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!• Introduction

Members of organizations communicate with each other in order to coordinate their actions in pursuit

of a common goal. Bilateral information exchanges can be broadly classified as monologs or dialogs. A
typical monolog would be a published forecast of market conditions in response to which a manager

chooses an inventory level. A typical dialog could be a question-and-answer session; e.g. the chief

strategist describes a new product, the marketing prognosticator announces a sales estimate based on that

description, and then the strategist decides whether to introduce the product.

Our common sense and experience tell us that dialog, if not in some sense dominant, is certainly a

ubiquitous mode of communication in the real world. It is provocative, then, to compare this observed

dialog-rich communication with the type of discourse manifested in traditional economic analysis. In

most models with asymmetric information an agent is called upon to report her private information to a

principal. Consideration is usually restricted to mechanisms in which the agent fully and truthfully

reveals the entirety of her private information (i.e. she declares her "type")-^ In other words these are

models of a monolog world. (There is no need to ask a question of someone who is planning to tell you

everything she knows, because you know that you will receive the answer to every question which she

could possibly answer.)

Why do we observe dialog in the world but not in our models? Theorists invoke the Revelation

Principle in order to claim that no generality is lost when they focus upon tell-everything monolog

mechanisms. This exploitation of the Revelation Principle is only valid, however, when communication

is costless. 2 When communication is costly, full revelation of type may be so expensive as to be

suboptimal, and efficiency in communication becomes a relevant criterion for the mechanism designer.

This raises new questions of who should say what to whom and when and thereby introduces the

possibility of observing dialog.^

The costs of communication is a theoretical lacuna which begs to be closed. As Tirole [1988: 49] has

pointed out: "Neoclassical theory pays only lip service to the issue of communication. Information flows

between members of an organization are limited only because of incentive compatibility . . . However,

even well-intentioned members of an organization ... may have trouble communicating all the

information they possess to their relevant co-members, because it is too time consuming or because the

information is hard to 'codify' to make it understandable to its receivers. Thus, decisions that would be

profit maximizing under full communication will not be made under imperfect communication." Arrow

[1974: 5] advocates that before we can rigorously evaluate the market mechanism's claim to superior

In some circumstances efficiency can be achieved without full revelation. Sec Groves and Ledyard [1977], Drfize and de la Valine

Poussin [1971], and Malinvaud [1971].

McAfee and McMillan [1988] extend the Revelation Principle to a case in which the principal bears a communication cost but the

agents do not.

Even more generally, costly communication has the potential to explain the existence of hierarchical organizational structures. (One

interpretation of the Revelation Principle holds that the outcome of a decentralized organization can be replicated by a centralized two-

der structure; therefore hierarchy can never be strictly preferred.) See Melumad, Mookhetjee, and Reichelstein [1989] for work in this

direction which adopts a message space dimensionality perspective on communication cost.
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informational economy we must "add to our usual economic calculations an appropriate measure of the

costs of information gathering and transmission."

Communication costs lead to bounded rationality because they impose cognitive limitations—via

knowledge restrictions—upon decisionmakers. Limited communication is similar formally to other

sources of bounded rationality, for example limited memory. Dow [1991] studies an agent searching for

a low price and asks how the agent can make optimal use of her limited memory for observed prices.

Clearly this is equivalent to a team^ communication problem with two partners. Past and Present, where

the design decision is how Past should use hmited communication resources to inform Present about the

price Past observed.

^

When communication is free and truthful revelation is assured, all relevant information can be

transmitted to a specified decisionmaker. However, when communication costs inhibit a comprehensive

information exchange, the initial informational asymmetries are not completely obliterated; by the end of

the conversation some agents still know some things which others do not know. Some agent may be

more qualified to make the choice-of-action decision, and therefore the designer must determine to

whom the decision would be optimally delegated and under what circumstances.

In this paper we posit the existence of communication costs in a bilateral team context. Our task is to

determine the exact process by which private information should be shared and decisionmaking

authority should be delegated. We will see that indeed there exist cases in which it would be suboptimal

for one party to engage in a monolog with the other; i.e. a dialog would achieve a higher performance

standard for a fixed communication cost.

We are intrigued by three features of the optimal information sharing mechanisms we have

encountered during our research. First, they can have an unpredictable hfe of their own. To guarantee

efficiency it is not sufficient that we merely enrich the designer's toolkit to include a simplistic

capability of alternating question and answer. A rigid, fixed-sequence dialog—which dictates that the

microphone change hands in a particular, predetermined order and prescribes ahead of time a particular

agent as the ultimate decisionmaker—can be suboptimal just as a rigid monolog can be. Instead, the

designer must supply a communication algorithm, according to which the identity of the speaker at any

stage and the identity of the ultimate decisionmaker are determined endogenously by the particular

realization of the agents* private data. Just as a software engineer carmot predict precisely what output

will result from a computer program without first knowing its input data, the mechanism designer

cannot—in ignorance of the agents' private information—predict the sequence of speakers in the

conversation or the identity of the decisionmaker.

Secondly, it can be strictly better if occasionally neither party speaks—letting one of them choose an

action in complete ignorance of the other's private information

—

even when they have already paid for

the right to communicate and when the choice of action could be improved by more precise knowledge

A team in the sense of Marschak and Radner [1972] is a group whose members have only common interests.

This communication is clearly limited to a monolog in which Past speaks to Present. The reverse direction would be a case of

paranormal fortunetelling rather than bounded rationality!
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of that private information.^ The intuition for this counterintuitive result is that a dehberate silence in

some circumstances increases the informativeness of communication in the remaining circumstances. A

loss in decisionmaking quaUty due to remaining silent in a circumstance in vhich communication would

be relatively ineffective anyway can be traded-off against a gain generated by the resulting increased

informativeness in cases where communication is more crucial.

^

A third interesting feature of these optimal communication algorithms concerns who dominates the

conversation. We will see that the identity of the agent who should do the most talking can depend on

the size of the communication budget. If you cannot pay for much talking, perhaps one agent is the

preferred lecttirer. If you have more to spend, it can be optimal to hear instead from the other.

Although we show that dialog is sometimes necessary for efficiency, we do establish sufficient

conditions under which monolog is efficient. Mathematically this takes the form of an additive

separability requirement. An interpretation of this result is that monolog will be sufficient when the error

in the final resuh—generated by a given misestimate by the decisionmaker of her partner's private

information—is independent of the decisionmaker's private information. For monolog efficiency, then,

it is sufficient that the decision problem have a structure in which the partners' private data do not

interact in this well-defined sense.

The problem

In order to focus on the analytical issues raised by costly communication we will abstract away from

incentive issues and study the following problem:^ Consider a team of two privately informed members.

The designer's task is to construct a mechanism through which the team members share their private

information with one another in order that one of them will make a decision which would optimally

depend on both of their privately known data. (The designer does not know at the time of design what

each agent's private datum will be at the time the mechanism is implemented.)

Our communication cost measure is communication length and is worst-case: we pay for the number

of binary digits (bits) in the longest possible exchange (i.e. over all possible private data realizations)."*

Thus we are emphasizing that communication takes time and that this is a principal part of its cost.^ A

' Such an algorithm bean a formal resemblance to "management by exception" in which more communication occurs when private

information take* on "exceptional" values. (Marschak and Radner [1972: 206-207])

^ This phenomenon can also occur in Dow's [1991] limited-memory search model. No communication from Past- Present is equivalent

to buying the good from the first firm visited without bothering to visit the second firm to compare prices. Dow prohibits buying

without observing both firms' prices. Kofman and Ratliff [1991b] show that the shopper would be strictly better off if she could waive

the right to comparison shop. By purchasing without comparing prices when the first firm's price is very low (which is almost certainly

the correct decision and is not a very costly mistake even when it is incorrect), she husbands her memory to more finely discnminate

between higher prices for the first firm. This improves her decision about which firm to buy from in the situations in which the wrong

decision would be more costly.

^ We thank Tom Marschak for posing to us a discrete formulation of this problem from which the present paper evolved.

* A similar problem has been studied in the computer science literature concerning distiibuted and parallel processing. It takes the

discrete form of approximating a Boolean-valued function defined on a grid. See Yao [79], Abelson [80], and Karp and Ng

[forthcoming].

^ This information theoretic approach to measuring communication is used by Oniki [1986], who compares the informational efficiency

of an auctioneer-mediated market with that of a centralized system for a particular single-good production economy. This contrasts with

another strand in the literature in which the communication constraint is the dimensionality of the message space (i.e. the number of
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mechanism is efficient if it results in a worst-case decision error no greater than that of any other

mechanism which pays for the same number of bits.i For a given n we search for an efficient n-bit

algorithm in order to establish the minimum worst-case decision error associated with n bits. By varying

n we then can construct the efficient error-communication length frontier.

We now present two scenarios as exemplar problems which can be analyzed using the tools we

develop in this paper.

"ETiiampCe 1: Team-spying the tTqpCosivts factory

Two spies, Boris and Natasha, will be placed behind enemy lines to determine the amount of

explosives being produced by a factory. The explosives are manufactured from two inputs X and Y

according to a well-known production function. These inputs are produced in separate regions and hence

arrive at the factory along different roads. The maximum capacity of each road to handle truck traffic is

well known. From his vantage point Boris can observe with complete precision the flow of X into the

factory but cannot observe at all the amount of F; similarly Natasha can observe the flow of Y but not

that of X. (See Figure 1.)

Delivery route

for input X

N

dl
Explosives

factory

Ttxt^MAor

Delivery route

for input Y

Figure 1: The map for the nnission.

Each spy is equipped with a short-range radio which can send on/off pulses to the other. The enemy is

not yet aware that the factory is being surveilled, and the more numerous are the inter-spy pulses, the

greater is the risk that the espionage mission will be discovered. Consequently the spies want to

minimize their communication with each other subject to a constraint on the accuracy of their production

estimate. The radios' range is too short to reach their home territory, so one of the spies must physically

message "pipelines") with no constraint on how much a pipeline can be used. For example see Hurwicz [1960], Mount and Reiter

[1974], Walker [1977], Osana [1978], Jordan [1982], and Green and L^font [1987].

Minimizing the worst-case error is a reasonable optimality criterion in circumstances of "complete ignorance" (Arrow and Hurwicz

[1977]) or in an infinite risk aversion limit. Its tiactability aids in breaking new ground, and results achieved here generate conjectures

to guide research under other criteria.
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return home—by navigating the only available single-person kayak down a wild river— in order to

deliver an intelligence assessment to their commanders.

Prior to being deployed in hostile territory Boris and Natasha meet at a local bistro to have a beer and

to design a communication algorithm. Upon what rules of communication and decision delegation

should they coordinate? For some fixed number n of pulses who should send the first pulse? Should it be

followed by a second pulse from the same spy or perhaps by a premier pulse from the other? Who will

be the Whitewater courier delivering the final guestimate of explosives production? How will this

sequence of pulses and the identity of the kayaker depend on the spies' private information (i.e. upon the

quantities X and Y they each observe)?

Once they have decided upon a communication algorithm for every fixed number n of pulses and

determined its worst-case error, there is still the question of what number n to pick. More pulses would

result in a greater chance that their cover will be blown but would also increase the accuracy of their

intelligence report. What is the tradeoff? I.e. how much would accuracy be improved by an increase in

the inter-spy communication?

'Lj^ampU 2: Production decisions in an informationaCCy decentraCizedfirm

Consider a ski equipment manufacturer where the personnel director must be told how many workers

w to hire for the upcoming production season. The relevant information for the optimal decision is

distributed throughout the organization: The production manager will learn precisely the productivity-

per-worker ar€[0, a]. The marketing chief will learn the precise value of a demand parameter /?e[0,y3].

(See Figure 2.)

r The Boundary of Economic Expertise-

Production

Supervisor

Knows productivity

parameter a—-v—

-a- Marketing

Director

Knows demand
parameter /?

X y
Personnel

Department

Hires L* workers

Figure 2: An informationally decentralized firm.
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When communication is costly, the design problem is to construct an efficient procedure by which the

production manager and marketing chief will share their private information in order to estimate w*.'

After this exchange the appropriate party can inform the personnel director of the optimal employment

level w*.2 The goal is to minimize the worst-case departure from optimal employment over all possible

productivity and demand combinations.

The same design questions arise here as in the spy example. For a fixed communication cost, who

should speak first, the production manager or the marketing chief? Should they discuss the matter in a

dialog? Or should the production manager, say, use the entire communication allotment to inform her

panner as precisely as possible about productivity-per-worker so that the marketing chief can then

calculate an approximation to the optimal employment level w*? After this design problem has been

solved for an arbitrary fixed communication cost, the decision remains about how much communication

to perform. What is the tradeoff between communication cost and worst-case employment error? At

what point does it no longer pay for the two informed parties to continue to talk to one another?

On interpretation

The phenomena with which we are concerned are communication, coordination, and decision

delegation. Of course we realize that people do not communicate by exchanging bits in order to locate

each other one-dimensionally on an interval, that the problem of an organization is not to announce a

value which minimizes the worst-case error of approximation to a function, and that incentive

compatibility is a crucial constraint. We do, however, see our model as a usefully interesting, yet

tractable, metaphor for more complex situations.

The more general scenario we have in mind is two people seeking to arrive at a consensus action

which will bring them satisfaction if the action is appropriate to their common situation and some pain if

it is not. The focus of our research is the process by which two individual and privately known situations

become a more nearly commonly known situation. That is to say: how do two agents come to share an

understanding of the state of the world?

We beheve that there is no way in which a human being can express to another the full meaning of

her situation. We claim that a person has no method of letting someone else know everything that she

perceives, believes, remembers, guesses, understands, fears, hopes, and doubts about both the

environment and herself in a finite amount of time. However, action must be taken after only a finite

conversation, so we must be concemed with efficient communication.

For example, the production manager does not only know the normal productivity of different inputs

for a given technology. She also knows the reUability and morale of the workers, the probabiUty that the

The personnel director rarely attended his economics classes and would not know how to compute the optimal employment level even if

he were perfectly informed about a and fi\ thus he is outside the boundary of economic expertise. Consequently we need not consider

algorithms in which the production manager and the marketing chief both communicate approximations of their private information

directly to the personnel director.

This communication with the personnel director is also costly. However, we assume that it is equally costly regardless of whether it is

done by the production manager or the marketing chief Therefore it is a fixed cost in the design problem.
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machines will break down, the necessary maintenance schedule, the gossip about new technical

developments, etc. (Moreover, she has a lot of background beliefs of which she may not even be aware!)

We assen that she cannot transmit all this, so she must use her language providently when she

coordinates her actions with others.

In our model we do not attempt to replicate a complicated, multidimensional "common situation;" we

consider points in a rectangle. On the other hand, we need not endow the agents with a rich context-

dependent natural language; we have zeros and ones. In our opinion tractability justifies the simplicity

we impose when we project what-to-communicate and how-to-communicate onto a conceptually

manageable space. We can then address issues of syntax (the rules of communication) and semantics

(the meaning of the messages) within an elegant mathematical formalism.

'

3. The Model

A team has two partners: X and Y. They have a joint address 6 = idx,dY) = (x,y) on a rectangle

E = ExxEy, (A.l)

where Ex and Ey are the closed intervals

Ex = [a,bl (A.2a)

Ey^icd]. (A.2b)

A real-valued optimal action function is defined and bounded on the rectangle E, viz. q>: E—> R, and is

known to both players. Ideally the team would take the optimal action (p(6) corresponding to their joint

address. However, each partner knows only a projection of 6; X knows the precise value of x and Y

knows the precise value of y. Initially X's only information about K's location is that ysEy. Similarly, Y

knows only that xeEx-

The partners may communicate by sending binary digits {bits) to one another. One of the players then

chooses an action y/eE which approximates the desired action (p(6). The communication process and

the choice of action is dictated by a communication algorithm R, which is understood by both players.

The algorithm R must specify the instigator—the parmer who initiates the process by either immediately

selecting an action or by sending the first bit—as well as who sends what bits to whom and when and

who chooses the ultimate action and when.^ Because knowledge of x and y is privately held by X and Y,

respectively, partner Ts activities under the algorithm R can depend only on her own coordinate ^, and

on the history of bits sent and received; they carmot depend explicitly on her partner's coordinate dj.

Without loss of generality we assume that the two parmers never send simultaneous messages.

Our strategy of radical simplification seems to be vindicated by our work-in-progress using a multidimensional information structure for

each partner. We have found interesting multidimensional problems which decompose into separate one-dimensional problems and

which therefore directly require the techniques we develop in this paper.

Because of the information partition the identity of the instigator must be a property of the algorithm which is independent of 9.

(Otherwise there would be cases in which both players tried to instigate or neither instigated.)
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For a given 6 the communication algoritlim R prescribes a particular exchange of some number T](d)

of bits and results in some action y/id). The communication length, n,of R is the number of bits sent in

the longest possible exchange, i.e.

n = maxr](,d). (A. 3)

Note that we are adopting a worst-case definition of the communication length of the algorithm R. The

error of the algorithm R is also a worst-case formulation:

£=sup\y/(e)-(p(e)\. (^4)

Without loss of generality we assume that y/ is bounded on the unit square to ensure that the error as a

function of ^ is bounded and therefore that the error of R is defined.

The designer's problem is to specify—in ignorance of which 6 will be realized—communication

algorithms which are efficient with respect to communication length and error of approximation. An

algorithm R is efficient if there exists no other algorithm which achieves either a strictly lower error with

a weakly lower communication length or a strictly lower communication length with a weakly lower

error. We wish to characterize for a given function ^ the efficient frontier of achievable

(error, communication length) pairs, i.e. those which result from efficient algorithms. We need not find

all of the efficient algorithms; we need locate only a subset sufficient to demarcate the frontier.

For a given joint location 6, the algorithm R will ultimately call upon one of the partners to be the

actor for 6. We characterize the actor's knowledge about 9 at that time by specifying the actor's

information set: the minimal subset S czE within which she knows 6 to lie. Given her knowledge that

0€5, the actor knows that the optimal action <p(d) belongs to the image of 5 under (p:

(piS)={(pidy.eeS]. (a.s)

The actor's best (i.e. worst-case error minimizing) approximation action given S is the midpoint of (p(S),

y/(S) = ^Onf (PCS) + sup (fKS)), (A.6)

which results in the worst-case error given S,

where we denote the function's oscillation over 5 by

A(p{S) = supqKS)-\ni<p{S). (A.S)

We observe that adding points to S would weakly increase the supremum and weakly decrease the

infimum and thereby weakly increase the oscillation of g> over S; therefore the error over a strictly larger

set is weakly greater than the error over the subset.
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In section 3 we discuss monolog algorithms—those which dictate that all communication is

performed by the instigator. We restrict attention to optimal action functions which satisfy appropriate

monotonicity and continuity assumptions. For a given communication length we compute in "almost

closed form" the error and structure of algorithms which are efficient within the class of monologs. We
begin section 4 by presenting two examples which demonstrate that monolog need not be sufficient for

efficiency—a dialog, in which both partners speak, can outperform a best monolog. We then establish a

sufficient condition for monolog efficiency: additive separability of the optimal action function. We
show that this condition is not necessary by exhibiting a rectangle on which a multiplicatively separable

optimal action function can be efficiently approximated through the use of a monolog. In section 5 we

show that all of our results are valid even when the monotonicity requirements are dropped as long as

the optimal action function is appropriately separable. Section 6 summarizes the paper and gathers our

final thoughts.

3. Monolog algorithms

We will find it useful to study a simple subset of the set of communication algorithms: the set of

monolog communication algorithms. Such an algorithm stipulates that for all 6 any transmission of bits

is performed only by the instigator. If parmer /, say, is the instigator, she either immediately chooses an

action y/(di) or chooses from among 2" messages. (In a monolog any bits sent are transmitted as an

uninterrupted string.) If the instigator chooses message k, then her partner,;', chooses an action y/Oj^K)

which depends on his coordinate and the message he received.

For defmiteness we consider here monologs in which X is the instigator. A parallel analysis applies to

y -instigator monolog algorithms. In order to find an algorithm which is efficient within the class of

monologs we would find a monolog which is efficient within the class of X-instigator monologs and a

monolog which is efficient within the class of K-instigator monologs. An algorithm with the lower error

would be efficient within the broader class of monolog algorithms. For the remainder of our discussion

of X-instigator monologs we will use the term "efficient" as a shorthand to mean "efficient within the

class of X'-instigator monolog algorithms."

We first describe a monolog as a partition of Ex and discuss the role of immediate action. We give

conditions under which we can restrict attention to partitions whose cells are convex. We discuss the

efficiency and existence of partitions which, loosely speaking, yield a common error in every cell. We
then solve the efficient monolog problem—computing both the error and the algorithm itself—for a

large class of optimal action functions and discuss the comparative statics of increasing the

communication budget.

Monolog algorithms as partitions

We can fully define a monolog by a (2" + 1 )-cell partition of Ex—which specifies the circumstances

under which the instigator should immediately act or send a particular message—and by choice-of-

action rules which specify how each partner would choose an action if called upon to do so. We define
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(B.l)

(B.2)

(B.3)

(B.4)

The cell (To is the immediate action cell. When x^aQ,X is called upon to immediately take an action.

She knows only that de{x]xEY and therefore that the optimal action lies in the image (pi{x]y.EY). She

takes the action \i/{[x)xEy) specified in (A. 6), which results in the error £({.r} xfy) from (A. 7). (See

Figure 3.) The error £o for the immediate action cell is

eo=
0, o'o = 0-

(B.5)

Adding points to cTq could only increase the supremum in (B.5); therefore the error of immediate action

would be weakly greater for a strictly larger immediate action cell.

x)xEy

<p{{x}y.EY)

\ sup(p{{x]y.EY)

U{a:}x£k)

y/{[x}><.EY)- *

)e{{x}xEY')

\r\\(pi{x) xEy)

(b) (c)

Figure 3: (a) The set of 6, (b) the image under cp, and (c) the best-approximation

and the worst-case error when X immediately announces at x.

The remaining m cells are the message cells. When x € <7,, ieM,X sends the message / in order to

inform Y that xea,. Y then knows that ^€cr,x (y} and therefore takes the action y/(aiX {y}), which

results in the error e(cT,x {y}). (See Figure 4.) The worst-case error e, when X sends message / is

e,= sup£(cT,x{y}).
y&Er

(B.6)
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1

If we were to add points to a,, then for each y the error £:(cr, x (y}) would weakly increase, causing the

supremum of these errors to weakly increase as well; therefore the error of a strictly larger message cell

is weakly greater than the Tror of a smaller message cell. If there exists a y* at which the worst-case

error is achieved, i.e. such that

y*€arg max eccr, x {y}),

we say that y* is a worst-case y value for <t,.

O-/ x{y}

<pix,y)

A

9(<^i x{y})

\ iSUp(p(c7,- x{y})

y/iCTi x(y})-

i-^" X

e(C7, X{y})

£((^i X {y})

inf^((T,- x{y})

0-,

(b) (0

(B.7)

(B.8)

Figure 4: (a) The set of 9, (b) the image under cp, and (c) the best-approximation

and the worst-case error when X sends message / for a given y.

The error of the algorithm a is the largest individual cell error, i.e.

£=max(£Q,£i,...,eJ.

The designer's task is to choose the partition a of Ex which minimizes e.

Immediate action and efficiency

If the immediate action cell ao of an algorithm partition <T is empty, we say that a is a 1 —> m
partition; if <yo*0. we say that O" is a O^m partition. When does efficiency require an empty

immediate action cell? To answer this question we now turn to a significant difference between an

immediate action cell and a message cell: If a message cell a,, ieM, is a singleton, i.e. consists of a

single point, its associated error £, is zero because, after receiving message i, Y would know precisely

not only his own coordinate y but X's coordinate x as well. Therefore if some message cell is empty, it

would not increase the error of the algorithm if we were to transfer a single point to the empty message

ceU from another cell. Therefore efficiency can never require that some message ceU be empty. On the

other hand if the immediate action cell Cq is a singleton, say <To= {x}, the associated error e({x} xEy)

can be positive because X has uncertainty about Y's coordinate.

Consider a 1 —> m partition cr whose error is e. If for some i€£x the error of immediate action is less

than the error of the 1 —>m partition, i.e. if £({jc} x£y)<e, then it would weakly decrease the algorithm's
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error if we removed i from its message cell and added it to the previously empty immediate action cell.

We would say the 1 -^ m partition is improvident because it squanders its opportunity to weakly reduce

its error through the incorporation of a nonempty immediate action cell. If on the other hand for all

vefx the immediate action error exceeds the error of the 1 -»m partition, then it would strictly increase

the algorithm's error to incorporate even a single point into its empty immediate action cell. In this case

we say that the 1 —> m partition is provident; eschewing immediate action is efficient.

Convex algorithm partitions

We now consider convex algorithm partitions—those of the form a= (cTo.cti (T„} such that each

cr,, (€M^ , is a convex set (i.e. an interval). Convex partitions are especially tractable compared to more

general partitions of [a.b] because they can be almost completely specified by a set of m numbers

representing the cells, e.g. (7o=[a,xo],ai = iXi.{,Xi], i€M,x„ = b.^ In order to take advantage of their

structural simplicity we will in Theorem 1 impose monotonicity conditions upon the optimal action

function cp which guarantee that we can without loss of generality restrict attention to convex partitions;

I.e. if presented with a partition which is not convex, we can exhibit a convex partition whose error is

weakly less than that of the original partition. (These monotonicity assumptions, as well as additional

assumptions imposed later, are not as restrictive as they might seem. We wiU see in Theorem 8 that all

of our results can be easily extended to a much wider class of optimal action functions.)

Conditions under whicft convene partitions are sufficient

Theorem 1
For each >'e£y, let (p{x,y) and e(\x} xEy) be weakly monotonic functions of x

on Ex, and let cr = { cTq, (Ti , . .
. . (T;„ } be a partition of Ex whose ertor [from (B .8)]

is £. Then there exists a convex partition (T= {(to, d"i &„} of Ex, whose error we denote by e, such

that The error of cr is no greater, i.e. £<e; and (D if the immediate action interval do is nonempty, it

will be at the left (respectively right) end of Ex if£({x} xEy) is weakly increasing (respectively weakly

decreasing), i.e. &oBa (respectively dosb).

Proof For simplicity of exposition assume that (p and e( { • } x Ey) are continuous and that the

monotonicity of (p(,-,y) has the same sense for all yeEy-^ For definiteness assume that both of the

monotonicity assumptions are satisfied in the weakly increasing sense. First we demonstrate claim ©. If

an algorithm specifies an immediate action for some xq, the monotonicity of £({j:} xEy) implies that the

error of immediate action for any x<xo would be weakly lower; therefore the error of the algorithm

would not be increased by incorporating within the immediate action cell all values in the interval [a,xo].

Therefore we can replace (Tq by [a, SupcTo] without increasing the error of immediate action.

Now we show ©. Consider the i-th message cell. Thanks to monotonicity (and temporarily assumed

continuity) we have

These m numbers do not themselves specify the particular closedness decisions for each cell. When we make an additional continuity

assumption, the significance of the closedness decisions is nil.

More general and more detailed versions of the proofs offered here appear in Kofman and Ratliff [1991a].
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inf ^<T/ X I}- } ) = ^Kinf <T„ ><).

Therefore for any yeEy, the error when Y acts after receiving message / is

e«7,x {y } ) = i((p(sup cT,-, >) - (p(inf cT,-, >-)),

whose only dependence upon cr, is through its supremum and infimum, which would be unchanged if we

convexified this set. Because £(cr, x {y}) would be unchanged for every y by convexification of O",, the

error £, from (B.6) would be unchanged as well. We construct a by refining the covering

(cotTo.cocTi CO cTn,} in such a way that each (t, is convex and (7, c COCT,. Q

The importance of monotonicity is exemplified in Figure 5 in which two optimal action functions

^mono ^j (^°", horizontally monotonic and nonmonotonic, respectively, are plotted as functions of x

for an arbitrarily chosen y. The nonconvex subset <T, is the union of two disjoint intervals. In the lower

half of the figure—the horizontally monotonic case—it is obvious that convexifying (7i does not increase

the oscillation of <p"^°"° and therefore does not increase the error, i.e. A^(cr,x {y}) = A(p(co cr, x (y}) and

therefore e((T,x {>'})=e(co<T,x [y}). In the upper half of Figure 5 the image of the nonmonotonic ^"°"

over (T,- is a single point and hence the oscillation and error are zero. After convexification the image is

the indicated segment of values, and therefore the oscillation and error are positive; i.e. the inclusion of

new points through convexification results in an increased error over the new domain, i.e.

e(cocT,x(y})>£(a,x(y}).

(p(CO(JiX{y})

(p(OiX{y})

<p(o-/x{y})

COCT,

Figure 5: The worst-case error for a horizontally nnonotonic function is unaffected by

convexification; this need not be true in the absence of monotonicity.

Sufficient conditions for tfu monotonicity of the, immediate action error

The requirement that (p be weakly horizontally monotonia is easily interpreted; the requirement that

e{{x} xEy) be a weaikly monotonic function of jc (which is indirectly a restriction upon <p) does not have
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as obvious an interpretation. The next theorem states sufficient conditions when (p is appropriately

differentiable which guarantee the monotonicity of the immediate action error.

'

Theorem 2
Let (p(- , y) be either a weakly increasing function for all yeEy oxQ) a

weakly decreasing function for all y^Ey. Further let (p{x, •) be either © weakly

increasing for all xeEx or© weakly decreasing for all xsEx- Let dcp/dx, d(p/dy, and d^^/dxdy exist and

be continuous over E. Then the following two statements are equivalent:

© d'(p/dxdy has weakly constant sign over E (i.e. nonnegative over E or nonpositive over E).

@ The errors e<{x} xcTy) and £((7x>^ (v)) ^e weakly monotonic functions of x and y. respectively,

for every choice of subsets Cx'^Ex and OyClEy-

Specifically, when the mixed partial is { nonnegative
|
nonpositive } , X's error e({x} xcTy) is weakly

( increasing
I
decreasing } as cp is vertically weakly ( increasing

|
decreasing } and K's error e((TxX {j}) is

weakly { increasing | decreasing } as (^ is horizontally weakly {increasing [decreasing}.

Proof I We will first show that © implies the first claim of© when (Pxy'^Q and (py>Q. The other cases

are demonstrated similarly. Let inf(Tj' = c and SWQ ay = d . Because q>y>Q, ei{x\y.aY)

= ^((p(x.d)-<p(x,c)). This is weakly increasing in x because <Px(.x,d)><Px(x,c) for all xeEx thanks to

(Pxy > 0. (The continuity of (Pxy is used to guarantee that (p^y - (Pyx-)

We now show that © ^>© for the case in which (py > and in which e({x} x Cy) is weakly increasing.

Because £{{x} xay) is weakly increasing, we know that (Px(x,d)>g>x(x,c) for a]lx€Ex and all ayczEy.

Therefore

<Pxyix,y).\\m
<P.ix,y^h)-cpxU.y)

for all x€ £x and y € int Ey. The result extends to all of £ due to the continuity of q)xy. ©

Equal-error convex partitions

For the remainder of our analysis of monolog algorithms we restrict attention to optimal action

functions (p which satisfy the hypotheses of Theorem 1. Therefore we can without loss of generality

confine our consideration to convex partitions.

We now direct our analysis toward those convex partitions which result, loosely speaking, in the same

worst-case error in every cell. Theorem 3 establishes conditions under which we can be certain that any

given "equal-error" convex panition is efficient. Theorem 4 establishes conditions under which we can

be certain that such an equal-error convex partition exists.

' The implications of these sufficient conditions are obviously stronger than we need to apply Theoretn 1 to X-instigator algorithms: they

are applicable when Y instigates as well. In addition, these conditions will be sufficient for the satisfaction of stronger hypotheses of

later theorems.
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We say that cr is an equal-error 0—>m partition if

£o=£\ = --=£m and cro^0. (B.9)

We say that cr is an equal-error l^>m partition if

ei = =£„ and (To = 0. (B.IO)

We say that a is an equal-error partition if it is either an equal-error ^ m partition or an equal-error

1 —> m partition. We have previously defined the terms provident and improvident with respect to 1 —»

m

partitions. We now defme any equal-error —> m partition to be provident.

If a conve?(j provident, ecjuaC-error partition ep(ists, it is efficient

Theorem 3 will tell us that if a convex, provident, equal-error partition exists then it must be efficient;

i.e. no other partition with the same communication length could possibly have a lower error. As an

example, consider a convex partition with two message cells, c7= {cTl.<7r}, where (Ji = [a,x\) and

a'R = [xi,b], which we assume to be equal-error with £ = £i = £^. Assume further that, for all xeEx,

£({x} xEy) is sufficiently large that this partition is provident (i.e. efficiency does not require a

nonempty immediate action cell). Now consider any other convex partition with two message cells,

o={ai,&n}y with error ^= max {Si, in). Let its intercell boundary be jl\. This new partition cannot have

a lower error. If it did we would have both £i<£ and eq<e. In order to make £i<£, we would have to

choose X\<x\ in order to shrink cTl relative to <Tl. However, thus shrinking <Tl makes (Tr a larger set than

(Tr and therefore £R>e.

Theorem 3
For each yeEy, let qKx,y) and £({x} xEy) be weakly monotonic functions of x

on Ex- Let (T be a provident, equal-error, convex partition. Then there does not

exist a panition (whether -> m or 1 —> m) which has a lower error.

Sketch

of

Proof

The proof of Theorem 3, given in full in Kofman and Ratliff [1991a], relies upon a lemma

which states that if <j and & are two distinct partitions with the same number of cells, then

some cell d, of the second partition is a strictly larger set—and has a weakly larger error—than

some cell a^ of the first partition.' (If <t is a provident 1 —>m partition, then any potentially lower-error

a would also have to be a 1 -»m partition because otherwise £>£o

>

inf;c6[a,t]e((x} x Ey)>£.) Therefore

the error of this different partition will be at least as large as the common error of the equal-error

partition. Q

Actually, a stronger claim is shown: that either the left-hand cell of (J is strictly larger than the left-hand cell of cr, the right-hand cell of

d is strictly larger than the right-hand cell of CT, or one of the interior cells of (> is strictly larger than one of the interior cells of cr. This

assures us that we are not comparing errors based on a subset relationship between a message cell and an immediate action cell.
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Continuity impCies e?(istence of an equaC-error partition

By requiring continuity of the optimal action function we are guaranteed that an equal-error partition

exists.

Theorem 4 Let (p be continuous and for every y^Ey, let (p(x,y) and s{{x} xEy) be strictly

monotonic functions of x. Then for all positive integers m, there exists a unique

equal-error 1 —> m partition. If this 1 -^ m partition is improvident, then there also exists a unique equal-

error 0—>m partition. (Therefore there always exists a provident equal-error partition.) The error of this

—> /7T partition is weakly less than the error of the 1 —» m partition.

Sketch

of

Proof

This theorem probably seems intuitively plausible to the reader. The full proof, which is given

in Kofman and Ratliff [1991a], has its conceptual substrate in the following iterative

procedure, where for definiteness we assume that the \ -^ m partition is provident (the

modification for the —> m case is straightforward): Fix some sufficiently small £ and find the endpoint

x\ of 0\ = [0,x\) such that £i =e [see (B.6)]. Now find the endpoint X2 of aj = [x\,x2) such that £2 = £•

Continue in this fashion until either Q) x„=l is determined, (^Xm<l is determined, or © the right-hand

boundary of [a,b] is reached and there are ceUs tr,, i<m, remaining which have yet to receive their £

error allotment. In case ©, the desired unique equal-error 1 -^m partition has been found. In cases ©
and ©, e must be increased or decreased, respectively, and then the process repeated. By choosing e

sufficiently small or large, respectively, we can achieve cases ® and ©. The continuity hypotheses

guarantee that x^(e) is a continuous function of e and therefore that a value for e can be found which will

result in the desired case ©. 3

Theorem 4 is an existence result. However, it is easy to see how the iterative procedure described in

the above sketch of the proof provides an algorithm to actually compute an efficient monolog algorithm

given an optimal action function satisfying the assumptions of the theorem.

The theorem suggests the following strategy to find an efficient algorithm: First find an equal-error

1 -> m partition and determine its error i. To determine whether this partition is provident find the

minimum error of immediate action. If this error is weakly larger than e, the 1 —> m partition is efficient.

Otherwise, find an equal-error —» m panition; it will be efficient.

Monolog error under horizontal additivity

The task of finding an efficient monolog is greatly eased when the optimal action function satisfies an

additional vertical monotonicity assumption. (Satisfaction of this assumption is implied by the constant-

signed mixed-partial requirement of Theorem 2.) We can then determine the error over any message cell

ffi, i€M, simply by evaluating the optimal action function (p along a single, worst-case horizontal

segment. This simplification yields "almost closed form" expressions for the error and the cell

boundaries of an efficient partition.
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Theorem 5 Let (p be continuous and let (p{-,y) be either weakly increasing for all y&Ey or

weakly decreasing for all y&Ey. Further, let cp be such that the error, given y,

when X sends message /, viz. e(<T,x (y }), is either © weakly increasing in y for all ffjCzEx or© weakly

decreasing in y for all <T,c£x- Define the worst-case y-value y* = d\n case © and y* = c in case ©.

O There exists an equal-error 1 -^ m partition a of [a. b] whose ertor is

^
J<p{b.y^)-(p(ay)\

^5 j^

2m

Define ^x) = (p{x,y*). The cell boundaries of c are determined (uniquely if the horizontal monotonicity

of ^ is strict) by

supcTie<p~V<^(nnincri)±2H), (5.2)

keM, and by min G\ = a, where the sense of the "±" corresponds to (p{- ,y*) increasing and decreasing,

respectively.^

© Let e({a:} x£y) be a weakly monotonic function of j:. Define the best immediate announcement

point ibesi = a (respectively ib8si = 6) if f((jc} x£y) is weakly increasing (respectively weakly decreasing).

Define the immediate action ertor function to be

If £^o(^bGsi) ^ £. then a is efficient. Otherwise, there exists an equal-error 0->m partition 6 oi[a,b].

Defme x„ = b (respectively i;„ = a) when ibesi = ^ (respectively ib«st = ^) ^nd define the message cell ertor

function to be

^^^^_
\<p(i.,y*)-(p(xo,y*)\

(5 4)

2/n

There exists xoeEx such that eo(^o) = £(^o). and the error of d is £ = £o(xo) = £(xo)<e. The immediate

action interval is d"o= CO {ib«»i.-^}- The cell boundaries of an efficient partition are again determined by

(5.2)—where i is replaced by i—and by min <Ti = io (respectively min a\ = a) when e({x} xEy) is

weakly increasing (respectively weakly decreasing).

Proot I From the definition of y* and the monotonicity of <p{-,y) and £(CT, x {
• }), we see from (B.6)

that the ertor over message cell i is

e,= sup£(cT,x{y})=£(<T,x{y*}) = i-|^sup(T,-,y*)-^infcr„y*)|.

ysEr 2

The partition is equal-ertor, so the common message-cell error is

' We use ^"' to denote the inverse image of ^, viz. ^'(z)= \x^Ex- ^•'^) = z}
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e = ;^y e,-= -^S I

^sup Gi, >*) - ^(inf (T„ >*)| = -L| ^sup a^. y*)

-

<p(^r\\a\,y*^
|.

where the message cells are labeled such that, for all iJeM, /<;'<=>inf ct,s inf cTy. This establishes (5.1)

and (5.4). The error over the immediate action cell from (B.5) is given by (5.3). The equal-error

requirement then determines io- The boundaries defined by (5.2) are easily verified to result in equal-

error cells. ©

'E?(ampCe 3: A muCtipCicativeCy separaSCe aptirnaC action function

As an example we will apply Theorem 5 to the case where (p{x,y) = xy on E = [a,b]y.[c,d]c'R^.' . Let

^jc = b-a and ^y = d-c. We observe fiom Theorem 2 (because d^<p/dxdy= 1) that this function satisfies

the hypotheses of the Theorem 5, including that e(a,x {}'}) = ^(Sup(T,-inf cT/)^ increases in y—and

therefore y* = d—and that

£{{x]y.EY) = hx^y, (B.ll)

increases in x. The error for an efficient 1 —>m partition is found from (5.1) to be

^
J(p(b,y*)-qKa,y*^\ ^

d^x (B.12)

2m 2m

,--1/To compute the cell boundaries we note that (p (z) = z/d and from (5.2) we have

Supo-i =
^

, -, dAx
ad + lk

kAx
= a + ,m2m.

indicating that each cell has the constant width Ax/m.

(B.13)

It will be efficient to have a nonempty immediate action interval (TQ = [a,xo) only if the smallest

possible immediate action error is less than the error without such an interval, viz. £{{a} x£y)= iaA.v<£;

i.e. a 0—>m partition is required when

^-^>aAy. (B.14)

m

When (B.14) is satisfied, we find io by equating the immediate action error eo(W = i^oAy and the

message cell error e(A)) = dib-Jio)/2m, yielding

jeo=—^^—

.

(B-15)
mAy + d

Substituting (B.15) into eo(io). we find that the error for the algorithm is

^^l__bdAy_ (Bjg)
2 mAy + d
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A calculation similar to that yielding (B.13) shows that the message cells have the constant width

^^<-ii- = :«, (B.n)
mAy + a may + a

which we note is weakly less than the width of the immediate action ceU.

Summarizing both cases we find the error of any efficient partition for this problem to be i

(respectively i) when (B.14) is (respectively is not) satisfied. We will see later in Theorem 8 that we can

generalize this result to apply to any muUiplicatively separable optimal action function, i.e. one of the

form q){x,y)=f(x)g(y), providing neither f(Ex) nor giEy) contain zero as an interior point.

Comparative statics on the communication Budget

It is interesting to vary the number of bits n at our disposal—our communication budget—to see the

effect upon the structure of and choice of instigator for efficient monologs. First we note that the size of

a nonempty immediate action interval for an efficient algorithm must shrink with an increase in m. To

see this assume for defmiteness that s{{x] xEy) increases in x. If to the contrary m and xo both increased,

then eo(^o) from (5.3) would increase but e(io) from (5.4) would decrease, destroying the required

identity £o(io('"))sf(io(m)).

The error e of a 1 ^ m partition from (5.1) varies inversely with 2". The error e of a ^ m partition

from (5.4) falls more slowly with increases in the communication budget because the numerator

increases with m. (This results from the increased length of the interval over which the transmitted bits

must distinguish.) We see this in Figure 6, which shows the X-instigator monolog error—with and

without an immediate action interval—as a function of the communication budget for (p(x,y) = xy on

[0.1, 1.1] X [0, 1]. (The error for a nonempty immediate action interval is bounded below by

e({0.1}x£y) = 0.05.)

We have so far studied algorithms which are efficient within the class of X-instigator monologs. Now

we ask the question: given a restriction to monolog, who should instigate? Return to the above example

of Figure 6. The reader can easily make the parameter interchanges in (B.12), (B.14), (B.15), and (B.16)

required to find the solution for a F-instigator monolog. With one bit an efficient K-instigator algorithm

would result in an immediate action interval of [0, 11/31] with an error of bdAx/2(2Ax + b) = 11/62. The

best X-instigator monolog would have an error of 11/60. Therefore Y is the preferred instigator and the

K-instigator algorithm is efficient within the class of monologs. Now consider four bits. The best Y-

instigator monolog has an immediate action interval of [0,11/171], yielding an error of

11/342 = 176/5472. However, with an empty immediate action interval, an X-instigator monolog results

in a smaller error of 1/32= 171/5472. So we see that the identity of the optimal instigator can depend on

the size of the communication budget.
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-- no immediate action

-O nonempty immediate

action interval

0.05 --

12 3 4 5 6

Number of bits

Figure 6: For low n it is efficient to have an immediate action interval.

4. Dialog algorithms

In the previous section we restricted attention to monolog algorithms—those in which any bits sent

were transmitted by the instigator. Monologs do not exhaust the algorithmic |)ossibilities, of course. A
dialog is an algorithm which is not a monolog: for some 6 the algorithm requires each partner to send at

least one bit. We presented results concerning monologs which are efficient within the class of

monologs. We now concern ourselves more generally with the problem of finding algorithms which are

efficient within the larger class of all algorithms. We will see that an algorithm which is efficient within

the class of monologs need not be efficient within this larger class. (For the remainder of the paper we

use "efficient" in this stronger sense.)

Dialog can outperform monolog

Our first example of dialog superiority is extreme—both because it shows a dialog which is infinitely

superior to the best monolog and because its optimal action function is somewhat pathological. The

second example is more reasonable; its optimal action funaion is well-behaved and dialog shows only a

modest improvement in error relative to monolog.

An e7(treme CT^ampCe

We display an example in which a dialog outperforms every monolog which has the same

communication length. For any communication length greater than unity the dialog error for this optimal

action function will be zero and the monolog error will be positive.

Consider the optimal action function
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x = 0,

y=l. (CD
Otherwise,

which is graphed in Figure 7. Now consider the following X-instigator dialog algorithm: X sends the

message "0" if .t = and sends "1" otherwise. If "0" was sent, Y can immediately choose y/ = y with zero

error because he knows X's location precisely. If "1" was sent and >-< 1, then Y can immediately choose

y/ = 0, again with zero error. In the worst case "1" was sent and >>= 1. In this case Y sends any message at

all, after which X chooses y/=\ -x, again with zero error. So we see that with only two bits a dialog can

pin down the value of q>(x, y) with zero error even in the worst case.

Now we claim that there is no finite communication length monolog which will determine the value

of (p with zero error in the worst-case. Consider any X-instigator monolog. If X immediately acts, either

y<l OT y=l will yield positive error. If X sends a message, choose as a test case y=l. No matter how

many bits X sends to Y we can choose an a:>0 such that Y's estimate of ^(x,y) will have positive error,

because for y=\ the precise determination of (p(x,y) requires that the value of x be known precisely.

Thanks to the symmetry of the optimal action function we know that this conclusion would hold if Y

instigated instead.

Figure 7: Dialog can be infinitely better than monolog.

SI more reasonaSCe e?(ampCe

We return to the optimal action function <p(x,y)=xy of Example 3 and choose the domain E to be the

unit square [0, l]x[0, 1]. We exhibit a two-bit (i.e. m = 4), X-instigator dialog which outperforms an

efficient, two-bit, X-instigator monolog. As the monolog performance benchmark, we calculate, using

(B.15-> B.17), that this monolog error is Vio with an immediate action region over [0, Vs) and four

equally spaced message cells.

In the superior dialog, X immediately acts when a:€<To^ = [0,0.18468). (See Figure 8.) Otherwise X

sends the first bit, transmitting "0" when x€CTi'^ = [0.18468,0.63054) and transmitting "1" when
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A- €(72^ = [0.63054, 1]. Y's response depends on X's message. If Y receives "0", he takes control of the

next bit. Otherwise, he listens for a second bit to come from X.

a\

(TnIB

CT^ erf oi

Figure 8: A dialog which outperforms a best monolog.

When Y takes control, he immediately acts if >'ecTo^= [0,0.41421). Otherwise he sends "0" as the

second bit when >'SC7/ = [0.41421.0.7071 1) and "1" when >'€cr2*' = [0.7071 1, 1]. This then turns the

action decision back over to X. Note that when Y receives "0" from X, Y faces a one-bit, y-instigator,

monolog problem on the rectangle cti^X(T2^ and solves it the same way we solved the n-b'\i, X-

instigator, monolog problem over an arbitrary rectangle in the previous section.

When x€<j2^ and after X has sent the first bit, she then faces a one-bit, X-instigator monolog problem

over the rectangle ai^xEy. The solution to this problem dictates that she use the second bit to further

refine K's knowledge about x into either of the intervals cr2/i'^ = [0.63054, 0.8 1 527 ) or

(T2B^ = [0.81527, 1]. Y then takes an action.

The described two-way, two-bit algorithm results in equal-error cells.' (The double-headed arrows in

Figure 8 indicate the relevant actor's worst-case information set corresponding to each rectangle.) This

common error is easily verified to be 0.09234 < Vio- For example, when X sends "0" and Y responds

with "1", X's information set is the line segment [x]y.(j2^, where xea\^. In the worst-case,

X = sup ai^ = 0.63054, and X's best guess, from (A.6), is v^ = i(0.63054)(0.70711 + 1) = 0.53820. which

results, from (A.7), in the error i(0.63054)(l -0.7071 1) = 0.09234.

We are not at this point asserting that the exhibited dialog is efficient; that is not necessary for our claim that it is superior to any

efficient monolog.
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Monolog is efficient with additive separability

We have seen above that monolog need not be sufficient for efficiency. We now show that whenever

the optimal action function is additively separable, monolog is efficient—no dialog can do better. By

additively separable we mean that the optimal action function is of the form (p(x,y)=f(x) + g(y), where

f: Ex-^^ and g: Ey—* R are continuous. In order to prove this result we can use the upcoming Theorem

8 to justify restricting attention to optimal action functions of the simpler form

<p(x,y) = x + y, (C.2)

on the closed rectangular region E = ExxEy<:zU^.

First we make an observation about this additively separable optimal action function. Let ax c Ex and

<Jy<^Ey- For this (p and for all generalized rectangles (T^xcT}' the error of an immediate action by X is

independent of x and the error of an immediate action by K is independent of y. To see this we note that

qK{x}xaY)=[((Kx,y):y€(jY} = {x + y:ye(TY], (C.3)

and therefore

£({x} xcrj') = ^(sup{x + y:>'€(Ti'}-inf {x + >':>'€<Tj'}) = J(supcT)'-'nfo'r)- (C.4)

and similarly for immediate action by Y. As a consequence, every a: is a worst-case x and every y is a

worst-case y.

Lemma 6A says that it is never efficient to have a nonempty immediate action region. Lemma 6B

says that it is never efficient to turn control of any remaining bits over to the other partner, if that parmer

will use those bits in a monolog. The proof of Theorem 6 then uses an induction argument to establish

that it is never efficient for one partner to ever turn control of any remaining bits over to the other

parmer, whether or not that partner will engage in a monolog from that point forward. Therefore in any

efficient algorithm all the bits are sent by the instigator—i.e. only a monolog can be efficient for an

additively separable optimal action function, j^ c^^.^, ^^^ f^-^'-'
'^'-' "^^^^ ^° '-'^ "

Let <p{x,y)=x-^y and let n> 1. Any n-bit, X-instigator algorithm—monolog or

dialog—on a generalized rectangle crxX(Tyc£ which has a nonempty
Lemma 6A

immediate acticm region for the instigator's initial action will be outperformed by some «-bit, Y-

instigator monolog whose immediate action region is empty.

Proof Consider an X-instigator, /i-bit algorithm where X's control of the first bit generates a partition

cToU tXi u (T2 = <7x where Gq * 0; i.e. which does have an immediate action region. The error £^ of this

algorithm is at least as large as the error of immediate action eo^ = Ksup cty - '^f cty). This algorithm is

dominated by an equal-error K-instigator one-way algorithm which results in an error no larger than'

(supcy- inferj')/2m<eo^^e''^- (In Figure 9a the two-headed arrow corresponds to the oscillation of

We do not assume that ffy i* convex; at worst the one-way error is that which would be achieved over the convex hull of (ry
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immediate action of the original algorithm. In Figure 9b the shorter two-headed arrows correspond to the

oscillation of the optimal action function over X's information set when Y sends a message.) ©

CTo

Something
happens with

n bits

(a)

CT2'

(b)

Figure 9: (a) An X-instigator n-bit algorithm with a nonempty immediate
action region can be replaced by (b), a lower error y-instigator, n-bit

monolog algorithm which has no immediate action region.

Lemma 6B Let (pix,y) = x + y on E and let n>2. Consider any «-bit. X-instigator algorithm

on (TxxcTy czf' which for some x€<Tx turns control of the second bit over to Y

who then implements an (Ai-l)-bit. monolog algorithm. Then this /x-bit, X-instigator algorithm is

dominated by an n-bit, ^-instigator, monolog algorithm.

Proof From Lemma 6A we know that without loss of generality we can assume that X's control of

the first bit generates a partition cXi u <T2 = fTx- Assume that, in response to some message z € { 1 , 2 } from

X, Y does take control of the second bit and implements an (n-l )-bit monolog on cr, x cry specified by a

partition (cT,y^}y=i k, of ay, where k = 2''~K [Lemma 6A assures us that this {n- l)-bit, K-instigator

algorithm will not have an immediate action region and therefore c7,o =0.] For ye { 1. ...,^}. this Y-

instigator algorithm results in the cell errors

£y = Ksup(T/-inf cr/), (6B.1)

and therefore the error of the original n-bit, X-instigator dialog is bounded below by maxy(e,y}.

Now define an («- l)-bit, K-instigator monolog a by a partition {dy }y=i *, where cry =cr,y for

ye (1 k\. From (6B.1), ey = e,y fory'e {1, ...,k\ so that

£^= maxy {fy} = maxy {£,y} <e^. (6B.2)

This {n - 1 )-bit monolog weakly outperforms the original n-bit dialog; therefore there exists an n-bit

monolog which strictly outperforms the dialog. ©
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Theorem 6 The minimum achievable error for «-bits for ^x,y)=f{x)-^ giy) on £, where /

and g are continuous, can be achieved by a monolog.

Proof I We first prove the proposition for the special case of (p{x,y} = x + y and then generahze via

Theorem 8. Lemma 6B tells us for the case n = 2 that without loss of generality we can assume that any

two-bit algorithm on any generalized rectangle is a monolog. (If a two-bit, X-instigator algorithm were a

dialog, then, for some x, Y would send the second bit. However, we know that such an algorithm would

not be efficient because it is dominated by some two-bit, K-instigator monolog.) Now consider a; = 3 and

let X be the instigator of an efficient algorithm. From Lemma 6A, X's control of the first bit generates a

partition a\ u<T2 = 0"x- We know from our just previous conclusion for n = l that we can assume that the

two-bit algorithm spun-off by each cr,, /e { 1,2}, is a monolog. But then Lemma 6B tells us that these

two two-bit algorithms must also be X-instigator algorithms; otherwise our algorithm would not be

efficient. Therefore we can without loss of generality assume that any efficient three-bit algorithm on

any generahzed rectangle is a monolog. By induction on n we prove our desired result. From theorem 8

we know that the communication problem for (pix, y) =f(x) + g(y) on E is equivalent to the problem

<p(x,y) = x + y on £ =f(Ex)^ giEy). Therefore the efficient algorithm for the general additively separable

optimal action function is a monolog. Q

Monolog can be efficient without additive separability

We have seen an example, viz. <p(x,y) = xy on [0, 1] x [0, 1], in which monolog was insufficient for

efficiency. Theorem 6 tells us that monolog is always sufficient for efficiency for additively separable

optimal action functions. This raises the question of whether additive separability is not only sufficient

but actually necessary for monolog efficiency. We answer this question in the negative by asserting that

a best monolog is efficient for <p(x,y)=xy when we move the domain to [1 , 2] x [1 , 2].

This demonstration requires more development than required for the earlier example of monolog

insufficiency. In that case it was sufficient to exhibit a dialog which outperformed a best monolog; we

did not need to claim that the exhibited dialog was efficient. Now, however, in order to show that there

exists a monolog which is efficient on this new domain we must prove the nonexistence of a better

dialog and therefore we must find a best dialog. Theorem 7 tells us that, for two bits and when the

optimal acticm function is multiplicatively separable, we can greatly restrict our consideration to an

extremely small subset of the great variety of conceivable algorithms. This makes the construction of an

algorithm to find a best dialog practical. Running this algorithm for <p(x,y)=xy on [1,2] x[ 1,2] resulted

in the finding that every candidate for an efficient dialog was dominated by a monolog.

Before stating the theorem we will develop some notation for discussing two-bit, X-instigator

algorithms. X's control of the first bit generates a partition ctq u cxi u cT2 = £'x = [a, ft]. If the algorithm

specifies that when xe<Ti,i€(l,2),X maintains control of the second bit as well, then the panition

<'"i0*^O",iU<T/2 = cr, is generated; i.e. message / leads to a one-bit, X-instigator algorithm on cTixEy. If

instead the algorithm specifies that when xea,, /€ { 1,2}, K takes control of the second bit, then the
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V V K
partition <T,o ucT,i u<T/2 =EY = [c,d] is generated; i.e. message / leads to a one-bit, K-instigator

algorithm on (JiXEy.

Theorem 7
'ine minimum error achievable by an X-instigator algorithm for the optimal

action function (p(x,y)=xy on £clR + ^ can be achieved by an algorithm of the

following form:

The cells cTq. O"!. ^d <^2 ^e convex; aosa; and infcTj <info"2-

© If cr,, /€{ 1,2}, leads to a one-bit, X-instigator algorithm, then its immediate action region is empty,

i.e. cr,o = 0.

(3) If the one-bit instigator for cti is different than for (72, then Y instigates for (Ti and X instigates for

CT2.

Proot I The convexity of Oq and the emptiness of cT/o both follow from the monotonicity of

£i{x} y-Ey). (If j:€ct,o, then we could without loss of generality incorporate the interval [a,x] into ctq)

Consider j€ { 1 . 2} . If cr, leads to Y instigating with the remaining bit, then the error over ai is

e,^=max{e,o^e./.•e^7^},

where

e/o^=iAa,sup<T,o^

e,/=iAa,/ super,.

forye {1,2}, where Aa^supa- inf cr. This error would be unchanged by the convexification of cr,-.

This error would be decreased by shifting a, to the left, because^this would leave Ac, -unchanged and

would decrease super,.

If (J, leads to X instigating again, the error over ai ise,^= max {e,i^,e,2^}. where e,/ = \dAaij,

;6 { 1, 2}. Each e,/ would be unchanged if we convexify and/or translate, either to the right or left, the

cell <T,y. If necessary we can convexify <?, by translating cr,i and (T,2 to the right in order to make them

adjacent and translating a^-i to the left, which weakly decreases the error of this cell. This process also

establishes ®. ©

5. Separability and Monotonicity

We have thus far imposed monotonicity requirements upon the optimal action function q> and the

errors e({x} XfTy) and £(tTxX {y}) on the domain E. Theorem 8 allows us to relax these assumptions in

many cases. Denote the n-bit efficient communication problem for the optimal action function (p over E

by {(p, E). U q> does not satisfy the monotonicity assumptions on E, then we seek to transform (<p, E) into
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an equivalent problem i^,^) where <p satisfies the assumptions on E. The transformed problem would

then be amenable to analysis using the methods we have developed thus far.

Consider an optimal action function (p, represented as separable in/(jc) and g(y), i.e. such that for all

(.v,y)€£,

(fKx,y) = g)(f(x),g(y)\ (D.l)

for some function (p. Defme ^x=f(Ex), £Y = g(EY), and £ = ExX^y- Then/: Ex-^'^, g- Ey^^, and

0:E—*U. The separation in (D.l) can be performed trivially for any <p (e.g. let <p = <p, f(x)=x, and

giy)=y); the challenge is to find a nontrivial decomposition which allows the desired transformation of

the original communication problem. We require that / and g be continuous so that Ex and Ey are

intervals and thus £ is a rectangle.

When we have decomposed the optimal action function k la (D.l) we can conceive of the

communication problem facing X and Y in either of two ways: to communicate their private

information x^Ex and ysEy in the manner we have studied thus far and then to approximate (p(x, y) or

(D to communicate u=f(x)e£x and v = g(j/)€EY and then to approximate <p(u,v). Because the optimal

action function is sensitive only to the images of x and y under/ and g, respectively, these two

communication problems are equivalent. Theorem 8 justifies this intuitive argument that the error of the

communication problem {<p,E) is equal to the error of the problem i<p,£).

Theorem 8 Consider a separable representation of <p as in (D.l). Then the error of any

efficient algorithm R for the communication problem (cp, E) is equal to the error

of any efficient algorithm R for the communication problem i0,E).

Proof An algorithm defines for each partner an operation (which may be null, an action, or the

transmission of a message) to be performed at each time t as a function of that partner's coordinate and

the history h, of communication up until that time. Specifically, it defines a sequence of functions

{a,(.h„x)},=o m forX and [fit(h„y)},=o,...^ for Y such that at any time /, and given the history h,,X

performs the operation a, = ai(h„x) and Y performs the operation b,=P,(h„y).

We construct the sequence {di(,h„x)}t=o....jn of operation functions for X for the algorithm R from the

original sequence for /? in the following way. For each ue^x> arbitrarily choose some element of its

inverse image,'

M") = typrV«)- (8.2)

For each t, each u e £x> and each h,, set

d,{h„u) = a,{h„n{uy). (8.3)

The function name typ might be inteqneted as "typical" or '1[ake] y(oiirl p[ick]." We use it because other techniques, e.g. taking the

infunum or the minimum, can fail. (The infunum may not belong to the set; the minimum may not exist.) It is, of course, crucial that

typ truly be a function, i.e. uniquely defined. The only other important property of typ 5, for S*0, is that typ5€5.
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Similarly, for each ve^y, let

7(v) = typ^''(v). (8.4)

For each t, each vG^y, and each h,, set

0,(h„v)=P,(h„r(v)). (8.5)

Denote the action resulting from R for {x,y)eE by Y(x,y), which results in an enoT£(x,y). Denote the

action resulting from A for («, v)e^ by y/(u,v), which results in the error e(w,v). The sets of achieved

errors under R and R, respectively, are

^ = {e(x,y):{x,y)€E}, (8.6)

!={£(«. v):(a.v)e^}. (8.7)

From (8.3) and (8.5) we see that X and Y will behave at iu,v)€£ under algorithm R exactly as they

would have at (//(«), y(v))e£ under algorithm R. In particular,

\l^(u,v) = y/(M(u\y(v)), (8.8)

and therefore

£(«,v)=£(//(M),y(v)). (8.9)

Because iu(u)eEx and yivyeEy, we see that for all (a, v)e^,e(M,v)€i^, therefore i <z^. and therefore

supl < supi^. Therefore the error R is weakly less than the error of R. However, the error of R cannot be

strictly less than that of R because R is efficient. (Otherwise the algorithm R onE defmed by

a(h„x) = d,(h,J(x)), (8.10)

0(h„y)=0,(ih„g(y)), (8.11)

would then have an error i=i<e.) Therefore the error of ^ is equal to the error of ^. ©

In Figure 10 we graph the optimal action function <p{x,y) = s'\n 4;rx + sin 4;r>' on [0, 1] x [0. 1], which

obviously violates our monotonicity assumptions. Letting f(,x) = s\n 4;:x, g(y) = s\r\ 4;iy, and

(p(u,v) = u + v, we can then write 9) in the separable form (D.l). Therefore we need to solve the problem

of <^«,v) = u + v on^=/([0,l])x^([0, 1]) = [-1, l]x[-l, 1]. We know from Theorem 6 that monolog is

sufficient for efficiency and that we should have an empty immediate action interval. The problem is

symmetrical in x and y; we use (5.1) to calculate the efficient error to be (b-a)/2m= l/m and the cell

boundaries to be u* = 2k/m -\,k€M.

The proof of Theorem 8 [see (8.3)] tells us that we find the partition of E for the original problem

from the partition of £ by finding the inverse image of each ceU d,, i.e.

(T,=rkdi) = -l-sin-i(d,),
4^ (D.2)
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for ieM, where by sin"' we mean the inverse image and not just the principal value. Figure 1 1 shows

the one-bit case for simplicity. The vertical u axis on the right-hand side shows the convex partition a of

^. The two cells of the partition a for the nonmonotonic optimal action <p each consists of the union of

two disjoint intervals, each of which has the same image under /.

(p(,x. y) = sin 4;rx+ sin 4;ry

Figure 10: A nonmonotonic but separable function can still be studied.

Similarly, we can study with the techniques we have already developed many multiplicatively

separable problems—i.e. where the optimal action function is of the form <p(x, y) =f(x)g(y)—even when

this (p does not itself satisfy the monotonicity assumptions, because 0(u, v) = av does satisfy those

requirements on any rectangle £ as long as neither ^x nor Ey contain zero as an interior point. (Note that

the error of immediate action at u is e({«} x&Y) = \u\AaY> which is not monotonic in u over any Ex

which contains zero in its interior.)

6. Concluding Remarks

We have presented a model of bounded rationality resulting from costly communication in a two-

member team context in which the mechanism designer confronted the tradeoff between increased

expenditure of resources for communication and increased accuracy of the solution. Our measure of

communication emphasized that communication is costly because it is time consuming.

We completely solved the efficient monolog problem for a large class of optimal action functions

which satisfied either monotonicity or separability assumptions. This solution included the

determination—for any given length of communication—of the optimal instigator, the cell boundaries of

the partition, the action decision rules, and the resulting error. Having computed the error as a function

of communication length, we have thus characterized the tradeoff between the accuracy and cost of

communication. We have shown that there exist optimal action functions such that for some realizations
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of the private infonnation there will be no communication, even though the right to communicate has

already been paid for. The explanation is that remaining sUent in optimally chosen, predefined situations

sufficiently increases the informativeness of communication in the other cases that this more than

compensates for the error of the no-communication actions. We also saw that the identity of the optimal

instigator could depend on the size of the communication budget.

1/>S.(T2=r(<T2)

Figure 1 1 : The cell boundaries for the original problem are found

from the boundaries of the transformed problem.

We have paid particular attention to the question of whether efficiency requires that both members

speak to each other in a dialog rather than that one member engage in a monolog directed to the other.

We exhibited examples showing that the answer to this question could in general go either way. If the

optimal action function is additively separable, however, we showed that one can restrict attention to

monologs without loss of generality. Additive separability corresponds to an independence of the

parmers' private data.

Admittedly, the information structure in our model—a single real number known by each team

member—might seem too austere to realistically pose a significant communication challenge. Our

current work-in-progress includes enriching the present framework by endowing each member with

private knowledge of a point in a multidimensional space. Our research in this direction has already been

informed by both the intuitions and the concrete results of the present work. We have found that

interesting multidimensional problems decompose into separate instances of one-dimensional problems

of the type we have treated here and thus directly require application of techniques we have developed in

this paper.
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We see the present paper as one step in a research program dedicated to explaining features of

organizational structure which are insufficiently understood when the details of the communication

process are ignored.

References

Abelson, Harold [1980] "Lower Bounds on Information Transfer in Distributed Computations," Journal

of the Association for Computing Machinery 27 2 (April): 384-392.

Arrow, Kenneth J. [1974] "Limited Knowledge and Economic Analysis," American Economic Review

64 1 (March): 1-10.

Arrow, Kenneth J. and Leonid Hurwicz [1977] "An Optimality Criterion for Decision-making Under

Ignorance," in Studies in Resource Allocation Processes, eds. Kenneth J. Arrow and Leonid

Hurwicz, Cambridge University Press, pp. 463-471.

Dow, James [1991] "Search Decisions with Limited Memory," Review of Economic Studies 5S 1

(January): 1-14.

Dr^ze, Jacques H. and D. de la Valine Poussin [1971] "A Tatonnement Process for Public Goods,"

Review of Economic Studies 38: 133-150.

Green, Jerry R. and Jean-Jacques M. Laffont [1987] "Limited Communication and Incentive

Compatibility," in Information, Incentives, and Economic Mechanisms: Essays in Honor of

Leonid Hurwicz, eds. Theodore Groves, Roy Radner and Stanley Reiter, University of Minnesota

Press, pp. 308-329.

Groves, Theodore and John 0. Ledyard [1977] "Optimal Allocation of Public Goods: A Solution to the

Free Rider Problem," Econometrica 45: 783-809.

Hurwicz, Leonid [1960] "Optimality and Informational Efficiency in Resource Allocation Processes," in

Mathematical Methods in the Social Sciences, 1959: Proceedings of the First Stanford

Symposium, eds. Kenneth J. Arrow, Samuel Karlin and Patrick Suppes, Stanford University Press,

pp. 27^6 (Chapter 3).

Jordan, James S. [1982] 'The Competitive Mechanism is Dimensionally Efficient Uniquely," Journal of

Economic Theory 1% 1 (October): 1-18.

Karp, Richard and Antony Ng [forthcoming] Concrete Complexity.

Kofman, Fred and James D. Ratliff [1991a] "Monolog vs. Dialog in Costly Bilateral Communication,"

Interdisciplinary Group on Coordination Theory Working Paper Series, University of California at

Berkeley.

Kofman, Fred and James D. Ratliff [1991b] "A Comment on 'Search Decisions with Limited Memory':

Waiving the Right to Comparison Shop," mimeo.

Malinvaud, Edmond [1971] "A Planning Approach to the Public Goods Problem," Swedish Journal of

Economics ly. 96-112.

Marschak, Jacob and Roy Radner [1972] Economic Theory of Teams, Yale University Press.



Johnny Carson vs. the Smothers Brothers February 27. 1991

Fred Kofman and Jim Ratlifl Page 32

McAfee, R. Preston and John McMillan [1988] "Search Mechanisms," Journal of Economic Theory 44:

99-123.

Melumad, Nahum, Dilip Mookherjee and Stefan Reichelstein [1989] "Hierarchical Decentralization of

Incentive Contracts," Graduate School of Business, Stanford University, mimeo.

Mount, Kenneth R. and Stanley Reiter [1974] 'The Informational Size of Message Spaces," Journal of

Economic Theory %: 161-192.

Oniki, Hajime [1986] "The Cost of Communication in Economic Organization: II," in Uncertainty,

Information, and Communication, eds. Walter P. Heller, Ross M. Starr and David A. Starrett,

Cambridge University Press, pp. 191-212.

Osana, Hiroaki [1978] "On the Informational Size of Message Spaces for Resource Allocation

Processes," Journal of Economic Theory 17: 66-78.

Tirole, Jean [1988] The Theory of Industrial Organization, The MIT Press.

Walker, Mark [1977] "On the Informational Size of Message Spaces," Journal of Economic Theory 15:

366-375.

Yao, Andrew Chi-Chih [1979] "Some Complexity Questions Related to Distributive Computing,"

Proceedings of the Eleventh Annual Association of Computing Machinery Symposium on Theory

of Computing: 209-213.

H b 6 2 1-5 7



^'(^



Date Due

0€C 1« wyi

NOV. 8 1995

Lib-26-67



Mil LIBRARIES

3 TQflO DDbbSObb M




