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Abstract

This report presents an analysis of the properties of finite segments of noise taken

from correlated gaussian noise. This analysis is applied to the problem of optimal

detection of signals when a communication channel adds gaussian noise and introduces

a linear distortion. Some specific examples are discussed briefly.
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COMMUNICATION IN THE PRESENCE OF ADDITIVE GAUSSIAN NOISE

I. INTRODUCTION

This report will discuss systems of communication in which the symbols to be trans-

mitted are represented by signal functions that are limited to consecutive intervals in

time. These signals are disturbed by the addition of correlated gaussian noise. The

problem is to compute a posteriori probabilities of transmitted symbols when the

received signal and the a priori probabilities are known (1, 2). As correlated gaussian

noise shows an autocorrelation over finite times, the a posteriori probabilities of dif-

ferent symbols in a sequence will be statistically dependent when the a priori probabili-

ties of these symbols are statistically independent. Although this dependence is a part

of the received information, it is difficult to make practical use of it. In this report,

therefore, the condition will be imposed that the procedure of computing a posteriori

probabilities for the symbol transmitted in a particular interval must be independent of

the choice of all other symbols in a sequence. This condition may be further justified

by the fact that the use of the statistical dependence of subsequent symbols as part of

the received information would mean the use of a larger alphabet than had been agreed

upon. A still sharper restriction will be placed upon the procedure of the detection;

namely, that only the signal plus noise received in its own interval may be used, and

that, therefore, no extrapolation of the noise from neighboring intervals is allowed.

This condition is indicated when nothing is known about the signal outside the interval

(this situation is often encountered when physical measurements are performed); or

when, at least, the possible signals in neighboring intervals show a great variety, as

they will do in communication systems using a large alphabet.

II. DESCRIPTION OF A SEGMENT OF CORRELATED GAUSSIAN NOISE

The procedure for analysis will be given here only in a rough physical outline. A

sharp analysis of the necessary mathematics may be found in von Neumann's work (3).

An exhaustive treatment of the mathematical statistics of very similar problems is

given by Grenander (4).

It will be necessary to have an appropriate description of the segment of noise that

the channel adds to the signal. One possibility would be to give the statistical properties

of the coefficients n of the Fourier series analysis. These coefficients may be seen

as coordinates in a space with an infinite number of dimensions. Each function is repre-

sented by a point in this space. An ensemble of functions is represented by an ensemble

of points. A gaussian ensemble is determined by a density function

P = exp 1 A n n) (1)

, V
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The coefficient A determines the variance of n ; the coefficient A, v determines

the correlation of n and nV. In general this correlation will not be zero.

Hyperplanes of constant density are determined by

An nn= C (2)
)I, V

This is the equation of a multidimensional ellipsoid. When the axes of this ellipsoid are

used as a new system of coordinates, the mixed terms will disappear from the density

function, leaving

1 m
P = exp nm(3)

m

The use of a new coordinate system indicates that we are no longer analyzing the noise

in sines and cosines, but in a different, complete set of orthogonal functions. By

using this new set of functions, we simplify the problem greatly. We shall call these

functions the eigenfunctions of the problem. They are determined by the statistical

properties of the noise and the length of the time interval.

The first problem is to find these eigenfunctions. They are orthogonal and assumed

to be normalized:

+1/ZT

j12 Pi ~ dt = 6ij (4)
-1/2T

The analysis of a function F(t) is given by

F(t) = E fj j(t) (5)

For clarification of this statement, consider, for example, a short segment of noise
that contains only very low frequencies. The segment will consist of a nearly straight
line. Fourier analysis of this segment gives sine terms, beside a constant term. Inso-
far as the approximation as a straight line is correct, the coefficients of all of these
sine terms are proportional to only one stochastic variable. Therefore, the sine terms
in this case will show a strong correlation.

**Each orthogonal coordinate system corresponds to a complete set of orthogonal
functions. One of these complete sets is the set of 6-functions at all times. The analy-
sis in terms of these 6-functions is trivial, and equal to defining the noise function in
the time domain. The coefficients AM correspond in this case to the autocorrelation
function.
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Therefore

+T/2

4i(t) F(t) dt = f

+T/2

4i(t) E fj qj(t) dt = f /z

+T/2

= fj 6ij =fi=
-T/2

and of course with Eq. 5

+T/Z

e/-T/2
ti(t) F(t) dt = F(8)

Let N(t) be a section of duration T from a noise function from an ensemble of

gaussian noise, characterized by the autocorrelation function . The set 'i must be

chosen so that all correlations n. n will be zero for i j. Calculation of n. and n. with
Eq. 6 gives

Eq. 6 gives

+T/2

ninj =I

-T/2

+T/2
,Ji(t) N(t) dt +T

J-T/2

(8)qj(T) N(Tr) dT

or, by interchanging integrations and averaging,

+T/2

ni nj = N(t) N(T) i(t) jp(T) dt dT

-T/2

and with the definition of 

+T/2

ni nj= 

JT/2

+T/2

pi(t) dt fT/Z
-T/2

§(t-T) tpj(T) dT

with the condition ninj = ij (r-i (the axis length of the ellipsoid)
1 3 1

+T/2

13 i T/J-T/2Ti

+T/2

~i(t) dt 
J/-T/2

+T/2

i -/2

+T/2

i(t) dt /
.- /2

(t-T) j T dT

(t-T) j dT

and with Eq. 4
4

2T/2ora. 
3~~~/
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+T/2

T / 2
i(t) pj(t) dt

(6)

(7)

(9)

(10)

(11)

(12)

(e--T) j(T) dT (13)

ii(t) F(t) dt



indicating that the set of functions qi is a set of eigenfunctions of the integral equation,
2

Eq. 10, and that the variances i are the corresponding eigenvalues.

When the operator {T is defined by

+T/2

T f(t) = T/

Eq. 13 may be written

(15)

showing that the set of functions Pi is a set of eigenfunctions of the operator 4 T and that
2

the variances .ri are the corresponding eigenvalues.

So far, Iqi(t) has only been defined for -T/2 < t < +T/2. When we define qti(t) = 0 for

t < -T/2 and +T/2 < t, Eq. 13 may be written

+00

r j t) IT(t )
(16)

m(t-T) j(T) dT

where

(14)

IT(t) = for -T/2< t< +T/2

IT(t) = 0 for t < -T/2 and +T/2 Z

3 p(t)= IT(t) w00 Uj(t)

With the operator }0o defined by
+oo

i~, f(t) = f

The operator {T works on functions inside the interval -T/2 < t < +T/2; the operator

o00 on functions in the entire time domain. Since r(T) is an even function, both AT and

§00 are hermitian and their eigenvalues are, therefore, real. A complete set of eigen-
functions of §0o are the sines and cosines. The eigenvalue as a function of the frequency

therefore characterizes 0o-. This eigenvalue equals the power density 2 N(o) of the

noise spectrum.

o00 cos t = 1

+co

{(t-O) cos wO dO = f 4 (T) cOS o(T-+t) dT

+oo00

~(T) (Cos XT cos ot - sin XT sin ot) dT = cos ot f 4T COS XT dT

-4-

or

t} (17)

(18)

(19)

+oo

100

(t-T) f() dT

2
a-i i(t) = T 'i(t)

~(t-T) f() dT



and

cos t = 2s N(w) cos wt (20)

(The Wiener-Khinchine relation, the symmetry of i((T), and the assumption that ((T-) -

for T -+ co are used. )
The Heaviside operator with transfer function 2 N(js), which is constructed by sub-

stituting -s 2 = -(d/dt) 2 for in 2r N(w), has the same set of eigenfunctions and eigen-

values as Jo0 and may therefore be identified with it.

1c 2 N(js) (21)

If N(w) is (or may be sufficiently approximated by) a rational function of Z , the

eigenfunctions and eigenvalues can be found by a fairly simple process. Equation 18

may be written

IT(t ) (o - r i q i(t) = (22)

or

-0 <i>+i(t) = ni(t)

with

li(t) = 0 for t < -T/2 and +T/2 < t (23)

and

9i(t) = 0 for -T/2 < t < +T/2

The behavior at the points ±T/2 will be specified later.

Suppose

n 21
Z Cs 2

- =2r N(js) = =C(s) (24)

1=0
C (s2 ) 2 1 D(s)

2 (25)
D C(s2) D(s )

[C(s2) - cr2 D(s 2 )] i(t) = D(s2) ni( t) (26)

The operators working in Eq. 26 on i and i are pure differential operators. Therefore

ai must fulfill the conditions for both i and i in Eq. 23

ii(t) = 0 for every t except for t = T/2

At the points T/2, 6-functions and derivatives may exist. It may be shown easily that

there is always a complete set of eigenfunctions that are either even or odd. We must

therefore be able to find a complete set by assuming

-5-



i(t) = Ai(s) 6(t + T/2) + Ai(-s) 6(t - T/2) (27)

2

Ai(s) = E Ail s (28)

1=0

The value of r must be chosen so that it will be consistent with Eq. 11 which may

be written, for i = j,

+oo00 +00oo

X i(t) ni(t)dt= C-2 ( ~ i (t) *D i (t ) dt (29)

Whenever r 2n, this integral will diverge at the points t = +T/2. Therefore

r = 2n - 1 (30)

We may now try to determine the coefficients At from the conditions of Eq. 23 for

,ii and 'pi

Ai(s) Ai(-s)
ni(t) (s 2) 86(t + T/2) + 2 6(t - T/2) (31)

D(s D(s2s )

The pulse response corresponding to the operator Ai(s)/D(s ) may be found with

Heaviside's expansion theorem. This theorem must be used in a form that gives an

even pulse response (for example +(t)) for a symmetrical operator (for instance oO),

that is, in a form giving the pulse response that is valid in the strip of convergence con-

taining s = 0. Denoting the roots of D(s 2 ) = 0 by sh and assuming that there are no

double roots, Heaviside's theorem may be written

D(s) h exp(sht) (32)

S=Sh

with

E(X) = 0, X< 0; (0) = 2; (x) = 1, x> 0 (33)

Equation 31 may be written in the interval -T/2 < t < +T/2

0 = - E(Re(s))] d [Ai(s ] exp s(t + T/2) T (Re(s)) exp s(t -
I[' · (Re~s)d [D(5 ] ds [D(s 2 )]

S=Sh

(34)

This requires

Ai(sh) = 0 (Re(sh) < 0) (35)

and the identical condition

Ai(-sh) = 0 (Re(sh) > 0)

-6-



Pure imaginary roots do not exist as N(o) is bounded. Double roots require that

Ai(sh)= 01

ds A(s) O [iRe(sh) < O] (36)

d-s Ai(sh) = 0

In this way we obtain n conditions for the Ail

Aio +AilSh +Aih+ ... = 0 Re(sh) ] (37)

and eventually derivatives for multiple roots.

The same procedure gives, when applied to i(t),

= [(t-+ T/-E(Re(s))] dC _j o. D(s 2 )] exp s(t + T/2)
k ds i

+ [(t - T/2) -E(Re(s)) Cs 2 ( D(s) exp s(t - T/2) (38)
ds [(s2) _ a2 D(1Z)

SSk(i)

with Sk(ai), the roots of C(s 2 )
- i D(s2 ) = 0.

The condition that i(t) be zero for t < -T/2 and +T/2 < t requires

Ai(sk) exp(skT/2) Ai(-sk) exp(-skT/2) = 0 (39)

or

A o cosh(skT/2) + A1lk sinh(skT/2)

+ Ask cosh(skT/2) + ... = 0 (for even i) (40)

and

Ao sinh(skT/2) + Alsk cosh(skT/2)

+A s k sinh(skT/2) + . 0 (for odd Ji) (41)

For a double root, one of these has to be replaced by its derivative as shown in

Eq. 36. In the set of Eq. 38, each equation is double; therefore, Eq. 38 represents

2n conditions. In total we have just as many equations as coefficients Ail. However,

as these equations are homogeneous, in order to have a solution ' 0, the determinant of
2

these equations must be zero. This determinant is a function of o. and determines the
~~~~~~~~2 i~~~1

eigenvalues ori . It may be written easily for each application.

Double roots will occur only at discrete values of (Tr.. The determinant, set up in
1

the assumption of exclusive single roots, will indicate these values erroneously as

eigenvalues. It will not be difficult to sift them out afterwards.

When an eigenvalue ri is known, Eqs. 37 and 40, or 41, may be solved to find a set1
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Fig. 1

An estimation of the number of eigenfunctions, with eigenvalues smaller
than o-2 , for an arbitrary example of a noise spectrum.

of Ai Substitution in Eq. 38 then gives the corresponding eigenfunction which may be
~ilf,~~~ 2

normalized afterwards. The eigenvalues o.i are the result of the pure imaginary roots

Pk which make the hyperbolic functions periodic. These pure imaginary roots may be
found by drawing a horizontal line at height o- in the noise power spectrum (Fig. 1).

The intersection points of this line with the power spectrum give the values of W k = s k

When a-2 is increased by such an amount that all values k travel together, on the aver-

age, a distance of 4rr/T, both the even and the odd determinant will pass through zero;

therefore, there will be, on the average, two eigenvalues in this interval. Only real

roots for wk have to be considered, since all other roots move in pairs so that their

influence on the determinant is approximately cancelled. Consequently, an estimate of

the number of eigenvalues smaller than ac may be found by multiplying the total length

Aw where c-2 > 2TT N(w) with T/2r. The main frequencies occurring in an eigenfunction

with an eigenvalue of approximately a- are given by a- = 2r N(c).

III. CALCULATION OF PROBABILITIES

--4~

Suppose a signal Xk with components xki has been transmitted. The probability

density of receiving a signal with components yi will be

(Yi - xki)

e 2 o ) (42)

or

Yi
exp 2

P(Xk)= ( 1 exp(-Vkk + 2k) (43)
i (2 (Ti ) /2

with

2

V 1 Xki
kk =Z2 (44)

i 1C
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and

i = ' EI ' Xki (45)
%k YZ Yi Xki

i i

These expressions for Vkk and %k may be interpreted as the dot product of Xk and Y

respectively, with a vector Zk having components ki = Xki/Oi.
The corresponding time function

Zk(t) = k i (t) (46)
1 1

is the solution of an integral equation (Eq. 19):

+ T/2

X(t) = kti f(t-T) j (T) dT

/i . i 2

+T/2 (t -T) ki i(T dT

+T/Z

= (t-T) Zk(T) d = Xk(t) (47)
-T/2

When the solution of this integral equation (Eq. 47) is not unique, the difference

of two solutions is an eigenfunction with the eigenvalue zero of Eq. 13. This case,

where the definition, Eq. 46, obviously makes no sense, would indicate that there

are signals that are not disturbed by noise, and has, therefore, no practical impor-

tance.

The computation of Zk(t) for a given Xk(t) may be carried out in a simpler way than

by determining the eigenfunctions and using Eqs. 6 and 46. The process, leading from

Eq. 13 to Eq. 23, may be applied to Eq. 47. This leads to

U(t) = 0 Z(t) (48)

with

Z(t) = 0 for t < -T/2 and +T/2 < t (49)

and

U(t) = X(t) for -T/2 < t < +T/2 (50)

where, for simplicity, the subscript k has been dropped.

In order to solve Eq. 48 it is again necessary to assume that the power density of

the noise is a rational function of the frequency; therefore

-9-



n 2J
Z C1 s 2

= P= = C(s )
Cl0 n 21D(s

D D(2
1=0

A function V(t) can be defined

V(t) = D(s 2 ) U(t) = C(s 2 ) Z(t)

with conditions for V(t)

V(t) = C(s 2 ) Z(t) = 0 for t < -T/2 and +T/2 < t

V(t) = D(s 2 ) U(t) = D(s 2 ) X(t) for -T/2 < t < +T/2

(24)

(51)

} (52)

Addition of 6-functions and derivatives at t = + T/2 gives

V(t) = D(s 2 ) X(t) + A(s) 6(t + T/2) + B(s) 6(t - T/2) (53)

where A(s) and B(s) must again be determined from the conditions of Eqs. 49 and 50.

Calculation of Z(t) = 1/C(s 2 ) V(t) and U(t) = /D(s ) V(t) with Heaviside's expansion

theorem gives, with the conditions of Eqs. 49 and 50,

+T/2

A(sk) exp(skT/2) + B(sk) exp(-skT/2) = D(s2) T X(T) exp(-skT) dT

A(sh) = 0 (Re(sh) < 0)

B(sh) = 0 (Re(sh) > 0)

where sk are the zeros and sh are the poles of the system function N(as). A and B are

allowed to be of the grade (2n - 1). Equation 54 allows calculation of the coefficients of

2n-I 2m-1

A(s)= Z A's and B(s) B sI

1=0 1=0

When A(s) and B(s) are known, Heaviside's theorem gives

Z(t) = (C( 2 ) D(s2) 
1/2k 1fT/2

exp(s I(t- T)) X(T) dT

+ A(s) exp(s(t + T/2)) + B(-s) exp(-s(t - T/2))

s=sk; Re(sk)<

D
+ n * X(t)
n

The computation of Z may be simplified by splitting X(t) into an even and an odd

and treating these parts separately; setting Aeven(s) = Beven(-s) and Aodd(s) = -B

(55)

part,

odd(-s) 

-10-
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The dot product of two vectors is invariant under coordinate transformations

+T/2

Ek i i = ki pi(t) L(t) d(t)
; +T/T

+T/2 +T/2

= k. t ki 4i(t) L(t) dt = K(t) L(t) dt
· -T/2 J/2

and therefore

+T/2

Vkk 2 f Xk(t) Zk(t) dt (56)
/2

and

+T/2

1k2 Of, Y(t) Zk(t) dt (57)
k= T/2

From Eq. 43 it follows that the a posteriori probability P(Xk kY) of the signal Xk

with an a priori probability P(k) is (2)

P(Xk) exp(-Vkk + 2dk)

P(Xk ) P(Xk) exp(-Vkk + 2k)
k

As k is obtained by a linear process from Zk, and Zk by a linear process from Xk, Ok

is a linear function of Xk(t) (for a given Y(t)). Therefore, when there are linear rela-

tionships between the Xk(t), linear relationships also exist between the k. It will not

be necessary in such cases to compute more correlation integrals (Eq. 21) than there

are independent Xk(t). The rest of the dk may be found as linear combinations. In

practice, this crosscorrelation will always be carried out by constructing a filter (or

other linear physical devices) with pulse response Zk(T/2 - t) and then feeding Y(t) to

it and sampling the output at the time T/2.

In a special case, which is often encountered in performing physical measurements,

the possible signals all possess the same shape but different amplitude.

Xk(t) = k . Xl(t ) (59)

where k is the quantity to be measured and Xl(t) is a given function of time. Most

often k is continuous. It may be assumed that the a priori probability distribution

P(k) is given.

Obviously

Zk(t) = k Zl(t) (60)
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and

+T/2

V k 2k2 Xl(t) Zl(t) dt = k V1 (61)

T/2

+T/2

k k 2it Y(t) Zl(t ) dt = 2 k 1 (62)

/2

Therefore, the a posteriori probability distribution of k will be

P(k) exp (k V-

P(k+ Y) = 12 (63)

P(k) exp 2 1 dk

When the a priori distribution is flat, the a posteriori distribution is gaussian with

center value

41k V (64)

and variance

2 =1 (65)

11

Therefore, V 1 1 may be interpreted as the signal-to-noise ratio for the signal Xl(t) when
the optimum filter is used to detect it.

When the optimum procedure is, in advance, assumed to be linear, the special case,

described by Eq. 59, reduces to an optimum filtering problem. These optimum filters

have been extensively dealt with in the literature (5, 6, 7, 8, 9). The work of Zadeh and

Ragazzini (8) on finite memory filters gives the same results for the optimum filter as

derived here. The mathematical methods, however, are slightly different.

IV. CHANNELS INTRODUCING LINEAR DISTORTION

The theory described so far may be used in connection with the problem of commu-

nication through a channel that introduces a linear distortion. The situation is shown

schematically in Fig. 2. It is assumed that a sufficient approximation of the transfer

function of the channel and of the power density of the noise is given as a rational

function. At first, an additional restriction will be placed upon the channel transfer

function: It will be assumed that it has no zeros on the imaginary axis or in the right

half-plane. Under these circumstances the inverse network exists and may be used as

a first step to the unravelling of the signal. This inverse filter multiplies the power

density of the noise by [F(j,)/E(jw)]2 . The problem reduces therefore to the problem

-12-



NOISE

TRANSMITTER
CHANNEL

RECEIVER

Fig. 2

A communication system introducing linear
distortion and gaussian noise.

discussed in section I, with a noise power density [F(jw)/E(j)] 2 C( )/D(3), the

equivalent noise spectrum at the transmitter. The function Z(t), which must be cross-

correlated with the output of the inverse filter, may therefore be found. As a last step,

the necessary practical outfit may be simplified by combining the filter F(s)/E(s) with

the filter which performs the crosscorrelation, and making a physical device that

realizes this combination to a sufficient degree of approximation.

The restriction on the location of the zeros of E(s)/F(s) will not be met in practical

cases. In all but trivial communication channels, there will be a zero at = o, and

often there will be one at o = 0. Strictly speaking, it is then no longer possible to carry

out the inverse operation F(s)/E(s). The penalty for attempting this operation is that

the noise power density found afterwards is no longer bounded. Therefore, the auto-

correlation function (t) does not exist and the calculation loses its sense.

We may, however, try to find the solution as a limit by solving the problem for the

transfer function E(s)/F(s) + a, where a is a small positive real number tending towards

zero. Although the autocorrelation function does not converge to a limit, the eigen-

values and eigenfunctions do, with the exception of the eigenfunctions built up with the

"forbidden" frequencies. The eigenvalues of these eigenfunctions increase proportion-

ally with /a. Consequently, although the convergence of the set of eigenfunctions and

eigenvalues is not uniform, the function Zk derived from any bounded Xk converges to

a limit. This limit, Zk, a=0' pays no attention to the forbidden frequencies Xk contains.

This is, of course, a physically sound procedure. It may, therefore, be assumed that

this limit is the correct answer to the problem.

With a few minor alterations, the given procedure of computing the set of eigen-

functions or the function Zk may be made to yield directly the limiting values. A zero

at infinity means that the degree n of DI E2 is smaller than the degree 2m of C IF 2 .

The number of constants A then becomes m + n. A finite zero requires that Eqs. 35

and 54 hold also for Re(sh) = 0. With these additions the correct number of equations

is obtained under all circumstances. The set of eigenfunctions found with this procedure

is complete only for the received signals, not for the transmitted signals. The forbidden

frequencies are lacking. This is, of course, not of practical importance, as one would

not be interested in transmitting signals that cannot be received.

Although F(s)/E(s) is not realizable when E has zeros on the imaginary axis (as it

-13-
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Fig. 3

Equivalent input noise for a sharply limited bandpass com-
munication channel disturbed by uncorrelated noise.

would require an infinite gain for the corresponding frequencies), the combination of

F(s)/E(s) and Z(t) is realizable, as the filter with impulse response Z(-t) has zeros on

the imaginary axis where E(s) has them.

The second restriction imposed on E/F, the absence of zeros in the right half-plane,

is necessary to insure the physical realizability of a network with the transfer function

F/E. In practical cases, sometimes there will be zeros in the right half-plane; then

the filter F/E is not realizable, nor are the combination filter of F/E and the cross-

correlation filter. If one again interprets the function of this combination as a cross-

correlation (or weighted averaging), the difficulty lies in the fact that, in this process,

the whole future is involved. This future part of the weighting function is necessary in

order to cancel the influence of transmitted signals outside the time interval. The

weight attached to this future goes exponentially to zero with increasing time. For

practical purposes a sufficient solution is found by introducing a reasonable time delay

and cutting off the rest of the future. Of course this process does not give correct prob-

abilities or statistically independent results, but the deviation may be made as small

as required. In most practical cases there will be no objection to the delay, which is

necessary to obtain a close approximation of the ideal situation. When, however, a

shorter delay is required, it will be necessary to reconsider the problem in order to

be able to prescribe the changes to be made in the past section of the weighting function

as a result of the cutoff of the future. This problem, however, remains outside the

scope of this report.

V. EXAMPLES

1. COMMUNICATION

As a first example, it may be shown that the approach of this report leads to the

points of view of Shannon (10) and Rice (11) when applied to the problem of communica-

tion in a limited band, disturbed by uncorrelated noise. The equivalent input noise

shows the spectrum (given in Fig. 3). The rule about the number of eigenfunctions for
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this case states that there are about 2TAv eigenfunctions, all with the same eigenvalue.

In such a degenerated case, all linear combinations of eigenfunctions are again eigen-

functions, and therefore any orthogonal set of about 2TAv functions, substantially

limited to the frequency band and time interval, may be used to describe the problem.

Figure 4 shows the simplest example of a low- and high-cutoff communication chan-

nel, disturbed by uncorrelated noise. Figure 5 shows the eigenvalues as a function of

the basic time T. Figure 6 shows a number of the lowest eigenfunctions for T = 10RC.

The lowest eigenfunction gives, for a fixed energy, the largest number of distinguish-

able levels (with a certain probability of error). When the average energy is limited,

it seems, therefore, advisable to choose the transmitted signals as combinations of a

number of the lower eigenfunctions. When only a small alphabet is allowed, the number

of possibilities is limited and the best may be selected. It seems probable that when a

large alphabet is allowed, a random distribution of signal points in accordance with

Shannon's law (10), requiring that signal energy plus noise energy be constant as far as

possible, will approach asymptotically the theoretical limit of the rate of transmission.

A proof similar to the one Rice gave for the case of noncorrelated noise (11) would be

very difficult here, as there is no spherical symmetry in the signal space.

2. PHYSICAL MEASUREMENTS

A typical example of the theory (12) is the point-by-point measurement of a quantity

as a function of some parameter; for instance, the collector current in a mass spectrom-

eter as a function of the magnet current. When a time T is available to determine a

point, the magnet current is kept constant during that time; therefore the signal, in this

case the collector current, is constant during that interval. Nothing is known about the

signal before and after the measuring time. The current measuring device usually is a

voltage measuring instrument equipped with a current feedback. This feedback effects

a transformation of the nearly uncorrelated noise of the voltage meter into a noise with

a power density approximately proportional to 2 (at least for frequencies where the

feedback is effective). The feedback resistor adds a constant power density. An addi-

tional constant power density may serve as a first approximation for contact-potential
2

variations and flicker effect. The total noise spectrum becomes the form N = a2 + b.

A typical example is a = 10 33 Asec 3 ; b = 10 33A sec. Optimal pulse responses for

T = 1 sec and T = 10 sec are given in Fig. 7.

-t o 0.5 I SEC -- t o 5 10 SEC

Fig. 7

Two optimal pulse responses for a specific example
of a current-measuring instrument.
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