2, (IV-9. 1, 4) with the

additional condition that K(x) is continuous at x = 0 (no jumps are allowed at x). (See

reference 9, pages 163, 164.)

Now we propose the following construction. Let us find a completely monotonic

function F(r-) such that at a- = 0, 1, 2, ... , n, ... , F(n) takes the values

F(n) = a

{an} = minimal completely monotonic sequence

We find such a function in the following manner.

Let
-tx=e

a(t) = -K(x)

Substituting these expressions in 2, (IV-9. 1, 4), we get

nt ,

_ C_ I -nt , ,
a = n

e aakt)

3, (IV - 9. 1, 4)

4, (IV-9. 1, 4)
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Hence, the complete monotonic function

F(cr) = f e t da(t)

takes the values of 3, (IV-9. 1, 4) at C- = 0, 1..., n, .... These results lead to the

Theorem 1, (IV-9. 1, 4) "Let be a minimal completely monotonic sequence of

numbers. Then there exists a complete monotonic function F(a-) which takes the values

F(n) = an

at o- = 0, 1, 2 ... n,. ."

This theorem provides a method of interpolation of complete monotonic sequences at

the points a- = 0, 1 ... ,n,.... This property will be used in a subsequent subsection
*

of this report.

IV-9. 1, 5 Hankel's theorem. We shall now discuss a property of completely monotonic

functions which plays a basic role in the subsequent investigation. The theorem in

question is from Hankel.

The k-th derivative of a completely monotonic function can be written as

00

(-1) n F(n)(Tr) = tn e-st da(t)

0

Now let us introduce the set of arbitrary real variables

; = 0 1, 2, . . ., n 1, (IV-9. 1, 5)

With the aid of this variable let us construct the quadratic form

n n

Q1= Z Z ( 1 )(j+k) F(J+k)(,,) k
j=O k=O

We shall show that this quadratic form is positive. We can write

Ql = e- t E (tj+k j k)} da(t) = t e ti j E t k k da(t)
j=O k=O j=0 k=O

= e-T tj j da(t) > 0

=0

This property is also used in reference 8, where a complete mathematical discus-
sion can be found.
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since

n n

Z J j Z k k
j=0 k=O

and a(t) is a nonnegative, nondecreasing function.

Similarly, we can show the positive character of the quadratic form

n n °

Q2 = z E (_)(j+k+l) F(i+k+l)((a) k =
j=0 k=O 0

e t t .j tj da(t) 0

j=O

It can be noted that the forms Q1 and Q2 are positive for every value assigned to n.

Then, by a well-known property of the determinant of a quadratic form, it follows that

F(c-)
F(a-) ; I

(-1)FI (-)

-FI(a-) 0;
-FI ()

FII(o-)

(-1)FI(a-)

FII()

F II( -)

FIII(5)

0;

0;

F(a-)

-FI(a-)

FII( )

-FI(a-)

FII(-)

_FIII(a)

-F (a-)

FII(- )

-FIII(¢)

FII(a)

FIII()

FII(o )

FIII()-F (a-)

FIV (-)

-FIII(o )

FIV(-)

-FV (r)

0; . . .

> 0; ...

2, (IV-9. 1, 5)

These results justify Hankel's theorem.

Theorem 1, (IV-9. 1, 5) "If F(a-) is completely monotonic in the interval

for any a- > 0 the set of determinants 2, (IV-9. 1, 5) are all nonnegative."

0 < a < oo, then

IV-9. 1, 5' The construction of a complete monotonic function which has prescribed

derivatives at a certain point. We shall now consider the construction of a completely

monotonic function which has prescribed derivatives at a certain point, say a = a- in

the interval 0 < a- < o.
00

Let {cn} be a prescribed sequence of numbers, and F(a) be a completely monotonic

function such that its successive derivatives take, at a- = ao-, O a-0 < 00 the values

Cn = ( 1)n F(n)(r); n = 1, 2, ... . 1, (IV-9. 1, 5')

In accordance with the Hankel theorem the c's must satisfy the condition
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C > 0; IcO C 0;

1c 2

c1 C
c1 >- 0; > 0;

c2 c3

co

C1

C2

C1

C2

c3

C1 C

c 2 C3 > 0;

c3 c4

C2 C3

3 C4 >_ 0;

c 4 c5

2, (IV-9. 1, 5')

Now, we can proceed to construct the function F(c-). We can write

F(T) = 
0

oo

= Z ( - o )k

k=O

{ _-tk e o da(t)}
-)ko tk - t

2', (IV-9. 1, 5')

obtained by the power series expansion of exp [-(o--o)t].

1, 5') is simply the power series expansion of F(o-) around

00

F(o-) = 
k=O

where

ko! ) F(k)(-o)

t [e da(t]

Expression

the point o- = o-o.

3, (IV-9. 1, 5')

F(k)( ) = ( 1)k0

In accordance with 1, (IV-9. 1, 5') we must have

00 tn dX(t)

c = tn dX(t)

t 
a-t T

X(t) = e da(T)

0

4, (IV-9. 1, 5')

with all these integrals taken in the Stieltjes sense.

We must note that the function (distribution) x(t) is a positive, nondecreasing

function of time, 0 ~ t < oo. Consequently, expression 4, (IV-9. 1, 5') shows that the cn's

must be represented as the moments in the semi-infinite interval (Stieltjes moments)

with respect to the nonnegative, nondecreasing, and bounded distribution function X(t).
00

Since the sequence {Cn} is prescribed (or given), we must find the corresponding

distribution function x(t). If the cn's satisfy the determinant conditions 2, (IV-9. 1, 5')
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then the Stieltjes moment problem has a solution because of the well-known theorem in

the theory of moments, which we repeat for the reader's convenience.

Theorem 1, (IV-9. 1, 5') "A necessary and sufficient condition that the set of integrals

c =f tndX(t)n

should have a nonnegative, nondecreasing solution, with infinitely many points of

increase, is that the determinants 2, (IV-9. 1, 5') should all be nonnegative." (See, for

example, reference 9, page 138.)

In the light of these results we can condense all of the above situations under the

following
00

Theorem 2, (IV-9. 1, 5') "Let a sequence {cn} of positive numbers be prescribed and

such that all of the determinant conditions 2, (IV-9. 1, 5') are satisfied, then there exists

a completely monotonic function F(c) such that its successive derivatives are given,

respectively, by

F(n)((o) = (-)n cn." 5, (IV-9. 1, 5')

Proof. Since the determinant conditions are all satisfied, we can invert the integrals

c = tn dX(t)

and solve them for X(t).

Now, the distribution function a(t) is given by

t C T
a(t) = 4 e dX(T)

and finally

F(o) = -et da(t)

IV-9. 1, 6 Methods of constructing a function F(cr) in the problem of interpolation of a

complete monotonic function through a set of numbers which form a complete monotonic

sequence. In the two preceding subsections we have considered these problems:

(a) the interpolation of a completely monotonic function through a set of numbers

which form a completely monotonic sequence;

(b) the formation of a completely monotonic function whose derivatives attain, at a

certain point, prescribed values which are given by a sequence of positive numbers.

Both problems have been discussed in formal terms. The aim of this section is to
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produce the actual methods of construction of a function F(cr) in problem (a), starting
oo

from the prescribed sequence a of numbers. The corresponding construction which

is required by problem (b) is produced in the next subsection.

The solution of problem (a) is equivalent to the solution of a moment problem in the

finite interval, as will be shown in the following procedure.

Let {a n, be a completely monotonic sequence of numbers. By definition, it sat-

isfies condition 1', (IV-9. 1, 4). It also admits the integral representation in 2, (IV-9. 1, 4)

1
an =~

a = xn dK(x)n

The procedure of the construction of the function F(r) such that

F(n) = an

involves two main operations. They are described as follows:
I. From fa n construct the function K (x).

II. From K(x) construct a(t).

The function F(cr) is then given by
00

F(cr) e e tda(t)

We shall now proceed with the successive steps leading to the construction of K(x).
00

Step 1. The successive differences of the sequence an} are given by Eq. 1,(IV-9.1,4).

With the aid of these differences let us construct the auxiliary sequence defined by

Anp ( -1)n - p (n) A(np) >- 1, (IV-9. 1,6)
n,p Pi P

The nonnegative character of An p is a consequence of the condition 1', (IV-9. 1, 4).n,p
Step 2. Let h represent an auxiliary integer number such that h > n, where n is a

given number at which we want to have

F(n) = a

nThe significance of h will become clear in the subsequent discussion.
The significance of h will become clear in the subsequent discussion.

T
(1o

I

Fig. 1, (IV-9.1, 6)

The graph of the function K;(x).
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Now let us form ti

Kh(x) defined by

K-(x)

= A

Kh(X)
= A

= A

ie nonnegative, nondecreasing, stair-like discontinuous function

'h,0

h, +Ah, 1

-h,0 + Ah, 1 + Ah, 2

h,+ Ah, + ... +A hh=aOh,1 ' 'h,ho

for x < 0

for O < x <1
h

for 1 <x< 2
h h

for < x < 
h h

for h 1 <x < 1h

2, (IV-9. 1, 6)

The support of this function is the interval 0 < x 1, which has been divided into (h+l)

parts. The graph of Kh(X) is shown in Fig. 1, (IV-9. 1, 6).

Step 3. Now let us suppose that we construct a sequence of functions Kh(x) by giving

increasing values to the auxiliary index h.

It can be shown that

lim Kh(X) - K*(x) uniformly*
h-oo

In other words, the functions

mants to the function K*(x).

3, (IV-9. 1, 6)

Kh( ) , for h increasing, constitute a sequence of approxi-

Step 4. Take K(x) and construct the following integral expression, when h > n

1

h, n = xn dP<h(X)

h+l

=Z( k )n
k=O0

Ah,k

4, (IV - 9. 1, 6)

The sequence of quantities ah,n are also moments with respect to the distribution Kh(x).

They have the property

h-00oo
5, (IV-9. 1, 6)

The proof may be found in the last two references mentioned in the footnote.

*The proof of the limiting value 3, (IV-9. 1, 6) is omitted here because it requires a
more complete knowledge of the finite moment theory. The insertion of all the required
properties would greatly lengthen the presentation of problem (a). The reader is referred
to references 9, 8, and 10.
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Step 5. The quantities ah, n and an differ little when we choose h >> n. Both quanti-

ties, ah,n and a n , are connected by simple linear relations. These relations are as

follows.

Let us introduce the double sequence of numbers defined by

h)(h - g)

i, j = , 1, 2,. 6, (IV-9. 1, 6)

; when = 0; m = 0, 1,2, ...

7, (IV-9. 1, 6)

I
when / O; m = 0, 1, 2,.

The linear relationship between the ah,n and an is given by the matrix expressions

(ah,g) = (Ygm) (am)

where

ah,O 0

ah 1

(ah,g) = ah,Z ;

ah,h

(¥gm) = (agj) (jm)

a \

a

(am)= 2 _

ah

8, (IV-9. 1, 6)

The proof of this matrix equation is omitted here. It may be found, for example, in

reference 8.

The importance of the linear connection between the quantities ah,n and a n resides

in the fact that we can find a modified density distribution function Kh(x) such that its

moments reproduce exactly the quantities a 0 , al, ... , an, ... ' ah .

Let us call

( gm) (Ygm) 1 9, (IV-9. 1, 6)

Hence

10, (IV-9. 1, 6)

By matrix expansion we get, for example,
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1
agj

=-O

and

j >g

j =g

j<g

= 1

Rim 

L

(ak) = K6j) (ah,j)



h

n 6nk ah,
k=O

1

a = ah,j d6n(x)

where the function n(x) is a stair-like discontinuous function defined as

-O when x < 0

6n(X) k

6nj when k

j=o

Finally we can write, when 4, (IV-9.1, 6) is used,

1 2, (Iv-9. 1, 6)

1
an = J d6n(X) x d h(x) =i

0~~~~~

xn d 6n( ) dh(x){;o1
a = xn dK (x)n *'0 h ~ x, 12', (IV-9.1, 6)

1x 

Kh(X) = / 6n(X) d K*h ( x ) 13, (IV-9. 1, 6)

Hence, we have arrived at the following

Theorem 1, (IV-9.1, 6) "Given a completely monotonic sequence an} we can construct

a distribution function Kh(x) such that the integral

/ n <h(X)

exactly reproduces the moments aO, al, ... , an

This result completes the construction of a distribution function K(x), which was

required under operation I.

For completeness, two alternate procedures are given in connection with operation I.

First alternate procedure

Let us consider the distribution function 13, (IV-9. 1, 6). Since it exactly reproduces

the first an quantities, then Kh(X) is a nondecreasing function of the interval 0 < x < 1.
The graph of Kh(X) is shown in Fig. 2,(IV-9. 1, 6),a. Now, we can take as a distribution
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Fig. 2, (IV-9. 1, 6)

Polygonal approximation to K(x).

g

0 p

Fig. 3, (IV-9. 1, 6)

The contour of integration in 16, (IV-9. 1, 6).

function the polygonal curve indicated in graph 2, (IV-9. 1, 6),b.

The justification of the polygonal approximation to the function K(x) rests on the use

of corner theorems when

F(cr) = 0 e- t da(t)

a(t) = -K(x)

-tx=e

is to be performed. Corner theorems are discussed in section IV-3 of this report.

(Equally well we can use 2n degree arcs to approximate the graph of K(x).)

Second alternate procedure

Let us introduce the function defined by

g(Z) dK(x) . z = p + iq 14, (IV-9. 1, 6)

where K(x) is the same nonnegative, nondecreasing function defined in 4, (IV-9. 1, 4).

The integral above is a finite Stieltjes transform; g(z) is an analytic, single-valued

function whose support, say D, is the z plane cut along the real axis between the points

O and 1. This cut represents a singular line of the function g(z).

In a monogenic representation of g(z), this singular line can be interpreted as the

location of a pole-zero chain which is everywhere dense at every point of the interval

O < p < 1. Let

K()x=o = K(o)

and introduce the normalized function, K(x), associated to K(x). By definition, we have

K(x) = K(x+) + K(x-) J

K(o) = [K(X) - K(0) x= =
15, (IV-9. 1, 6)
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We can now invert the integral 14, (IV-9. 1, 6) and solve for K(x). It can be shown that

K(X) = 2TriJ g(z) dz; O < x < 16, (IV-9. 1, 6)

O x

where the contour of integration is taken along the banks of the cut between 0 and 1.

See Fig. 3, (IV-9. 1, 6).

The proof of this result is omitted here. It can be found in the references given in

previous sections. A heuristic proof can be obtained by replacing K(x) by a stair-like

function and observing that K(x) is equal to the sum of the residues of the poles which

form the pole-zero chain between the points 0 and x.

Equation 16, (IV-9. 1, 6) expresses the solution of the normalized K(x) in terms of

g(z). The next step is, therefore, to construct the function g(z) starting from the

sequence {an} 0 . 1
By the Taylor expansion of {z [1 - (x/z)J} one gets

g(z) = K(X) x
= z

1 1 xJ d/K(x) 17, (IV-9. 1, 6)
=z

j=o
00

aj.

which expresses g(z) asymptotically in terms of the {an} Finally, by using the last

member of 17, (IV-9. 1, 6) we can construct a continued fraction whose approximants

uniformly approach g(z) in the z plane cut along the real axis, between 0 and 1. The

procedures of construction of this continued fraction can be found, for example, in the

book by Wall (reference 10).

The normalized function K(x) is equal to <K(x) - K(o) at every point of continuity of

K(x). At the point of jump, K(x) converges toward the middle point of the jump, as

indicated by 15, (IV-9. 1, 6). The distribution function will be completely determined by

the determination of the points of jump. In the next subsection we shall introduce the

jump operators. The construction of g(z) and finally of K(x) ends the second alternate

procedure.

Now we are prepared to attack operation II, indicated above. This involves the

construction of the distribution function a(t) out of K(x).. This operation does not involve

any particular difficulty because it can be attained by a simple change of independent

variables. In accordance with 4, (IV-9. 1, 4) it is only necessary to set
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-t
x= e

and

a(t)= -K(x)= -K(e ' t )

We can use the approximate solution

ah(t)= -Kh(e-t ) 18, (IV-9. 1, 6)

and

lim ah(t) -a(t) uniformly
h-oo

Finally, the required function F(o-) can be found as

Fh(O-) = e - t dah(t)

and, in the limit

F(o) = e ' t da(t)

Consequently, the function F(o-) has been constructed in such a way that

F(n) = a n

This ends problem (a).

IV-9. 1, 7 Solution of the problem of constructing a complete monotonic function F(o-)

which has prescribed derivatives at a certain point. In this subsection we undertake the

solution of problem (b). For convenience, we repeat its wording.

"Construct a completely monotonic function F(o-) in such a way that at a certain point,

say o = o, its successive derivatives attain the prescribed values given by the sequence

{Cen of positive numbers when the sequence {cn} satisfies the determinant conditions

1, (Isolution9. 1, 5')this problem contains two major aspects:
The solution of this problem contains two major aspects:

I. The solution of the moment problem in the infinite interval.

That is, we must solve the moment integrals for x(t)

00

Cn = tn dx(t); n = O, 1, 2,...
/0

II. The construction of the distribution function a(t) given by

(t)as w e shown in 4, (IV-9. 1,4).

as we have shown in 4, (IV-9.1, 4).
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Aspect I

The existence of a solution for (t) is guaranteed by theorem 1, (IV-9. 1, 5'). Let us

introduce the function h(z) defined by

r dX(t)
h(z) = ) 2, (IV-9. 1, 7)

z -t

which is the Stieltjes transform of (t). The function h(z) is analytic, single-valued in

the z plane, z = p + iq, cut along the positive real axis, from 0 to +oo. This cut repre-

sents a singular line of the function h(z). There is a pole-zero chain everywhere dense

along the singular line. The pole-zero chain generates the monogenic function h(z).

Let us denote by (t) the normalized function associated with X(t). It is defined as

(o) = [(t) - (O)] =
t-+O

3, (IV-9. 1, 7)

X(t): =X(t+) + x(t-) 0 < t < 2

For the normalized function x(t) we have

it- 2 a·ri (_h(z) dz 4, (IV-9- 1, 7)

01- t -.4

where the contour of integration surrounds the banks of the cut in the extension from

O to t.

We must now construct the function h(z). A Taylor series expansion of the integrand

of 2, (IV-9. 1, 7) renders

h(z) =E j+1 t j dX(t) = j E 5, (IV-9 1, 7)

j=0 z j=o

which expresses h(z) as an asymptotic expansion whose coefficients are the elements of
00

{c n}o o
Since, by hypothesis, the sequence {cn} satisfies both of the determinant sets of

conditions 2,(IV-9. 1, 5'), then the last series in 5,(IV-9. 1, 7) admits a Stieltjes continued

fraction representation of the form

h(z)

k z-
klZ

k 1 6, (IV-9. 1, 7)
3 k4

4
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(See references 10 and 11.) The coefficients k, k, ... , are functions of the c n 's. These

connecting relations can be found, for example, in reference 10, page 202.

We are now in a position to consider an important question in connection with the

moment problem in the infinite interval.

The fulfillment of the determinant conditions 2,(IV-9.1,5') guarantees that the moment

problem has a solution. The solution may, or may not, be unique. In other words,

there may exist two distributionfunctions, say x(t) and y(t), of such a character that both
00

produce the same sequence {cn . That is

00

c = tn dX(t) =f tn dq(t) 7, (IV-9. 1, 7)

The continued fraction 6, (IV-9. 1, 7) tests whether or not the moment problem is deter-

mined. The test is given by the following
00

Theorem 1, (IV-9. 1, 7) "Let I{cc be a sequence of positive numbers satisfying condi-

tions 2, (IV-9. 1, 5'). Then, the Stieltjes moment problem is determinate if, and only if,

the positive-term series
co

z kp 8, (IV-9. 1, 7)

p=O

is divergent. If this series is convergent then the Stieltjes moment problem is indeter-

minate ."

Proofs are omitted here. (See reference 10, page 329, and reference 11, page 410.)

The two following theorems, one from Carleman and the other from M. Riesz

(reference 10, page 330, and reference 11, page 416), allow us to test the sequence
co

{c } directly, in order to determine whether or not the Stieltjes moment problem is

determinate. Both theorems are, for briefness, fused together under the following
oo

Theorem 2, (IV-9. 1, 7) "Let {cn} be as in theorem 1, (IV-9. 1, 7). Then, the Stieltjes

moment problem is determinate if, and only if, any one of the following conditions is

satisfied.

00 1/2k

(a) L (4k) diverges

k=

(b) 1/2k diverges

k=0

Carleman

k

(c) lim \/ < a." Riesz
k-oo

9, (IV-9. 1, 7)
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Now, let us denote by

An(z)
hn(Z) = --nr

10, (IV -9. 1, 7)

the approximants of the continued fraction 6, (IV-9. 1, 7). By 2, (IV-9. 1, 7), the poles of

10, (IV-9. 1, 7) are all positive and real. They have positive real residues. We have

n(z) = 

hn(Z) = z -
j=1 Z-tn,j

x

where tn,j is the j-th pole of the n approximant, and Ln,j is its residue.

Now consider, first, the determinate case. We have, from 4, (IV-9. 1,

of sequences

Xn(t) 

and

lim Xn(
n-oo

n 

Ln,j
j=l

(t) - X t)

Consequently, the function (t) is uniquely determined.

This result solves aspect I of the problem in the case

associated with 1, (IV-9. 1, 7) is determinate.

From the distribution function we have

7), the series

12, (IV-9. 1, 7)

in which the moment problem

a t T
a(t) = e ° d%(T)Jo

Hence

n c t
a (t) = e nJ

j=l

The substitution of 13, (IV-9. 1, 7) produces

Fn(a ) = 0

and

n

e t dan(t) = L nj e

j=l

13, (IV-9. 1, 7)

L 
n i

-('-0ro)tn, 

13', (IV-9. 1, 7)

F(ar) = lim Fn(- )
n-o

which is the required solution.

In the indeterminate case, there is more than one solution. Hence, there is more

than one function F(o-) which satisfies the condition

F(n)(0o) = ( 1)n cn
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The normalized function '(t), Eq. 12, (IV-9. 1, 7), is equal to

X(t) - X(0)

at the points of continuity of x(t). It is possible to find the points of jump of the function

x(t) by the use of the so-called jump operators. We shall consider the operators Lk,t

and kt' whose definitions are given in this subsection.

Consider the function h(z), as defined by 2, (IV-9. 1, 7), where z = p + iq. The

operator Lk t is defined as

(_t)k-l k 1

Lk,t [h(p)] = 2k h(t)] k = 2, 3,
k!(k-2)! dt

Lot [h(p)] = h(t)

L1,t [h(p)] = d [t h(t)]

14, (IV-9. 1, 7)

The operator Lk,t has the property

lim L [h(p)] - X(t+) + X(t-) 15, (IV-9. 1, 7)
k-oo k, t 2

(The proof can be found in reference 9, page 346.) Hence, the operator Lk,t produces

the distribution function x(t) when it is applied to the function h(z)z=p. The use of the

operator Lk t constitutes, therefore, an alternate method of extracting the distribution

function associated with the sequence {cn

Now, we shall introduce the jump operator k, t This new operator is defined as~k, t.

k,t [h(p)] = 2t - Lkt [h(p)] 16, (IV-9. 1, 7)

and it has the property

lim 4k [h(p)] = (t+) - X(t-), (0< t< o) 17, (IV-9.1, 7)
k-oo

(The proof can be found in reference 9, page 352.) Hence, the operator k, t produces

the value of the jump of the distribution function x(t) at its points of discontinuity. The

operator renders a zero value at the points of continuity.

The use of the operators Lk,t and k, t presents great difficulties in practical

applications. In the present form, they have only a formal importance in showing the

possibility and completeness of the solution of the problem labelled "(b)" in the present

subsection.

IV-9. 1, 8 An important theorem. We shall close the subsections on completely mono-

tonic functions with the production of a theorem that will be useful in the subsequent

discussion.
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F(cr) = f e
' t da(t)

00

G(o) = J e' t de(t)

1, (IV-9. 1, 8)

be two completely monotonic functions. This implies that both distributions, a(t) and

p(t), are nonnegative and nondecreasing functions of time in the interval 0 < t < oo. Also,
we have

a(t) = 01
for t < 

¢(t)= oJ
We shall prove the following

Theorem 1, (IV-9. 1, 8) "Let F(o-) and G(o-) be two completely monotonic functions in the

interval 0 < - < A. Then, the function

H(cr) = F(a-) G(cr) 2, (IV-9. 1, 8)

is also a completely monotonic function."

Proof.

We have to prove that

H(-) = e-t dy(t)

where y(t) is a nonnegative, nondecreasing function of time in 0 < t < 00, and y(t) = 0 for

t< O.

Consider the product

H(s) = F(s) G(s)

which leads to 2, (IV-9. 1, 8) for s = a-. Now, if we write

f(t)= L- 1 F(s)

g(t) = L- G(s)

h(t) = L- 1 H(s)

then by the convolution theorem we have

h(t) = L f(T) g(t-T) dT 0
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since

f(t) 0

g(t) a 0

We also have

H(s) = e- s t h(t) dt

Hence

y(t) = h(t) dt _ 0

is a nonnegative, nondecreasing function of time in the interval 0 < t < oo. Also y(t) = 0

for t < 0. Consequently, for s = - we obtain

H(r-) = e- dy(t)

which completes the proof.

IV-9. 2 On a power series expansion of transfer functions. In section IV-2 we intro-

duced a theorem concerning the necessary and sufficient condition for a transfer func-

tion to be rational. This condition requires that the density distribution function, which

generates the transfer function, must itself be a rational function.

This subsection, and most of the remaining discussion of section IV-9, is devoted to

finding other tests, which will reveal whether a transfer function, under its integral

representation, is, or is not, rational. The tests we are about to develop are intended

to be used directly on the time function, which equally defines the transfer function;

that is, when F(s) is represented by

F(s) = e - s t f(t) dt

or

F(s) = e -s t da(t)

1, (IV-9. 2)

rather than the representation given in section IV-2.

The tests presented in the subsequent discussion are very suitable for transfer

functions arising from the transmission of impulses.

The tests are of two types. The first type consists of tests that are applied to a

certain power series representation of transfer functions. The second can be applied

to the power series but its primary use is in connection with sequences extracted from
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the power series by means of a nonlinear summability process. These last tests are

closely associated with theorems that lead to constructive methods for finding the

rational approximants of transfer functions in general.

The present subsection, IV-9. 2, is primarily devoted to the formulation of tests of

the first type. These tests have a rather formal character. Although they are simple,

they present certain computational difficulties, at least for the time being. They are,

however, of theoretical importance, particularly because of the basic role that they play

in the development of tests of the second type.

IV-9. 2, 1 Power series expansions of F(r-). We gave, in subsection IV-9. 1, 1, a theo-

rem that permits the separation of any transfer function F(s) into the difference of two

functions F(+)(s) and F )(s) which are both completely monotonic for s = ar, 0 < o- < oo.

By virtue of this theorem, we shall restrict our discussion to one of the components,

say F(+)(s), and this is done without loss of generality because F(-)(s) has the same

analytic character, and finally because

F(o-) = F(+)(c-) - F(-)() 1, (IV-9. 2, 1)

This relation, of course, is identically true for the real parts, since

Real F(s)} = F(a), etc.
S=0

-

Consequently, the following theory will be based implicitly on the real part.

From 4, (IV-9. 1, 1), we have

00oo

F(+)( ) = et dT((t) 2, (IV - 9. 2, 1)

For simplicity in the notation we shall drop the (+) sign and use this integral in the form

F(r) = er t da(t) 3, (IV-9.2, 1)

with the assumption that a(t) is a nonnegative, nondecreasing function of t in the interval

0 < t < oo and a(t) -- 0, for t < 0. We are interested in the power series representation

of the integral given above around the point or = cro. Such a power series has already

been developed in 2', (IV-9. 1, 5') and 3, (IV-9. 1, 5').

-133-



00 (a' k
F(o-) = k ( !o - F-ok

0

F(k)( 0 ) =

-k a

k tk [e- °t da(t)] = (1) k c
(1 ) a tk

00

tn [e t da(t)] =

] 0

x(t) = j e da(T)

When expansion is made around the point zero, a- = a-

the notation

co

ok F(k)(o)F(a) = Z F(k)
k=O0

00

= (1) k k

k=O

(tn

-k S t da(t)
Ok J

Our aim, now, is to test this power series to see if the

are, or are not, rational functions.

IV-9. 2, 2 Kronecker's theorem. The starting point of

from Kronecker.

Let us write the power series 4, (IV-9. 2, 1) under the

4, (IV-9. 2, 1)

= 0, we shall use, for convenience,

5, (IV - 9. 2, 1)

functions which it represents

our discussion is a theorem

form

t n dX(t)

o00

F(cr) = i a zn

0

1, (IV-9. 2, 2)

where

O - y0 = Z
0

and

F(k)(ao)

k! = ak
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and form the determinant

aX

aX+l

D ., = .

a>+B

a.. . aX+[

- ak++l
-. a++ 1

... aX+2

n = 0, 1, 2, ... 2, (IV-9. 2, 2)

Theorem 1, (IV-9. 2, 2) "The necessary and sufficient condition that the power series

1, (IV-9. 2, 2) should represent a rational function is that there exists such an integer

number N that for every n N, say n = N + v, v = 0, 1, 2..., every determinant

2, (IV-9. 2, 2) must vanish (D 0 0)."

The proof of this classical theorem is, for briefness, omitted. The reader

interested in its proof may consult, for example, reference 12, chapter X.

Let us consider several simple examples.

I. Take the function

IZ P z p 3zJ
z - p j j 

j=O P

1

ak - k+l

The first determinant is

a =p 0

but every determinant is zero after this. The second is

1 1

P p

1 1
2 3
P p

1
4

P

1
-

P

In general, for n >- 1 = N

1 1
2

P P

1 1
2 3

P P

1
3

p

1
4

P

11 1
3 4 5

pP P
. . . .

1 1
n n+l

P P

1
n+2

P

1
n

P

1
... n+l

p

1
.. pn+2

P

1
2n

P

11 1
2 3

pp p

1
n

p

1 1 1

1 1 1
P P P

1 1 1
2 2 2

P P P

1
n-1

p

1
n-l

p

1
n-l 

p
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because the last determinant possesses several equal columns.

II. Now take

3z 2 + 12z + 11 11 49 251 2 1393 3 8051 4
+ z ~z + z

+ 6s + s + 6 6 36 216 1296 7776

1 + 46656) + + 279936) z

In this example N = 3

D = 1.8333 ...
0,0

D = 0.2777 ...

D0 2 = 0.00051440 ...

D0,3 0

D0,4 0

D =0 v = 0, 1, 2,...0,3+v

III. Now take

2 + 3 3 5 9 2 17 3 33 4
z +3+z 2 z -z + z
2 2 4 Z+ 8 Z 1 6 Z +32 *

z +3z+z

In this example N = 2

D0, 0 1.50

D0 , = 0.125

D =00,2

D 0 v = 0, 1, 2,. ..0,2+v

IV. The following example is selected for further use. Suppose that a rational

function contains simple poles. For simplicity we shall assume that

(a) all poles are positive and P1 • P2 P 3 .. < 0

(b) their residues are positive and real.

By partial-fraction expansion we obtain

A A A A
R(z) = + + + z 

z - p z - P Z - P3 

It is elementary and simple to show that N = m in the above example. To save space

we shall produce the proof for m = 3. For any other value of m, the proof is conducted

along exactly the same lines. The power series yields

A 1 A2 A 3

ak k+l + k+-l + k+l 
P1 P 2 P3
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The first determinants are

A1 A A
D= + + 

0,0 P 1 P 2 P 3

D0, =0,1

A1

PI

AI
21

PI1

A2

PZ

4 )
+ P3

P3

A 2

2
P2

PA

p1

A A

2 2
P2 P3

A A A

3 3 3
P1 P2 P3

By using a well-known theorem of determinants which allows us to develop D 0 1 into

a sum of determinants whose columns are formed by the combination of columns of each

term in the parenthesis, one gets

A 1 A2 A 3 A

D0,1 2 2 (PI - P2 ) A(1,2) + 2 2
PI P2 P P3

1 1 1 1

A(1,2) = ; (1,3) = 
1 12 1 1

p 1 p2 p P 3

A 2 A 3

(P 3 - P 1 ) A( 1 ,3 ) + 2 2 (P 2 - P 3 ) (2,3)
P2 P3

1 1

(2,3 ) =
1 1

p P2

after the cancellation of the determinants possessing equal columns. The determinant

DO 1 is not identically zero.

The determinant D0, 2 can be reduced by following a similar procedure to the form

A1 A 2 A 3

0,2 P1 P 2 P 3
A (3) '{2 212 (P - P2 ) + 212 (P2

P P P2 P3

1

1

(3) - P

2
PI

- P 3 ) + 212 (P3 - Pi
P3 P1

1 1

1 1

P2 p 3

1 1
2 2

P2 P3

after the cancellation of determinants possessing two or three identical columns.

The determinant D0, 3 can be expanded into a sum of determinants as before. After

the extraction of the common factor in the columns it will be found that all determinants

vanish because they have at least two identical columns. Hence D0, 3 = 0, and the prop-
erty was shown for m = 3. This result shows at once that the theorem is true if the

roots are complex, having complex residues, and subjected to the condition that the roots

are all different. The procedure for the proof for m > 3 is similar to the method used

before. It presents the difficulty of involved laborious determinant expansion.
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IV-9. 2, 3 Hadamard's theorem. We naturally wonder if there is one, or several, tests

which allow us to find the number of poles of a rational function represented by a power

series when the series satisfies the condition D 0.
0,N+v

The last example of the previous subsection shows that the number N is equal to the

number of poles in a particular case of rational functions. We are interested in the

determination of these poles in a general case.

In the classical theory of power series there are several theorems tending to deter-

mine this number of poles. Unfortunately such tests prove to be somewhat cumbersome

in their practical application to the theory of network synthesis, which is implicitly the

objective of this discussion. Among these classical tests there is one, from Hadamard,

which possesses some theoretical importance in our research. We reproduce, without

proof, this theorem. (See reference 12, chapter X, page 333.)

We shall first introduce some required notations. Let r be the radius of conver-

gence of the power series 1, (IV-9.2, 2). It is given by the well-known expression

= lim &n a 1, (IV-9. 2, 3)

We introduce the expression

o r
2, (IV-9.2, 3)

p i | n p I
We now have the classical theorem which yields the number of singularities on the circle

of convergence.

Theorem 1, (IV-9. 2, 3) (Hadamard). "The necessary and sufficient condition that the

power series 1, (IV-9. 2, 2) should have at most p poles, counted in accordance with their

multiplicity, and no other singularities on the circumference of its circle of conyergence,

is that { = /ri+l for i = 0, 1,..., p-l, a nd p < /rP+l." (See reference 12, page 333,
from which the theorem was taken.)

Since this test is hard to apply in the theoretical or in the numerical evaluation of

the quantities (p we do not produce the proof of the theorem. In a very few cases it

renders the required information. In example I of the last subsection one actually finds

p = 1, as it should be. Even in this simple case, the application of the test requires

unjustified time.

Concerning the total number of poles of a rational function which is represented by

the power series when D 0, n > N, we have the0,n

Theorem 2, (IV-9. 2, 3) "The necessary and sufficient condition that the power series

1, (IV-9. 2, 2) should represent a rational function is that there be a number such that

ZD z = EI(z)
X,q
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is a polynomial. Then the least value of q is the degree of the denominator, and the

degree of II(z) is not less than m - q, where m is the degree of the numerator." (See

reference 12, page 333, from which the theorem was taken.)

It is equally difficult to apply this test.

IV-9. 2, 4 A remark concerning the different determinants. The test created by the

theorems of the last subsection will formally indicate whether a given power series is,

or is not, a rational function. From the network theory point of view, the knowledge

expressed above is not enough because we need additional information on the realizability

of the transfer function associated with such series.

The corresponding test for this purpose has already been found. The test requires

that the determinant conditions 2, (IV-9. 1, 5') shall also be satisfied if the rational func-

tion is completely monotonic.

The Kronecker determinants 2, (IV-9. 2, 2) are not the same as the determinants in

2, (IV-9.1,5'). We shall illustrate this difference. Take example I, subsection IV-9. 2, 2.

The successive determinants 2, (IV-9. 1, 5') are given by

1 1
a a

cO = 0; 4 - 0; etc.
0 ~a 1 2! a

1 2! 2 3etc.c1 2 2 3

Note that these determinants do not necessarily vanish for n > 1, and that the Kronecker

determinants do vanish.

IV-9. 2, 5 Some remarks concerning the tests performed to find out whether or not a

function is rational. The evaluation of the Kronecker determinants Dk, and of those in

2, (IV-9. 1, 5') is hard to perform, so that the use of these tests is completely out of the

question. The situation is sad because after a strenuous effort to evaluate these deter-

minants we have accomplished only a fraction of the task of constructing the corre-

sponding rational function.

For quite some time an investigation was directed toward the problem of putting this

test into practical terms. Results were negative. Perhaps others may succeed.

We contemplated, for example, studying the possiblity of the rational approximation

of transcendental functions by observing the decay in value of the IDO,nI determinants,

considering that when the magnitude of these determinants is smaller than a certain

specified value, E, then we can form a rational approximation by using the set of non-

vanishing determinants and assigning a zero value to those whose magnitude is smaller
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than E. The main difficulty was that in some cases the magnitude of the determinants

goes down so fast that our criterion was meaningless.

We completely abandoned the tests of this subsection when we found other methods

of direct construction of the rational function, or of the rational approximants, asso-

ciated with a given power series.

Integral tests and nonlinear summability methods render quite workable results

which are suitable for the synthesis-of-networks point of view. Consequently, we have

the impression that power series are incidental and transitory steps in the problem of

network synthesis. In other words, power series do not contain explicitly any relevant

constructive information from the practical point of view; at least, not for the time

being. More effective methods are discussed in subsection IV-9.4 of this report.

IV-9. 3 Analytic continuation of F(+)(T) and F(-)(r). This subsection deals with a simple

but fundamental property of the functions F(+)(or) and F( )(T), Eq. 4, (IV-9. 1, 1). We

consider here the analytic continuation of an element of F(s) which is known only along

the positive real axis of the s plane, into a transfer function F(s). This continuation

is made over a domain of the s plane which at least covers the open half of the s plane

defined by 0 < + < oo.

The main products of this investigation are two theorems. The first theorem states

that a transfer function F(s) is completely generated by the knowledge of its real part

along the axis 0 < ar < oo. The second theorem postulates a necessary and sufficient

condition for a transfer function to be rational.

IV-9. 3, 1 Two theorems on analytic continuation. We propose to prove the

Theorem 1, (IV-9. 3, 1) "Let F(s) be a transfer function. Suppose that we know that

the real function U(Tr) satisfies the condition

U() = Real [F(s)] , 0 < < 00

s=+T

but that no other information of F(s) is known. Now if we set s instead of ao in U(T),

we have

U(s) = F(s)

at least in the open half of the s plane defined by a- > 0."

Proof.

Since U(a) = Real [F(s)]s = F(T); 0 < C < cA, then in accordance with theorem

4, (IV-9. 1, 1) U(a-) is always expressible as the difference of two completely monotonic

functions F(+)(Tr) and F(-)((). Hence we have

Power series of the type discussed in this section were first considered by
Heaviside. Some of his celebrated theorems are based on them. This type of series
has been reconsidered from time to time by several other authors, particularly by
R. C. Spencer and W. H. Huggins.

-140-



U() = e d [T(+)(t) - T()(t)] = e - 0 t dT(t) 1, (IV-9.3, 1)

By substituting = s we get

U(s) = e - s t dT(t) 2, (IV - 9. 3, 1)

Now, because of the boundedness of T(t) the integral converges uniformly, at least in

the half plane defined by or > 0. Consequently we have

U(s) = F(s) 3, (IV-9. 3, 1)

as stated by the theorem.

Theorem 2, (IV-9. 3, 1) "The power series expansion of the function F(+)(ar) can be

analytically continued into the s plane and defines F(+)(s), which is analytic in the open

half of the s plane defined by > 0. A similar situation exists for F( )(-)."

The theorem follows because of the uniform convergence of the functions 4,(IV-9.1,1)

in the open half of the plane defined by r > 0.

IV-9. 3, 2 Another theorem. We propose to prove the

Theorem 1, (IV-9. 3, 2) "The necessary and sufficient condition for a transfer function

F(s) to be rational is that its real part along the positive real axis should be rational."

The proof of the necessary condition is trivial. The sufficient condition is far from

trivial. This last condition follows from theorems 1, (IV-9. 3, 1) and 2, (IV-9. 3, 1) and

from the fact that the analytic continuation of a rational function necessarily represents

a rational function in the domain of analyticity.

IV-9. 4 Power series associated with impulses, pulses, and window functions. The

present subsection is devoted to the discussion of a few properties of power series

associated with impulses, pulses, and window functions. There are two main objectives

of the discussion: (a) the establishment of basic properties of the coefficients of this

power series expansion; (b) the extraction of certain transcendental components of F(s)

from a power series associated with delayed pulses and window functions.

IV-9.4, 1 Definitions of window function and pulse. To keep the discussion under

precise terms we recall the accepted definitions of window functions and pulses. (See

section IV- 1 .)

By a pulse we understand a bounded, nonnegative time function, say fp(t), whose

graph shows a predominant hump-like shape of relatively short duration, and has the

properties
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- 0O for t < t = constant > 0O

fp(t) 

0 (or always negative) for to < t < o

0< fp(t) dt < o

fofpt

l- t 1,(IV-9.4, 1)

By a window function we understand a bounded, nonnegative time function fw(t), whose

graph is composed of a single lobe of relatively short duration, and has the properties

I~~~~~~~frt<t0 for t < t = constant > O0

fw(t) (or always negative) for t < t < t = constant < o

0 for t < t < 

0 < fw(t) dt < 

0

2, (IV-9. 4, 1)

Pulses and window functions may sometimes show small graph differences, mainly

in the presence of a tail in pulses. Analytically speaking, pulses and window functions

may possess basic mathematical differences in spite of this possible graph resemblance.

For example, we have seen in section IV-6 that the transfer function associated with a

window function is necessarily transcendental, but that the transfer function associated

with a pulse may have a rational character. These basic differences between window

functions and the subclass of pulses, whose transfer function is rational, have a funda-

mental importance in the remainder of this report.

IV-9. 4, 2 A property valid for an impulse, a pulse, or a window function. The following

property is true for an impulse, a pulse, or a window function.

Theorem 1, (IV-9.4, 2) "Let Fi(s), Fp(s), Fw(s) be, respectively, the transfer function

associated with an impulse, a pulse, or a window function. Then Fi(ac), Fp(s), Fw(o-);

s = + are all completely monotonic functions in the interval 0 < < oo."

This property follows at once from theorem 1, (IV-9. 1, 3). Theorem 1, (IV-9. 4, 2)

can be stated in terms of the real parts of the transfer function along the real axis,

since

Real [Fip w(S)] = Fipw(a-)

IV-9. 4, 3 A few properties of the coefficients of a power series associated with an

impulse, a pulse, or a window function. To reduce wording we adopt in this subsection,

IV-9.4, 3, only the simplified notations. We shall drop indices i, p, w. We shall des-

ignate the impulse, or the pulse, or the window function by f(t) and the corresponding

transfer function by F(s).
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For convenience, we repeat here the notation of the power series expansion of F(or)

around C = -cr> 0. See Eq. 3, (IV-9. 1, 5').

CkF(o-) =ZE (o- O-o) k - 1

k=O k!
1, (IV-9.4, 3)

k = tk e dat) t dX(t)

The following theorem postulates the existence, boundedness, and positive character

of the coefficients ck.

Theorem 1, (IV-9.4, 3) "Let f(t) be the time function representing a delayed impulse,

pulse, or window function. Then, the coefficients ck exist uniquely, are bounded, and

c k > Ofor k = 0, 1,2, .... "

The proof follows easily from the preceding theorems.

Corollary 1, (IV-9.4, 3) "The transfer function F(s) associated with an impulse, a pulse,

or a window function can never be a (finite) polynomial."

This follows because c k > 0, k = 0, 1, 2, ... and by the principle of analytical continu-
*

ation.

Theorem 2, (IV-9.4, 3) "The coefficients ck in 1, (IV-9.4, 3) satisfy the determinant

conditions 2, (IV-9. 1, 5')."

This property becomes obvious from a preceding theorem.

Theorem 3, (IV-9.4, 3) "Let Ck(0o) and ck( -o); > be, respectively, the coefficients

of the power series 1, (IV-9. 3, 2) when the expansion is made around the points a-' and

r . Then
o

Ck(-) < Ck(co) < Ck(O), k = 1, 2,... .

The proof of the theorem is simple.

Theorem 4, (IV-9.4, 3) "The ck coefficients associated with an impulse of area equal

to A and delayed to units of time are given by

k -o
ck(-O, to) = A t e°

-O-

Ck(' o , 0)=Ae =

(I-9.4, 3)

2, (IV-9 . 4 3)

The proof is elementary.

*It is, therefore, a fundamental mistake to try to approximate a transfer function
F(a-) by cutting the series at a finite number of terms. Electrically speaking, this
syncopation invites one or several oscillations in the approximate time response. We
shall consider this situation later on.
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The following theorem concerns the absolutely monotonic character of the coeffi-

cients ck for undelayed impulses or window functions.

Theorem 5, (IV-9.4, 3) "The coefficients ck associated with a delayed window function

of duration a (aperture) units of time are linearly expressed in terms of an absolutely

monotonic sequence {ln} ."1

Proof .

Take a window function of duration a and delayed to units of time. We can write

ot = /4 aTn = S tk sot da(t)} j tk {eo da(t)}

k-j

k+l 1 'oto (t) 
ak e°° (-Jk j

j=l

where

1 1= Tj e 0 da(T-) = T
j d (T) 3, (IV-9. 4, 3)

The sequence {,j}00 is absolutely monotonic because of a well-known theorem of the

theory of the finite interval moment. (See references 9 and 8.)

The following theorem refers to the relationship between the coefficients cn(a-o) and

cn(0) which correspond, respectively, to the power series expansions around the points

a = 0 and a = 0.

IV-9. 4, 4 On the power series expansion of delayed window functions. Several exam-

ples will be used to illustrate the power series expansion of a delayed window function.

For simplicity in the computations we shall consider

Theorem 1, (IV-9. 4, 4) "Let cn(a-o) and cn(O) be, respectively, the coefficients of the

power series expansions of F(a-) around the points a- = o-0 and a- = 0. These coefficients

are related by the expression

cn(a-) -- O cn+k(O) 1, (IV-9. 4, 4)

k=0
Proof.

c n a-ot ( ) ( 1 ) k n+kn e oda(t) t n a'0 k da(t)

fro0 -. ok=0 

from which 1, (IV-9.4,4) follows.
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The following theorem is concerned with the relationship between the coefficients

of the power series expansion of a delayed pulse or window function and the undelayed

pulse or window function, when both expansions are made around a- = a-o .

Theorem 2, (IV-9.4, 4) "Let c n(a-, to) and cn(ao, 0) be, respectively, the coefficients

of the power series of a delayed pulse or window function and of the same undelayed

pulse or window function. Then we have

n

n ( o E (n) j(O' 0) 2, (IV-9.4, 4)
j=l

and conversely, we have

n I

cn(o, 0O) = Z (_ 1 )k (nnk)Cn-k( ' t o )

k=l

n

= Z ( 1)k () cka-OtO)k=(-l) (k)n-k('o ' to)
k=l

3, (IV-9. 4, 4)

and cn(ao, 0) > 0."

Proof.

Let F(s) be the transfer function of the undelayed pulse or window function and G(s)

be the transfer function corresponding to the delayed pulse or window function. We have

- st
G(s) = e o F(s)

Because of the absolute convergence of the integral representing each factor in the

half s plane, then we can multiply the power series representation of each factor in the

right-hand side to obtain the power series representation of the left member. By doing

that and by equating the coefficients in both sides we obtain 2, (IV-9.4, 4).

Now 3, (IV-9.4, 4) follows because the matrix whose elements are (n) is not singular.

Its inverse matrix has the elements (- 1 )k ( nk)

Finally, the expression n(- o , 0) > 0 follows because the undelayed pulse is a non-
negative function.

Expressions 2, (IV-9. 4, 4) and 3, (IV-9. 4, 4) have a fundamental formal importance

in the theory of pulse transmission and in the theory of window functions presented in

Technical Report No. 270. In subsection IV-9. 5 we illustrate the significance and

importance of expression 2, (IV-9.4, 4).

The discussion is now conducted toward the investigation of a few asymptotic prop-

erties of the coefficients cn when n attains very large values. First consider window

functions. Due to the results of the last theorem we shall investigate the asymptotic

behavior of undelayed window functions.
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Let ta be the aperture of the window function. See Fig. 1, (IV-9. 4, 4). Let us write

t
'-t 4, (IV-9 .4. 4)

a

We obtain

n+l n -co ta 
c =tn+l Tn e oa da(T) 5, (IV-9.4, 4)
n a

For large values of T, the function Tn remains very small in most of the interval 0, 1

but it starts increasing rapidly in the left neighborhood of point one. This property

allows us to compute the coefficients cn for a specific case. For the values of n corre-

sponding to the graph of Fig. 1, (IV-9.4, 4) we can approximate the lagging side of the

window function by the tangent. Hence

f(T) If (Tm)I (1-T), T < T <1

when f'(T) is equal to the maximum tangent of the lagging edge. The value T is taken

as

T = 1- 6, (IV-9. 4, 4)

0 Ifl(TmI

Hence we have

Tn -U-t T

c tn+l f(T) T (1-) e"a dT 7, (IV-9. 4, 4)
n a

The coefficients cn can be computed approximately in terms of incomplete beta functions

for relatively large, but not for extremely large, values of n. For the extremely large

values only the right foot of the window function has any effect on the integration.

Approximate expression for cn , when n is extremely large, can be found in terms of

higher derivatives. We have not performed this computation because these extremes

are not needed for the rational approximation of a transfer function. (See theorem in

subsection IV-9.5 in this regard.)

Formula 7, (IV-9. 4. 4) cannot be applied to the case of pulses because of its tail.

A modification is then needed. The procedure is as follows.

Take ta covering only the last region in which the lagging edge of the pulse is fairly

straight. The tail of the pulse, starting at ta, is approximated by a decreasing expo-

nential. Let the tail of the pulse be approximated by

e-(aT+PT 2)
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We obtain

n+l 1f'(Tm Tn (l-T) e a dT +n T e-YTPT dT 8,(IV-9.4,4)
n a a

where

y= a + to a

which holds good for large, but not for extremely large, values of n.

We shall consider the approximation of the coefficients cn for the first few values

of n. This is done by substituting the pulse by its polygonal frame (see section

IV-5. 0). Corner type theorems can then be used.

Let us introduce the function

00 (- k nt)n+2

(t) = 1 ()k ( ) 9, (IV-9.4, 4)
k! (n+1) (n+2)o k=0

It can be shown that

o

cn = f qn(t) dr(t)

where

r(t) = f"(t) dt

Now for the polygonal frame having m + 1 corners

m

Cn n(tj) [f'(tj+)- f(t j)] 10, (IV-9. 4, 4)

j=O

For the notation see Fig. 2, (IV-9.4, 4).

We close subsection IV-9.4, 4 with a theorem that refers to the alternation in sign

of the terms in the power series expansions of the transfer functions associated with an

impulse, with a pulse, or with a window function.

Theorem 3, (IV-9.4, 4) "The terms of the power series expansion, around o = ro >0 0,

of F(o-) for a delayed or undelayed impulse, or pulse, or window function, alternate in

sign for - >- 0."

The proof follows at once from 2, (IV-9. 1, 5') and 6, (IV-9. 2, 2).

IV-9.4, 5 Examples. Several examples will be used to illustrate the power series

expansions associated with a delayed or undelayed window function. For simplicity in

the computation we consider a "complete cosine" window function. (See sections IV-3

and IV-4 of this report.)
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Figure 1, (IV-9.4, 5) shows the graph of a pulse

f(t) 1 - cos 10 t 0.800 t I 1, 1(IV-9.4, 5)

delayed 0. 800 units of time.

The graph of the ck, n = 1, 2,..., c o = 0, are given in Fig. 2, (IV-9. 4, 5). The first

few terms of the power series expansion around o = 0 are

F(s) = 0.1 - 0.09s + 0.04066s 2 0.0123s 3 + 0.002801s

- 0.0005124s + .. . 2, (IV-9.4, 5)

Let us now consider the same complete cosine pulse, but without delay. The first

few coefficients cn are given by

1 -2 1 -3 -45 
c o =10 1 =10 ; 10- c 2 2X10 c = X 10- ; c 5 = 53 X 10 6

10- l 10 cg 3 3 4 X 10

The first few terms of the power series expansion around o = 0 are

F(s) = 0.1 - 0. Ols + 0.000666s 2 - 0.0000333s 3

+ 0.000001333s 4 - 0.0000000444s 5 + ...

IV-9.4, 6 A polygonal frame approximation. The next example consists of the computa-

tion of the power series representation of a given pulse when a polygonal frame approxi-

mation is used. Take the complete cosine window function of the last example. A rough

first approximation is obtained when the given window is approximated by a trapezoidal

frame. The selected frame has an area which is equal to the window function area.

See Fig. 1, (IV-9.4, 6). The first seven cn coefficients were computed by means of the

corner theorem. By comparison we also reproduce the first cn coefficient which corre-

sponds to the complete cosine pulse.

complete cosine trapezoidal frame
n c c

n n

0 0.10000 0.10000

1 0.09000 0.08999

2 0.08133 0.08112

3 0.07380 0.07322

4 0.06723 ' 0.06618

5 0.06149 0.05991

6 0.05645 0.05431

7 0.05208 0.04927

-149-

_ I I_ I_ II _� I� _I ____ I_· I ______ __



0.918
fTRAPEZOIDAL FRAME

III-COMPLETE COSINE WINDOW

IV FUNCTION0.882

0.818

0 0.1 0.2 0.7 0.8 09 1.0

0.982

Fig. 1,(IV-9.4,6)

Trapezoidal frame for the window function 1, (IV-9.4, 4).

IV-9. 5 Application of a nonlinear process of summability. This subsection is prima-

rily concerned with the application of a nonlinear process of summability which enables

us to construct sequences of rational approximants to a given transfer function.

An introduction of this process has been made in reference 8, Part II. In the present

report we are only interested in its application to the problems under discussion.

Meaning, properties, and their connection with network theory are discussed in refer-

ence 8.

IV-9. 5, 1 Particular case (Pade). For clearness in the presentation we shall begin the

discussion with a particular case of the summability above which leads to the Pade

method of construction of rational approximants.

Let

yO(z), Y1 (z), y2 (z)' .z. Y2n(Z) . 1,(IV-9.5, 1)

be a sequence of monogenic functions which converges uniformly toward a function y(z)

in a certain domain of the z plane. Let us associate with the sequence another sequence

defined as follows

Yv Yv- 1Y v- 2 .. Yv-p.

A A A ... A
v v- v- 2 v-.'

A A A A. v+I v v-l '- v- -+l

V+L- 1 v+u-2 Av+-3 ' v-l
1 1 1 ... 1

A A A ... A
v v-1 v-2 v-_p

AV A A 1 ... A
Av+l 1 v v-l '- Av-L+l

v +p-1 v+.+±-2 v+I-3 v-1
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where

Ak = Yk+l - Yk' k= v - , v - +l, ... v + 

Some interesting properties of the sequence r (z) can be seen without difficulty.

A. Let the sequence {Yk} be all polynomials. Then, r are rational functions.

B. Let the sequence {Yk} be all rational functions. Then, r are also rational

functions.

C. Let all y be rational functions. Then the poles of Yv, Yv 1,, . .' Yv- are, in

general, also poles of the sequence r

IV-9. 5, 2 The case with y as partial sums of a power series. Our particular attention

will first be paid to the case in which the sequences y are taken as the partial sums of

a power series. This hypothesis will identify the sequence r (s) with the Pade

sequences of rational functions.

Consider the series

F(z) = a a + + a2 + .. + a z v +... 1,(IV-9.5, 2)

and let us define the elements of the sequences {Yk} as

Yk = ao + az + aZ ++ akz ; k = 0, , 2,... 2, (IV-9.5, 2)

After some laborious but simple manipulations we obtain (see reference 8)

2 y
Yv Y,- 1z Yv- 2 z .. Yv Z

aV+l av av-l . . . av-L+1

a a aa+4 av+11 a ... a+av+ av+ 1 v+ 2 vB+
· ···· · ··~~~~~~~~~~1

R (z)= - -, -I -- -, )
V,1' 

1 z .z . Z

av+l av av- 1 . a- L+ 1

a +2 a +1 a ... a
av+2 a+l v *- av,+2

a V+ a + -I av+-2 ... avv+F vI±-l v~j±-2 ... V

Each term of the sequence R (z) is the Pade approximant of the series 1, (IV-9. 5. 2).

A simple inspection of 3,(IV-9.5,2) shows that it represents a rational function whose

numerator and denominator are, respectively, of degree v and , except when there

exists a polynomial which is a common factor to the numerator and denominator. For

a beautiful presentation of the subject the reader may consult reference 11.
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Let us introduce the notation

Pv(z) a0 + alz + az + ... + a z v

Rv ,(z) = - 2VI . +Po p + z + . .+ P 
4, (IV-9. 5, 2)

that the coefficients a O, ... , a, o, ... p satisfy the

a0 P = a0

al Po + a0 p1 = al

a2 o0 + al p1 + a p2 = a2

av P + av-l + a- 2 P2 + + a- = a-2 v-~ ~c v _~~~~~F

linear relations

5, (IV-9. 5, 2)

a,+l P0 + av pi + av-l 2 + ''' + av+1

av+2 0 + av+l 1 + av + .. + av-+2V2 

av+FL 3 + av+-l 1pi + a+,L- 2
+ . .+a52+..a

p= 0

p =o

=0
v F 

6, (IV-9. 5, 2)

The proof follows: Let us multiply the first, second, and third (+l) t h columns of each

determinant in the numerator and denominator, respectively, by o, P 1 , .... and

add all such columns to the last. Now if by construction, p0 , .. ., p satisfy 6,(IV-9.5,2)

then the transformed determinants have a last column with all of its elements equal to

zero except the first. By expanding about the last column we get

R (z) = P Yv + 1 Yv-lz + 2 Yv-2z 2 + ' + Pl Yv- '

JO +P+z +
2 Z . + + z

By equating the coefficients in the numerator of this expression and of 4, (IV-9. 5, 2) the

relations 5, (IV-9. 5, 2) follow at once. This result permits us to produce the following

stipulation.

This system of homogeneous equations has nonzero solutions for the P coefficients

when the rank of the matrix

av+l

av+2

av+ B

a ... a \v fv-J+l 

a I . .. . .

aV+~L I ... a /vi;l v 
is not zero. If the rank is F, then the system

factor).

has a solution (except for a multiplying
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The coefficients a, ... , a and ,0 ... , 3 can be found simply by directly expanding

the determinants in 3,(IV-9.5,2) or by solving the systems of linear equations 5,(IV-9.5,2)

and 6, (IV-9.5, 2), when an arbitrary value, for example, 1, is assigned to . The

rational function is insensible to the selection of P. During the preparation of the

manuscript, Bolinder obtained simple explicit expressions for the coefficients a and

p in terms of the a's. He used an ingenious procedure in the expansion of the deter-

minants in 3, (IV-9. 5, 2). The results are given in Table I, (IV-9.5, 2).

Finally, we shall recall a basic property of Pade approximants.

Let Pv(z) and Q. (z) be the polynomials defined in 4, (IV-9.5, 2). The expression

F(z) Q(z) - Pv(z) = G(z) 7, (IV-9. 5, 2)

is a polynomial which is, in general, of the smaller v + p.+ 1 degree. The polynomial

G(z) is, of course, intimately related to the series 1, (IV-9. 5, 2). When and a are

not zero, then

G(z) = a z++ + a v+2 + + ... 8, (IV-9. 5, 2)

which is the remainder of the series after the (v+pL) term.

It may happen that some of the last coefficients and some of the last a coefficients

in 4, (IV-9. 5, 2) become zero when the rank of the matrix is smaller than . When this

happens the degree of Q. (z) is smaller than , say equal to q, (q<L), and the degree of

Pv(z) is equal to, or smaller than, v. Under this assumption the lowest degree in

7, (IV-9. 5, 2) is p + q + r + 1, where r is equal to the -rank of the matrix of the a coef-

ficients. Expression 7, (IV-9. 5, 2) is, in fact, the original Pade' definition of the rational

approximants. We did not start the discussion of Pade tables in this classical approach

because in reference 8 we have shown the network significance of a more general pro-

cedure of which Pade approximations are a particular case.

IV-9. 5, 3 Some theorems of the Pade approximation theory. We shall recall here,

without proof, some theorems of the theory of Pads approximations which are of signifi-

cance in this investigation. These properties can be found in references 10 and 11. For

convenience we shall follow these references closely.

In the classical theory, the Pade approximants Pv(z)/Q (z) are arranged in a double

table whose entrances are the indices v and p.. In the square whose coordinates are

v,p. we normally place the approximant Pv(z)/Q (z).

Definition 1, (IV-9. 5, 3) "Take the square whose coordinates are given by (v,p), with

v and p. fixed. The sequence v,l is normal if the rational approximant Pv(z)/Qp (z) is

such that Pv(z) is exactly of degree v, Q (z) is exactly of degree p., and the fraction

Pv(z)/Q (z) is not found in any other square of the table.

"The Pade table is called normal if all its squares are normal.

"When a certain fraction P (z)/Q (z) appears in more than one square, then the

corresponding square and the complete table are called abnormal."
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The following theorems are concerned with the conditions of normality and abnor-

mality of Pade tables.

Let us introduce the determinants

A =
1, v

a a a ... av v- v-2 v-p.

a a a ... a

av+2 av+l ava+ a V+ a V ... a 

av+p av+f.+l av+p+2 · , av

p,v = 0, 1, 2, ...

ak = O, when k< 0

with

A = 1
-1,v

1, (IV-9. 5, 3)

Theorem 1, (IV-9. 5, 3) "The necessary and sufficient condition for a square [,v] to be

normal is that all four determinants

A ; A ; A A 2,(Iv-9.5, 3)p.-l,v+l; p.-,v p.,v+l 2, (IV-9.5, 3)

are different from zero." See reference 11, page 429. (The determinants A are

the same as the determinants D in 2, (IV-9. 2, 2). By transposing 1, (IV-9. 5, 3) and

substituting v - = E we obtain 2, (IV-9. 2, 2).)

Theorem 2, (IV-9. 5, 3) "If every determinant 1, (IV-9. 5, 3) for 1,v = 0, 1, 2 ... , 0 is

different from zero, then the Pade table is normal."

Theorem 3, (IV-9. 5, 3) "Let the approximant r (z) occupying the square [v,] have

a numerator P (z) exactly of degree p and a denominator Q (z) exactly of degree q.

When the common zeros in both are reduced, then there exists an integer r, r 0 such

that the polynomial 6, (IV-9.5, 2) begins with p + q + r + 1 power, or it is identically zero,

in which case we set r = 0o.

"Moreover, the squares given by

[q+- 1 ,p +r 2]; rl,r 2 = 0,1,2, r

which form a block of (r+l)2 squares, are all occupied by the approximant r and will

not appear elsewhere." (See reference 10, page 394, reference 11, page 426.)

Abnormal Pade tables, particularly when r = , have a special interest in our

investigation. Several illustrative examples follow.

IV-9. 5, 4 Examples. Consider the remainder 8, (IV-9. 5, 2) which corresponds to the

series 1, (IV-9. 5, 2). When this remainder vanishes identically it simply means that the

power series is a rational function. Hence r = o is a condition for series 1, (IV-9. 5, 2)

to represent a rational function. Several examples are given. All examples are

computed for 0-o = 0; this makes z = s.
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Table I, (IV-9. 5, 4)

Table II, (IV- 9.5, 4)
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V 0 o1 Z 3

10 1 1 - s I - s+ 2 1 - s + s2 -s 3

1 1 s 1 1 1
l+s 1+s l+s l+s

1 1 1 12 l+s +s +s l +s

0 1 2 3 4

0 1 1 1 - s 2 1 2 31 2 + s 3

2

1< 1 1+ 1++s-s +2 3 2 3+s21 1 1 1s s 1 - s + s

1 1 + s + s 1 +s 1 + s1 +s +s +s +s

1+s2 3 +s +s 2 + s +s2 +s+ s2 1 +s+s 2

1 l +s I+s l +s +s

s2 3 4 2 2 ss2 2 2

1+s -s +s 1+s+s 1 +s+s 1 +s+s 1 +s+s
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Example I.

1 2 3 4
F(s) = 5s +1 1= - s + s

The corresponding Pade table is given in Table I, (IV-9. 5, 4). The reader must notice

that the table becomes immediately irregular with r = oo. The term l/(l+s) is the

complete function.

Example II.

l+s +s 

Note that some powers are missing. Table II, (IV-9.5, 4) shows two types of abnor-

malities: a block of order r = I at [0,0], [0,3], etc., and a block r = which exactly

reproduces the original.

Example III.

F(s) =1 + s + s = 1 s3 4 7 s 2 ...
2 31+s+s +s

Note the lacunary character of the series. Table III, (IV-9.5, 4) shows several abnor-

mal finite blocks and also an infinite block whose elements are necessarily the original

rational function. (See reference 10, page 399, etc., C-fractions.)

The following examples have a multiple root with zeros at the right or left of the

frequency axis.

Example IV. Table IV, (IV-9.5, 4)

F(s) = I 1 - 3s + 6s 2 -10s3 + 15s4 - 21s5 +...
(s+l) -

Example V. Table V, (IV-9.5, 4)

F(s) = s + 23 +2 - 5s + 9s 2 - 14s 3 + 20 4 - 27s5 +...
(s+l) 1

Example VI. Table VI, (IV-9.5, 4)

(s3 =-2 + 7s - 15s 2 + 26s3 -40s 4 + 57s
(s+1)

Example VII. Table VII, (IV-9.5, 4)

F(s) = (s-2) (s-3) = 6 - 23s + 52s 2 - 93s3 + 146s 4 - Z11s 5 + ...
(s+)1 3

The different functions, which appear in all of these examples are intentionally taken

as completely monotonic functions along the positive real axis of the s plane. This is

not a loss of generality because all transfer functions can be expressed as the differ-

ence of two completely monotonic functions.
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It is worthwhile to note, through all of these examples, a group of properties.

I. If a given transfer function is rational, then the Pade procedure recovers the

original function from the series. The original rational function always appears as the

recurrent approximant of an infinite block.

II. Let us assume that the infinite block appears on and below the line = o and on

or to the right of the column at v = v.

Hence
0 ,= 1, 2, ...

1, (IV-9. 5, 4)
o+Xl o+=- 0,1,2,

It may happen that one or several determinants

I < ~Lo and v = 0, 1,2, ...
0 (• 2, (IV-9. 5, 4)

vI L or v < vo = 0, 1, 2, ...

may be zero. Then this produces finite blocks in the outside of the infinite block. The

vanishment of isolated determinants does not mean that the elements of the finite block

are the required rational function. This situation is found, for example, when several

powers of s are missing in the series.

III. The following property is of particular importance.

If F(s) is a rational function, then the complete function F(s) can be constructed by

the knowledge of only a finite set of coefficients of the power series.

IV-9. 5, 5 Pulse approximations. We shall now apply the procedure given above to

obtaining the rational approximations for the pulse indicated in Fig. 1, (IV-9.4, 4). The

corresponding rational function approximants, for the delayed and undelayed pulse, are

given in Tables 1, (IV-9.5, 5) and II, (IV-9.5, 5). We have produced only a few approxi-

mants to show specific examples. The reader can increase at will the corresponding

tables.

The reader must note that the table becomes rapidly abnormal for the undelayed

pulse. The table of the delayed pulse does not show abnormalities. A computation of

the position of the poles and zeros of approximants will help to understand the behavior

of the tables, particularly for the abnormal squares. Figure 1, (IV-9.5, 5) shows the

position of poles and zeros for some squares.

The reader can see that there is a jump of poles and zeros when abnormal squares

appear. Steady poles and zeros indicate that they belong to, or form a basic group of,

the function represented by Pade tables.

IV-9. 5, 6 Final remarks. With regard to the construction of the rational function by

means of Pade tables it is necessary to recall to the reader that when dealing with

transfer functions the Pade' table must be constructed for the completely monotonic

components of the transfer function.
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Square I (undelayed pulse)
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0
II

-15

-3.292 -j 1.917

I0

Fig. 1,(IV-9.5,5)

Poles and zeros of some squares of Tables I, (IV-9. 5, 5) and II, (IV-9. 5, 5).

As indicated in the introduction of section IV-9, we originally planned to publish

additional material in this final section. Due to the length of the report, it has been

decided to present that material in Technical Report No. 270, which constitutes Part V

of the series of reports on basic existence theorems in network synthesis.
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