

WORKING PAPER
 ALFRIDD P. SLOAN SCHOOL OF MANAGDMIDNT

LIMIT LAWS FOR EXTREME ORDER STATISTICS
FROM STRONG-MIXING PROCESSES ${ }^{1}$

```
by
\(\mathcal{E}(m)\)
Roy E. Welsch
```

Working Paper 533-71
May 1971

MASSACHUSETTS
INSTITUYE OF TECHNOLOGY 50 MEMORIAL DRIVE CAMBRIDGE, MASSACHUSETTS 12189

LIMIT LAWS FOR EXTREME ORDER STATISTICS

FROM STRONG-MIXING PROCESSES ${ }^{1}$

by
ELO
Roy E. Welsch
Working Paper 533-71
May 1971

${ }^{1}$ This research was supported by the National Science Foundation through its Graduate Fellowship program, contract N0014-67-A-0112-0015 at Stanford University and DA-31-124-ARO-D-209 at the Massachusetts Institute of Technology.

ABSTRACT

This paper considers the possible limit laws for a sequence of normalized extreme order statistics (maximum, second maximum, etc.) from a stationary strong-mixing sequence of random variables. It extends the work of Loynes who treated only the maximum process.

The maximum process leads to limit laws that are the same three types that occur when the underlying process is a sequence of independent random variables. The results presented here show that the possible limit laws for the k-th maximum process ($k>1$) from a strongmixing sequence form a larger class than can occur in the independent case.

MOS Classification Numbers (1970):

Primary	62 E 20
Secondary	62 G 30

Key Words: order statistics, mixing processes, asymptotic distributions, reliability.

1. Introduction. The limiting distributions of the extreme order statistics from a sequence of independent, identically distributed random variables have been exhaustively analyzed by Gnedenko [2] and Smirnov [8]. Many authors have generalized these results for the maximum term by relaxing the independence assumption in various ways, e.g. Loynes [5] showed that the only possible limit laws for the maximum term in a stationary strong-mixing seauence of random variables are the same three types that occur in the indedendent case.

This paper extends the work of Loynes by considering the possible limit laws of order statistics of fixed rank other than the maximum. It is shown that these limit laws form a larger class than can occur in the independent case.

These results were motivated in part by a specific model from reliability theory. Consider a system of n identical components in parallel such that the lifetime of a component is dependent in a certain way (e.g. a mixing condition) on the lifetimes of its nearest neighbors. In effect we expect that if a particular component fails (say because of excess heat) its nearest neighbors are highly likely to be the next components to fail. We also assumed the system would continue to operate if only one component failed but the sustem itself would fail if two or more component failures occurred. The lifetime of the system is then represented by the ($n-1$) st order statistic of the sequence $X_{1}, X_{2}, \ldots, X_{n}$ of component lifetimes where the X_{i} are identically
distributed and satisfy a specified dependence relation. In our notation the n-th order statistic is the minimum. Since most of the literature discusses maximia rather than minima we will deal with the maximum and second maximum. A simple transformation converts our results to ones for minima.
2. Notation and Preliminary Resulta. If $\left\langle X_{n}: n \geq 1\right\rangle$ is a strictly stationary sequence of random variables with common diatribution function $F(x)=P\left\{X_{n} \leq x\right\}$, the associated independent process of the process $\left\langle x_{n}: n \geq 1\right\rangle$ will be any sequence of mutually independent identically distributed random variables $\left\langle\hat{X}_{n}: n \geq 1\right\rangle$ with $P\left\{\hat{X}_{n} \leq x\right\}=F(x)$ for all X. Define the order statistics $Y_{i, n}$ by

$$
Y_{i, n}= \begin{cases}i^{t h} \text { largest among }\left(X_{1}, X_{2}, \ldots, X_{n}\right) & i \leq n \\ Y_{n, n} & i>n\end{cases}
$$

and 1 et $\hat{Y}_{i, n}$ denote the order statistics of the associated independent process. We ahall limit our discussion to $i=1,2$ and set $M_{n}=Y_{1, n}$ and $S_{n}=Y_{2, n}$. It will be technically convenient to consider the joint law of M_{n} and S_{n}.

Let $m_{\mathrm{a}}^{\mathrm{b}}$ denote the σ-field generated by events of the form $\left\{\left(X_{1_{1}}, \ldots, X_{i_{m}}\right) \in E\right\}$, where $1 \leq a \leq i_{1}<i_{2}<\ldots<i_{m} \leq b$ and E is an m-dimensional Borel set. Then $\left\langle X_{n}, n \geq 1\right\rangle$ will be called strong-mixing (cf. [4]) if
(2.1) $\quad \sup \left\{|P(A B)-P(A) P(B)|: A \in m_{1}^{m}, B \in m_{m+k}^{\infty}\right\} \leq \alpha(k)+0 \quad(k+\infty)$.

Loynes [5] referred to (2.1) as uniform mixing.

The following lemma is a direct consequence of the work of Gnedenko [2].

Lemma 1. If there exists a sequence of constants $\left\langle\hat{a}_{n}>0, \hat{b}_{n}: n \geq 1\right\rangle$ so that $P\left\{\hat{M}_{n} \leq \hat{a}_{n} x+\hat{b}_{n}, \hat{S}_{n} \leq \hat{a}_{n} y+\hat{b}_{n}\right\}$ has a limiting distribution $\hat{H}(x, y)$, with $\hat{G}(x)$, the limiting distribution of $P\left\{\hat{M}_{n} \leq \hat{a}_{n} x+\hat{b}_{n}\right\}$ non-degenerate, then

$$
\hat{H}(x, y)=\left\{\begin{array}{ll}
\hat{G}(y)\{1+\log [\hat{G}(x) / \hat{G}(y)]\} & y<x \\
\hat{G}(x) & y \geq x
\end{array} .\right.
$$

Proof. Since $P\left\{\hat{M}_{n} \leq \hat{a}_{n} x+\hat{b}_{n}\right\}=F^{n}\left(\hat{a}_{n} x+\hat{b}_{n}\right) \rightarrow \hat{G}(x)$ we have by Lemma 4 of [2] that $n\left(1-F\left(\hat{a}_{n} x+\hat{b}_{n}\right)\right) \rightarrow-\log \hat{G}(x)$ when $\hat{G}(x) \neq 0$. For $\mathrm{x}>\mathrm{y}$

$$
\begin{aligned}
& P\left\{\hat{M}_{n} \leq \hat{a}_{n} x+\hat{b}_{n}, \hat{S}_{n} \leq \hat{a}_{n} y+\hat{b}_{n}\right\}=F^{n}\left(\hat{a}_{n} y+\hat{b}_{n}\right) \\
& \quad+n F^{n-1}\left(\hat{a}_{n} y+\hat{b}_{n}\right)\left[F\left(\hat{a}_{n} x+\hat{b}_{n}\right)-F\left(\hat{a}_{n} y+\hat{b}_{n}\right)\right]
\end{aligned}
$$

and the result follows. Gnedenko also proved that $\hat{G}(x)$ has only three possible forms (except for scale and location parameters),

$$
\begin{align*}
& G_{1}(x)= \begin{cases}0 & x \leq 0 \\
\exp \left[-\left(x^{-\alpha}\right)\right] & x>0, \alpha>0\end{cases} \\
& G_{2}(x)= \begin{cases}\exp \left[-(-x)^{\alpha}\right] & x<0, \alpha>0 \\
1 & x \geq 0\end{cases} \tag{2.2}\\
& G_{3}(x)=\exp \left(-e^{-x}\right) \\
& -\infty<x<\infty .
\end{align*}
$$

The symbol $G(x) \quad$ will be used to denote one of these types.

Lemma 1 shows that for an independent process there are only three possible types for the foint law $\hat{H}(x, y)$. It seems reasonable to confecture that in view of Loynes' result for M_{n} from a strong-mixing process (only three possible limit laws) there would only be three possible types for the foint limit law of M_{n} and S_{n} when the underlying process is strong-mixing. This is not true as the following simple example demonstrates. Let $\left\langle\mathrm{Z}_{\mathrm{n}}: \mathrm{n} \geq 1\right\rangle$ be a sequence of independent identically distributed random variables with distribution function $T(\cdot)$ and assume that $T(\cdot)$ is in the domain of attraction of one of the three limit laws in (2.2), i.e. there exist constants a_{n}, b_{n} such that $T^{n}\left(a_{n} x+b_{n}\right) \rightarrow G(x)$.

Example 1. Let $X_{n}=\max \left(z_{n}, z_{n+1}\right), n=1,2, \ldots$. Then $\left\langle X_{n}: n \geq 1\right\rangle$ is a stationary strong-mixing sequence, $P\left\{M_{n} \leq a_{n} x+b_{n}\right\} \rightarrow G(x)$ and
$P\left\{M_{n} \leq a_{n} x+b_{n}, S_{n} \leq a_{n} y+b_{n}\right\} \rightarrow H(x, y)$ where

$$
H(x, y)= \begin{cases}G(y) & y<x \tag{2.3}\\ G(x) & y \geq x\end{cases}
$$

Proof. Clearly $\left\langle X_{n}: n \geq 1\right\rangle$ is a strong-mixing sequence. Now in this case $M_{n}=\max \left(X_{1}, \ldots, X_{n}\right) \equiv \max \left(Z_{1}, \ldots, Z_{n+1}\right)$. If $M_{n}=Z_{i} i=2, \ldots, n$ then $S_{n}=$ second $\max \left(\max \left(Z_{1}, Z_{2}\right), \ldots, \max \left(Z_{n}, Z_{n+1}\right)\right)=M_{n}$. Therefore $P\left\{M_{n}=S_{n}\right\} \geq(n-1) / n+1$ and the example follows immediately since

$$
P\left\{M_{n} \leq a_{n} x+b_{n}\right\}=T^{n+1}\left(a_{n} x+b_{n}\right) \rightarrow G(x) .
$$

This method of constructing a strong-mixing sequence is due to Newell [6].

The limit law (2.3) is not of the same form as $\hat{H}(x, y)$ and we conclude that by weakening the independence assumption a larger class of limit laws is possible. In the next section we prove a result which limits the size of this class.

3. Possible Limit Laws.

Theorem 1. Let $\left\langle X_{n}: n \geq 1\right\rangle$ be a stationary strong-mixing sequence. If there exista a sequence of constants $\left.\left\langle a_{n}\right\rangle 0, b_{n}: n \geq 1\right\rangle$ so that $P\left\{M_{n} \leq a_{n} x+b_{n}, S_{n} \leq a_{n} y+b_{n}\right\}$ has a limiting distribution, $H(x, y)$, with $G(x)$, the limiting distribution of $P\left\{M_{n} \leq a_{n} x+b_{n}\right\}$ non-degenerat then

$$
H(x, y)= \begin{cases}G(y)\{1-\rho[(\log G(x)) / \log G(y)] \log G(y)\} & y<x \\ G(x) & y \geq x\end{cases}
$$

where $\rho(s), 0 \leq s \leq 1$, is a concave, monotone non-increasing function which aatisfies

$$
\rho(0)(1-s) \leq \rho(s) \leq 1-s .
$$

$G(\cdot)$ is one of the three types (2.2) and we interpret $(\infty / \infty)=1$, $(0 / 0)=1$, and $(0 / \infty)=0$.

Proof. The essential idea (cf. Loynes [5]) is to break up sets of $k m$ random variables (k fixed, $m \geq 1$) into k blocks of length $m-q$ separated by blocks of length q. The fact that the blocks of length $\mathbb{m}-\mathrm{q}$ are "nearly independent" because of the strong-mixing property is then used to obtain a functional equation for $H(x, y)$. For $x \leq y$ the assumptions of the theorem are the same as for Loynes reault. Therefore $G(\cdot)$ is one of the three types (2.2).

Given an $\varepsilon>0$ and a fixed positive integer $k \geq 2$, choose q so thst $(k+1)(k-1) \alpha(q)<\varepsilon / 2$ and define

$$
\begin{aligned}
& M_{m}=\max _{1 \leq j \leq m} x_{j} \quad m>q \\
& M_{m, 1}=\max _{q+1 \leq j \leq m} x_{(i-1) m+j} \quad 1 \leq 1 \leq k \\
& M_{m, 1}^{\prime}=\max _{1 \leq j \leq q} x_{(i-1) m+j} \\
& \tilde{M}_{n}=\max \left\{x_{q+1}, x_{q+2}, \ldots, x_{m}, x_{q+m+1}, x_{q+m+2}, \ldots, x_{2 m}\right. \\
& \left.\quad \ldots, x_{q+(k-1) m+1}, X_{q+(k-1) m+2}, \ldots, x_{k m}\right\} \quad n=k m
\end{aligned}
$$

The quantities $S_{m}, S_{m, i}, S_{m, i}^{\prime}, \tilde{S}_{n}$ are defined similarly for the second maximum. Denote by $E_{m, 1}$ the event $\left\{S_{m, 1}<M_{m, 1}^{\prime}\right\}$. It is shown in Lemma 2 at the end of this section that
$\lim _{m \rightarrow \infty} P\left\{E_{m, 1}\right\}=0$. Furthermore $P\left\{E_{m, 1}\right\}=P\left\{E_{m, 1}\right\}$
for $2 \leq i \leq k$. Since q is now fixed we may choose an N so that for $m>N, \operatorname{kP}\left\{\mathrm{E}_{\mathrm{m}, 1}\right\}<\varepsilon / 2(\mathrm{k}+3)$.

The first step is to show that

$$
\left.\begin{array}{rl}
\quad \underset{\substack{m \rightarrow \infty \\
n=k m}}{\lim \mid P\left\{M_{n} \leq a_{n} x+b_{n}, S_{n} \leq a_{n} y+b_{n}\right\}}-P^{k}\left\{M_{m} \leq a_{n} y+b_{n}\right\} \tag{3.1}\\
- & k\left[P\left\{M_{m} \leq a_{n} x+b_{n}, S_{m} \leq a_{n} y+b_{n}\right\}-\right.
\end{array} \quad P\left\{M_{m} \leq a_{n} y+b_{n}\right\}\right] \quad \begin{aligned}
& k-1 \\
& \cdot P\left\{M_{m} \leq a_{n} y+b_{n}\right\} \mid=0
\end{aligned}
$$

\square
\square

II

\square

\square

$\square^{2}=$
$=-2$

- 桀
- \square Ene
 $\square \square$ \square
\square
\square ㅌ \square

\square

For $x \geq y$ and $m>N$
(3.2) $P\left\{\tilde{M}_{n} \leq a_{n} x+b_{n}, \tilde{S}_{n} \leq a_{n} y+b_{n}\right\}$

$$
-P\left\{M_{n} \leq a_{n} x+b_{n}, S_{n} \leq a_{n} y+b_{n}\right\} \leq \sum_{i=1}^{k} P\left\{E_{m, i}\right\} \leq \varepsilon / 2(k+3) .
$$

Now

$$
\begin{aligned}
& P\left\{\tilde{M}_{n} \leq a_{n} x+b_{n}, \tilde{S}_{n} \leq a_{n} y+b_{n}\right\} \\
& =P\left\{\tilde{M}_{n} \leq a_{n} y+b_{n}\right\} \\
& +\sum_{i=1}^{k} P\left\{a_{n} y+b_{n}<M_{m, i} \leq a_{n} x+b_{n}, S_{m, i} \leq a_{n} y+b_{n} ;\right. \\
& \left.\quad M_{m, j} \leq a_{n} y+b_{n}, 1 \leq j \leq k, j \neq i\right\}
\end{aligned}
$$

and the strong-mixing property implies that
(3.3) $\mid P\left\{\tilde{M}_{n} \leq a_{n} x+b_{n}, \tilde{S}_{n} \leq a_{n} y+b_{n}\right\}-P^{k}\left\{M_{m, 1} \leq a_{n} y+b_{n}\right\}$

$$
\begin{aligned}
& -k P\left\{a_{n} y+b_{n}<M_{m, 1} \leq a_{n} x+b_{n}, S_{m, 1} \leq a_{n} y+b_{n}\right\} \\
& \cdot P^{k-1}\left\{M_{m, 1} \leq a_{n} y+b_{n}\right\} \mid \leq(k-1) \alpha(q)+k(k-1) \alpha(q) \leq \varepsilon / 2 .
\end{aligned}
$$

Finally we have that
(3.4) $P\left(M_{m, 1} \leq a_{n} x+b_{n}, S_{m, 1} \leq a_{n} y+b_{n}\right\}$

$$
-P\left\{M_{m} \leq a_{n} x+b_{n}, S_{m} \leq a_{n} y+b_{n}\right\} \leq P\left\{E_{m, 1}\right\} \leq \varepsilon / 2 k(k+3)
$$

Combining (3.2), (3.3), and (3.4) gives

$$
\begin{aligned}
& \mid P\left\{M_{n} \leq a_{n} x+b_{n}, S_{n} \leq a_{n} y+b_{n}\right\}- P^{k}\left\{M_{m} \leq a_{n} y+b_{n}\right\} \\
&-k\left[P\left\{M_{m} \leq a_{n} x+b_{n}, S_{m} \leq a_{n} y+b_{n}\right\}-P\left\{M_{m} \leq a_{n} y+b_{n}\right\}\right\} \\
& \cdot P^{k-1}\left\{M_{m} \leq a_{n} y+b_{n}\right\} \mid<\varepsilon
\end{aligned}
$$

from which (3.1) follows. In particular, when $x=y$
(3.5)

$$
\lim _{m \rightarrow \infty}\left|P\left\{M_{n} \leq a_{n} x+b_{n}\right\}-P^{k}\left\{M_{m} \leq a_{n} x+b_{n}\right\}\right|=0
$$

Set $\hat{a}_{m}=a_{n} / a_{m}, \hat{b}_{m}=\left(b_{n}-b_{m}\right) / a_{m}$, and $F_{m}(t)=P\left\{M_{m} \leq a_{m} t+b_{m}\right.$
We have remarked that $\mathrm{F}_{\mathrm{m}}(\mathrm{x}) \rightarrow \mathrm{G}(\mathrm{x})$ and from (3.5) it follows that $F_{m}\left(\hat{a}_{m} x+\hat{b}_{m}\right) \rightarrow G^{1 / k}(x)$. A theorem of Khintchine ([3], p. 40) states that $G^{1 / k}(y)$ and $G(y)$ must be of the same type, i.e., there exist real-valued constants $\alpha_{k}>0$ and β_{k} such that $G^{k}\left(\alpha_{k} y+\beta_{k}\right)=G(y)$ and

$$
\lim _{\mathbb{M} \rightarrow \infty} \hat{a}_{\mathrm{m}}=\alpha_{\mathrm{k}}, \lim _{\mathrm{m} \rightarrow \infty} \hat{b}_{\mathrm{m}}=\beta_{\mathrm{k}} .
$$

Let

$$
\begin{aligned}
& Q_{m}(x, y)=k P^{k-1}\left\{M_{m} \leq a_{m} y+b_{m}\right\} P\left\{M_{m} \leq a_{m} x+b_{m}, S_{m} \leq a_{m} y+b_{n}\right. \\
& Q(x, y)=k G^{k-1}(y) H(x, y)
\end{aligned}
$$

and assume that (x, y) and $\left(\alpha_{k} x+\beta_{k}, \alpha_{k} y+\beta_{k}\right)$ are points of continule for H. Equation (3.1) is equivalent to

$$
\lim _{m \rightarrow \infty} Q_{m}\left(\hat{a}_{m} x+\hat{b}_{m}, \hat{a}_{m} y+\hat{b}_{m}\right)=H(x, y)+(k-1) G(y)
$$

But a standard argument ([3], p. 41) shows that

$$
\lim _{m \rightarrow \infty} Q_{m}\left(\hat{a}_{m} x+\hat{b}_{m}, \hat{a}_{m} y+\hat{b}_{m}\right)=Q\left(\alpha_{k} x+\beta_{k}, \alpha_{k} y+\beta_{k}\right)
$$

and therefore

$$
\begin{align*}
H(x, y) & =G(y)+k\left[H\left(\alpha_{k} x+\beta_{k}, \alpha_{k} y+\beta_{k}\right)-G\left(\alpha_{k} y+\beta_{k}\right)\right] \tag{3.6}\\
& \cdot G^{(k-1) / k}(y)
\end{align*}
$$

when $x \geq y$.
It is apparent from (2.1) that $G(t)$ is continuous and strictly increasing for t such that $0<G(t)<1$. Furthermore

$$
\begin{array}{ll}
G(y) \leq H(x, y) \text { and } & y \leq x \\
H\left(x_{2}, y\right)-H\left(x_{1}, y\right) \leq G\left(x_{2}\right)-G\left(x_{1}\right) & y \leq x_{1} \leq x_{2} .
\end{array}
$$

From (3.7) we have that $H(x, y)=1$ if $G(y)=1$ and from (3.6) $H(x, y)$ if $G(y)=0$. Finally (3.8) implies that $H(x, y)=\lim _{t \rightarrow \infty} H(t, y)$ if $G(x)$ and $H(x, y)=0$ if $G(x)=0$. Therefore if $x \geq y$ it is possible to express $H(x, y)$ in the form

$$
H(x, y)=R(-\log G(x),-\log G(y)) \equiv R(u, v)
$$

Moreover $H(x, y)$ has the same form if $x<y$, so that we may take $R(u, v)=e^{-u}$ for $u \geq v$.

With $0<u<v<\infty$ equation (3.6) takes the simple form

$$
\begin{equation*}
f(u, v)=k f(u / k, v / k) \tag{3.9}
\end{equation*}
$$

$$
k \geq 1
$$

where $f(u, v) \equiv\left(R(u, v)-e^{-v}\right) e^{v}$. Now $H(x, y)$ is a bivariate distribution function so that

$$
\lim _{x \nmid x^{\prime}, y \downarrow y^{\prime}} H(x, y)=H\left(x^{\prime}, y^{\prime}\right)
$$

and since $G(\cdot)$ is monotone increasing except when $G(\cdot)=0$ or 1 we have

$$
\begin{equation*}
\lim _{r \downarrow r^{\prime}>0} R(u / r, v / r)=R\left(u / r^{\prime}, v / r^{\prime}\right) \quad 0<u<v<\infty \tag{3.10}
\end{equation*}
$$

Using (3.9) it is easy to show that $f(u, v)=r f(u / r, v / r)$ for all rational $r>0$. Then (3.10) implies that $f(u, v)=z f(u / z, v / z)$ for all real $z>0$. Now let $z=v>0$ so that

$$
f(u, v)=v f(u / v, 1) \equiv v_{p}(u / v)
$$

and
(3.11)

$$
R(u, v)=e^{-v}\left[1+v_{p}(u / v)\right]
$$

$$
\mathrm{u}<\mathrm{v}, \theta<\mathrm{v}<\infty .
$$

It is clear that $\rho(1)=0$ and from (3.8) we obtain

$$
\begin{equation*}
0 \leq \rho\left(s_{2}\right)-\rho\left(s_{1}\right) \leq e^{-s_{2}+1}-e^{-s_{1}+1} \tag{3.12}
\end{equation*}
$$

where $s_{1}=-\log G\left(x_{1}\right), s_{2}=-\log G\left(x_{2}\right)$ and $\log G(y)=-1$. Therafore $\rho(\cdot)$ is continuous and monotone decreasing on $[0,1]$ and $\rho(\cdot) \geq 0$.

In order to show that $\rho(\cdot)$ is concave we will use the following lemma whose proof may be found in [7].

Lemma. Let $r, s, \Delta r, \Delta s$ be any such numbers as $0<r<s, \Delta r=a \in$ and $\Delta s=\varepsilon s(\varepsilon>0)$, or $r=s=0$ and $0<\Delta r<\Delta s$. Then
(3.13) $\frac{\psi(s+\Delta s)-\psi(s)}{\Delta s} \leq \frac{\psi(r+\Delta r)-\psi(r)}{\Delta r}$
is necessary and sufficient for the continuous bounded function $\psi(\cdot)$ to be concave in $[0, \infty)$.

For convenience in applying this lemma we extend the domain of definition of $\rho(\cdot)$ by letting $\rho(s)=0$ for $1 \leq s<\infty$.

Since $H(x, y)$ is a distribution function

$$
\begin{equation*}
H\left(x_{2}, y_{2}\right)-H\left(x_{1}, y_{2}\right) \geq H\left(x_{2}, y_{1}\right)-H\left(x_{1}, y_{1}\right) \tag{3.14}
\end{equation*}
$$

with $x_{2} \geq x_{1}, y_{2} \geq y_{1}$. When $x_{2}>x_{1}, y_{2} \geq y_{1}, 0<G\left(x_{1}\right)<1$, $G\left(y_{1}\right)>0$ and $G\left(y_{2}\right)<1$ this is equivalent to

$$
\begin{equation*}
\frac{G\left(y_{2}\right)}{G\left(y_{1}\right)}\left[\frac{\rho\left(s_{1}\right)-\rho\left(s_{2}\right)}{s_{1}-s_{2}}\right] \leq \frac{\rho\left(r_{1}\right)-\rho\left(r_{2}\right)}{r_{1}-r_{2}} \tag{3.15}
\end{equation*}
$$

with $r_{i}=\left(\log G\left(x_{i}\right)\right) / \log G\left(y_{1}\right)$ and $s_{i}=\left(\log G\left(x_{1}\right)\right) / \log G\left(y_{2}\right)$, $i=1,2$.

If we set $\varepsilon=\left(s_{1}-s_{2}\right) / s_{2}=\left(r_{1}-r_{2}\right) / r_{2}$ when $r_{2}>0$, then (3.15) becomes

$$
\begin{equation*}
\frac{G\left(y_{2}\right)}{G\left(y_{1}\right)}\left[\frac{\rho\left(s_{2}+\Delta s_{2}\right)-\rho\left(s_{2}\right)}{\Delta s_{2}}\right] \leq \frac{\rho\left(r_{2}+\Delta r_{2}\right)-\rho\left(r_{2}\right)}{\Delta r_{2}} \tag{3.16}
\end{equation*}
$$

where $\Delta s_{2}=\varepsilon s_{2}$ and $\Delta r_{2}=\varepsilon r_{2}$. Since (3.15) must hold for $G\left(y_{2}\right) / G\left\langle\gamma_{2}\right.$ arbitrarily close to 1 , (3.13) is satisfied. When $r_{2}=s_{2}=0$, (3.13) again implies that (3.13) holds and therefore $\rho(\cdot)$ is concave in $[0,1]$,

Finally from (3.12)

$$
\frac{\rho(s)}{s-1} \geq \frac{e^{-s+1}-1}{s-1} \quad 0 \leq s<1
$$

so that $11 \mathrm{~m} \inf [\rho(s) /(s-1)] \geq-1$. Since $\rho(s)$ in concave we conclude $s+1$
that $\rho(s) \leq 1-s$. Substituting for (u, v) in (3.11) completes the proof.

Berman [1] and Sibuya [7] have used similar arguments to obtain Iimiting forms for bivariate extreme value distributions. The techniques used above generalize to the third maximum etc. but with increasing complexity.

Lemma 2. If $\left\langle X_{n}: n \geq 1\right\rangle$ is a strictly stationary ergodic sequence then $\lim _{\mathrm{m} \rightarrow \infty} \mathrm{P}\left\{\mathrm{E}_{\mathrm{m}, 1}\right\}=0$.

Proof. For ease of notation let $E_{m}=E_{m, 1}$ and $M_{m}^{\prime}=M_{m, 1}$ and assume that $m \geq q+1$. Clearly $E_{m+1} \subset E_{m}$ and therefore it is sufficient to show that $P\left\{\bigcap_{m=q+1}^{\infty} E_{m}\right\}=0$. If Q represents the rational numbers r such that $P\left\{X_{1} \leq r\right\}<1$ then

$$
\left.\underset{m}{P\{ } \cap E_{m}\right\} \leq \sum_{r \varepsilon Q} P\left\{\left(\cap_{m} E_{m}\right) \cap\left(M_{m}^{\prime} \leq r\right)\right\}
$$

and

$$
\begin{aligned}
& P\left\{\left(\cap_{m}^{E_{m}}\right) \cap\left(M_{m}^{\prime} \leq r\right)\right\} \\
& \leq \sum_{i=q+1}^{\infty} P\left\{X_{q+1} \leq r, X_{q+2} \leq r, \ldots, X_{i} \leq r, X_{i+2} \leq r, \ldots\right\} \\
& \\
& \quad+P\left\{X_{j} \leq r ; j \geq q+2\right\} .
\end{aligned}
$$

en

By the strong law of large numbers for strictly stationary ergodic sequences

$$
\lim _{n \rightarrow \infty}\left(\sum_{j=1+1}^{n} 1_{\left\{X_{j} \leq r\right\}}\right) /(n-1)=P\left\{X_{1} \leq r\right\}<1
$$

almost surely. This implies that $P\left\{X_{i+1} \leq r, X_{i+2} \leq r, \ldots\right\}=0$ for $i \geq 0$ and $P\left\{\cap_{m} E_{m}\right\}=0$ follows immediately.
$x-4180-2 \cos 8 \cos 3=$

4. Conclusions. Theorem 1 clearly includes Lemma 1 and hence for an independent process $\rho(s)=1-s$. In Example $1, \rho(s) \equiv 0$. Let $\left\langle\mathrm{z}_{\mathrm{n}}, \mathrm{n} \geq 1\right\rangle$ be as in Example 1 and set

$$
X_{n}=\max \left(z_{(n-1) k+1}, Z_{(n-1) k+2}, \ldots, z_{(n-1) k+\ell}\right) n=1,2, \ldots
$$

where k and ℓ are fixed positive integers. The sequence $\left\langle x_{n}: n \geq 1\right\rangle$ is strong-mixing and it is possible to show that there exist constants a_{n} and b_{n} so that $P\left\{M_{n} \leq a_{n} x+b_{n}, S_{n} \leq a_{n} y+b_{n}\right\}$ converges and $H(x, y)$ is of the form given in Theorem 1 with $\rho(s)=c(1-s)$ where c is a rational number, $0 \leq c \leq 1$, which is a function of k and ℓ. The proof is not difficult but rather tedious and the details will be omitted. Thus far we have only succeeded in constructing examples where $\rho(\cdot)$ is linear. The problem of finding a strong-mixing sequence leading to a strictly concave $\rho(\cdot)$ or sharpening Theorem 1 to exclude this case is still open.

In the reliability model mentioned earlier, we note that Theorem 1 implies that $P\left\{S_{n} \leq a_{n} x+b_{n}\right\} \rightarrow G(x)[1-\rho(0) \log G(x)]$ and therefore the strong-mixing assumption can have a considerable effect on the asymptotic distribution of the second maximum $(\rho(0)=1$ in the independent case). The consequences of this result are currently being explored.

Acknowledgment. The author wishes to express his appreciation to Professor Samuel Karlin of Stanford University for his guidance and encouragement. A weaker version of Theorem 1 originally appeared in [9].

REFERENCES

[1] Berman, S.M. (1961). Convergence to bivariate extreme value distributions, Annals of the Institute of Statistical Mathematics, 13 217-223.
[2] Gnedenko, B.V. (1943). Sur la distribution du terme maximum d'une série aléatoire, Ann. Math. 44 423-453.
[3] Gnedenko, B.V. and A.N. Kolmogorov (1968). Limit Distributions for Sums of Independent Random Variables, Addison-Wesley, Reading, Mass.
[4] Ibragimov, I.A. (1962). Some limit theorems for stationary processes, Theor. Probability App1. 7 349-382.
[5] Loynes, R.M. (1965). Extreme values in uniformly mixing stationary stochastic processes, Ann. Math. Statist. 36 993-999.
[6] Newe11, G.F. (1964). Asymptotic extremes for m-dependent random variables, Ann. Math. Statist. 35 1322-1325.
[7] Sibuya, M. (1960). Bivariate extreme statistics, Annals of the Institute of Statistical Mathematics, 11 195-2 $\overline{10}$.
[8] Smirnov, N.V. (1952). Limit distributions for the terms of a variational series, Amer. Math. Soc. Transl. No. 67.
[9] Welsch, R.E. (1969). Weak convergence of extreme order statistics from ϕ-mixing orocesses. Ph.D. thesis, Department of Mathematics, Stanford University.

