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ABSTRACT

Huang, Chi-fu — Information Structure and Equilibrium Asset Prices

In a continuous trading economy, it is shown that if information is

revealed continuously and if agents' preferences are continuous in a

certain topology, then equilibrium asset price processes must have

continuous sample paths. Except for uninteresting cases, the sample

paths of price processes will be of unbounded variation. In particular,

if the information is generated by a Brownian motion, then equilibrium

asset price processes are Ito integrals. When information is not

revealed continuously, the times (which may be random) at which prices

can have jumps are identified. J. Econ. Theory ,

(English). Massachusetts Institute of Technology, Cambridge,

Massachusetts, USA.
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1. Introduction and Summary

Among the central topics in the study of financial economics over the past

decade have been the characterization of an individual's optimal intertemporal

consumption and investment decision and the implications for asset prices in an

equilibrium setting. Continuous time stochastic models have been prevalent in

that body of literature. Merton [29] studied the consumption-investment problem

of an investor in a market where asset prices are Ito integrals. Various equili-

brium formulations of financial markets using continuous time models are usually

termed Intertemporal Capital Asset Pricing Models . Merton [30] has the seminal

paper in this direction. Breeden [a] extended Merton' s [30] results.

A common practice in these Intertemporal Asset Pricing Models is to assume

that equilibrium asset prices are Ito integrals. Since the purpose of these

asset pricing models is merely to characterize properties of equilibrium asset

prices, assuming that asset prices are Ito integrals to start with is inappro-

priate for their purpose. In order to convert these asset pricing models into

true general equilibrium models, conditions on the exogenous uncertain environ-

ment and on agents' preferences must be found ensuring that equilibrium asset

prices are indeed Ito integrals.

The main purpose of this paper is to develop just such a set of primitive

assumptions guaranteeing that equilibrium asset prices are Ito integrals. More

generally, this paper provides foundational work linking various patterns of

information flow to different behaviors of equilibrium asset prices. If agents'

preferences are "continuous" and if information is revealed in a "continuous"

fashion (the usage of "continuous" in these two contexts to be made precise),

then a basic result of this paper is that equilibrium asset price processes will

have continuous sample paths. Furthermore, the sample paths are of unbounded

variation except for uninteresting cases. In particular, it is shown that an
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infonnation structure generated by a Brownian motion is continuous, and for this

information structure, asset prices are Ito integrals. For other discontinuous

information structures, the times (which may be random) at which asset price

processes can have jumps are identified.

In Section 2, a model of a continuous-time frictionless pure exchange economy

under uncertainty is formulated. Taken as a primitive is a probability space

(Q,9;T). Each generic element weJ^ denotes a complete description of the exogenous

environment. The set of trading dates is the interval [0,t]. It is assumed that

there is a single perishable consumption commodity consumed only at times and T.

The commodity space is taken to be V = RxL (n,G^,P) , where L (f^,^,P) is the space

of essentially bounded random variables defined on (f^,?,P). Each generic element

(r,x)eRxL (J^.S',?) means r units of consumption at time zero and x(u)) units of

consumption at time T in state co. There are a finite number of agents in the

economy indexed by i=l,2 1. Each agent is characterized by a preference

relation ^. on V, the space of net trade. We assume that ~. is continuous in a
i

"^ 1

sense to be formalized.

The common information structure of agents, |F = {^f ,te[0,T]}, which plays an

essential role in this paper, specifies distinguishable events at each te[0,T].

Roughly, for each te[0,T],-^ is the collection of events whose occurrence and non-

occurrence can be determined at time t. Putting it another way, IF specifies how

events are revealed to agents over time. If, for example, the information struc-

ture is generated by some stochastic process then, loosely speaking, |F at t

describes all the possible realizations of the stochastic process in the time

interval [0,t].

It is assumed that there are (N+1) traded claims in zero net supply, indexed

by n=0,l,...,N. Each one is characterized by its payoff structure at time T.

Each agent's problem is to find a strategy of buying and selling those traded
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claims in order to maximize his or her preferences on net trade. The eouili-

brium concept used is the Equilibrium of Plans, Prices, and Price Expectations

of Radner [35].

All the results in this paper are valid if agents are endowed with different

probability measures on (fi,5), provided each agent's endowed probability measure

is equivalent to P. Two probability measures on the measurable space (f^,50 are

said to be equivalent if they have the same null sets. For expository purpose,

however, we shall assume that agents are endowed with a coiranon probability

measure P.

The main purpose of this paper is to characterize properties of equilibrium

asset prices when an equilibrium indeed exists. In Sections 3 and 4, we shall

assume that an equilibrium exists and denote the equilibrium price system by S.

Thus S((jJ,t) is the (N + l)-dimensional vector of equilibrium prices for the N+1

traded claims at time t in state OJ.

Section 3 extends Harrison and Kreps [20] in the following direction. In

that paper, agents are allowed to trade at only a finite number of prespecified

2 2
times. The net trade space is RxL (9.,3,T) , where L (Q,^,F) is the space of

square-integrable random variables on (fi,^,P). If there exists a claim, the

numeraire security , whose price lies in a compact subinterval of (0,°°) on [0,T],

then by choosing the price of this claim as the numeraire, they showed that the

normalized equilibrium price system is a vector of martingales under a substi-

tution of an equivalent probability measure. By allowing only essentially

bounded claims, this section validates the martingale result of Harrison and

Kreps [20] in our economy where trading can take place continuously. That is,

if we denote the vector of normalized equilibrium prices by S , then a probability

measure Q on (Q,,3-) equivalent to P can be constructed such that E (S (s) \3-^)

S (t) Q-a.s. for T ^ s > t :s 0, where E (•) is the expectation under Q (Theorem

3.1). We shall call this property the martingale representation property of
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equilibrium prices,

A definition for a continuous information structure is given in Section 4,

one originally due to Harrison [19]. An information structure IF is continuous

if agents endowed with |F update their posterior probability assessments for any

event Be 5- in a continuous fashion. That is, for every distinguishable event

Be5, the mapping t ^ P(b|^ ) is, with P-probability one, a continuous function

of time, where P(b|^ ) denotes the posterior probability for event B at time t.

This definition has two very important consequences. The first is that any

martingale adapted to \F is indistinguishable from a continuous process (Propo-

sition 4.1). (The words adapted and indistinguishable will be defined in the sequel.)

Now let us note that the definition for a continuous information structure

is given with respect to the reference probability measure P. Intuition suggests

that whether or not an information structure is continuous should depend largely

upon how events are revealed but not upon the particular probability measure

involved. A second important consequence is therefore: an information structure

|F is continuous under the probability measure P if and only if it is continuous

under any probability measure Q equivalent to P (Proposition 4.2).

Armed with the martingale representation property of equilibrium prices,

the continuity of the sample paths of equilibrium asset prices, denominated in

units of the numeraire security, is derived directly from the two above-mentioned

consequences of a continuous information structure. The argument goes as follows:

Suppose that IF is continuous under P. Then it is continuous under Q by Propo-

sition 4.2. By Proposition 4.1 we know that any martingale under Q is indistin-

guishable from a continuous process. From the martingale representation property

of equilibrium asset prices, S is a vector martingale under Q. Therefore S is

indistinguishable from a vector of continuous processes. Since, in an economic

equilibrium, only relative prices are determined, and the normalized price system

S is a vector of relative prices, we are done. Continuous information implies
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that S must have continuous sample paths.

Furthermore, the continuity of the information structure also requires that

the sample paths of equilibrium prices have unbounded variation except for un-

interesting cases (Theorem A. 2). This follows from a well-known result in

probability theory: a continuous martingale is either of unbounded variation

or is a constant (Fisk [15]). Conversely, when the securities markets are

complete , in a sense to be defined, then the continuity of prices also implies

the continuity of the information structure (Theorem A. 3). Intuitively, we

need "enough" securities to distinguish each piece of information coming in.

All of the above results are of course provisional upon the existence of an

equilibrium. A general existence proof is beyond the =rope of this paper. An

autarchy example of the economy with which we are dealing is given in Section 5.

The existence of an equilibrium is first established. It is shown next that an

information structure generated by a Brownian motion is continuous, and in that

case, equilibrium asset prices are Ito integrals. This follows from a celebrated

result in probability theory: any martingale adapted to the information struc-

ture generated by a Brownian motion can be represented by an Ito integral (cf.

Clark [7]).

Section 6 discusses other information structures and links these structures

to different behaviors of equilibrium prices. This section ends by showing that

an information structure is continuous if and only if no events are "surprises"

in a sense to be made precise. Section 7 contains some concluding remarks.
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2. The Formulation

This section presents a model of a continuous-time frictionless pure exchange

economy under uncertainty. Let (f2,3-,P) be a complete probability space. Each U)ef2

denotes a complete description of the exogenous environment. The set of trading

dates is T[ = [0,T], where T is a strictly positive real number.

Agents in the economy are endowed with a common information structure, which

is specified exogenously. Formally the information structure is a family of

increasing sub-Borel-fields of &: |F = {9- , t e T} wi th ^ o ^ for s ^ t. It is
t St

9
assumed that * is almost trivial , that 3 = jT, and that the filtration If is

right-continuous, that is, '& = H ^ for every te[0,T). Also, ?„ is assiomed to^
t S>t S y I

>
/ '0

contain all P-null events. A process Y = {Y(t),teT^} is said to be adapted to |F,

or simply adapted, if as a mapping Y : S7 x [0,T] ->• R, Y is measurable with respect

to ^xB( [0,T]) , and if Y (t) is measurable with respect to 5 for every teT. The

common probability measure on (fi,?) held by the agents is denoted by P. The

expectation operator under P is denoted by E(*).

There is one perishable consumption commodity consumed only at times zero

00

and T. The net trade space is taken to be V = RxX, where X = L (fi,.?,P) is the

space of essentially bounded random variables. Thus (r,x)eV denotes r units of

consumption at time zero and x(co) units of consumption at time T in state co.

We endovj V with a product topology T
,
generated by the Euclidean topology on R

and the L -Mackey topology on X. The L -Mackey topology is the strongest topology

1 ^ w 4
on X such that its topological dual is L (^,3-,?).

There are N+1 consumption claims indexed by n=0,l,...,N. Each claim n is

represented by a random variable d eX. Interpret d (03) the number of units of
n ^ n

the consumption commodity to which the bearer of one share of claim n is entitled

at time T in state w. Let X = {xcX: P{x :^ 0} = l}, the positive orthant of X,

and X = {xeX: P{x i c} = 1 for some ceR , c ¥ O}. We assume that dQeX^_^, that

is, the payoff of the claim is bounded below away from zero. The claims are

of zero net supply.
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There are a finite number of agents in the economy indexed by i=l,2,...,I.

Each agent i is characterized by a preference relation -. on V. The preference

relation ^. is assumed to satisfy the following three conditions. First, it is

convex, that is, for all veV, the set

{v'eV : v'^.v} (2.1)
1

is convex. Second, it is continuous in the following sense. For all veV, the

sets

{v'eV : v'~.v}
1

and (2.2)

{v'eV : v>.v*}

are T-closed. Third, it is strictly increasing in the following sense. Let

v'eV and v' ^ 0, where V = R xX , the positive orthant of V. Then for all

veV,

V + v'>.v ,
1

where, in the usual fashion, >. denotes the strict preference relation derived

from ~ .

.

1

Before any discussion of admissible price systems and trading strategies,

some technical definitions are in order. Two adapted processes Y and Z are

said to be versions of each other if Y(t) = Z(t) a.s. for every te[0,T]. A

martingale is an adapted stochastic process Z = {z(t) ; te^} such that Z(t) is

integrable and E(Z(t) |v? ) = Z(s) a.s. for ^ s ^ t < T. When |F is right-

continuous, any adapted martingale has a version whose sample paths are almost

surely right-continuous with finite left-hand-limits (RCLL) . (See Theorem 4

in Chapter VI of Meyer [34].) Since |F has already been assumed to be right-

continuous, we can therefore take an RCLL version of a martingale as a reference
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point. Thus, an adapted martingale will always mean an RCLL process from now on.

Meyer [34, p. 29l] states that an adapted RCLL process M is a local martin-

gale if there exists an increasing sequence of stopping times {T } such that
n

lim P(T = T) = 1
n

and the stopped process {M(tAT ) ; teT^} is a martingale for each n.

A process A = {A(t),te:T} is said to be in the class VF (for variation finie ) ,

or simply a VF process, if it is adapted, RCLL, and has sample paths of finite

variation. (See Meyer [3A], p. 249.) A process Z is called a semimartingale if

it admits a decomposition Z = M + A, where M is a local martingale and A is a VF

process. The decomposition may not be unique. (See Meyer [34], p. 298.)

The Borel field on fix [0,T] generated by left-continuous processes adapted

to |f is called the predictable Borel field. (See Dellacherie and Meyer [12],

p. 121.) A process H is said to be predictable if it is measurable with respect

to the predictable Borel field. A predictable process H is locally bounded if

sup.^ ^ |H(t)| < °° a.s. (See Dellacherie [ll].) It is known that an adapted

process which is left-continuous with right limits (LCRL) is both predictable

and locally bounded. The stochastic integral

/HdZ

is well-defined if H is predictable and locally bounded and Z is a semimartingale.

(For a discussion of this kind of integral, see the definitive treatise by Meyer

[34].) Furthermore, if we put Y(t) = /, ^^ HdZ then Y is also a semimartingale.

Let Z and Y be two semimartingales, then the following integrals are well-defined:

since the two processes Z_ = {Z(t-) ; teT} and Y_ = {Y(t-) ; tcT} are LCRL, where

by convention Z(O-) = Z(0) and Y(O-) = Y(0). We can therefore define the new
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process

:

[z,y]^ = Z(t)Y(t) -
/^^

^^Z(s-)dY(s) -
/^Q

^^Y(s-)dZ(s). (2.4)

The process [Z,Y] is called the joint variation of Z and Y and is a VF process.

(See Meyer [34], p. 267.) It follows then that the product of two semimartingales

is a semimartingale . Eq . (2.4) also gives the chain rule for differentiation:

d(Y(t)Z(t)) = Y(t-)dZ(t) + Z(t-)dY(t) + d[Y,Z]^ . (2.5)

When Z = Y , [Z,Y] = [Y,Y] is the quadratic variation of Y. (Eq. (2.5) is simply

the natural extension of Ito's fornula.)

Suppose now that Y = Y(0) + / HdU , where H is predictable and locally bounded

and U is a semimartingale, then Y, as mentioned above, is a semimartingale and

dY(t) = H(t)dU(t) . (2.6)

In this case we further have;

[Y,Z]^ = /^Q^^^H(s)d[U,Z]^ , (2.7)

or equivalently

,

d[Y,Z]^ = H(t)d[U,Z]^ ,
(2.8)

when Z is a semimartingale. (See Dellacherie [11].)

Returning to economics, an admissible price system for the traded consumption

claims is an (N+1) -vector of essentially bounded semimartingales S =

{S (t) ,n=0,l,2,. . .
,N; tel}, with S. being bounded away from zero everywhere,

n — U

where S (t) denotes the price for claim n at time tcT. We restrict our attention
n

to equilibrium price systems which are semimartingales since this class of pro-

cesses admits the most general definition of a stochastic integral with integrand

being predictable and locally bounded, and it contains many processes that have

been chosen to model behaviors of asset prices: certain diffusion processes,

the poisson jump processes, and mixtures of these two. The assumption that the

admissible price processes for the claim are constrained to be bounded away



-10-

from zero can be rationalized as follows. In our economy, the payoff d„ of the

claim is bounded away from zero. If the price of a security at any time

reflects its marginal contribution to agents' utilities, as it should, then as

long as the marginal "social" valuation at time t of one unit of the consumption

commodity to be delivered at T is bounded away from zero, we would naturally

expect that the price of the claim at t is bounded away from zero. That this

marginal social valuation is bounded away from zero is also natural in an economy

where agents are not satiated at finite amount of consumption.

A trading strategy is defined to be an (N+l)-vector adapted process, 9 =

{9 (t) ; n=0,l,...,N; teT^}, which is predictable and locally bounded. Given an

admissible price system S, a trading strategy is said to be self-financing if

9 (t)-S(t) = 9 (0) • S(0) +
/^Q ^j e (s) • dS(s) a.s. V t e T . (2.9)

(This stochastic integral is well-defined since 9 is predictable and locally

bounded and S is a vector semimartingale. The symbol • denotes inner product.)

This means that the difference of the value of 9 at time t, i.e. 9(t)* S(t), and

its initial value 9(0) • S(0), grows totally out of the capital gains:

/^Q^^,9(s).dS(s)

To put it another way, after the initial investment, for the strategy 9 there is

no new investment into and no withdrawal of funds out of the portfolio. (Harrison

and Pliska [21] were the first to discuss this kind of trading strategy.) Now

let G denote the set of self-financing trading strategies having the following

property: V 9 E G
,

sup 7 ess sup |9 (a3,t)| >

n=0,. . . ,N ( a),t " )

< oo
. (2.10)
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This serves to rule out doubling strategies, since (2.10) also implies that

ess sup |e(co,t) • S(oj,t)| < «>
, (2.11)

OJjt

by the essential boundedness of S. For doubling strategies to be implementable,

6(t) • S(t) cannot be bounded over teT^ and coe;fi. (For this point, see Harrison

and Kreps [20].) It should also be clear that is a linear space.

An Equilibrium of Plans, Prices, and Price Expectations (Radner [35]) is

characterized by a price a for the unit consumption commodity at time 0, an

admissible price system S for traded consumption claims, and I admissible trading

strategies {6 } , with 6 e G, one for each agent, such that (-0 (0) • S(0)/a,
i=l

e^ (T) • d) is -.-maximal in the set {(r,x)eV : (r,x) = ( - 6 (0) • S(u) /a,

I
i

e(T) • d) for some QeQ] , and Z 6 (t) = V £ T a.s., where d denotes the vector

N
^=^

n n=0

The existence of an equilibrium is not an issue to be addressed in this

paper. The main focus of this paper is to characterize some properties of the

equilibrium price system if an equilibrium exists. (A special case of the economy

we are dealing with will, however, be introduced in Section 4, and the existence

of an equilibrium for it will be established.)

3. Equilibrium and the Existence of an Equivalent Martingale Measure

In carrying out the analysis in this section, familiarity with Harrison and

Kreps [20] is assumed. (Henceforth, this is referred to as H&K.) The results

to be shown are essentially extensions of theirs in the following direction. In

their paper, the consumption space at time T is the space of square-integrable

random variables. Agents' preferences are assumed to be continuous in the product

2 2
topology on RxL (fi,:^,P) generated by the Euclidean topology on R and the L -norm

2
topology on L (fi,^,P). And the trading strategies that are allowed there are

simple trading strategies in the sense that agents can only trade at a finite



-12-

number of prespecified dates. In this section, consumption space for agents at

time T is the space of essentially bounded random variables. Agents' preferences

are assumed to be continuous in the product topology generated by the L -Mackey

topology on X and the Euclidean topology on R. With these more restrictive

assumptions on the consumption space and a different sense of continuity of

agents' preferences, the results of H&K are rederived while allowing for admis-

sible trading strategies to be predictable and essentially bounded encompassing

simple trading strategies. Note that a predictable and essentially bounded

trading strategy can trade continuously in [0,T].

First fix an admissible price system S. A claim x£ X is said to be marketed

at time zero if there exists a 6e0 such that 6 (T) • d = x a.s. In this case, we

say 6 generates x. Let M denote the space of marketed claims at time zero. By

the linearity of the stochastic integral and the fact that 9 is a linear space,

it is clear that M is a linear subspace of X. A current price system is a linear

functional tt : M -> R. Let xe M and let 6 be the strategy that generates x. Define

tt(x) = 0(0) • S(0). Then it gives the price at time zero of marketed claims. Now

let ^ denote the set of all L -Mackey continuous and strictly positive linear

functionals on X. A linear functional il^: X -> R is said to be strictly positive

if i)(x) > for all x£:X_^ , x ^ 0.

Now we define a vector stochastic process S = {S (t) = S(t)/S„(t) ; teT^}.

The next proposition shows that S is an admissible price system. A result

similar to Ito's Lemma is needed.

Lemma 3.1 : Suppose Z is a real-valued semimartingale and F is a twice con-

tinuously differentiable function on R. Then the process F(Z) is also a semi-

martingale.

Proof : See Meyer [34], page 301.

Q.E.D.
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A
Proposition 3.1: S is an admissible price system,

Proof : First, we want to verify that S is essentially bounded. This

follows from the fact that S is essentially bounded and S lies in a compact

subinterval of (0,°°). Secondly, we claim that S is a vector semimartingale.

This follows since, by Lemma 3.1, 1/S„ is a semimartingale and the product of

two semimartingales is a semimartingale (see (2.4)). Hence S is an admissible

price system. O.E.D.

Denoting the set of self-financing trading strategies with respect to S

by , we have the following characterization:

Proposition 3.2 : SeG if and only if QzQ , where is defined as those

predictable and essentially bounded adapted processes 6 such that

e(t) • S*(t) = 6(0) • S*(0) + / 0(s) dS (s), a.s. V t e T .

(0,t]

Proof: Let 9e0. Then by definition of a self-financing trading strategy

with respect to S we have:

e(t) • s(t) = 6(0) • s(0) + / e(s) • ds(s) ,

(0,t]

or equivalently

,

d(6(t) • S(t)) = e(t) • dS(t) .

J- ^
We want to show that d(0(t) • s"(t)) = 6(t) • dS (t) . Putting B(t) = ^/^q(0

we have

dS*(t) = d(S(t)6(t))

= S(t-)d6(t) + 6(t-)dS(t) + d[S,8]^ .

The second line follows from (2.5). By the same reasoning

d(e(t) • S*(t)) = d(6(t) • S(t)6(t))

= e(t) • s(t-)d6(t) + 3(t-)d(e(t) • s(t)) + d[B,e-s]j.

= 6(t) • S(t-)d6(t) + 6(t) • 6(t-)dS(t) + 6(t) • dI6,S]^

= 6(t) • [S(t-)dB(t) + B(t-)dS(t) + d[6,S]^]

= 6(t) • d(S(t)3(t)) = e(t) • dS*(t) .
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The second line follows from the proof of Proposition 3.24 in Harrison and Pliska

[21]; the third line follows from (2.6) and (2.8).

The converse is virtually identical, so we omit it.

O.E.D.

Given the admissible price system S , a claim xEX is said to be marketed

* *
at time zero if there exists SeG such that 6(1) • d = x a.s. Let M denote the

space of marketed claims given S . It is clearly a linear space and we have the

following characterization:

Corollary 3.2 : xeM if and only if xcM .

Proof : Let xeM. There exists Oe© such that 6(T) • d = x a.s. From Propo-

* *
sition 3.2, we know GeG , and therefore xeM . The converse is identical.

Q.E.D.

Now we are ready to state the following:

I

• }

i=l
Proposition 3.3 : If {(S,a) , (6^) } is an equilibrium then {(S ,a/S_(0)),

.1 i=l "

(6 ) } is an equilibrium. Conversely, given S lying in a compact subinterval
i=l

of (0,°°), if {(S ,a ) , O^).^,} is an equilibrium then {(S,a) , (9^).^ }is an

equilibrium with S(t) = S (t)S (t) Vte[0,T] a.s. and a = a S (0).

Proof : Suppose that {(S,a) , (9 )._-,} is an equilibrium. XJe claim that

* i I
{(S ,a/S (0)) , (9 )._ } is also an equilibrium. Suppose the contrary. Since

i I *
(8 )._ are market-clearing, there must exist some i and some 9e9 such that

(-6(0) . S*(0)SQ(0)/a, e(T) • d)>. (-6^(0) • S(0)/a , e^(T) • d) .

Recall that S (0) = S(0)/Sq(0). We thus have

(-6(0) • S(0)/a , e(T) . d) >^(e^ (0) • S(0)/a , 6^(T) • d) . (3.1)

By Proposition 3.2, we know 6e0, thus (3.1) is a contradiction to the fact that

{(S,a) , (6^):^,} is an equilibrium. So {(S ,a/SQ(0)), (6 ) ] is an equilibrium.

The converse is identical.

Q.E.D.
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Now let S be an equilibrium price system, with tt : M -> R the current price

system associated with it. By Proposition 3.3, S is also an equilibrium price

* *
system. It is clear that the current price system associated with S , tt : M ->-R,

A
is such that tt (m) = TT(m)/TT(d ) for all meM. Theorem 1 of H&K shows that there

exist extensions of tt and tt to all of X that lie in H'. Denoting such extensions

of TT and TT by i|j and \b , respectively.

* *
Proposition 3.4 ; ijj is an extension of tt from M to all of X that lies

in ^ if and only if ^ is an extension of tt from M to all of X that lies in ^,

where ip and i/j are linked by

ii^*(x) = 4^(x)/TT(dQ) .

Proof ; Consider the if part first. Let ijj be an extension of tt from M to

all of X and i/^e^. Define ^p : X^R by IJJ (x) = i|j(x) /tt (d^) . Since T^i^Q) =

* 1
S (0) > 0, it follows that 4^ is a strictly positive L -Mackey continuous linear

* *
functional. We are left to show that 4^ is an extension of tt . Let m£M. Then

,*, . 4J(m) TT(in) ^*. .

^ ('"^ = ^Tu^ = Md^ = " ("'^ •

*
The first equality follows from the definition of i|j ; the second from the exten-

sion property of ^i and the third from the definition of tt . Therefore, ijj is

an extension of tt that lies in ^.

The arguments for proving the only if part are similar, so we omit them.

Q.E.D.

The above series of propositions and corollaries have established that

changing the numeraire in our economy is purely economically neutral as long as

some "boundedness" condition is satisfied. This is hardly a surprise. In an

economic equilibrium only relative prices are deteirmined, we can therefore

normalize prices by a convenient numeraire. The boundedness of S is required

to preserve the admissibility of the price system.
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In the next proposition, a property of S will be characterized. This

proerty is important later in the development of this paper. Defining

d* E d/dQ ,

we have

Proposition 3.5 : If S is an equilibrium price system for traded claims,

then

S (co,T) = d (co) a.s.

Proof ; Since S is an equilibrium price system for traded claims, there

must exist an aeX such that

S(w,T) = a(co)d(oo) a.s.

Readers should convince themselves that the existence of such an a follows from

the equilibrium property of S. Therefore we have

*
,

*
S (co,T) = a((jo)d(tio)/(a(a))dQ(u))) = d (w) a.s.

Q.E.D.

For notational simplicity, in the rest of this paper, we shall fix an

equilibrium price system S for traded claims and assume that S has been

normalized such that S (t) = 1 Vtc[0,T]. From Proposition 3.5 we then know

S(T) = d a.s.

Speaking with reference to the probability measure P, an equivalent martin-

gale measure is a probability measure on (fl,^) which has the following properties,

First, P and Q are equivalent in the probability sense, meaning that P(B) = if

and only if Q(B) = 0, for all BeS^. (It follows from the Radon-Nikodym theorem

and the fact that Q is a probability measure that the Radon-Nikodym derivative

p = dQ/dP is integrable, i.e. p eL (fi,3^,P) , and has unit expectation.) Secondly,

the price system S is a vector bounded martingale under Q. That is, denoting the

expectation operator under Q by E (•)» we have

E [ S(s) I^ ] = S(t) Q-a.s. Vs,tE[0,T] and t < s.
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Before going to the main result of this section, we state a property of stochastic

integration which applies when the integrator is a square-integrable martingale.

Let Z be an adapted square-integrable martingale on (fi,S^,P) and H a pre-

dictable and locally bounded process. The process [Z,Z] is well defined since

a martingale is a semimartingale. Furthermore, we have (see Meyer [34], p. 267.):

E[ / d[Z,Z] ] < CO
. (3.2)

(0,T]
""

The integral /Hd[Z,Z] is defined path-by-path in the Lebesgue-Stieltjes sense.

Lemma 3.2 ; If we put Y(t) = H(0)Z(0) + / H(s)dZ(s), then Y is a square-
(0,T]

integrable martingale on (f^,Sf,P) if

E[ / H^(s)d[Z,Z] ] < CO .

(0,T]
^

O.E.D.

Proof: See Dellacherie [11], page 20.

Note that if H is bounded, i.e.

ess sup
I

H(u,t)
I

< 0°
,

a),t

then

E[/ H^(t)d[Z,Z] ] ^ ess sup (|H(co,t)|)^ E [ / d[Z,Z] ]<-
.

(0,T]
^

U),t (0,T]

So if 6e0 and S is a vector martingale, then 6«S is also a square-integrable

(in fact, a bounded) martingale.

Theorem 3.1 : Let S be an equilibrium price system and it the current price

system associated with it. Then there exists a one-to-one mapping between

equivalent martingale measures Q and linear functionals ^c^ such that ijj is an

extension of TT to all of X. This correspondence is given by

Q(B) = li^dgd^) VBe.^ and i(j(x) = E*(x/dQ) VxeX.
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Proof: We note first that a linear functional tj; on X is L -Mackey continuous

if and only if, for all xeX, i|j(x) = E(xp) for some peL (f2,S'',P). (This follows

since the L -Mackey topology is the strongest topology on X such that its topo-

logical dual is L (f^,G?,P).) Now suppose that ^peV is an extension of n . Since

ij; is strictly positive and L -Mackey continuous, there exists peL (Q,^,?) with

P{p > 0} = 1 such that ii>(x) = E(px) VxeX. Define a set function

Q(A) = / p(a))d (w)P(doj) , Aed-.

A

Since d_eX and 0(fi) = E(pd^) = i|^(d_) = 1 , by Radon-Nikodym theorem it is clear

that Q is a probability measure on (fi,?) equivalent to P. Next we want to show

that under Q, S is a vector bounded martingale.

Fix an integer k, < k ^ N+1. Let ^ t <: t <: T and EeS^ . Consider
t^

the following trading strategy:

6, (a3,t) = 1 for t£(t ,t„] and weB

= otherwise ,

e„(a3,t) = - S (uj,t ) for te(t ,t2] and weB

= S, (oa,t„) - S, ((iJ,t,) for t£(t„,T] and coeB
k 2 k 1 /

= otherwise ,

and e (co,t) = for all n ?^ 0,k .

n

We claim that 6e0. Firstly, 6 is bounded since S is. Secondly, 6 is pre-

dictable because 9 is left-continuous. Lastly, we want to verify that 9 is self-

financing. At t , the value of 9 is zero. For coeB, the value of 9 at t^ is

S (oj,t +) - S (oo,t ). Recall that the equilibrium price system S is RCLL P-a.s.
K J. K. J.

Therefore, the value of 6 at t + is zero almost surely. From then on through time

t„, 9 is obviously self-financing. The fact that it is self-financing after time

t also follows from the right continuity of S. Thus we have shown that 9e0.
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The payoff of 6 at T in units of the consumption connnodity is 1„(S (t„) -
B k 2

S (t )) • d . This claim is marketed and has a zero price at time zero. Hence

if^dgCSj^Ct^) - \(t^)) ' dp) = T^(\(\(t^) - Sj^(t^))dQ) = 0. Since Be^T^ is

arbitrary, this implies that

Equivalently

,

/ S^(t^)Q(daj) = / Sj^(t2)Q(doo) V B eS^^. .

This simply says that S is a martingale under Q. Since k is arbitrary, we have
K.

therefore shown that S is a vector martingale under Q. The boundedness follows

from the fact that S is bounded under P, and that P and Q are equivalent.

Conversely, let Q be an equivalent martingale measure. Putting p = (dQ/dP)/d
,

PEL (fi.J'-jP) by the definition of an equivalent martingale measure and the fact that

d_eX . We know p is strictly positive P-a.s. and Q-a.s., since P and Q are

equivalent. Define an L -Mackey continuous and strictly positve linear functional

}p by

\l)U) = E(xP) = E (x/d.) xeX.0'

We want to show that <]; is an extension of it. Let be any trading strategy in 0,

and m = 6 (T) • d. Then meM. By construction

i>(m) = E*(m/dQ) = E*(e(T)-d*)

= E (e(T) • S(T)).

The second line follows from Proposition 3.5. Again, by the definition of an

equivalent martingale measure, we know that S is a vector bounded martingale

under Q and therefore a vector square-integrable martingale under Q. Now from

Lemma 3.2, the discussion after it, as well as the fact that the predictability

and essential boundedness of a process are preserved under a substitution of an

equivalent probability measure, we get
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(Jj(m) = E*(e(T) • S(T)) = 6(0) • S(0) = ^(m) .

Hence i|; is an extension of tt that lies in ^'

.

Q.E.D.

This theorem is the continuous analogue of H&K's Theorem 2. Fix an equili-

brium price system, S. A probability measure Q equivalent to P can then be

constructed such that S is a vector martingale under Q. It will be shown in the

next section that this result has important consequences in the sense that many

properties of a martingale that are invariant under the substitution of an

equivalent probability measure can be used to characterize the behavior of equili-

briimi asset prices.

4. The Continuous Information Structure and the Equilibrium Price System

In this section, a definition for a continuous information structure is given,

which is originally due to Harrison [19]. It will be shown that if the information

structure for agents in our economy is continuous, then the equilibrium price

system must have continuous sample paths. Further, if the filtration is not trivial

throughout, then the equilibrium price system not only has continuous sample paths

but the sample paths must involve unbounded variation over a non-trivial sub-

interval of [0,T] for those securities whose payoffs at time T are not constants

P-a.s. in units of that of the claim. Before giving a formal definition of a

continuous information structure, some remarks are in order. First, let Y =

{Y(t),teT} and Z = {z(t),teT} be two martingales on (fi,^,P) adapted to |F
. If Z

is a modification of Y, then P{Y(t) = Z(t),Vt£T} = 1. This follows directly

from the right-continuity of martingales. Here Y and Z are said to be indistin-

guishable. Note that if a martingale has a continuous modification then it is

indistinguishable from a continuous process. Second, let B be any set in 9-.

Then E(l„|3f ) = P{b|? } is the posterior probability assessment at time t of event
B t t

B. The process {p{b|^ } ; tel) is an adapted martingale on (fi,5-,P), and therefore
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has right-continuous sample paths P -a.s. (Recall that we always take an RCLL

version of a martingale as a reference point. In the above statement we took

an RCLL version of the conditional expectation.)

Definition : The information structure (already assumed to be right-

continuous) |F = {jf ,tel^} is said to be continuous if for every Be 3, the

martingale {P(B|^ ) ; tel} has a continuous modification.

This definition says that agents' posterior probability assessments of any evert

Be^ evolve continuously through time P-a.s., which should conform with any intui-

tive ideas of a continuous information structure. In the following proposition,

it will be shown that this definition of a continuous information structure has an

interesting consequence, wh^-u will be used throughout the remainder of this paper.

Proposition 4.1 : The information structure |F = {^ ,teT} is continuous, if

and only if every martingale on (fl,3^,P) that is adapted to |F has a continuous

modification.

Proof : Since {P(B|^ )} is a martingale for all Be^, the if part is trivial.

For the only if part, we take cases.

Case 1 . Let Y be a positive integrable random variable on (fi,^,P). Then

we can find a sequence of non-negative simple integrable random variables 'Cy^}

such that Y ^ Y P -a.s. and lim Y = Y P -a.s. Now we claim that Y - Y ->

n n-*- °° n n

in L''-. To see this, we note that I Y - Y I ^ 2
|
Y

|
, and E(Y) < «>. The latter

' n

follows from the hypothesis. Theorem 4.1.4 in Chung [6] says that convergence

almost surely implies convergence in L if the sequence of random variables is

dominated by an integrable random variable. Hence, we have

E(Iy -Y|)->0 asn-»-«'.
' n '

That is, Y - Y -* in L . We thus can choose a sequence of simple integrable
n

random variables {Y } such that
n

E(|y - y|) < lln- , n = 1,2,...
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Let Y (t) be an RCLL version of E(Y 15^ ). (Here we mean that for every teT.n n t —

'

let Y (t) be a version of E(Y \3-^) such that {Y (t),teT} is an RCLL process.)n n t n —

Then {Y (t) ,^^ ; tel} has a continuous modification. This is true since it is
n t —

true when Y is an indicator function, therefore true for simple random variables.

Now let Y(t) be an RCLL version of E(y|^ ). We want to show that the martingale

{Y(t),3- ; tel^} has a continuous modification.

First we observe that {Y (t) - Y(t),<7 ; teT} is a martingale. By a generali-

zation of Kolmogorov's inequality (Theorem 1 in Chapter VI of Meyer [34]) we have:

isup I

Y (t) - Y(t)
I

> aW -
0<t<T ^

)
»

E(|y - Y
I

) ^
"*

n" 2
an

Consequently, by the Borel-Cantelli Lemma,

sup
I

Y (t) - Y(t)
I

-> as n ^ °o
.

O^t^T "

Or equivalently , Y (t) converges uniformly in t to Y(t) with probability one.
n

This implies that Y(t) is continuous P - a.s.

Case 2 . Let Y be any integrable random variable. Then we can write Y =

Y - Y , where Y = YVO, and Y~ = (-Y)vO. Now it is straightforward to apply

the argument in Case 1 to Y and Y respectively. Then the proposition follows

from the fact that the sum of two continuous functions is continuous. E D

Proposition 4.1 shows that our definition for a continuous information

structure is in fact equivalent to saying that F is continuous if any adapted

martingale on (f2,v?,P) is indistinguishable from a continuous process.

Note that the above definition of a continuous information is cast on the

probability space (S7,<^,P). Our intuition would suggest that the continuity of

an information structure should mainly involve the fine structure of the fil-

tration, and not the particular probability measure involved. The following

proposition, which is original|.y due to Harrison [19], formalizes this basic

idea, and shows that the definition of a continuous information structure is



23-

invariant under the substitution of an equivalent probability measure. (Here we

should note that in Harrison [19], after he gives the definition of a continuous

information structure, he goes on to conjecture that Proposition 4.1 is correct.

He sets the following proposition as a homework problem. My contribution is to

provide a proof for Proposition 4.1.) For the completeness of this paper, a proof

will be given, but before doing that, a lemma is recorded. Let Q be a probability

measure on (fi.?), which is equivalent to P with dQ = E,dP , where E, is the Radon-

Nikodym derivative of Q with respect to P. Of course E, is strictly positive

except possibly on a P-null set, and is of unit expectation under P. Now let

^(t) be an RCLL version of E l^\^ ]. Then {C(t),S^ ; tel} is a strictly positive

martingale on (n,^,P).

Lemma 4.1 : Let Z = {Z(t) : t£T^} be a process adapted to |F. Then Z is a

martingale on (f^.J.Q) if and only if {Z(t)^(t) ; teT} is a martingale on (Q,Sf,?)

.

Proof : See, for example, Gihman and Skorohod [16], p. 149. O.E.D.

Proposition 4.2 : The filtration |F represents a continuous information struc-

ture on (fi,?,P), if and only if it is a continuous information structure on (^^,5^,0)

for all Q equivalent to P.

Proof : First, let |F be a continuous information structure on (fi,i'',P) and Z

be a martingale adapted to IF under Q. We want to show that Z has a continuous

modification. Or equivalently , except for a Q-null set, the sample functions of

Z are continuous.

First note that {^(t),^ ; teT} is a martingale on (n,^,P), so it has a

continuous modification by Proposition 4.1 and the fact that |f is continuous.

From the right-continuity of a martingale, we know that there exists a P-null

set N such that

Vooefi\N , E,((x),t) is a continuous function of t .

From Lemma 4.1, we know that if Z is a martingale on (Q,,^,Q) , then

{Z(t)^(t),3- ; tei;} is a martingale on (f2,^,P). Therefore, there exists a P-null
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set N such that

Va)en\N2 , Z(LO,t)C(LO,t) is a continuous function of t .

Now let N„ be a P-null set such that

VtocJ^Nl^ , C(cJ,t) > ¥teT .

Finally we define

VGoe^VN^UN^tJN^), M (co,t) = Z(co,t) , VteT ,

and

Vcue n^On^UN , M(co,t) = , VteT .

Then {M(t) ; teT^} has continuous sample paths everywhere. By construction, Z(t) =

M(t) , VteT except on a P-null set N = N UN i/N . Therefore Z has continuous

sample paths except on a set of P-measure zero. But since P and Q are equivalent

probability measures, Z has continuous sample paths except on a set of Q-measure

zero, which was to be shown.

The converse is identical, so we delete its proof. O.E.D.

Recall from Section 3 that if S is an equilibrium price system, then there

exists a probability mreasure Q equivalent to P such that S is a vector adapted

martingale under Q.

The main result of this section is:

Theorem 4.1 ; If the information structure of agents is continuous, then

the equilibrium price system has a continuous modification.

Proof : Recall that S is numerated such that S (t) = 1 , VteT and S is a

vector martingale under Q. By Proposition 4.2, IF is a continuous information

structure on (S7,5-,Q) , so that S has a continuous modification under Q by Propo-

sition 4.1 Now, since P and Q are equivalent, S has a continuous modification

under P. Q.E.D.
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Theorem 4.1 says that if agents' information structure is continuous, then

any equilibrium price system must have almost all of its sample paths continuous.

In an economy under uncertainty, if the equilibrium price system is of

bounded variation, then all the traded securities are locally riskless , since

almost all the sample paths of S will be differentiable almost everywhere (with

respect to the Lebesque measure) on [0,T]. That is, roughly, at almost every

time te;T^ we know the direction of the price movement in the next instant. We

can in fact say a little bit more about the sample paths of an equilibrium price

system by first recording a fact first discovered by Fisk [15].

Lemma 4.2 : Let Z = {Z(t), ^ ; tel} be a continuous martingale on (fi,^,0).

Then either the sample paths of Z are of unbounded variation over some subinterval

of [0,1] with strictly positive probability or Z is a constant throughout. Equiva-

lently, on any subinterval of T^, either the paths of Z are of unbounded variation

or they are constants on the subinterval.

Theorem 4.2 ; If 5- is not trivial, and if the information structure |f is

continuous, then the equilibrium prices for those claims whose payoffs at time

T are not constants in units of the claim, will have sample paths of unbounded

variation over some sub-interval of [0,T] with strictly positive probability.

Proof ; Consider the prices for, say, claim n. Suppose that there exists

two sets A, 8 65, with strictly positive P-measure such that

"k "k

d (o)) "f d (co') , VweA, and oj'eB ,

n n

that is , d is not a constant P-a.s., where d = d /d_. We claim that S has
' n ' n n n

sample paths of unbounded variation over some sub-interval of [0,T] with strictly

positive probability. Suppose this is not the case. Then by Lemma 4.2, S (t)

must be a constant for every tel[:

S (t) = E* [ d*|a^^ ]
= E* [ d*|S^^ ] = S (T) Q-a.s.

n n't n ' T n
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In the above expression, we have used the fact that d = S(T) P - a.s. and there-

fore Q - a.s., and that S is a vector martingale under Q. Recall the assumption

the 9- = J? . We have E(d \'}J) = d Q - a.s., and thus
i n T n

E [ d 1^ ] = d , - a.s. Vt£T.
n t n —

In particular, for t = 0:

E [ d ] = d , Q - a.s.
n n

This implies that d is a constant Q - a.s. But since P and are equivalent
n

*
probability measures, d is a constant P-a.s. This contradicts the assumption

n ^

*
that d is not a constant P-a.s. Therefore we have proved the claim that S has

n
"^

n

sample paths of unbounded variation over some sub-interval of [0,T] with strictly

positive probability. Since the above argument holds for all of the claims, we

are done. O.E.D.

Combining Theorems 4.1 and 4.2, we have an interesting characterization of

equilibrium price systems. The continuity of the sample functions of the equili-

brium asset prices derives from the continuity of agents' information structure.

The continuity of agents' information structure also requires that the equilibrium

asset prices have sample functions of unbounded variation on some non-trivial

subinterval of [0,T] with strictly positive probability except for the claim

and assets having payoff structures that are proportional P-almost surely to

that of the claim. One natural question that remains to be addressed is

whether the continuity of the equilibrium price system also implies the contin-

uity of agents' information structure. The answer is clearly no. For example,

if all the claims traded in the economy have proportional payoffs, then no matter

what the information structure is, the equilibrium price system must have a con-

tinuous modification. A partially converse statement of Theorem 4.1 is, however

available. We first give a definition of market completeness, which is a natural

extension from the Arrow-Debreu framework.
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Definition; An equilibrium price system S is said to yield complete markets

if for every claim xeX, there exists a self-financing trading strategy QeQ such

that 6(T) • d = X almost surely.

In essence, a complete market implies that M = X, that is, every random

variable xeX is marketed at time zero. (For discussion of complete markets, see,

for example, H&K, Harrison and Pliska [21], and Duffie and Huang [13].)

Theorem 4.3 : If the equilibrium price system S yields complete markets and

has a continuous modification, then the information structure W is continuous.

Proof ; Let B be any set in 5- . By the hypothesis that S yields complete

markets we know there exists BeG such that 6(T) • d = 1 • d_ a.s. This is equi-
B

valent to 0(T) • S(T) = 1_ a.s. (Recall Proposition 3.5.) It is easy to see that

the value of this claim, 1_, • d„ , at time t£T must be equal to e(t) • S(t) almost

surely. Let Y(t) denote the price at time t of this claim, then

Y(t) = 9(0) • S(0) + / e(s) • dS(s) a.s.

(0,t]

Since S has a continuous modification, Y has a continuous modification under P.

This fact follows from Theorem 20 in Chapter IV of Meyer [34].

Next, it follows from Lemma 3.2 that Y is a martingale under Q, that is,

* , _ *
Y(t) = E [Y(T)|.5f^] = E [ e(T) • S(T)|S^^]

= E* [ lg|5j. ] Q-a.s.

Note that Y also has a continuous modification under Q, since P and Q are equi-

valent. Therefore, the martingale {E [l-l-? ],? ; tel} on (f2,3f,Q) has a con-
B t t

tinuous modification.

Since B is an arbitrary set in ^, we have thus shown that fF represents a

continuous information structure on (J^,9^,Q). By Proposition 4.2, f is also a

continuous information structure on (J2,^,P), which was to be shown.

Q.E.D.
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In this section we have shown that if the information structure is continuous

then the equilibrium price system S must have continuous sample paths. Except for

uninteresting cases, S must be of unbounded variation over a non-trivial sub-
n

interval of [0,T] with strictly positive probability for n=l,2,...,N. Conversely,

if the markets are complete, and if S is continuous, then the information struc-

ture has to be continuous.

Remark : It should be noted that all the results in this section will remain

valid if agents are endowed with different probability measures on (f2,3-) as long

as those different probability measures are all equivalent to one another.

5. A Canonical Example

The properties of equilibrium asset prices described in the previous section

are, of course, provisional on the existence of an equilibrium. Although proving

the existence of an equilibrium in a general multi-agent setting is beyond the

scope of this paper, in this section, an autarchy example of the economy will be

provided and the existence of an equilibrium will be established. Furthermore,

it will be shown that if the information structure is generated by a standard

Brownian motion, then the equilibrium prices for traded consumption claims can

be represented as Ito integrals. This Ito-integral-representation property of

equilibrium asset prices has been the primitive assumption for many continuous-

time intertemporal equilibrium models of financial economics. (See, for example,

Merton [30], Breeden [4].) It should also be clear in the sequel that the above-

mentioned representation property for asset prices is valid in a multi-agent

economy if an equilibrium indeed exists. That is, the representation as an Ito

integral only requires that the filtration be generated by a Brownian motion.

(See the remark following (5.2.4).)
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5.1 The Brownian Motion Filtration is a Continuous Information Structure

Let {w(t) ; teT^} be a standard Brownian motion with continuous sample paths

defined on (fi,^,P) generating a filtration IF = {5 ; teT^} . (We assume that ?

contains all the P-negligible sets of ^and^^ =?•) The following conditions

are sufficient for the existence of the stochastic integral / (ti(t)dw(t). (See

Chapter 4 of Lipster and Shiryayev [28].)

w
1. (p is adapted to F ,

2. /^(J)(t)^dt < ~ a.s.

Let $ denote the family of functions satisfying the above conditions. An

important result, due to Clark [7, Theorem 3] is:

Lemma 5 . 1 .

1

: Let r\ be an integrable random variable defined on (fi,3',P).

There exists a function (})£$ such that for all s,t,0<s^t^T
,

t

E[nl3j.] = E [n] + / (|)(u)dv7(u) a.s

Let n(t) be an RCLL version of E(ri|5- )• Then the martingale {ri(t),^; teT} has

a continuous modification.

An Immediate consequence of this is:

I
w

Proposition 5.1.1 : The information structure IF generated by a standard

Brownian motion is continuous.

w
Proof: By Lemma 5.1.1 we know that any martingale adapted to IF has a

w
continuous modification. It then follows from Proposition 4.1 that IF is continuous.

C.E.D.

Remark : The filtration generated by a multidimensional Brownian motion is

also continuous.

5.2 The Autarchy Example

Let us keep all the setup from the previous sections except to assuming the

following. Let there be one representative agent whose preferences can be rep-

resented with a time-additive "state dependent expected utility function" defined

on the net trade space V.
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Formally , the representative agent at time zero maximizes the expected utility:

U*(r,x) = f(r) + /
g* (x(w),aj)P(daj) ,

where f : R -> R is strictly increasing and concave, and where g : RxQ -> R is

such that

1. g (y,(jo) is strictly increasing and concave in y P-almost surely;

2. for each y, g (y,aj) is integrable on (fi,£?,P); and

3. if we denote the left-hand derivative of g with respect to its first

argument by D g , then D g (0,lo) is integrable on (fi,?,?).

It should be noted here that the representative agent's preferences may not

be T-continuous. Of course T-continuous preferences are sufficient for the

results in previous sections but are certainly not necessary, as will be shown.

Now we define U to be a modification of U as follows:

U(r,x) = f(r) + / g(x(aj),co)P(doj) ,

*
where g(y,w) = g (y,oo) for y >

= g (0,to) +D g (0,(jj)y for y ^ .

Proposition 5.2.1 : U: RxX ^ R is T-continuous.

Proof : See Appendix I.

Proposition 5.2.2 : If we define 6': R x X_|_ ^ R as

U(ar , gx) - U(0,0) ,

Q.E.D.

6' (r,x) = lim

a^0+ "

then 6' is well-defined and is a T-continuous and K-strictly positive linear

functional on R x X and has the following form:

6'(r,x) = D"'"f(0)r + / D"*'g(0,a))x(a3)P(da))
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= T)^f(0)r + \l>'(x) , (5.2.1)

where K denotes the cone with the origin deleted from R xX , D g denotes the

right-hand-derivative of g with respect to its first argument, D f denotes the

right-hand-derivative of f, and ij;' is a linear functional on X .

Proof : See Appendix I.

Q.E.D.

Note that d £X , so ijj' (d_) is well-defined and is strictly positive. It
U I I u

can easily be seen from (5.2.1) that 6' has an extension to all of RxX that is

T-continuous, K-strictly positive, and has the same form as 6
' , 6: RxX ->- R:

6(r,x) = D"'"f(0)r + / D"^g(0,to)x(oj)P(da))

Q

E D'^f(0)r + ipM .

th *
Choosing the claim as the numeraire and defining 6 : R x X ^ R by

*, . _ D"^f(0 ) ,
ij^(x)

A
As defined, 6 is a T-continuous, K-strictly positive linear functional on RxX.

Now we are ready to prove the main result in this section.

Theorem 5.2.1 : (0,0)eRxX solves the following program:

Max U (r,x)

(r,x)eRxX

s.t. 6 (r,x) $

Proof : We first claim that (0,0)£RxX solves

Max U(r,x)

(r,x)eRxX

s.t. 6 (r,x) ^ .
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The fact that (0,0) is feasible should be obvious, since 6 (0,0) = 0. Now

select any (r,x)eRxX such that 6 (r,x) ^ 0. We consider

U(r,x) - U(0,0) = f(r) -f(0)+ / (g(x(w)),a)) - g(0,a)))P(da))

.

By concavity we have;

f(r) - f(0) i D'^f(0)r ,

and

These imply that

g(x(to),a)) - g(0,oo) ^ D g(0,a))x(co) P-a.s.

U(r,x) - U(0,0) $ D"^f(0)r + / D"'"g(0,a))x(co)P(da))

Q

* (5.2.2)
= \i)(d^) 6 (r,x) ^ .

Thus U(0,0) ^ U(r,x) V (r,x)eRxX such that 6 (r,x) < 0.

JL

Next, again let (r,x)eRxX such that 6"(r,x) ^ 0. Then we have

U*(r,x) - U*(0,0) = f(r) - f(0) + / (g*(x(co) ,co) - g*(0,aj) )P(dco)

n

i f(r) - f(0) + / (g(?c(aj),co) - g(0,w))P(dw)

= U(r,x) - U(0,0)

^ .

The second line follows from the definition of g and the last inequality, which

was to be shown, follows from (5.2.2).

Q.E.D.
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From this theorem we know that if all claims are marketed and if their

*
prices are given by 6 , then the representative agent's preferences on net

trades are maximized at (0,0). This theorem also implies that even when the

space of marketed claims is not equal to X, but their current prices are given

by ,(0,0)eRxX is still a maximum. Now what is left to do is to define a

price system S and to show that any claim generated by an admissible trading

*
strategy 9e0 has a current price given by 6 .

Let us put ^(0)) = D''"g(0,cj)d (w)/ip(d ) and V A e.? let Q(A) = / C(w)P(da3).

A
Then Q is a probability measure on (fi,^ equivalent to P. It is a probability

measure since Q(J^) = / (D g(0,(jo)dQ(u)/i|^(d ))P(da)) = ^p(d )/i)id ) = 1, and it is

equivalent to P since E, is strictly positive. It ther follows that ijj(x) /<J;(d_) =

* *
E (x/d_) where E (•) is the expectation operator under Q. Define

S (t) = E [ d |5f
] , V tel , and n=0, ,N ,n n'"^t —

where d = d /d„. It is straightforward to verify that the price system S is
n n

* * * =^

consistent with o , since by construction S (0) = E (d ) = E (d /d„) = il;(d )/il.'(d^).
n n n n

A
Furthermore, E [ e(T)'S(T) ] = 6(0) '5(0) for any QeQ, since S is a vector

bounded martingale under Q by construction and 6 is also bounded. (For this point,

see Lemma 3.2.) Thus the current prices for marketed claims are also consistent

*
with . S is therefore an equilibrium price system with 6 (t) = 0, VtET and

n —

n=0,l,...,N, being the equilibrium trading strategy.

Up to now, the information structure generated by a standard Brownian motion

with continuous sample paths has not come into the story. We have just proved

that there exists an equilibrium in our economy with a representative agent, and

the equilibrium price system, with the claim chosen to be the numeraire, is

a vector bounded martingale under 0.
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If the information structure is the Brownian filtration, |F , we can show a

bit more. First, it follows from Proposition 5.1.1 that S has a continuous

modification, since |F is a continuous information structure. Next, we want to

show that S can be represented as a vector Ito integral. Letting ^(t) be an

RCLL version of E [ ^ |^^ ] , {^(t) ,^ ; tel} is a martingale on (^,3,?) . By

Lemma 5.1.1, there exists a (})£$ such that

t

C(t) = E(?) + / (})(s) dw(s) a.s.

°
(5.2.3.)

t

= 1 + / ct)(s)dw(s) a.s.

for tET^. Since ^ is strictly positive so is C(t) for all teT^. Recall that

{S(t),3|_ ; teX} is a martingale on (f^,5',0). Then by Lemma 4.1, {S(t)C (t) ,^^; teX}

is a martingale on (f2,<?,P) . Consider, say, claim n. Again by Lemma 5.1, we know

there exists a 4>e^ such that

S (t)^(t) = E(S (X)^) + / (})(s)dw(s) P - a.s.

^
(5.2.4)

= S (0) + / $(s)dw(s) P - a.s.

Eqs. (5.2.3) and (5.2.4) imply that the equilibrium price system S can

be represented as a vector Ito integral. Xhis follows directly from the Ito's

Lemma and the fact that ^(t) is strictly positive for all teX^ and can be taken

to be continuous.

Remark: Note that in showing the Ito-integral-representation property of S,

the fact that there is only one representative agent in the economy is nowhere

utilized. It should therefore be clear that that property will be valid in an

economy with heterogeneous agents when an equilibrium indeed exists.
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8. Other Information Structures

In Section A, a definition for the continuity of an information structure

was given. Such an information structure was then shown to imply that the rela-

tive prices of an equilibrium price system must be continuous with probability

one. Two other information structures will be considered in this section. By

considering these, we hope not only to associate different price behaviors with

different information structures, but also to shed some light on the following

question: what does continuity of an information structure buy us? It will

ultimately be shown that a continuous information structure is one on which "no

events can take us by surprise," in a sense to be explained. A large part of

the discussion in this section can be found in the literature of probability

theory. (See Dellacherie and Meyer [12], for example.) Efforts are made, how-

ever, to recast definitions and results in the context of the present economic

model.

Recall that an information structure is a right-continuous filtration |f.

One may wonder whether a filtration with •S' = 9^ _ E V ^ for te [0,T] is a

continuous information structure.

Definition 6.1 : An information structure fF on (fi,S^,P) is said to be semi-

continuous if j' =9 VteT. (We have used the convection that ^r.-^r. •)
t t- — 0-

If the information structure is semi-continuous then, for every determin-

istic teT, agents do not know more than they did an instant before, except

possibly on a P-null set. (Here we should recall that ^ is assumed to contain

all the P-negligible sets.) Let P be a probability measure on (f^,5'), which is

equivalent to P. Then it is clear that |F is also semi-continuous on (J],S^,P ),

since P and P have the same null sets. With this kind of information structure,

a similar but significantly weaker form of Proposition 4.2 is available.
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Proposition 6.1 : Let Z = {Z(t), 5^^ ; tel} be an adapted martingale on (S^,?,P)

If IF is semi-continuous, then Z(t) = Z(t-) P-almost surely for every teT.

Proof: Theorem 4 in Chapter VI of Meyer [34] states that if Z is a martin-

gale, then

Z(t-) = E [Z(t) |^_ ] a.s.

By the definition of a semi-continuous information structure we have ^ = 3"
t t-

theref ore

Z(t-) = E [Z(t) 1^^ ] = Z(t) a.s.,

where the convention that Z(O-) = Z(0) is used.
Q.E.D.

Now it is straightforward to prove the following:

Theorem 6.1 : Let t belong to [ 0,T ] . If the agents' information structure

is semi-continuous , the equilibrium price system is continuous at t, P-almost

surely.

Proof : S is a martingale on (S^.-S'.Q), hence S(t-) = S(t) 0-a.s. This is

true since IF is a semi-continuous information structure on (f2,^,P) if and only

if it is one on (f2,S*,Q) , and since P and are equivalent. For the same reason

we have S(t-) = S(t) P-a.s. Q.E.D.

Theorem 6.1 says that the equilibritom price system is continuous at any

teT^ P-almost surely, but it does not say whether S is a continuous process with

probability one; that is, whether there exists a P-null set N such that t ^ S(to,t)

is a continuous mapping for all but the set N in (fi,5-) . An uncountable union of

null sets is not necessarily a null set itself, and may not even be measurable.

In the following example, it will be shown that when IF is semi-continuous , the

equilibrium price system can jump with strictly positive probability.

Let us consider the economy in Section 5, but with an information structure

now generated by a standard Poisson process with parameter 1 starting from

(rather than a standard Brownian motion) . Denote this Poisson process by
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N = {N(t) ,^ ; teT}. The filtration IF is semi-continuous, since at each time teT

the probability of a jump is zero. Putting Y(t) = N(t) - t, Y = {Y(t) ,^ ; tel}

is a martingale. It is continuous at t almost surely for every teT^ because N

is. Now consider the optional random variable

JCw) = inf {teT:N(w,t) =1} on B

= " on j\b ,

where B = {ooef2 : N(co,t) ?^ 0}. The probability of event B is 1 - e , which is

strictly positive. The martingale Y will experience a jump at J when J ^ °°.

Or equivalently , the sample paths of Y are discontinuous on a set of strictly

positive probability. And therefore Y is not a continuous process with prob-

ability one. A characterization for martingales adapted to the filtration

generated by a Poisson process, due to Davis [9], is available.

Lemma 6.1 ; Let |F be the filtration generated by N. Suppose Z =

{Z(t) ,J- ; teT} is a martingale on (fi,5,P) . Then there exists a predictable

process ri(t) with

T

E [ / |Tl(s)|dS ] < CO

such that

t

Z(t) = Z(0) + / n(s)dY(s) a.s.

where we recall that Y(t) = N(t) - t.

From this lemma, it is evident that any martingale adapted to the Poisson

filtration can only have jumps when the Poisson process jumps. But a martingale

does not have to jump when the Poisson process jumps, since on {J < °°} , ri(J)

may be zero. A good example for this is a constant process Z(t) = Z(0) for all

teT^. It is a martingale and is a continuous process.

* *
\ ffRecall from Section 5 that the price for claim n at time t is E [d ^ ]

.

^
' n' t

Equivalently, S (t) = E [ d ^ 15^ ] /£ (t) . By Lemma 6.1 we know that there exist
n n t
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T T
predictable processes ri-, and T] with E [ / |n, (s)

]
ds ] < 0° and E [ / |ri,(s) |ds ] <

such that

t

^(t) = 1 + 1 n-,(s)dY(s) a.s. VteT

and

t

S (t)^(t) = S (0) + / no(s)dY(s) a.s. VteT .

n n ^Q 2

Therefore we have:

S^(0) + /Qn2(s)dY(s)
S (t) =
n

a. s,

1 + /Qn^(s)dY(s)

S^(0) + /Jii2(s)dN(s) - j^T]^(s)ds

1 + /Qri^(s)dN(s) - I^T]^(s)ds

From the above equation we know S can jump only when N jumps. Between jumps,

S is absolutely continuous. In the interval [0,T], N jumps on a set of strictly

positively probability. Thus it can happen that S jumps on a set of strictly

positive probability and is not a continuous process. S can still be continuous,
n

however, when N jumps. An extreme example for this phenomenon is that the payoff

structure of claim n is proportional almost surely to that of the claim.

Before continuing, some remarks are in order. In the previous discussion,

each process was a real-valued function defined on f2 x [0,T]. In the sequel,

for ease of discussion, we shall use the following convention. A process Z is

defined on fi x ( [0,°°] U {O-}) , with Z(t) = Z(T) for t ^ T and Z(O-) = Z(0). The infor-

mation structure is then |F = (S^ ; te[0,°°] U{0-}}, with J = ^ and S^ = ^

for t S T.

A stopping time J is a positive random variable defined on (f2,J^,P) which can

take on the value °° with a strictly positive probability and for which {J < tleS^

for every t. A stopping time J is said to be predictable if there exists an

increasing sequence of stopping times (J ) with J ^ J P-a.s. such that on the
n n

set {liieO. : J(oj) > 0} we have J < J and J -> J almost everyvjhere except possibly
n n
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on a P-measure zero set. This sequence of stopping times is said to foretell J.

If we interpret J to be the first time an event B happens, this event B is fore-

tellable by a sequence of events except possibly on a set of probability zero.

(Here we note that the event {J = O) is either of probability zero or one by the

assumption that ^x^ is almost trivial.) As put by Dellacherie and Meyer [12]:

"we are forewarned by a succession of precursory signs, of the exact time the

phenomenon will occur."

Definition 6.2 : An information structure IF is said to be quasi- continuous

if for any predictable stopping time J and any increasing sequence of stopping

times (J ) foretelling it, we have:
n

oo

d- = V 3- .

n=0 n

If IF is quasi-continuous, it is then semi-continuous since and deterministic

t is a predictable stopping time. We note further that the definition of pre-

dictable stopping times depends only on the null sets of the underlying prob-

ability space. It should, therefore, be evident that the definition of a

quasi-continuous information structure is also invariant under a substitution

of an equivalent probability measure. Under the above definition, we have a

characterization of adapted martingales which is stronger than Proposition 6.1,

but is still weaker than Proposition 3.2.

Proposition 6.2 : Let Z be an adapted martingale on (fi,^,?) and J a pre-

dictable stopping time. If |F is quasi-continuous, then Z(J-) = Z(J) P-almost

surely.

Proof: Let (J ) be an increasing sequence of stonping times that foretells
n

J. We have by VI.T14 of Meyer [34]:

00

Z(J) = E [ Z(T) |4>^j ] = E [ Z(T)
I

\/ ^j ]

n=0 n
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= lira E[Z(T)|-? ] = lim Z(J ) = Z(J-) P-a.s.
J n

n -><» n n -><»

Q.E.D.

The left-continuity of a martingale at predictable stopping times is equiv-

alent to continuity at them, since we always take a martingale to be an RCLL process,

Theorem 6.2 : If F is quasi-continuous, then the equilibrium price system S

is continuous at a predictable stopping time with probability one.

Proof : S is a vector martingale on (^,5^,0), so

S(J) = S(J-) Q- a.s.

for any predictable stopping time J on (fi,^,0). By the equivalence between P

and Q, we get

S(J-) = S(J) P- a.s.

But a stopping time is predictable on (f2,S^,P) if and only if it is on (fi,of,Q).

Hence, J is predictable on (n,^,P). Thus, by Eq. (5.1), the result follows.

Q.E.D.

One consequence of Theorem 6.2 is that an equilibrium price system can only

jump at non-predictable stopping times when the information structure is quasi-

continuous. Putting it differently, an equilibrium price system can not jump

at events that are fully anticipated. It has been shown by Meyer [32] that any

information structure generated by a process that is continuous at predictable

stopping times and has the strong Markov property is quasi-continuous. The

Poisson filtration discussed earlier in this section fits into this category and

is thus not only semi-continuous but indeed quasi-continuous.

Remark: From the results in Meyer [32] , it can be easily seen that a fil-

tration generated by a continuous process having the strong Markov property is

a continuous information structure. Therefore an information structure generated

by a diffusion process is continuous.

After a substantial detour, the next theorem will achieve the objective pro-

claimed at the very beginning of this section. Several definitions are in order.
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Definitlon 6.3 : A stopping time J is said to be totally inaccessible if it

is not P-almost surely infinity and if

P(J = J' < oo) =

for all predictable stopping times J'.

Definition 6.4 ; A stopping time J is said to be inaccessible if there exists

a totally inaccessible stopping time J' such that

P(J = J' < «>) > .

Definition 6.5 : A stopping time J is said to be accessible if it is not

inaccessible.

From the definitions above, it is clear that a predictable stopping time is

certainly accessible, but an accessible stopping time is not necessarily pre-

dictable. The following lemma is, however, available:

Lemma 6.2: The set of predictable stopping times coincides with the set of

accessible times if and only if the information structure is quasi-continuous.

Proof ; See Section 83 of Chapter IV, Dellacherie and Meyer [12].

Q.E.D.

Theorem 6.3 : |F is continuous if and only if all stopping times are pre-

dictable.

Proof : First suppose that all stopping times are predictable. It then

follows that the set of predictable stopping times and the set of accessible

stopping times are identical. Therefore, the information structure is quasi-

continuous by Lemma 6.2. Armed with Proposition 4.2, it suffices to show that

any martingale on (^,5^,?) adapted to F has a continuous modification. Let Z be

such a martingale. By definition Z is RCLL. Define a predictable process Y by:

Y(t) = Z(t-) .

Y is then LCRL. Since all stopping times are predictable, it therefore follows
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from Proposition 6.2 that

Z(J) = Z(J-) P- a.s.

for any stopping time J. By construction, this also implies that

Z(J) = Y(J) P- a.s.

Result IV. 86 in Dellacherie and Meyer [12] says that if two optional processes

are equal almost surely at every stopping time, then they are indistinguishable.

Note that predictable processes and RCLL processes are both optional. (See

IV. 60 and IV. 67 in Dellacherie and Meyer [12].) Hence, Y and Z are indistin-

guishable processes. Recall that Z is RCLL and Y is LCRL. It then follows that

Z must be indistinguishable from a continuous process, which was to be shown.

Conversely, suppose F is a continuous information structure and there exists

a stopping time J that is not predictable. Then it is possible to construct a

totally inaccessible stopping time J' from J, and a martingale Z, which has a

jump of size 1 at J'. The former follows from IV. 81 of Dellacherie and Meyer

[12] and the latter follows from VII. T46 of Meyer [34]. This contradicts Propo-

sition 4.2, and all stopping times must therefore be predictable.

Q.E.D,

A continuous information structure is one on which all stopping times are

predictable. Equivalently , an information structure on which no event takes

us by surprise is continuous. The above fact was also discovered independently

by J. Michael Harrison and Richard Pitbladdo (in preparation).
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7. Concluding Remarks

This paper has addressed the following questions. First, what conditions

on agents' preferences and information structure will ensure that equilibrium

prices have continuous sample paths, if an equilibrium exists? In particular,

when can equilibrium prices be represented as Ito integrals? Second, can the

existence of an equilibrium be established? Third, can the behavior of equili-

brium prices be characterized under different information structures? Quite

satisfactory answers are found for the first question. In response to the

second question, the existence of an equilibrium is established in the case of

an autarchy. Some expository observations are made concerning the third ques-

tion: given that agents' preferences are "continuous" enough, the manner in

which information arrives solely determines the behavior of asset prices.

If consumption occurs continuously, when will the cumulative consumption

be absolutely continuous, guaranteeing that a consumption rate actually exists?

Moreover, does a continuous information structure generated by a Brownian

motion imply that the consumption rate, if it indeed exists, is an Ito integral?

These two questions are foundational issues related to the consumption CAPM of

Breeden [1979]. Throughout this paper agents consume at two time points, and

T, without intermediate consumption, so these issues cannot be addressed here.

For an exploratory study in that direction see Huang [22].
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APPENDIX I: Proofs of Propositions 5.2.1 and 5.2.2

Proposition 5.2.1 : U : RxX -> R is T-continuous.

Proof : U : Rx X ^- R has the form:

U(r,x) = f(r) + / g(x(a)),a3)P(da3) .

The product topology T is a topology of pointwise convergence. So it suffices

to show that f is continuous in the Euclidean norm topology on R and

/ g(x(co) ,oj)P(dco) is continuous in the L -Mackey topology on X. The fact that

f is continuous in the Euclidean norm topology is obvious, since f is a concave

function on R and therefore continuous on R. In fact, it is absolutely continuous

over any closed interval.

a Ci 1
Next let (x ) be a net in X with (x ) -> x in the L -Mackey topology. Define

X (co) = x((jj) + Ix ((jj) - x(co)
I

,

and

X (w) = x(co) - Ix ((jo) - x(co)

Note first that if x ->- x in the L -Mackey topology, then |x - x
|

-> in the

same topology. Thus x ^ x and x "^ x in the L -Mackey topology. Secondly,

by monotonicity we have:

a,
g(x(a)) ,ui) - g(x (o)) ,co)

I

^ g(x (co) ,co) - g(x (Ui) ,Ui)

Hence,

= gCx^Cw) ,aj) - g(x(a)),to) + g(x(w) ,w) - g(x (w) ,a))

I
/ (g(x(aj),w) - g(x'^(w),a)))P(dco)

1

i I (g(x^(aj),w) - g(x(co),u)))P(da)) + / (g(x(co),oj) - g(x"(w) ,aj))P(da))

f2 fi
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ex ct ctTherefore it is sufficient to show that for nets (x ) with x ^ x, x -> x and

ct ct ct
for nets (x ) with x ^ x, x -> x, that

/ g(x"(w),w)P(dco) -y
J g(x(oj),co)P(duj) .

a ct ct
Now let (x ) be a net in X, with x > x, and x ^ x. By concavity we have:

/ (g(x"(co),a)) - g(x(oj),co))P(dco) C / D"g(0,(x)) (x^(w) - x(w))P(dco) .

ct 1 ot

Since x -* x in the L -Mackey topology, x also converges to x in the weak

topology on X generated by L (fi,j^,P) . That is, for any yeL (n,^,P),

/ x"(u)y(a3)P(da)) -> / x(aj)y(co)P(da)) .

Recalling the assumption that D g(0,a)) belongs to L (fi,3-,P), we get:

/ D"g(0,(jo)(x°'(co) - x(aj))P(dco) ->
,

ct ot

which was to be shown. The case where x ^ x and x -» x is identical, so we

omit the details for that case. Q.E.D.

Proposition 5.2.2 : 6' is a T-continuous and K-strictly positive linear

functional on R xX and has the form:

6'(r,x) = D''"f(0)r + / D''"g(0,a))x(a))P(doo) .

n

Proof: Let (r,x)eR xX . By definition of 6':

6'(r,x) = lim
U(ar,ax) -U(0,0)

a-*0+ ot

f(ar) - f(0) + /^(g(ax(a)),a3) - g(0,oj) )P(daO
= lim ——

—

a-»- 0+ a
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if the limit exists. We first claim that

a^ +

where D f(0) denotes the right-hand-derivative of f at zero. To verify this,

recall from calculus that if f is concave,

f(r) = f(0) + D"^f(0)r + o(|r|) .

where limi KQo(|r|)/ r = 0. (A.l) follows directly from (A. 2). Next, by

concavity, we have:

g(ax(u3),a3) - R(0,c. )
^ D-g(o,^),(^) , a.s.

By assumption (3) in Section 4 . 2 we know that D g(0,co) is integrable and that

x(oa) is essentially bounded, so D g(0,co)x(aj) is integrable. Then it follows

from the Lebesgue convergence theorem that

lim /
^("x((^),a)) - g(0,a3)

^^^^^

= / D"'"g(0,Lo)x(aj)P(dco) < «- .

Hence 6'(r,x) is well-defined and is equal to

D f(0)r + / D g(0,co)x(oj)P(da)) .

Now we are left to show that 6 ' is a x-continuous and K-strictly positive linear

functional on R xX . That 6' is linear and K-strictly positive follows from

the linearity of the integral and the strict monotonicity of the agent's pre-

ferences. If D g(0,aj) can be shown to be integrable, then we are done, since

/ D g(0,to)x((jo)P(dcjj) will then be a continuous linear function on R xX . Note
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that again by concavity and monotonicity we have:

^ D"'"g(0,(jj) ^ D~g(0,(jo) a.s.,

and the integrability of D g(0,aj) follows from the integrability of D g(0,aj)

Therefore 6
' is a x-continuous and K-strictly positive linear functional on

R xX with the desired form. Q.E.D.
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FOOTNOTES

Here we should mention the work of Cox, Ingersoll, and Ross [8]. They
modeled production explicitly in an autarchy economy. Once it is assumed
that there exists a smooth solution to the representative agent's control
problem, the equilibrium asset price processes are Ito integrals.

2
A Borel field is said to be almost trivial if it contains only sets

of P-measure one or zero.

This is the product Borel-field generated by ^ and the Euclidean
Borel-field on [0,T].

4
For a brief discussion concerning this topology, see Bewley [2].

For a discussion of conditional expectations with respect to the
Borel fields, see Chapter 9 of Chung [6].

For this point, see Harrison and Pliska [21].

Here we should note that the left-hand derivatives and the right-hand

derivatives of a concave function exist everywhere, and that preferences on

net trades will in general be state dependent as long as agents' endowments
are random.

Q
See the proof of the theorem in Appendix II of Bewley [2].
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