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Abstract

This paper studies the estimation of models in which the set of

instruments is not, in fact, orthogonal to the residuals. 1 first show that,

in overidentified models of this type, one can generally obtain arbitrary

estimates by varying the weights given to different instruments. I then

weaken the assumptions of instrumental variable estimation by allowing for

nondegenerate price distributions over the product of instruments and

residuals. If the variance covariance matrix of this distribution is

diagonal, the estimates which minimize the impact of misspecification are

shown to lie inside the polyhedron of estimates from the exactly identified

submodels.





Introduction

Consider the single equation model:

Y = XI3 + e (1)

where Y is a T x 1 vector, X a T x k matrix, (3 a k x 1 vector of parameters of

Interest and e at T x 1 vector of disturbances. Often economic reasoning

predicts that e is uncorrelated with a series of variables Z. (which

may include X's). It is then natural to estimate the vector B by the method

of instrumental variables proposed by Reiersol (1945), discussed in detail in

Sargan (1958) and generalized by Hansen (1982), This method considers the

sample inner products of the instruments and residuals Z.(Y-XB) where

Z. is the vector of observations on instrument i. It then sets k linear

combinations of these products equal to zero so that

WZ'(Y-XI3) = (2)

where Z is a T x m matrix of instruments, m >. k and W is a k x m weighting

matrix of rank k.

The hypotheses that the expected value of Z e is exactly zero is

probably false for most economic models. This explains in part why, in

empirical papers this hypothesis is often rejected by Hausman (1978) tests and

other specifications tests. In particular, such rejections are reported by:

Hansen and Singleton (1983) Mankiw, Rotemberg and Summers (1982), Pindyck and

Rotemberg (1983). After all, the models are only an approximation to

reality. The lack of concern expressed over these rejections must mean that

the authors imagine on £ priori grounds that the inconsistency of the
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resulting estimates must be small. This belief may be based on Fischer's

(1961) "proximity theorem," which states that for a fixed W as the mean of

e Z. goes to zero the inconsistency of S disappears in a continuous

fashion. This paper argues that this optimism may be unfounded. I show that

when overidentified models (i.e. models where m > k) are misspecified even

slightly, the estimated B's may be extremely far from the true S's. This

result does not contradict Fischer's result directly. This is so because I

keep the mean £,.2, fixed and I consider changes in the weighting matrix

W. If the means of e^Z, differ sufficiently across instruments, one

can obtain essentially arbitrary (3's by varying W.

Methods have been proposed for selecting weighting matrices that minimize

the asymptotic covariance matrix of the B's under the assumption that the

model is correctly specified. In particular if the e 's are i.l.d.

then the "optimal" W is X'Z(Z'Z) and the resulting estimator is obtained

by two stage least squares. Here I propose a different estimation procedure.

This procedure is designed to minimize the impact of misspecif ication. I

assume that Z'.e/T converges to V. as T goes to infinity. However,

instead of assuming V is zero, I treat V. as an unknown random variable

from the point of view of the econometrician. I assume that V. has mean zero

and variance a, (so that, on average the estimates are consistent). Also

the expected value of V V. is zero so that the asymptotic biases

from the different instruments are uncorrelated. Under these circumstances

I discuss the instrumental variables estimator which minimizes the asymptotic

covariance matrix of (3. I show that this optimal B is strictly inside the

m
polyhedron whose vertices are obtained from estimating the n exactly
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identified submodels. I also show that the estimates obtained from two stage

least squares are not necessarily inside this polyhedron. The paper proceeds

as follows. Section II shows the arbitrariness of B when the model is

misspeclf led, while in Section III my solution to this arbitariness is based

on priors over V . Section IV concludes.

I. The Arbitrariness of the Estimated Parameters

Let 13 be the value of S which satisfies (2). Then:

(3 = (W Z X)"""" W Z Y (3)

Let (3
jl,j2 ... jk

for j < 1 < j2 ... < jk < m be the estimate of

(3 obtained from using the instruments Z.. ... Z ., . This estimate is given

by

ijl ••• jk

;ji

'j2

Jk

^1 ••• \
-1 rV

Z* Y

(4)

where X. is the jth column of X,

Proposition 1

y.

"ji jk

,jl ... jk

1< j^ < ...< jk<m

where the a's sum to one.

(5)

Proof

.th
Consider the i element of (3. It is given by A /B. A. is the inner

th '

product of the vector whose elements are the cofactors of the i column of (W Z X)

with W Z Y while B is the determinant of WZ X. Thus A. is the determinant

th '

of a matrix formed by deleting the i column of (W Z X) and replacing it by
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t

W Z Y. Using the Cauchy-Binet identity as in Gantmacher (1959) the determinant

of W Z X can be written as

IWZ'Xl = V
i<jl<j2 ... jk.<m

w w
l.jl ... l.jk

\,jl ••• \,jk

• 1

f t

jk 1 jk\

(6)

where W . is the typical element of W. That is, the determinant can be written

as the sum of the products of determinants obtained from selecting k columns of W

and the corresponding k rows of Z'X. Similarly k^ is given by:

1 jl ... jk m

Hence, using (11)

^l,jl ••• ^l.jk

\,jl ••• \.jk

Ia A-. • • • Lt A . -

jl jl

Z ,, X- . . . Z X. -

jk 1 jk i-1

Z' Y ... Z* X
jl jl

^

tt .-I I • • • ^ ai A.
jk jk k

13.
=

1

l_<^jl ... jk<m

ojl ... jk

^jl ... jk ^i

where

«ji ••• jk

"l.jl ••• ^.jk

W.
k,jl

W.
k,jk

^jl^l ••• ^jl\

jk 1 jkTc

l<jl<j2 rrt jk<m

l.jl l.jk

\,jl ••• "k.jk

(7)

^jl^l ... ^jl \

jk 1 jk k

Q.E.D,

If the model is correctly specified, Hansen (1982) shows that any W of full

rank leads to consistent estimates. Thus even when the matrices of second cross

moments between Z,.... Z ., and X are positive definite, the submatrices of W

can have negative determinants leading to negative a's in (7).
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If the model is correctly specified, that is, if Z.e/T goes to zero with

il • • • ik
probability one, then every S

***
goes to 13 with probability one. In this

case the signs of the a's in (7) have no importance, as long as the a's sum to

one (3 is asymptotically equal to 13 with probability one.

On the other hand, as mentioned in the introduction, many economic models

appear to be misspecif ied. The Hausmann (1978) test detects misspecification,

' il . . . ik
i.e. differences between Z e/T and zero when the 13

•••J
»s are significantly

different from each other. Newey (1983) shows that the test proposed by Hansen

(1982) is actually equivalent to the Hausman test under certain circumstances.

So failures of these tests mean that the estimates obtained from exactly

identified submodels (i.e. from using only (Z Z ) as instruments) differ.
Ji ... jK

Proposition 2 establishes that if these estimates differ enough asymptotically

then the value of (3 is arbitrary.

il ... jk .1,
Proposition 2 . Suppose the (3 converge asymptotically to constants.

Moreover, there exist k+1 instruments such that the matrix whose columns are the

estimates of the (k+1) exactly identified submodels which use these instruments

is of full rank. Then, for every kxl vector y, one can construct a matrix W

which makes 6 equal to y
Proof

First let W have nonzero elements only in the columns which correspond to

the (k+1) instruments with the desired property. The (k+1) determinants

obtained by selecting k of the nonzero columns of W are clearly arbitrary.

For instance, by multiplying the first k columns with this property by X and

k-1
the last column by 1/X one multiplies the first subdeteriminant by

X and leaves the others unchanged. Moreover, if k is even, multiplying

the first k nonzero columns of W by (-1) changes the sign of all determinants

except for the one of the first submatrix. Finally, multiplying a row by (-1)

changes the sign of all the determinants. So, these last two operations allow
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one to change just the sign of the first determinant even when k is even. A

similar argument allows one to change at will any of the other determinants.

Since Z'X is fixed, one can thus change at will the numerators of the a's in

(7). In particular one can pick the last subdeterminant of W in such a way

that the denominator of the a's in (7) is equal to one. Then 6 can be

rewritten as

B = B^ + CS

Here (3 is the estimate of (3 obtained using only the instruments which

correspond to the last k nonzero columns of W. C is a matrix whose columns

are given by the difference between the k (3's obtained from the other exactly

identified submodels and 6 . Finally S is a kxl vector consisting of the k

arbitary ct's. If the (k+1) instruments have the desired property C is of rank

-1 L
k. Then one can obtain 13 equal to y by setting S equal to C (y-S ).

Proposition 1 basically shows that 13 is a linear combination of I3's obtained

from the exactly identified submodels. Moreover, since each one of these 13'

s

is consistent, the sum of the weights on these (3's must be one to ensure that 13

is consistent. However, the individual weights are arbitrary except for their

need to sum to one. So one weight can be large and positive as long as another is

is large and negative. As soon as any two 13. 's from exactly identified

submodels differ one can thus obtain an arbitary value for 13 by

varying the weights on the two exactly identified (3.'s.

This arbitariness of (3 is disturbing for a number of reasons. First, a

number of different W's have been proposed for their "optimal" properties when

the model is correctly specified. This, unfortunately, gives econometricians

quite a bit of latitude in reporting estimates of models which fail Hausmann-

type tests. In particular, under the assumption of conditional homoskedascity

the optimal W is X'Z(Z'Z) which gives the two stage least squares estimator.

Instead under conditional heteroskedasicity Hansen (1982) shows that the
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optimal W is obtained in two stages. In the first stage any W of full rank

can be used. Then the residuals from the first stage estimation are used to

construct the optimal W. Proposition 2 makes it clear that this second stage

W will, if the model is misspecif ied, vary depending on the first stage W

that is chosen. When there are simultaneous equations being estimated then W

will also be different depending on whether three-stage least squares or

iterative three stage least squares are selected.

The second reason the arbitariness of 6 is disturbing is that it suggests

nothing can be learned about S even when the model is only slightly

misspecified. This is intuitively inplausible. My discussion of the

situations in which something can be learned is relegated to the next

section. In the rest of this section I consider whether the arbitariness of

13 disappears when instead of using the generalized method of moments one

minimizes (Y-X6)'Z W Z'(Y-X(3) where W is a mxm positive definite weighing

matrix. I show that this isnt' so by focusing on an example. In this

example k is equal to one while m is two.

Thus there are two exactly identified submodels. One uses only Z, as an

instrument while the other uses only Z2. The instrumental variable

estimates from the two submodels are given by

f

, Z,Y (Z g)/T

f

Z^X (Z^e)/T
(8)

The estimates B-*- and Q> become good approximations to the true B as Ttill «< ~

becomes large if Z^e/Z.x and Z^zlz^x. converge respectively to Z.and Z^ which

are small relative to B. On the other hand consider the estimate B which
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mlnlmlzes

(Y-X6) [Z^Z^]
a b

b c

7 '

Z'

(Y-XB) (9)

where W has been chosen without loss of generality to be symmetric. 6 is

given by:

6 =
(aX Z + bX Z2)Z Y + (bX Z + cX Z )Z Y

(aX Z^+ bX Z2)Zj^X + (bX Z^+ cX Z2)Z2X

(j)
13^ + (l-(t))s2

where

*
=

t 1 •

(aX Z +bX Z )Z X

(aX Zj^+bX Z2)Z-,^X + (bX Z^+ cX Z2)Z2X
(10)

sc (3 is a weighted sum of S^ and 6^ where the weights add to one. So,

asymptotically.

B = 6 + Z + (Z, - Z, )(!-(})) (11)

Unfortunately ^ can be any real number so that if Zy is different from Z, , 6 is

arbitrary. This can be seen as follows: by normalizing the Z's one can make both

Zj^X/T converge to one. Then cj) is equal to (a+b)/(a+2b+d) . Let a equal

one, d equal (l+y) where y is bigger than -.5 and b equal to v - /1+y.

As long as v is small and positive the resulting weighting matrix is positive

definite. Then:

*
= 1-K) - /T+jI

2+p -2/1+jj +2v
(12)

and

lim 4) =

v-»-

y^

1-K; - (l-u/2)

2+y - 2(l+y/2)+2v
V -y /2

2v
(13)
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So, for y positive (^ can be induced to be in the open interval (-00, 1/2)

by varying v . Similarly for y negative cj) can be in the open interval

(1/2,00), On the other hand making d equal a and choosing b equal zero
<j)

becomes 1/2.

Ill, The Study of Misspecified Models

The previous section showed that if the model is misspecified, one can

choose weighting matrices to obtain arbitrary parameters. This is true even if

il • • , ik
the model is only slightly misspecified in the sense that the &•' '*' ' 's

are close to G. As long as they are slightly different from each other, propo-

sition 2 holds. However, if the 6 •••J gj.g ^^j ^^^ economic sense very

similar to each other, the statistical rejection of their equality should not

be viewed as a major problem. The question remains however which W to use even

in this case.

One possibility is to view the failure of specification tests as a failure

of a specific set of m-k instruments under the maintained assumption that the

other k instruments have the untestable property that lim Z'e = 0,

T-w ^

Then, the best weighting matrix has nonzero elements only in the columns

corresponding to the "valid" instruments. While this procedure may be appro-

priate in certain contexts, it is not so in general. In macroeconomics the

Z 's are typically lagged values of various variables. Which of these

lags is most appropriate is generally hard to decide. In panel data the in-

struments are usually individual characteristics like age, schooling and the

wage of the working spouse. It might be thought that the last characteristic

is a worse instrument in a labor supply equation for instance. However, it

would seem that even the first two characteristics are probably correlated

with the taste for working.





-10-

So, in the usual context it is difficult to assert that one is sure k of

the instruments are Indeed appropriate ones. Here, I propose a different mode

of analysis of models which fail specification tests. In particular I propose

that the polyhedron composed of the S's from the exactly identified submodels

be studied. If this polyhedron is large in that the various (5's have very diff-

erent economic implications, the misspecification makes it hard to draw

behavioral conclusions from the data. On the other hand, if the polyhedron

is small, the statistical significance of misspecification doesn't stand in

the way of drawing behavioral implications. The focus on the polyhedron is

motivated by the fact that under assumptions strictly weaker than that the

lim Z' £/T = the estimator which minimizes misspecification is indeed
T-xo ^

inside this polyhedron.

Suppose that lim Z' e/T is equal to V. where V is a constant. This
T-w

^

I ii . . . ik
convergence of Z.e/T is also required to make the (3-^ *" -^ 's converge.

Instrumental variables are inherently underidentifled assymptotically since one

cannot learn the S's and the m V. 's. The usual "identifying" assumption is

that the V. are zero. This cannot of course be true of all the V. if the model

fails a specification test. Here I assume that econometricians do not know the

values of V, . Instead there are willing to entertain a prior distribution over

V . Since it is felt that the instruments are reasonably close to being valid,

the mean of this prior is zero. On the other hand the prior variance of V. is

nonzero and this is the weakening of the standard assumption.

This randomness of V. can be interpreted as follows. As long as the random

variable Z. e>. is stationary, V. converges almost surely to the expected value

of Z e conditional on an invariant set of J. If, in addition, the variables

Z. e are ergodic, the invariant sets have either probability zero or one. In

this case V converges almost surely to the unconditional mean of Z e . On

the other hand, suppose Z. e is not erdogic. Then there are nontrivial invari-
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ant subsets of the set Q, of underlying states of the world. These subsets have

the property that, once the economy starts in one of these subsets, it never

reaches outside the subset. Hence V. depends explicitly on which subset

the economy starts in. Then, even if the unconditional mean of Z. e^^ is zero,

the asymptotic value of V. can be treated as a random variable whose realization

depends on the actual invariant subset in which the economy is stuck. The

probability of this realization depends on the prior probability of this

particular invariant subset.

I do not, however, consider completely general priors. Instead, I assume

that the prior covariance matrix of V. ,Z is diagonal. This assumption has the

advantage of parsimony. If, before encountering a rejection with a specifica-

tion test, an econometrician considered that a set of instruments were strictly

valid, it is hard to imagine that he/she knows after the rejection how the mis-

specification due to one instrument depends on the misspecification caused by

another. This suggests as a natural starting point the assumption that the mis-

specifications are uncorrelated. If, in a particular application economic

theory predicts the off-diagonal terms of Z, it should obviously be applied.

On the other hand I am unavrare of theories which make this type of prediction.

Such theories would have to deal explictly with the invariant sets of fi.

The standard errors in variables case considered for instance by Leamer

[1978] has a residual which can be decomposed in two additive parts. The first

part (the structural one) is only correlated with the dependent variable Y while

the second part (the measurement error) is correlated only with X. Then treat-

ing Y and X as instruments the convariance of Ye with X e. is zero and

a fortiori in the iid case, so is the covariance between Y'e/T and X'e/T.

So this example satisfies my diagonal covariance assumption. However, in

general, it isn't required for Z. e^^ to be uncorrelated with Z' -^e^,

for Z e/T to be uncorrelated with Z e/T.
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I now establish that under these assumptions about the V. , the asymptotic

variance covariance matrix of B gets minimized by picking an estimate strictly

inside the polyhedron of estimates from exactly identified submodels. ^ This

variance covariance matrix is given by the limit as T goes to infinity of

(B-8)(S-(3) ' . When the model is correctly specified this is simply zero and we

focus on the "first order" variance covariance matrix given by the expected

value of T(6-B)(6-B) ' . Here, however, since the V are random from the point

of view of the econometrician S is a random variable and the E(6-B)(B-6)' is

well defined. Instead, in the presence of this type of mlsspecification

E T(6-(3)(6-6)' blows up almost surely as T goes to infinity.

Proposition 3

If lim Z'e/T has mean zero and a diagonal variance covariance matrix I,

T-Xr>

the instrumental variable estimator which minimizes the expectation of (6-B)(B-B)

is given by (7) with all the a's between zero and one.

Proof

(from (3))

6-B = (W Z'X)""*" W V

where the typical element of V, V is given by lim Z'e/T, Then, the
^

T-K» ^

asymptotic variance covariance matrix of B is

E (B-6)(S-B)'= E ^^^-|^^ W V v' w'(^w')"^

which is clearly minimized for

w = ^ z
-^

(14)

Thus the matrix composed of the columns jl ... jk of W is given by:

2
W, ., ... W, .,l.jl l.jk

W,
k,jl

W,
k,jk

I

T

^Pjl ••• ^l^jk

k jl k jk

1/a
jl

1/a
jk

Q.E.D.
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2 2
where a .. is the expected value of V... Thus the numerator as well as each of

the elements of the denominator of (14) are positive. Hence all a's are

positive and less than one.

Note that the two stage least squares estimator become optimal if E(V V)

is proportional to (Z'Z)/T.

If Z were know up to a multiplicative constant, the optimal estimator

of 6 would use the weighing matrix given by (14) with the population moments

replaced by the sample moments. For instance, it might be thought that once

2
the Z. are normalized to have the same mean, the a. are all equal. Then the

-1
optimal estimation of (3 is simply (X'Z Z'X) (X'Z Z'Y). If, on the other hand,

2
information on the a^ is unavailable, then it is better to analyze only the

bounds given by the polyhedron of exactly identified submodels.

It might be thought that two stage least squares which is optimal when the

model is correctly specified and the e's are iid produces estimates which are

at least inside this polyhedron. The following example based on the setup of

(8) shows that this isn't necessarily true.

Suppose that:

lim XJC = lim Z X = lim Z X

T-KD T->oo T T-Hx> T

= 1 (15)

Z Z
lim 11=4
T-HJO

lim Z,Z, = 2 lim Z Z = 2.7 (16)

T-x»

where (15) is obtained from normalization. This example naturally has a

positive definite second moment matrix. The weighting matrix defined in (9)

becomes:

a

b 0.71

2

-2.7

-2.7

4
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and (j), given by (10), is -1.17. As the correlation between Z and Z

goes up with fixed variances, <j) continues to fall. The correlation in this

example is slightly above .95 which isn't unusual for macroeconomic time

series.

Conclusions

This paper has shown that, if one believes that the biases introduced by

the correlation of the instruments with the errors are independent, one should

concentrate on the polyhedron composed of the estimates from the exactly

identified submodels. The "best" estimator of S is inside this polyhedron.

Moreover, the size of the polyhedron gives an idea of the economic importance

of the misspecif ication. On the other hand, if one is unwilling to impose any

a priori structure on the covariance matrix of V, it becomes essentially

impossible to learn about the B's when the model fails a test of its

overidentifying restrictions. This weakness of inference must be contrasted

with the optimistic results of White (1982). He shows that in the maximum

likelihood content the parameters converge asymptotically to a unique vector

even when the model is misspecif led. Moreover, in the iid case standard infer-

ence itself remains unperturbed under misspecification. Similar results are

presented for least squares in White [1980 a,b]. Maximum likelihood and least

squares have the advantage of being well specified optimization problems which

they tend to have well behaved solutions. On the other hand, instrument varia-

bles procedures are not well specified optimization problems until weighting

matrixes have been selected. Unfortunately, standard weighting matrices like

those of two stage least squares appear to have desirable properties only when

the model is correctly specified.

It might be thought that weighted least squares which is considered by

White [1980 a,b] is also not a well specified optimization problem in this
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sense. Indeed if the model is sufficiently misspecif ied, arbitrary parameter

values can probably be obtained by varying the weighting matrix. However, at

least for prediction purposes, White [1980 a,b] shows that weighted least

squares is always dominated by unweighted least squares. So this limitation

of weighted least squares appears to be much less severe than the limitation

of intrumental variables discussed here.
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FOOTNOTES

^ Rejections are also reported in Diamond and Hausman (1983) and Dubin and
McFadden (1983). However, these authors' favored estimates are not subject to
specification tests.

2 This is akin to Learner's (1978) observation that in his errors in

variables case the best estimator of (3 lies between the estimate obtained by
regressing Y on X and the inverse of the coefficient obtained by regressing X
on Y.
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