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ABSTRACT

This paper considers the possible limit laws for a sequence of

normalized extreme order statistics (maximum, second maximum, etc.)

from a stationary strong-mixing sequence of random variables. It

extends the work of Loynes who treated only the maximum process.

The maximum process leads to limit laws that are the same three

types that occur when the underlying process is a sequence of inde-

pendent random variables. The results presented here show that the

possible limit laws for the k-th maximum process (k>l) from a strong-

mixing sequence form a larger class than can occur in the independent

case.

537448





3aCi-iY OS I

MOS Classification Numbers (1970):

Primary 62E20

Secondary 62G30

Key Words: order statistics, mixing processes, asymptotic distributions,

reliability.





1. Introduction . The limiting distributions of the extreme order

statistics from a sequence of independent, identically distributed

random variables have been exhaustively analyzed by Gnedenko [2] and

Smlrnov [8] . Many authors have generalized these results for the

maximum term by relaxing the independence assumption in various ways,

e.g. Loynes [5] showed that the only possible limit laws for the

maximum term in a stationary strong-mixing seauence of random variables

are the same three types that occur in the independent case.

This paper extends the work of Loynes by considering the possible

limit laws of order statistics of fixed rank other than the maximum.

It is shown that these limit laws form a larger class than can occur

in the independent case.

These results were motivated in part by a specific model from

reliability theory. Consider a system of n identical components in

parallel such that the lifetime of a component is dependent in a

certain way (e.g. a mixing condition) on the lifetimes of its nearest

neighbors. In effect we expect that if a particular component fails

(say because of excess heat) its nearest neighbors are highly likely

to be the next components to fail. We also assumed the system would

continue to operate if only one component failed but the sustem itself

would fail if two or more component failures occurred. The lifetime of

the system is then represented by the (n-l)9t order statistic of the

sequence X, ,X^,...,X of component lifetimes where the X, are identically
1 / n 1





5.

distributed and satisfy a specified dependence relation. In our notation

the n-th order statistic is the minimum. Since most of the literature

discusses maximia rather than minima we will deal with the maximum and

second maximum. A simple transformation converts our results to ones

for minima.
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2. Notation and Preliminary Results . If <X :n >_ 1^ is a strictly

stationary sequence of random variables with common distribution function

F(x) = P{X <_ x}, the associated independent process of the process

<X : n > l"^ will be any sequence of mutually independent identically
n — '

distributed random variables <X : n > 1^ with P{X < x} = F(x) for all
^ n — ' n —

X. Define the order statistics Y by

i largest among (X ,X , ...,X ) ^ 1^

and let Y, denote the order statistics of the associated independent
i ,n

process. We shall limit our discussion to i=l,2 and set M = Y, and
•^ n l,n

S «= Y- . It will be technically convenient to consider the joint law
n / ,n

Let )7\ denote the o-field generated by events of the form

{(X^ ,...,X. ) e E}, where 1 < a < i, < i„ <. . .< i < b and E is an
i- 1 — — Iz m —
1 m

m-dimensional Borel set. Then \X , n >^ 1^ will be called strong-mixing

(cf. [4]) if

(2.1) sup{lP(AB)-P(A)P(B)| : A e >»™, B e y\^^) 1 a(k) + (k--

Loynes [5] referred to (2.1) as uniform mixing.





The following lemma is a direct consequence of the work of

Gnedenko [ 2 ]

.

Lemma _1. If there exists a sequence of constants /a > 0, b :n >^ y

so that P{M <ax+6,S <ay+b} has a limiting distributionn— n nn— n n

H(x,y), with G(x), the limiting distribution of P{M <_ a x + b }

non-degenerate , then

G(y){l + log [G(x)/G(y)]} y < x

H(x,y)

G(x) y >^ X

Proof. Since P{M < a x + b } = F"(a x + b ) ^- G(x) we have by Lemma
n — n n n n

4 of [2] that n(l - F(a x + b )) -^ - log G(x) when G(x) ^ 0.
n n

For X > y

P{M <ax+b,S <£y+b}=F(ay+b)n— n nn— n n n n

+ nF"~''^(£ y + b ) [F(a x + b ) - F(a y + b ) ]
n n n n n n

and the result follows. Gnedenko also proved that G(x) has only three

possible forms (except for scale and location parameters)

,





X) = /

r exp[-(-x)"]
x) = J

X <

] X > 0, a >

X < 0, a >

X >_

-00 < X < °°.

The symbol G(x) will be used to denote one of these types.

Lemma 1 shows that for an independent process there are only three

possible types for the joint law H(x,y). It seems reasonable to

conjecture that in view of Loynes' result for M from a strong-mixing

process (only three possible limit laws) there would only be three

possible types for the joint limit law of M and S when the under-

lying process is strong-mixing. This is not true as the following

simple example demonstrates. Let ^Z :n >^ 1^ be a sequence of independent

identically distributed random variables with distribution function

T(.) and assume that T(') is in the domain of attraction of one of the

three limit laws in (2.2), i.e. there exist constants a , b such that
n n

T"(a X + b ) ^ G(x).
n n

Example 1 . Let X^ = max (Z^, Z ) , n=l,2, ... . Then ^X : n >_ l')

is a stationary strong-mixing sequence, P{M < a x + b } -> G(x) and





P{M <ax + b,S <ay + b}-* H(x,y) wheren— n n n— n n

y < X

y >^ X

Proof . Clearly ^ : n >^ 1^ is a strong-mixing sequence. Now in this

case M = max (X. X ) = max (Z. , . .
.
,Z . . ) . If M = Z, i-2,

n In 1 n+1 n i

(Z ,Z ,J) = M . Therefore
n n+1 n

P{M " S } > (n-l)/n+l and the example follows immediately since
n n —

P{M < a X + b } = T"'''^(a x + b ) * G(x).
n — n n n n

This method of constructing a strong-mixing sequence is due to

Newell [6].

The limit law (2.3) is not of the same form as H(x,y) and we

conclude that by weakening the independence assumption a larger class

of limit laws is possible. In the next section we prove a result which

limits the size of this class.
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3. Possible Limit Laws .

Theorem 1 . Let <X :n >^ 1> be a stationary strong-mixing sequence.

If there exists a sequence of constants /a > 0, b :n > iN so that^ n n — '

^^"n - ^n^
"*"

^n' ^n - ^n^
"^

^n^
^^^ ^ limiting distribution, H(x,y),

with G(x), the limiting distribution of P{M < a x + b } non-deaenerate,
n — n n *

then

rG(y){l -p[(log Q(x))/log G(

\g(x)

r(y)] log G(y)} y < X
H(x,y)

y ^ X

where pCs), £ » <_ 1, l8 a concave, monotone non-increasing function

which satisfies

p(0)(l- s) 1 P(9) 1 1 - s.

G(-) is one of the three types (2.2) and we interpret («>/°°) = 1,

(0/0) - 1, and (0/«) - 0.

Proof. The essential idea (cf. Loynes [5]) is t* brekk up

sets of km random variables (k fixed, m >^ 1) into k blocks of length

m-q separated by blocks of length q. The fact that the blocks of

length m-q are "nearly independent" because of the strong-mixing

property is then used to obtain a functional equation for H(x,y).

For X <^ y the assumptions of the theorem are the same as for Loynes 's

result. Therefore G(') is one of the three types (2.2)-

Given an e > and a fixed positive Integer k>_2, choose q so that

(k+l)(k-l)o(q) < £/2 and define
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M " max X m > q
l<J<n]

M . = max X., -._^. 1 < 1 < k
m,i j^, . (i-l)m+i — —

q+1 <J<m ^ -^

M* = max X,, ,v ,,
""' l<j<q

(i-l)"^J

"n " "'^'^ ^Vl'V2' • • '\*^q+m+-l'\4mf2' • ' ' '^2m'

"•V(k-l)n^l'V(k-l)m+2 \m^ n = km .

The quantities S , S ., S' , S are defined similarly for the^ m m,i m,i n

second maximum. Denote by E . the event {S , < M' }. It is
•^ m,i m,i m,i

shovn in Lemma 2 at the end of this section tha<

lim P{E^ ,} = 0. Furthermore P{E .} = P{E ,}
nt+<x>

»' "''• "-'•

for 2 j« i <^ k. Since q is now fixed we may choose an N so that f

m > N, kP{E -} < e/2(k+3).
m, 1

The first step is to show that

(3.1) llmlP{M <ax+b,S <ay+b}- P^{M < a y + b }
^' n— n nn— n n m— n n

n=km

k[P{M <ax+b,S <ay+b}- P{M < a y + b }]m— n nm— n n m— n n

k-1
P{M < a y + b }j = 0,

m — n-' n ^

or
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For X > y and m > N

(3.2) P{M <ax+b,S <ay+b}n— n nn— n-^ n

P{M < a X + b , S < a y + b } < E P{E J < e/2n— n nn— n n — ^^ m,i — (k+3)

Now

P{M <ax+b,S <ay+bn— n n n— n r

- P{M < a y + b }
n — n n

+ ZP{ay+b <M ,<ax+b,S .<ay+b;
._, n-^ n m,i — n n m,i — n n

M ^<ay + b,l<j<k, jf^i]
m,j - n^ n' - J - »

J

and the strong-mixing property implies that

(3.3) |P{M <ax+b,S <ay+b}- P^{M , < a y + b }
' n— n nn— n-' n m,l— n"' n

- kP{a y+b <M ,<ax+b,S ,<ay+b}
n n m,l — n n m,l — n n

^*'~'^^\,1 - V "^ ^n^l - (^-1>«<'5) + k(k-l)a(q) £ e/2.

Finally we have that

(3.4) P{M -<ax+b,S ,<ay+blm,l— n n m,l— n n

- P{M^ < a^x + b^, S^ < a^y + b^} < P{E^^^} < c/2k(k+3)
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Combining (3.2), (3.3), and (3.4) gives

|P{M <ax + b,S <ay + b}- p'^{M < a y + b }'n— n nn— n^ n m— n n

- k[P{M <ax+b,S <ay+b}-P{M <ay+b}]m— n nm— n n m— n^ n

.P^~-'-{M < a y + b )! < E
m - n-' n '

from which (3.1) follows. In particular, when x = y

(3.5) lim|p{M < a X + b } - P^{M < a x + b }| =0.'n— n n m— n n'

Set a = a /a , b = (b - b )/a , and F (t) = P{M < a t + b }.mnmin ninni m m — m m

We have remarked that F (x) -» G(:t) and from (3.5) it follows that
m

F (a x + b ) -> G"'"'^(k). A theorem of Khintchine ([3], p. 40) statesmm m

1/k
that G (y) and G(y) must be of the same type, i.e., there exist

real-valued constants a > and S, such that G (a, y + B, ) = G(y) and

Let

Q (x,y) = kP^""^{M < a y + b }P{M <ax + b,S <ay + b},
m m— m m m— m mm— m m

Q(x,y) = kG''"-'-(y)H(x,y),

and assume that (x,y) and (ax + 6, , a.y + 6, ) are points of continuity

for H. Equation (3.1) is equivalent to
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lim Q (a X + b , a y + b ) = H(x,y) + (k-l)G(y).
m m m m m

But a standard argument ([3], p. 41) shows that

lim Q (a X + b , a y + b ) = Q(o, x + 6, , a, y + 6, )^m m m' m-' m ^ k k k"^ k

and therefore

(3.6) H(x,y) = G(y) + k[H(a^x + 6^, a^^y + &^) - G(aj^y + H^)]

. G(^-^>/Ny)

when X ^ y.

It is apparent from (2.1) that G(t) is continuous and strictly

increasing for t such that < G(t) < 1. Furthermore

(3.7) G(y) <. H(x,y) and y <_ x

(3.8) H(x2,y) - H(x^,y) < G(X2) - G(xp Yl^il^Z'

From (3.7) we have that H(x,y) = 1 if G(y) = 1 and from (3.6) H(x,y) =

if G(y) = 0. Finally (3.8) implies that H(x,y) = lim H(t,y) if G(x) = 1,

and H(x,y) = if G(x) = 0. Therefore if x >^ y it is possible to

express H(x,y) in the form

H(x,y) - R(-log G(x), - log G(y)) = R(u,v)

Moreover H(x,y) has the same form if x < y, so that we may take
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1

With < u < V < <» equation (3.6) takes the simple form

(3.9) f (u.v) = kf (u/k, v/k) k ^ 1

function so that

lim H(x,y) = H(x',y')
x+x' ,y+y'

and since G(') is monotone increasing except when G(') = or 1 we have

(3.10) lim R(u/r, v/r) = R(u/r', v/r') < u < v

r4-r'>0

Using (3.9) it is easy to show that f(u,v) = rf(u/r, v/r) for all

rational r > 0. Then- (3.10) implies that f(u,v) = zf(u/z, v/z) for

all real z > 0. Now let z = v > so that

f(u,v) - vf(u/v, 1) ^ vp(u/v)

It is clear that p(l) * and from (3.8) we obtain

-s +1 -s +1
(3.12) < p(s^) - p(8,) < e ^ " e

"
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where s. - -log G(x^), s„ - -log G(x ) and log G(y) - -1. Therefore

p(«) is continuous and monotone decreasing on [0,1] and p(') >_ 0.

In order to show that p(0 is concave we will use the following

lemma whose proof may be found in [7].

Lemma . Let r, s, Ar, As be any such numbers as < r < s, Ar = er

and As - es (e > 0) , or r = s = and < Ar < As. Then

, . ii)(s+As) - 4»(s) ^ i|/(r+Ar) - 4'(r)
^ -^ As - Ar

is necessary and sufficient for the continuous bounded function

i|/(') to be concave in [O,").
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For convenience in applying this letnma we extend the domain of

definition of p(') by letting p(s) =0 for 1 _^ s < =».

Since H(x,y) is a distribution function

with X2 ^ x^, y^ 2. y^- When x^ > x^, y^ i. Vj^. < G(x^) < 1,

G(y 2) rp(s^) - p(s2)"| P(r^) - p(r2)

? [
^1-^2

J
- ^1- ^2

with r^ = (log G(x^))/log G(y^) and s^ = (log G(x^))/log G(y2),

i - 1.2.

If we set e = (s -s )/s =
^'^l~^2^''^2

^^^^ ^2 ^ ^' ^^^^ (3.15)

becomes

G(y
(3.16)

G(y

2) pS2+As2) - p(s2)1 p(r2+Ar2) - p(r2)

?l "^2 J-
'~2 ^

where As. = es^ and Ar^ = er„. Since (3.15) must hold for G(y2)/G(yp

arbitrarily close to 1, (3.13) is satisfied. When ^2 = 52== 0,(3.15)

again implies that (3.13) holds and therefore p(.) is concave in [0,1],

Finally from (3.12)

/ N -S+1 ,-^ >^ ^ < s < 1S-1— 8-1 —
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so that 11m inf [p (s)/(s-l) ] >^ -1. Since pCs) in concave we conclude
s+1

that p(s) _< 1 - s. Substituting for (u,v) in (3.11) completes the

proof.

Berman [1] and Sibuya [7] have used similar arguments to obtain

limiting forms for bivariate extreme value distributions. The

techniques used above generalize to the third maximum etc. but with

increasing complexity.

Lemma 2 . If ^X :n >_ 1^ is a strictly stationary ergodic sequence

then lim P{E ,} = 0.
m, 1

Proof. For ease of notation let E = E , and M' = M , and assume
m m,l m m,l

show that P{ ^ E } =» 0. If <A represents the rational numbers r

m=q+l

such that P{X <^ r} < 1 then

and

PCOE } < Z ?{({) E ) (M' < r)}
m —

-D m m —
m reCA m

P{(nEJ n (M* < r)}

I P{X ,, < r, X _^„ < r,...,X, < r, X,_^,

i=q+l q+1 - ' q+2 - ' ' i - ' i+2

+ P{X 1 r; j >. q + 2}.
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By the strong law of large numbers for strictly stationary ergodic

sequences

lim ( Z 1, ^^,)/(n-l) = P{X, £ r} < 1

n^ j=i+l ^^j-''^ ^

almost surely. This implies that P^X <_ r, X _< r,...} =

for i ^ and ?{() E } = follows immediately.
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A. Conclusions . Theorem 1 clearly includes Lemma 1 and hence

for an independent process p(s) = 1 - s. In Example l>p(s) = 0.

Let^Z , n >^ 1^ be as in Example 1 and set

X = max (Z, iM.n Z. ,.,,_,...,Z- ^^,.„) n=l,2,...
n (n-l)k+l' (n-l)k+2' (n-l)k+£ '

where k and £ are fixed positive integers. The sequence ^X : n >^ 1^

is strong-mixing and it is possible to show that there exist constants

a and b so that P{M <ax+b,S <ay+b} converges and H(x,y)
n n n — n n n — n-' n * n •j'-'

is of the form given in Theorem 1 with p(s) = c(l - s) where c is a

rational number, <^ c £ 1, which is a function of k and I. The proof

is not difficult but rather tedious and the details will be omitted.

Thus far we have only succeeded in constructing examples where p(-)

is linear. The problem of finding a strong-mixing sequence leading

to a strictly concave p(0 or sharpening Theorem 1 to exclude this

case is still open.

In the reliability model mentioned earlier, we note that Theorem 1

implies that P{S < a x + b } - G(x)[l - p(0) log G(x)] and therefore
n — n n

the strong-mixing assumption can have a considerable effect on the

asymptotic distribution of the second maximum (p(0) = 1 in the

independent case) . The consequences of this result are currently

being explored.
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