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Abstract

The capacitated lot size problem (CLSP) concerns the attempt to

schedule in detail while taking aggregate resource constraints into con-

sideration. Aggregate resource management under conditions of seasonal

demand has been researched extensively, as has the uncapacitated lot size

problem under various assumptions of stationarity, costs, and problem

size. However, the existence of a fixed charge (the set-up cost) has

precluded the determination of optimal solutions for combined problems.

The objective of this paper is to consider the CLSP for fixed

resources, and to expand upon the lower bounding technique first suggested

by Fisher (19) for the optimal solution to the CLSP. It will be seen that

the bounding function is continuous and concave, a promising structure for

analytical determination of the strongest bound and for good solutions to

the CLSP.
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Introduction

Over the past few decades, the use of mathematical models to solve

complex resource allocation problems has become common. Progress over

the years has focused both upon the application of new analytical

techniques and upon exploiting the structure of a particular problem to

obtain superior numerical results. It is the latter which concerns us

here.

The capacitated lot size problem (CLSP) concerns the attempt to

schedule in detail while taking aggregate resource constraints into

consideration. Aggregate resource management under changing demand has

been researched thoroughly (1) (12) (14) (16) (26) (27) as has the

uncapacitated lot size problem under various assumptions of stationarity

,

costs and problem size (2) (5) (13) (18) (22) (24) (28). However, the

existence of a fixed charge has precluded effective solution of the

combined problem. Strictly heuristic procedures (21) and strong approxi-

mations (8) now exist. However, the degree of their success is dependent

upon the problem configuration.

The objective of this paper is to expand upon the lower bounding

technique for the CLSP first suggested by Fisher (19). It will be seen

that the bounding function is continuous and concave, a promising

structure for analytical determination of the strongest bound and

for good solutions to the CLSP.





The plan of this paper is as follows. First, a formulation of the

CLSP is defined. Then, a related problem structure is reviewed and dis-

cussed — the capacitated network. The network approach is used to

derive the form of a lower bounding function. Discussion of some empirical

results and some extensions to the lower bounding procedure complete the

presentation. A companion method for establishing upper bounds is suggested

in Appendix B, using methods described in Appendix C.

Statement of the Problem

Consider a production facility with limited fixed resources, with a

requirement to produce I different products over a horizon of T periods.

The demand for each product is known with certainty and demand must be

satisfied in the period it occurs. Backorders are not permitted. There

is a fixed setup charge incurred when a resource is changed over to dif-

ferent product. The setup charges are independent of subsequent levels of

production and of the prior production configuration of the facility.

Also, a loss in productive time ("down-time") is incurred during product

changeover.

Variable production and holding costs are linear and stationary

within products, though they will vary among products. The cost function

is thus concave, consisting of the fixed charge and the linear production

and holding costs.

The objective is to minimize the total setup, production, and holding

costs subject to the demand and capacity constraints.





Mathematically, the problem is stated:

1.0 Min Z E [S 6(P_) + V.P.^ + h.I. 1

. ^ i it 1 It 1 It

Subject to:

^t-1 It It It
^ ^ 1,...,T

1.2 ^Lr"^, <5(P. ) + r^, P.J < R k=l,...,K
ik It ik It — kt <- - 1 T1 t— ±,...,1

1.3 P,^, l.^>_

1.4 <s(p.^) = ^

^0 if p. =
It

1 if P. >
It

where;

P = production of product i in period t.

I. = inventory level of product i at the end of period t.

6(P. ) = variable assigning setup cost for product i to period t

when P^ > 0.

V. = per unit production cost for product i.

h. = per period unit holding cost for product i.





S = setup cost for product 1.

d = demand for product i in period t.

r., = capacity absorption for one setup of product i on resource k.

p
r,, = per unit capacity absorption of product i on resource k.

IL = the level of resource k available in period t.

K = the number of resources.

T = the number of periods (horizon).

I = the number of products.

This problem will be referred to as Problem One.

There are two characteristics of the problem which will be expanded

upon. First, if no down-time occurs during product changeover, i.e.,

r.. = 0, the constraints form a convex polyhedron. Since the objective

function is concave, the optimal solution will occur at one or more of

the extreme points of the polyhedron. This problem structure is called

"the fixed charge problem" (FCP) and a review of this subject is contained

in Appendix C.

Second, and of direct interest here, is that constraints (1.1) form a

single source, single sink transhipment network, a structure that has been

exploited by Wagner and Whitin (WW) (28) and Zangwill (32) for solving the

unconstrained lot size problem. This structure will be exploited later in

calculating lower bounds for the CLSP.





The CLSP as a Network Problem

Those familiar with the dynamic lot size problem will have recognized

that constraints (1.1) plus objective function 1.0 form a single-source,

single-sink transhipment network which may be solved by dynamic programming

in the efficient manner suggested by Wagner and Whitin (WW) and extended

upon by Zangwill (32).

The Fundamental Postulate of WW reduces the search space of extreme

points considerably: "There exists an optimal program such that in any

period t the facility need not produce and enter the period with previous

periods' production." (28)

Proof of the Fundamental Postulate : (28) Suppose an optimal program

suggests both to produce in period t and to bring inventory into the period.

Then it is no more costly to reschedule the production of that inventory by

including it in the production for that period, for the alteration does not

incur any additional setup cost and does save the holding cost h.I .

The network interpretation of the Postulate would read: "Specifically,

an optimal flow belongs to a class of flows known as extreme flows. Extreme

flows relate to the extreme points of the polyhedral region described by

constraints (1.1). That is, a node can receive material from at most one

other node." (32)

A shipping pattern which minimizes total shipping cost.





Referring to Figure 1, It can be seen that "material" can come from

the previous transhipment node (Inventory) or from the single source

(production). The last period forms the single sink.

In applying constraints (1.2), the lot size model is altered con-

siderably, forming a capacity constrained network.
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An Approximate Solution to the CLSP

We should mention before continuing the most successful large-scale

approximation of the problem to date. Expanding the work of Manne (19)

and Dzielinski, Baker, and Manne (7), Dzlelinskl and Gomory (8) have solved

very large versions of Problem One for general resource constraints in

various configurations of up to 10 periods, 900 products, and 2 resources.

The formulation is an approximation, but a very good one if the product of

the number of resources and time periods (KT) is much less than the number

of items (I). However, if KT is approximately equal to I, the formulation

gives indeterminate answers. It is this weakness of the Dzielinski and

Gomory model which has motivated this paper.

Dzielinski and Gomory 's major contribution was the adoption of decom-

position linear programming and sequential column generation to reduce the

effective problem size. Of particular Interest here is their method of

selecting columns for entry into the basis. Using artificial costing based

on the duals for the current basis, columns were generated as needed so that

only promising columns were included in the formulation. The WW algorithm

for non-stationary costs was the vehicle for column generation. It will be

seen that the lower bounding technique employs a markedly similar approach.

We now turn to the subject of optimality and lower bounding.
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Optimal Solution of Resource Constrained Network Scheduling Problems

Fisher (9) in his thesis (of the above title) applied his techniques

to the job shop scheduling environment. The objective was to determine a

set of start times which minimized some function of task completion times.

In solving the general resource constrained job shop problem, he determined

a family of lower bounds on the optimal objective value.

Of interest to us here is his extension (not proved in his thesis) of

the lower bounding technique to the capacitated lot size problem.

Lower Bounds for the CLSP

Fisher determines his lower bounds with a subproblem formed by placing

the resource constraints in the objective function. By applying artificial

costs (Lagrange multipliers) to the newly formed subproblem and solving the

resulting problem for unlimited resources, a family of lower bounds is pro-

duced.

Define Problem A:

3.0 Minimize: f(x) = C x + D 6.(x)

3.1 Subject to: Ax = b^

3.2 A22L + l'S(x) < b^

3.3 X >

3.4 6(x) =
fO if X =

1 if X >
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Define Problem B:

4.0 Minimize: g(x,TT) = C x + D6(x) + tt (A^ x + l^ (i) " ^2)

4.1 Subject to: A.x = b^

4.2 X >^

4.3 6(x) 4° ''- = '

ll if X >

Theorem 1 : For all TT >^ 0, any optimal solution to Problem B represents a

lower bound on all feasible solutions to Problem A.

Proof ; Define x' as any feasible solution to Problem A.

Define x* = x*(tt) as the optimal solution to Problem B for any it _> 0.

Fact: If x' is feasible in A, it is also feasible in B.

Therefore,

g(x*,TT) ^g(x',u) = Cx' +D6(x') + TT (A^x' - B6(x') - b^)

But JL ^ and x' feasible in Problem A imply

g(x',-ff) _< Cx' + D5(x') = f(x')

or, in summary,

g(x*,TT) < f(x')

QED





13

Lower Bounding the CLSP

Adapting Fisher's general formulation to our Problem One, we represent

the uncapacitated lot size problem as A^ x = b,, and the fixed capacity

constraints as A2X + b6(x) = b2.

Problem A:

1.0 Minimize Z = T. I [S^S(?^^) + V±P^^ + \^±t^
i t

Subject to:

Ii,t-1 + Pit - ^it =
'^it ^ = }'--"I

1.1 t = 1,...,T

6

1.2 i ^^ ^'- "" ^^ "^ t = 1,...,TI [^^ik^^^it^
-^ ^Ik^ltl 1 \t k=l ,...,K

1.3
'it' lit^o

if P.^ =

1.4 6(P. ) =
'

"1 if P^^ >

Problem B:

5.0 Minimize: Z^(7T) = E E[(S, + E7T_ r?, )5 (P_)
B ,

^ i , kt ik itit k

k
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5.1 Subject to;

I. ,+P.^-I.,=d.^ i=l,...,I
i,t-l It It It

t - 1 T

5.2

3.3

The perceptive reader will have noted that the existence of non-zero

components for tt^ will impose a nonstationary cost structure upon the WW

model. However, as stated by Wagner, the algorithm still holds for non-

stationary costs (34)

.

Fundamental Postulate (adjusted) : "There exists an optimal program such

that in any period t the facility need not produce and enter the period

with previous periods' production if the marginal cost curves are not

necessarily identical in all periods. Non-negative (non-identical) setup

costs may be included."

This result allows the use of the efficient WW algorithm for the

solution to Problem B.

Since Problem B is a multi-product WW lot size model, the optimal

solution Z*(7t) to B for given tt will be the sum of the individual WW
B —

solutions less it^^I
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Z*(2) = Z Z* (tt) - ]L\^
1=1 1

where:

T

Z* (tt) = Min Z [(S,+ Z^, r^, )5(P.^) + (V.+ ZiT, r^, ) P.^ + h.I. J
B_, — „ ^ ^ ' i , kt ik It 1 , kt ik^ it i it'
1 P.^.I^^ t=l k k

1 = 1,...,I

Subject to: I. ^ , + P.^ - I. = d^^ t = 1,...,T^ i.t-1 It It it

P.^,1.^ >
It It —

if P. =

^(^t> =

:

'1 if P.^ >
It

The challenge remains to determine the "best" TT-vector that produces

the strongest lower bound, i.e., to find

Z*(tt*) = MAX Z*(7t)
B B —

Limited empirical experience suggests that strong lower bounds can be

achieved by applying arbitrary values for v_. But a more powerful result

is now derived.
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The Concavity and Continuity of Z*(Tr)
B

Since we wish to determine max Z*(Tr), the concavity and continuity of
B

Z*(''T) is of interest.
B

Theorem 2: Define f(x,TT) as a concave function of tt for all x and let the

function Z*('t) be defined by

Z*(7T) = min f(x,fT)
B

Ax=b

x^O

min I [(S.+ ^v4)«(Pi,) + (Vi+ Jv4)Pi, + W,^ -Ihj
Ax=b It k k

x>0

Then Z*CiT) is concave and continuous for all
J^.B

Proof ; Let tt = air + (1 - a) tt^, ^ ct ^ 1

Since f(x,fT) > af(x,7T^) + (1 - a) f(x,iT2)

for all X, clearly

Z*(fT) = Min f(x,TT) > Min [afCx,"^^) + (1 - a)t{yi,-^^)

Ax=b Ax=b
x>0 x>0

> Min f(x,TT^) + Min (1 - ot) fCx.fT^)

Ax=b Ax=b
x>0 x>0

= az*(TT^) + (1 - a) Z*(^2)





17

where the last inequality follows from obvious properties of the minimization

operator.

Clearly, f(x,TT) as defined in the hypothesis satisfies the concavity

statement. Therefore, Z*(tt) is concave for all "^ and thus It is also con-

tinuous for all tt.

QED

Implications of the Concavity and Continuity of ZgCfT)
D

Since Z*('T) is concave and continuous in all tt, it can be inferred
o

that algorithmic procedures for determining '^* such that Z*CT*)

max Z*('^) are possible. In view of the greatly reduced search space

presented by the multi-item WW model and the relatively few components of

IT, i.e. KT, search procedures for (at least) modest problems should be

practicable. Further, the piecewise linearity of Z*^^) encourages the use

of hill-climbing or gradient methods. (See Wilde and Beightler [31]).

Empirical Results on the Lower Bound (Problem B)

Limited experience exists on the behavior of Problem B. An inter-

active code in PLl was the vehicle for experimentation. The piecewise

linear concavity of Z*C^) was observed and the application of arbitrary

^-vectors to determine a strong lower bound was successful.

Appendix A contains the results for a four-product, five-period,

single resource problem. To clarify the results, here is a summary of

the bounding procedure.
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1. The unconstrained WW I-item solution was obtained with

IT = providing an absolute lower bound to Problem A

(Problem One) of $1930.00.

2. The result is infeasible in Problem A in periods 1 and 4.

Problem B was then resolved using a ir-vector of tt =

(3, 0, 0, .6, 0) which applied penalty costs of $3.00 and

$ .60 respectively to capacity used in periods 1 and 4.

The value of Z*(it) increases to $2024.60. This sum repre-

sents a lower bound for the optimum solution to Problem A.

Note that the purpose of Problem B is to provide a lower bound on

the value of Problem A. However, it can happen that the production plan

suggested in Problem B for JI ^ is also feasible in Problem A. Such

was the case with tt = (3, 0, 0, .6, 0). The feasible allocation evaluation

in Problem A became $2090.00 providing an upper bound on the optimum

solution.

*

* The best solution value found was $2045.00. Since this is a pure

strategy there might exist a TT-vector which would produce it in Problem B.

The vector was not found.
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Extensions to the Lower Bounding Technique

The lower bounding technique may be extended to evaluate arbltrarv

configurations of the production system. Suppose It wer'^ specified that

production must occur in certain periods not considered in the optimal

unconstrained WW solution to Problem B. The absolute lower bound would

Increase, and the maximum lower bound Z*(7r*) would reflect a value with
B ~~

respect to the configuration specified.

An example is provided in Appendix A, pp. 29 and 30 • Note that

non-zero production has been specified for product 1 for every period.

The absolute lower bound (at 'T= 0) has increased to $2215.00 from

$1930.00 and, after application of 't = (3, 0, 0, .6, 0), the lower

bound becomes $2289.00.

The purpose of this discussion becomes clearer if we assume that

the configuration in the example was defined during an implicit search

algorithm. Since we already have an upper bound of $2090.00, there

would be no need to continue exploring this branch of the tree.*

We cannot assure the generation of an upper bound through Problem

B. For efficient branching, good feasible solutions (upper bounds)

must be found. A simple but general method is suggested in Appendix B,

using the fixed charge heuristics discussed in Appendix C.

* The best solution of $2045.00 with a lower bound of $2043.20 was gen-

erated in this manner.
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Summary and Conclusions

A method for determining strong lower bounds for the optimal

objective function of the capacitated lot size problem has been

studied. The bounding function was found to be concave and continuous,

suggesting algorithmic procedures for determining the strongest

bound are possible.

The bounding procedure may be useful for implicit search algorithms

since lower bounds may be established for each node. A companion method

of determining upper bounds enhances the future of implicit search

for the CLSP. (See Appendix B.)

Finally, if approximate solution procedures to the CLSP are

employed, the available lower bound will provide a measure of

optimality. In the past, this measure has not been explicitly available.
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APPENDIX A

Sample Problem

Consider the four-product, five-period problem configuration with

one fixed resource. The cost structure among products is identical,

as are the demand profiles. The differentiation among products occurs

only in the demand rate, which is 1: 2: 3: 4.

Setup Cost - S. = $130 per setup 1=1, .. ., 4

Variable cost - V. = per unit

Setup Capacity - r. = 1 per setup
Absorption

Variable cap.

Absorption
- r. = 1 per unit

Holding Cost - h. = 3 per unit per period

Capacity
constraint - R^ = 140 L~~Xj •••} -J

DEMAND:





SOLUTION TO PROBLEM B WITH tt =

26

PERIOD

1. Setups

PRODUCT





SOLUTION TO PROBLEM B WITH u = (3, 0,0,. 6,0)

27

PERIOD

1. Setups

2. Unit

Production

Capacity

PRODUCT





THE BEST SOLUTION TO PROBLEM A (found by Specifying (^42^ " ^

And Applying XT = (0,0,0, .6 ,0) )

.

28

1. Setups

2. Unit

Production

3. Capacity

Absorption

PRODUCT

1

2

3

4

1

2

3

4

1

2

Period

2 3

1

1

1

1 1

1

1

1 1

1

15

30

45

40 60

35

70

30 75

60

1

40

3

4





THE AFFECTS OF FIXED CONFIGURATION ON PROBLEM B

(a) P > for t = 1,. . .T

(b) n-=

29

PERIOD

1. Setups

2. Unit

Production

3. Capacity

Usage

Product



J



THE EFFECTS OF FIXED CONFIGURATION ON PROBLEM B (Con'td)

(a) Pj^j. > , t = 1, .... T

(b) TT = (3, 0, 0, .6, 0)

30
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APPENDIX B

Upper Bounding the CLSP

The heuristic solution procedures for the fixed charge problem described

in Appendix C might be used to generate upper bounds for the CLSP. Change

constraints (1.2) to (1.2'):

1 1 t=l, . . .
,T

A convex polyhedron is now formed by (1.1), (1.2') and P.j.> I-^ > 0-

This new problem (Problem One-A) is more tightly constrained than Problem

One so that any feasible solution to (1.0), (1.1), (1.2'), (1.3), (l.A)

will be feasible in Problem One. If ^r., is small compared to R^ and if

i

the heuristic techniques of restricted basis entry simplex method and

directed search are applied, a strong upper bound may result. Note that in

the sample problem, the best solution of $2045.00 is feasible in Problem

One-A, indicating the potential of the bounding procedure for producing

tight upper bounds. More specifically, the capacity constraints are re-

duced by Zr = 4, from 140 to 136. The capacity requirements (less set-ups)

i

for the $2045.00 solution do not exceed 136. They are 130, 60, 134, 135,

and 40.

A good upper bound may not be determined, or even feasible, if ^^^y^^ is

large compared to R , i.e., when the expression [R^ - ^^^^] is significantly

less than h.r



I

I
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APPENDIX C

The Fixed Charge Problem (FCP)

If r., = for all 1 and k, the CLSP is transformed into a general
ik °

form known as the fixed charge problem.

Consider the problem:

2.0 minimize Ck + D5 (x)

Subject to:

2.1 Ax = ^

2.2 x 1
Co if X =

2.3 6_(x) =
]

(^1 if X = 1

The extreme point theorem allows us to consider only the extreme

points of Ax = b , X >_ in searching for the optimal solution.

Theorem 3 : Let X be a closed convex set which is bounded from above.

If the absolute minimum of the concave function f(x) over X is finite,

the absolute minimum will be taken at one or more of the extreme points

of X.

Proof ; (only for Convex Polyhedra. See Hadley (11) for the General Proof.)

Suppose this were not the case, then assume x* is the optimal solution

and X* is not an extreme point of Ax = b, x >_ 0. Then there exist extreme

points X,, x„ , ... x such that12 n

f(x ) > f(x*) for all i and





33

X* = lax. a^ >^ 0, T.OU = 1

i i

Therefore, by the concavity of f.

f(x*) = f( Za.x.) > Ea f(x.) > f(x*)
i 1 1 -

. i i

A contradiction. Therefore the theorem holds.

Though the global tninimum occurs at an extreme point, relative

minima exist, also at extreme points. Thus it is not possible to

use a computational technique of the simplex type (based upon moving

from one extreme point to an adjacent one), which terminates when a relative

minimum is found. If there is a fixed cost for each variable, everv

extreme point b a relative minimum (11). Since Problem One has a fixed

charge for every second variable, frequent local optima may be expected.

Optimal Solution Procedures for the FCP

There are four procedures suggested - all theoretically optimal

but, to varying degrees, computationally disappointing.

1. Total Enumeration of the extreme points. Obviously, for

problems of any size, total enumeration is out of the question. The

number of extreme points increases combinatorially with m and n.

2. Mixed integer-continuous variable formulation . Hadley (11)

presents Gomory's mixed integer formu]d:ion of the FCP. Unfortunately,

computational experience has been disappointing, even for fairly small

problems

.
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3. Implicit enumeration (Branch and Bound) . Steinberg (25) has suc-

cessfully applied implicit enumeration to the FCP. However, his method is

also limited to problems of modest size. If extrapolations are valid, the

20small sample problem in Appendix A would require the evaluation of 2 nodes.

4. Search by Ranking Extreme Points . Murty (20) solves the FCP by

ranking the basic feasible solutions of Ax = b, x 2. in ascending order of

the value of Cx. The applicable fixed charges for the solution are then

added less a known minimum fixed charge for any feasible solution, thus

specifying an upper bound. This procedure is the most promising of the

four, but unfortunately determining the "known minimum value" of the fixed

charges for the CLSP is as involved as solving the original problem.

Heuristic Solutions to the Fixed Charge Problem

Heuristic techniques for the FCP exploit the extreme point theorem.

We have discussed the limitations of Simplex-like solution procedures, and

in an effort to overcome the effect of local minima, the heuristic techniques

combine restricted basis entry Simplex methods with directed search.

The heuristics of Denzler (6), Steinberg (25), Cooper and Drebes (3),

and Cooper and Olsen (4) are markedly similar. Relative minima are found

which are then "perturbed" seeking other (better) relative optima until the

procedure is terminated at the best current solution.

The "perturbations" are of two kinds - those which search sequentially

outward to adjacent extreme points, and those which "jump" away from the

current extreme point. The purpose is to "trickle down" to better local

minima. A combination of the two procedures is usually employed, a "jump"

occurring when local search has failed to improve the current solution.
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Termination occurs when an improved solution is not found after a

specified number of consecutive perturbations. No bounding procedures

are employed to indicate the degree of non-optimality (if any) of the

final solution.

Inapplicability of the FCP to the CLSP

We can relate the FCP to the CLSP on the assumption that the capacity

absorption of the setups was zero (equivalent to overnight setups). Un-

fortunately, if the setups absorb capacity, the constraints no longer form

a convex set and the solution procedures for the FCP no longer apply.

However, the above heuristics are those suggested in Appendix B as possible

tools to determine good upper bounds for the general CLSP.
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