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Abstract

Data Envelopment Analysis (DEA) , a new methodology

based on linear programming concepts, provides an approach

to evaluate the relative technical efficiency of nonprofit

organizations which have multiple inputs and outputs. This approach

potentially will identify inefficient units and the magnitude of the

inefficiency to provide a basis to select inefficient units

for management review or efficiency audits and to help locate areas

where operations might be improved. This is believed to be an

improvement over existing approaches to evaluate efficiency of

such organizations and is directed toward health service organ-

izations in this study because of the potential value of such an

approach in this sector.

This paper investigates an application of DEA to an artificial

data set reflecting the operations of a hospital department. The

underlying technology is specified from which a set of efficient

and inefficient hospital units are developed. Without knowledge

of this technology, DEA accurately identifies the inefficient units

when the inputs and outputs are properly specified. In contrast,

the widely used single -output measures applied to this data set are

found to be less reliable in this multiple output environment. The

strengths and limitations of DEA are further elaborated to anticipate

issues that may arise in subsequent field applications of DEA to

hospitals. ^•'"^^
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Introduction

A manager attempting to compare and evaluate the operations

of nonprofit organizations (municipalities, government agencies,

universities, hospitals, etc.) generally has no single measure

such as profit or return on investment available for an overall

assessment. A rate of outputs to inputs can be developed for

nonprofit organizations when relative prices of their outputs and

relative cost of their inputs are known. These relative prices

and costs can be applied to the organization's inputs and outputs

to derive an output to input ratio which would yield a scalar

measure that ranks individual units based on their ability to

generate outputs per unit of input. Such a measure might allow

managers to direct their efforts to understand and possibly

improve those units that produce lower outputs per unit of input.

This type of analysis is not possible with many nonprofit organ-

izations because most of their outputs and some of their inputs
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do not have objectively determined weights, like competitive

market prices for outputs and costs for donated inputs.

How might such a measure be developed or evaluated for

practical use? One approach is to use a weighting scheme where

subjective weights are applied to the various outputs (and inputs

if objective cost data is not available) . Such an approach is lim-

ited by the reliability of these subjective weights. Another

approach might prescribe one overriding objective to narrow the

focus in a manner analogous to the way profit maximization suppos-

edly encompasses the primary private sector objective. A single-

output measure such as profit does not incorporate measurement

of the other outputs that a firm may generate to meet other objec-

tives such as employee satisfaction, reduction of pollution levels,

etc., and therefore may not be sensitive to the joint character

of these multiple outputs and the need for simultaneous evaluation

of all these outputs. The need to explicitly consider multiple

outputs is particularly important for nonprofit organizations where

profit or cost minimization may represent only one of a multiple set

of objectives and frequently is not the primary objective.

Another approach, perhaps more suited to the public sector

activities, would segregate the problem into various component ele-

ments such as the distinction between "effectiveness" and "effi-

ciency" that is used by the U.S. General Accounting Office in its

expanded scope (or comprehensive) audits of government and other

non-profit agencies. We shall follow this approach and distinguish

effectiveness as the ability to a) state and b) attain objectives.

Efficiency will then be defined in terms of a) the benefits and
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b) the costs associated with the inputs used in pursuit of these

objectives.^ ' Other extensions include distinctions between

"propriety" and effectiveness, etc., but these will not be pursued

here. ^^^

The point of the distinction we are making is that we want to

underscore the fact that the focus in this paper will be on effici-

ency. That is, we shall assume that activities in the organizations

to be studied are governed by suitably stated objectives so that we

may then focus on methods of measuring efficiency, and how such

measures might be evaluated en route to their use in actual appli-

cations .

A final distinction is that this paper will deal with measure-

ment of technical efficiency in contrast to price or allocative

efficiency. An organization is technically inefficient if it is

possible to increase physical outputs without increasing its inputs,

or if it can decrease the inputs without decreasing its outputs.

Price efficiency—the purchasing of inputs at the lowest price and

sale of outputs for the highest price--and allocative efficiency

—

the use of the correct mix of inputs based on the relative prices--

are of importance but need not and will not be considered concur-

rently with technical inefficiency. By focusing on the physical

inputs and outputs that determine technical efficiency, we can

determine if the firm could become more efficient regardless of

whether it is efficient with respect to price and allocation

considerations

.

Our applications will be oriented toward health service

organizations (e.g., hospitals) where there is a great and growing

need for such measures. Two key characteristics of hospitals, and
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other nonprofit organizations, are 1) the presence of multiple in-

puts and outputs, and 2) the lack of any market value for many of

these outputs (and inputs). Hospital outputs, for example, may

include patient care for many types of diagnoses (generally refer-

red to as case mix), training for nurses, medical students, interns,

and residents, medical research, community education, etc. While

prices for some of these outputs may be available, these are not

competitively set prices as are relied upon for efficient resource

allocations in the for-profit sector.

In addition to problems involved in weighting such outputs,

we might note that their production is often simultaneous or joint

in character. The joint character of many of these outputs (and the

same is true for the inputs) has tended to place severe limits on the

customary approaches to efficiency estimation and evaluation. Stan-

dard regression approaches, for example, tend to treat the outputs

a) by examining them in one regression equation at a time and b)

by further assuming that the inputs have requisite properties of

independence in order to avoid the problems of bias or mis-specifi-

cation that would otherwise result. Attempts have been made to

circumvent these difficulties by various types of weighting, aggre-

gation and reduction, but such one-at-a- time regression equations

and weighting approaches are attended by difficulties and shortcom-

ings which raise questions about reliability of the results. In any

case, alternative approaches which can circiomvent these difficulties

would be welcome.

One such alternative, known as the method of Data Envelopment

Analysis (DEA) has been developed by A. Charnes , W.W. Cooper and
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(3)
E. Rhodes (CRR) .

^ Since the original publication in [6], more-

over, this method had been tested in a variety of applications to

education and public school programs. ^ A case in point is the

use of these methods to distinguish between "program efficiency" and

"management efficiency" by applying DEA to date obtained from the

Program Follow Through, a large scale social experiment in U.S.

Public School education.

We propose to study the use of DEA in the health field as an

additional possibility. Our tests will, however, differ from those

noted above by more than reference only to a new area of application

(health vs. education). They will also differ in that we shall

generate our health related data from efficient and inefficient uses

of a relevant technology which we shall introduce in an explicitly

known form. Our objective will be to assess the performance of DEA

in correctly identifying technically inefficient units by reference

to the thus generated data without actually employing our knowledge

of the underlying technology. This assessment of DEA will also be

matched against another (widely used) approach which proceeds by

means of the single output measure summarized by unit cost perfor-

mance.

The development will proceed as follows: The next section.

Section 2, provides a brief overview of the new technique referred

to as Data Envelopment Analysis (DEA) . Section 3 describes the con-

struction of the artificial data set. Section 4 presents the results

of applying DEA to the artificial data set. Section 5 illustrates

a widely used alternative efficiency ranking system--the single

output (cost) measurement technique. Section 6 is a summary of the

conclusions of this analysis.
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2. New Methodology for Measurement of Relative Efficiency

CCR in [6] generalized the usual input to output ratio measure

of technical efficiency in terms of a fractional linear program with

fractional constraints which can be summarized as follows:

Objective :

Z u y
r=l ^ ^^°

max h =
o m

Z V. X.
1=1 ^ ^°

Constraints :

Less than

Unity

Constraints

1 >

Z u y .

r=l ^ ^J

m
Z V. X.

.

1=1 ^ ^J

; J = 1. ,n

(1)

Positivity

Constraints

0<u^;r=l,...,s
< V. ; i = 1, ,m

Data :

Outputs: y . = observed amount of r— output for j— hospital

Inputs: X.. = observed amount of i— input for j— hospital

In our case the y.. and x. . are all positive so that the less-

than-unity constraints will also be all positive by virtue of the

positivity (open set) conditions imposed on the u and v. choices.

The latter are determined objectively from the data in terms of the

above model and its related extr emization. Since the hospital

j = o being evaluated as max. h = h" is also a member of the-J f^ o o

constraint set, it follows that a solution always exists with

< h^ < 1 . Finally, as is shown in CCR [6 ], we will have
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h* = 1 if and only if hospital j = o is (2)

efficient relative to the other

hospitals that are represented in

the constraints.

The above formulation provides a conceptually clear model

which generalizes the usual single output-single input measure of

efficiency (as in engineering or physics) so that it also embraces

multiple output - multiple input situations. Applied to empirical

data it provides a new way of estimating extremal relations as

well as measuring the relative technical efficiency of decision

making units (DMU's) of a non-profit variety (e.g. hospitals) where

the usual market based criteria of cost, profit and price provide

only one (not necessarily decisive) component for evaluating DMU

efficiency.

This application of mathematical programming differs from most

other applications in that the data used are the actual inputs (x.)

and outputs (y.) of each DMU, while the decision variables which

are to be calculated (u , v.) are the weights to be assigned to

each input or output. For the unit being evaluated, the solution

sought is the set of weights which will give that unit the highest

efficiency ratio, h", such that this same set of weights will result

in an input-output ratio not exceeding 1 when applied to each unit

in the constraint set.

The u and v values may appear to be similar to relative prices.

They are not actually relative prices, but rather are relative

values assigned objectively to each input and output to maximize the

objective unit's efficiency rating. (In some sense, this can be in-

terpreted as giving the objective unit the "benefit of the doubt" in



that any relative value system of u's and v's is allowed regardless

of actual prices.) When a unit is found to be relatively ineffic-

ient, h* < 1, it can be concluded that that unit cannot find another

set of weights which would give it a higher rating as long as all units

are subject to that same set of weights. Furthermore, such a unit is

strictly inefficient compared to other efficient units in the set.

The above formulation involves a nonlinear-nonconvex program-

ming problem. As is shown in CCR [6] however, it may be replaced

by dual linear programming problems as follows to allow the use of

standard liner program systems.

Max h' = Z y yo T r •'ro
r=l

Subject to
s m
^ ^r ^ri " ^

r=l ^ ^J i=l
> Z y„ y„. - E u. X. . ; j = l,...,n

(3)

1 = S (jj . X

.

1 lO

m
s

i=l

< \i^, to^ ; r = 1, . . . ,8

i = 1, . .
.
,m

Particular attention might be called to the positivity

conditions on the variables, which CCR ensure by introducing the

conditions

e<y, e<co. allr and i
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where e > is a small constant which is so small that it cannot

otherwise disturb any solution involving only real numbers. ^ The

adjunction of these additional conditions then produces the follow-

ing problem, which is dual to (3)

:

m _ ^ +
min z - eZ6.-eE5

o • 1 1 T r1-1 r=l

subject to
m

= X. z - 6~. -I X.. A. ; i=l,...,m
lO o 1

Y = - S'^

2

m

=1 iJ J

ro

and also

(4)

+ Z y . A . ; r=l, . . .
,

s

r j=l^J J

X., &., 6^ for all j, i, and r.

while z is unconstrained in sign,
o ^

We shall refer to (3) as being in "production function form"

since the optimal values, oj""^, y^ respectively represent estimates

of the marginal rates of transformation (MRT) and productivity for the DMU

being evaluated>^It is to be emphasized, however, that these esti-

mates are derived from the data for a pertinent subset^' of the

efficient producers. The optimal values need not--and indeed gen-

erally will not- -coincide with the transformation rates and producti-

vity that might be estimated by other means (e.g., least squares

regressions) for the DriU being evaluated. They are, instead, esti-

mates of what the DMU being evaluated could have achieved if it had

utilized its inputs in the manner which the behavior of the efficient

firms indicates as having been possible.

The CO* and v* in (3) refer to a multiple output situa-

tion so that classical (single output) production function concepts
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are not applicable in a really strict sense. We shall find it con-

venient to adhere to these concepts, however, with the accompanying

terminology found in elementary economics. Moreover, this is also

not misleading. CCR have shown how to interpret these values so that

the wt refer to transformations into a "virtual input" and the m*
/ON

refer to transformations into a "virtual output".^ '^ The w^ and y^

values are then referred to as "virtual rates of transformation"

which become "efficient transform rates" at an optimum.

We shall adhere to the above usages in referring to (3)

.

Turning to (4) we shall refer to this member of the dual pair as the

problem in "efficiency evaluation form" . The reason for this desig-

nation is that min. z = z* provides a measure of efficiency by

comparing like inputs and like outputs across all of the

j = l,...,n DMU's that are deemed to be pertinent.

For computational purposes either (3) or (4) may be em-

ployed since, at least when extreme point methods (e.g. , the

simplex or dual methods) are employed , --as will be true for

most of the available computer codes--the solution to one

problem will also generate the optimal values for the corres-

ponding dual. Moreover, since both problems have finite opti-

m.a we have access to the dual theorem of linear programming in

its strong form- -viz.

,

h''^' = z* (5)o o ^-'^

and further , as in CCR re],

hj- = hg (6)

where h* is optimal for (1) and h'g ' is the optimal value for

(3).
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The values of 6 and 6 in (4) are determined by the

linear program. As is explained in [11], the slack values,

& and 6~
, will be zero for efficient units. For inefficient

units, certain of these slack values will be non-zero corresponding

to the x.'s and/or y^ ' s . These correspond to the inputs and/or

outputs which the unit being evaluated is utilizing inefficiently

as well as the magnitude of this inefficiency measured in rela-

tion to the efficient units.

For purposes of the following analysis, the introduction of

the conditions

.001 = e < y and .001 = e < w

.

(7)

assures that wherever a condition would exist with non zero slack

in (3) or (4) , the solution which will be reached from this appli-

cation will result in h* < 1. Thus, once we have determined
o

that the value e = .001 (as we have) is sufficiently small so as

not to distort the results, we can use the condition (2) in an

analysis, i.e., that if h* = 1, DMU is relatively efficient andJ > ) o o '

if h* < 1, DMU is relatively inefficient,
o ' o '

In the analysis that follows we shall focus on technical ef-

ficiency rather than, e.g. ,
production-function estimation and

related considerations. At this point we should therefore note

that we seek something more than a classification into categories

such as "efficient" and "inefficient". We also seek a way of

using the possibilities which CCR [6] showed for DEA which pro-

vide numerical estimates of the amount of potential resource con-

servation or output augmentation that exists for inefficient DMU's.
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Before proceeding with the DEA application, Figure 1 provides

an illustration of the geometric interpretation of the DEA out-

put for the following 4 DMU's producing output y-j^ with inputs

X-, and x^ . (This example is a modified version of an illustration

in [16] .)

DMU
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B

(2,2)

y
-^ (2.57,1.71)

y
/

y
/

A

(4,1)

D

(5,1)
y

/
L^

Figure 1,
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Shadow price for DMU DMU
related constraints C D

m
Z

i=l
Z V. X. =1 .857 1.0

1 lO

u-L 2 .001

v-^ > .001 -1

V2 > .001

For DMU C, DEA has indicated that the rate of technical substitu-

tion of inputs = - — = -2 which is the slope of the frontier AB.

DIW C can approach the frontier by reducing its inputs by h* = .857

to reach efficient point e. u-,, v, , and V2 also represent the

effect on h* of a one unit change in the corresponding y-j^, x-j^

,

and Xp. For example, C can reach the frontier by reducing x, by

one unit or X2 by 1/2 unit.

DMU D represents a special case of a unit that comprises an

extreme corner of the production frontier. The efficiency rating

h" = .999 is distinct from an efficient rating of 1.0. The

constraint that u-, , v, , V2 > requires that each input and out-

put be given a non-zero virtual rate of transformation. Here

the results are most directly interpreted using the slack values

which indicate that there is one unit of slack in v-, correspond-

ing to X, which if eliminated will m.ove D to the efficient

point A. Cases such as D will be recognizable primarily when

there is an efficiency rating which is very near to, but less than

1.0. (This is assured by imposing condition (7).) Note that if

the amount of x^ used by D were less that 1, D would be rated

as an efficient unit and would constitute another segment of the

efficiency frontier. The interpretation of DEA results will be
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expanded in the following sections where this geometric interpre-

tation will be extended to application in a multiple input and

multiple output case.

To conclude this section, we might add that we are not

extending the model to the further possibilities such as the

piecewise nonlinear representations in [10] which involve non-

linear segments that can accomodate both increasing and decreasing

returns in different outputs at the same time. We believe that

understanding will be better achieved at this point by confining

attention to uses of the preceding models with their accompanying

assumptions of (piecewise) constant returns to scale.

3. A Controlled Artificial Data Set

Data Generation

The set of artificial hospital data we generated for our

simulation and analysis consisted of three outputs used and three

inputs generated during a year as follows:

Outputs Inputs

i. Severe patient care i. Number of hospital beds

ii. Regular patient care ii. Staff utilized in terms
of full-time equivalents

iii. Teaching of nurses, residents (FTE's)
and interns iii. Supplies in terms of

dollar costs

Selection of output measures is a critical aspect of such an

analysis. "Ideal" output measures might include the improve-

ment to patients' health or the increase in interns' abilities from

training. The output measures we selected are stated in terms

of the activity of the hospital. These measures might be used
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instead of the "ideal" measures for at least two reasons. First,

the inability to obtain "ideal" measures requires use of a surro-

gate such as number of patients of each type of diagnosis treated.

Second, the relevant parties (e.g., hospital administrators and

regulators) may agree on the inputs and outputs to be measured to

evaluate the hospital's efficiency. The assumptions and limitations

of such alternatives are not the focus of this study, but have

important implications in real data applications.

A linear model was used for these purposes and assumed to be

applicable to all hospitals. That is, deviations from this structure

represent inefficiencies which the DEA analysis—or any other analysis

that might be used—should be able to detect.

An idealized version of the situation we have in mind is por-

trayed in Figure 1. Here we have assumed that all hospitals (our

DMU's) are graphically represented in a one-output one-input cross

section. We use x^ to represent the ith input and y to represent

the rth output. Other outputs and inputs are assumed to be fixed

at the sam.e amounts for all hospitals with differences, if any,

showing up only in this particular x. and y .

The solid line represents the graph for the known production

function assumed to be known and the same for all hospitals. The X's

represent observations. Here the theoretically attainable production

amounts are known for every input level and a measure of "absolute

efficiency" is available. Thus, the efficiency of a hospital such

as A could be readily computed by forming the ratio of what is

theoretically obtainable in this dimension relative to what was

actually attained in y from the x . value used by any DMU.
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For instance, the point G on the solid line relative to A reflects

the absolute efficient output level (y ) for that level of input

(x
.

) used by A.

Generally, we do not have access to such knowledge of the

production possibilities that a technology makes available. For

instance, we shall expect our observations to reflect managerial

errors or deficiencies. Hence we have to be content with measures

of "relative efficiency" such as DEA provides from observational

data. Examples of such observations are provided by the points

exhibited as X's in Figure 2.

A DEA approach such as we are using would generate a piecewise

linear function which is graphically portrayed in this dimension by

the broken line segments shown in Figure 1. Waving aside consid-

erations of observational error ' we do know that all output

values must lie on or below the solid line which represents the

graph of the production function in this dimension..

x.
1

Figure 2

A One-Output/One-Input Cross Section
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Thus in the situation portrayed in Figure 2, only the observations

for B and C attain such a solid line position. The observations

for A and D which lie on the production surface generated from a

DEA analysis are thus incorrectly characterized as being efficient

( 12)via that approach. Furthermore, a relative efficiency measure

for E will also be at an incorrect value when referred to the

broken line segment between C and D rather than the portion of

( 13)the solid line that lies above it.

One may argue with some force that the "relative efficiency"

measure yielded by DEA is about all that can be expected when

knowledge of the true production function is not available. For

example, the comparison of E with the piecewise linear segment

interpolated between C and D is at least a comparison between E's

performance and what C and D have shown to be better. It is,

nevertheless, of interest to know how well DEA may perform relative

to the theoretically attainable possibilities--both in correct

classification and in correct measure—and this is what we propose

to study in the sections that follow. In particular we shall

assume that some DMU's attain levels of efficiency that are

theoretically possible but others do not. Then we shall study

a) whether DEA can identify inefficient units correctly and

b) how well it can measure their inefficiency.

Model Details

For convenience of reference all details of the model and

resulting data utilized are collected together in the Appendix

to this article. The model and the input output relationship (and

data used) to develop the model parameters are given in Exhibit 1.
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These production relationships are assumed to hold for all volume

levels of operations for all hospitals which, however, may use

them efficiently or inefficiently. Input costs per unit are also

fixed at the same amounts for all hospitals so that the resulting

production activity can be converted into common dollar units.

This is only done for simplicity of exposition since, of course,

the DEA approach does not require such reductions into equivalent

dollars

.

The following two assumptions are also used (which would not

exist in real data sets) : One assumption is that all hospitals

purchase similar inputs at the same price. The other assumption,

as already noted, is that all hospitals are subject to the same

"production function" which has constant returns to scale in all

outputs. This provides the underlying structure which we shall

henceforth refer to as the "structural model".

Via this "structural model" as represented in exhibit 1, data

were developed for an assumed set of 15 hospitals based on arbitrary

mixes of outputs. The related inputs required were derived from

the model. The resulting data base which we shall henceforth use is

shown in Exhibit 2. The first seven hospitals, Hi through H7 , are

efficient; i.e. the inputs and outputs are those required in the

structural model. The data generated for the next eight hospitals,

H8 through H15, were developed by altering the numerical values to

portray various inefficiencies. The idea of course is to test the

ability of DEA to identify such inefficiencies. The DEA efficiency

measure would be accurate, at least as far as classification is con-

cerned, if it isolated H8 through H15 as inefficient in this

application.
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The specific inefficiencies in H8 through H15 are designated

by their bracketed {} values in Exhibit 2. That is, these bracketed

values refer to the specifically inefficient elements in the pro-

duction function. Exhibit 3 then presents an example of how the

data for the efficient hospital, HI, and the inefficient hospital,

H15, were calculated. H15 is designed to be inefficient in its use

of inputs to treat regular patients and efficient in its use of inputs

to treat severe patients and to provide training (teaching) outputs.

Certain relationships posited in the structural model are never

known, such as the actual amount of staff time and supplies that are

required to support each intern or nursing student at a hospital.

We nevertheless explicity introduce these relationships in the

simulation to determine if DEA can uncover them with the resulting

input and output data. The model is simplified relative to actual

hospitals insofar as it excludes inputs such as laboratory tests,

surgical and intensive care units and, of course, the assumed average

cost per patient is much lower than the real cost per patient. The

data set is actually modeled as a prototype directed to studying

the largest (and perhaps most important) single service center of

a typical hospital, the medical-surgical area. It includes all the

direct expenses in providing daily bedside care to medical-surgical

patients but excludes ancillary services and special care such as

psychiatry and obstetrics, since their inclusion might cause problems

in terms of our assumption that all hospitals have the same inputs

and outputs to be evaluated.

4. Application of the DEA Measure to the Hypothetical Hospital Data Set

The CCR models for securing relative efficiency measures were

applied to the data set of 15 hospitals shown in Exhibit 3 by con-

verting the fractional program to a linear form as illustrated in

section 2, equations (1) and (3). In the linear program formulation,

the constraint that the virtual rates of transformation be
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positive was replaced by a constraint that v., u > .001 to

facilitate use of the packaged programs for ordinary linear

programs where positivity of these v. and u values is not

otherwise guaranteed.

Calculation of the relative efficiency rating was accom-

plished by rerunning the linear program (LP) once for each hos-

pital with that unit's outputs in the objective function and

that unit's inputs as one constraint set equal to 1 (see the

Q4)
previous section) • Each LP run produced a set of "virtual rates

of transformation" v. and u described on pages 6 and 7, v;hich

at an optimum produced the requisite h* value for this hospital in

( 15)the objective function.

Two sets of DEA efficiency evaluations were calculated,

each with three inputs and three outputs. Version A, shown in

Exhibit 2, used the data in a form that is most directly acces -

sible in certain real hospital data sets . This version resulted

in certain difficulties which are analyzed and reviewed en route

to version B which uses the same data, but transforms two of the

outputs into two new output measures , as shown in Exhibit 2

.

Version B is an improvement over version A and results in an

accurate identification of the eight inefficient units.

The inputs are full time equivalents (FTE's), bed days

days available, and supply dollars (Supply $'s). The outputs

in version A are total patients treated, percentage of severe

patients, and teaching units. Version B outputs are the same as

Version A, but the percent of severe patients and total number

of patients treated are used to calculate two different measures

:
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number of severe patients treated and number of regular patients treate

For example, in Ex. 2 we see that HI used 23.5 FTE ' s , 41,050 bed

days, and $130,000 of supplies. Hi's outputs in version A are

5,000 patients treated, 40% of the patients treated were severe,

and 50 students trained in that year, e.g. interns. Percent

severe is used as an output measure in that a higher percent

represents greater input requirements and therefore reflects a

patient severity index. In version B, the percent severe is used

to calculate the actual number of regular and severe patients.

Thus, HI has outputs of 2,000 severe patients ( 40% x 5,000

patients), 3,000 regular patients, and 50 training units.

Model variables were selected to reflect the expected set

of input resources that are used to produce the hospital outputs.

Version A was justified as follows. The hospital produces patient

care and teaching services. Patient care is provided with more

complex and more resource consuming treatment for serious patients

than regular (less serious) patients. The typical case mix

variables reflecting severity of the illness are calculated and

reported in terms of an index or percentage (%) . A higher index

or % reflects higher complexity of service and thus also reflects

greater amounts of resources required, since these are supposed

to be correlated.

Version A

The DEA efficiency rating and ranking for version A are

reported in Table 1.

Recalling that the first seven hospitals are efficient (by

design) we see that three efficient units (H5, H6 and H7) are mis-

classified as inefficient (h* <1) . This misclassification is
o

important for a potential DEA user who proceeds with available
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Table 1

PEA Efficiency Ratings of the 15 Hospitals

in the Constructed Data Base

{ } = Hospitals misclassified by DEA
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Table 2

Inputs/Outputs - Hospital 4 versus Hospital 7

Inputs
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data via the linear programming model--as will almost always be

the case in practical applications— and so we amplify this result

as follows:

Analysis of the DEA results for H7 shows that the inefficiency

was based on comparison of H7 with H4 (See Table 1) . Efficient

units such as H4 against which inefficient units are most directly

measured will hereafter be referred to as the efficiency reference

set (ERS) . Hence we examine the input and output data for these

two hospitals by reference to Exhibit 2. Using only version A we

obtain the input and output values shown in Table 2 under the

columns headed H4 and H7, respectively. The last column of Table 2

indicated the ratios between these input and output values and

provides us with a clue to the possible source of the misclassifi-

cation of H7 . The inputs to H7 are roughly twice those of H4 while

the outputs for % Severe and Teaching Units are only half those of

K4 . The total patients treated figure, however, yields an H7 t H4

ratio which is more closely in line with the input ratios. Follov;-

ing up by further decomposing % Severe into the additional categories

of Severe and Regular patients noted at the bottom of Table 2 we

observe wide discrepancies (all ^1) in the resulting output ratios

that. DEA was prevented from considering in an explicit manner by

virtue of the prior reduction to %'s.

Because h* values are known to be invariant to changes in

scale in t. DEA analysis, it is important to be clear on what

is happening. This invariance applies to changes in the scale

obtained by multiplying any input or any output by any positive

jonstant. The same constant is, of course, applied to this inpuc

jr output in all of the DMU's being considered. In our use of %
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Severe, however, differences in scale invariance property does

not apply in this case just as it would not necessarily apply to

any other scale alteration that applies different constants to the

same input or output in different DMU's.

Evidently a use of percentages should, in general, be avoided

in a DEA analysis. Fortunately this can be done without causing

troubles even when this results in increasing the number of variables,

since the linear programming models can readily accomodate large

( 17)numbers of inputs, outputs and DMU's. The resulting values can

then be used to derive any percentages or indices that may be

wanted for ancillary purposes such as report summaries, etc.,

although the reverse proposition is, of course, not generally true.

Version B

Replacing % Severe and number of Patient Days of service

with the absolute number of both Severe Patient and Regular Patients

but otherwise continuing with the same inputs and outputs as in

( 18

)

Version A we arrive at a new Version B which is also shown

in Exhibit 2.

Applying these new inputs and outputs we arrive at the

results listed under Version B in Table 1. Evidently HI through

H7 are now all correctly classified as efficient.

The Version B DEA analysis has correctly identified the

inefficient and efficient units. Once such results are obtained

and are known to be reliable, they may be used in selecting the

inefficient units for further study to determine if this ineffi-

ciency is justifiable and therefore does not warrant management

action, or if it is due to controllable elements which may be
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( 19)managed to improve efficiency in these units. The ineffi-

cient units that are selected for further study might be chosen

based in part on further interpretation of the degree of in-

efficiency which is the focus of the next section. At this

point, however, a few observations and caveats are in order.

Sensitivity to Input-Output Model Specifications

The inputs and outputs included in Version B closely reflect

the true production relationships, i.e.. Supplies, FTE ' s and Bed

days used are dependent on the number of regular and severe

patients and the number of training units. The true production

relationships are rarely known. As a result, there are alternate

input-output specifications which might have been proposed as a

basis for efficiency evaluation and which could lead to somewhat

less reliable results than were achieved in Version B. For example,

the production inputs such as supplies and FTE ' s may be more depen-

dent on the number of patient days than on the number of patients.

In specifying the output measure, the number of severe and regular pat-

ient days might have been used instead of number of severe and regular

patients, since the true underlying production relationship is not

known. If patient days are used as the output measure, efficiency

will be measured based on resources consumed per day rather than

per patient. It is not possible to generalize as to the effect of

such alternate measures; however, the DEA evaluation can be run

using alternate sets of measures to understand how alternate input

and output specifications affect the results.

When alternate input and output specifications are used for

DEA sensitivity analysis, the interpretation of the efficiency
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measure will always be dependent on the specific set of inputs

and outputs used. For example, if the patient days measure is

used instead of number of patients, an inefficient hospital

such as H8 will be rated as efficient. This is because H8 was

designed to be inefficient with respect to the number of days

per patient required, i.e., it requires two extra days per regular

patient and one extra day per severe patient (see Exhibit 3)

.

If the preferred or selected output measure is patient days of

treatment, H8 may be correctly rated as efficient. This occurs

because the number of patients treated within the number of days

of treatment provided to a patient is not being measured with

this input-output specification. Such an approach implicitly J

suggests that the number of days per patient is not of concern

and that what is to be evaluated is the use of inputs to produce sev-

ere patient care days , regular patient care days, and teaching outputs.

Additional Interpretation .

Assuming we have agreed on the input-output specifications in Ver-

sion B, let us now consider how the efficiency ratings can be further

interpreted. We should perhaps underscore the fact that the h* values

recorded under the DEA columns in Table 1 are obtained by refer-

ence to different sets of optimal basis vectors (efficiency

reference sets) . Having been obtained from different efficiency

reference sets the resulting h* values cannot safely be used to

obtain an ordering. For example, we can assert that HlO with

efficiency rating of .99 is more efficient than Hll with efficiency

rating .85 (see table 1) because both hospitals have the same

efficiency reference set comprised of H4 and H7 . We cannot,

however, assert that HlO is more efficient than H8 whichhas a .93

rating because H8 is being measured against a different reference

set, HI, H4 and H7 than was used for HlO. The DEA results have
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other possible uses as resource conservation or output augmentation

measures which we shall now try to elucidate.

The data in Table 3 will help provide us with easy access

to this topic by reference to artificially contrived data for

two additional hospitals, H16 and H17 which are to be compared

with the initial 15 units as well as with each other using DEA.

These were arbitrarily developed using H3 as a model of an

efficient hospital. It can be immediately observed that, other

things being equal,

a. H16 is less efficient than H3 because it uses $50,000

more supply inputs ($200,000 vs. $150,000) for the same

quantity of other inputs and outputs; and

b. H17 is less efficient than H3 because it produces

less of each output while using the same quantity of

each input as H3. •

Based on the expanded set of the original 15 hospitals

plus these additional two hospitals, the DEA efficiency rating

was calculated for H16 (h* = 0.95) and H17 (h* = 0.84). Using
o o ^

these examples where the degree of inefficiencies are clear, •

we will consider how the DEA output can suggest the magnitude

of these inefficiencies.

Assuming we have agreed on the input-output specifications

in Version B, let us now consider how the efficiency ratings can

be further interpreted.
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Table 3

Development of 2 Additional Hospitals, H16 and

H17, Modeled After Efficient Hospital H3 to Illustrate the

Interpretation of the DEA Results.

Inputs

FTE ' s

Bed days

Supply $'s

Outputs

Teaching outputs

Severe patients treated

Regular patients treated

DEA Efficiency Rating

(based on the expanded
set of 17 hospitals)

Virtual Rates of
Transformation

v/ - related to FTE '

s

v'^ - related to Bed days

v^ - related to Supply $'s

u-| - related to Teaching
output

u^ - related to Severe
Patients Treated

uZ - related to Regular
Patients Treated

H3



We have from the DEA methodology that

s
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by reference to equation (3) for rating the efficiency of any DMU.

Because existence is guaranteed with < h* < 1 we can also
o

represent this as

s

r = 1 " "" r = 1

Z u- y I n* (y /h* )r •'ro T r ^-^ro o

1 = (9)
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Z V* (x. h* ) Z

, 1 lo o . 11 = 1 1 = 1

so that one may use an input adjustment approach (the middle

term) or an output adjustment (the right-most term) to obtain

the requisite adjustments for efficiency by the DMU being rated.

Evidently h^ = 1 would result in no adjustment of the observed

values while h* < 1 would yield x. = x.^h'"'^ < x._ for the
o -^ 1 lO o lO

reductions from the observed values when the input adjustment

is used while y = y /h" > y would yield the output aug-
•^ ro -^ro o -^ ro -^

r o

mentation estimates when the output adjustment estimates are

used.

This approach and the slack adjustment approaches to

determining the adjustments required to make an inefficient unit

efficient will be illustrated using the above examples of H16

and H17 after which the analysis vzill be extended to the origi-

nal set of hospitals. From (8) above, the meaning of h"^ = .95

for H16 can be illustrated as follows.
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Severe Regular
u-1 Teaching U2 Patients Uo Patients

h.v = (.0075) (.100) + (.0059) (30) + (.001) (20) ^ ^^^ ^^^^
° (.001) (26) + (.0179)(43.16)+(.001)(200)

^7^ FTE's v^ Bed v^ Supplies
^ ^ days ^

From (9 ) above, we know that all the inputs can be

reduced by a factor of h^' ~ .95 or all outputs can be increased

by a factor of 1/h* z 1/.95 « 1.05 to make H16 efficient as

follows

:

105 31.5 21

(.0075)(100xl.05) + (.0059)(30xl.05) + (. 001) (20x1. 05)
1 ^

same denominator as (10a)
(lOb)

same numerator as (10a)

(001)(2 6x.95 ) + (.0179)(43. 16x. 95) + ( . 001) (200x.95)

24.70 41 190

Thus one set of possibilities to make H16 efficient is to in-

crease the outputs or decrease the inputs to the adjusted levels

in (10b) . The linear program boundaries beyond which the values

of u^ and v^ change as the x's and y's change would be indicated

by a change in the optimal basis and these limits would have to

be considered if this route were chosen .

Another more direct approach is suggested by the shadow

price of the linear program constraints. Each hospital with

a non-zero shadow price is included in the efficiency reference

set of hospitals against which the objective hospital efficiency

rating was measured. For H16 the efficiency reference set is H3

.

Thus, H16 was compared to H3 to calculate h* and H16 should be

compared to H3 above to determine the amount and location of
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the inefficiency. This direct comparison earlier indicated that

H16 needs to decrease supplies by $50,000 to become as efficient

as H3. This intuitive result which is easily derived in this

simple example can be more directly achieved in this and more

complex cases from interpretation of the shadow prices of the

virtual rates of transformation (u ,v.) . This will be illustrated
r 1

at a later point. It is sufficient to note at this point that the

shadow price of v^ related to supplies is -50 which corresponds

to the requisite reduction of supplies by $50,000 to make H16

efficient.

H17 has an efficiency rating of h* = .84. As in the above
o

example, H17 can become efficient by increasing each output by

a factor of 7y^i,= 1.19 or decreasing its inputs by a factor of
o

h* = 0.84. The dual variables in table 3 indicate that the
o

efficiency reference set includes both H3 and H6 (rather than H3

alone). Thus, although H17 was based on H3, DEA searches for

reference points which will give H17 the highest efficiency rating,

and in this case it is based on a linear combination of H3' and H6

with the respective weights of .70 and .10 corresponding to their

dual variables. A composite of H3 and H6 can be constructed which

is more efficient than H17 as follows.

/ H3 \
I Dual,

TlVariabl<

(.7)

H3 Input-
Output
Vector

26

43.16

150

100

30

20

+
' H6 ^

Dual
^ariabl(

*
'H6 Input-\ Composit
Output ) of H3
Vector / and H16

(.1)

* See Exhibit 3

36
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(A) (B) (C)
Composite of
H3 and H6 H17 Difference

Input-Output Vector vs Input-Output Vector (B)-(A)

Inputs

FTE's 21.8 < 26 4.2

Bed Days 36,420 < 43,160 6,740

Supply $'s $126,000 < $150,000 $24,000

Outputs

Teaching 80 = 80

Severe 2600 = 2600
Patients

Regular 1600 = 1600
Patients

H17 produces the same outputs as a composite of two efficient

units, (H3 and H6), while H17 uses more inputs than the composite

to achieve that level of outputs. Thus, H17 can become efficient

by decreasing its inputs by the amounts in column C above. (This

adjustment can be directly calculated by use of the other dual

variables in Table 3. Each input corresponding to the denominator
m

constraint in (3) which is V co.x. = 1 is adjusted by the denom-
. ^-1 1 lO1=1

inator shadow price of .844 and further adjusted by that input's

related VRT shadow price. For example, Hl7's actual FTE's are

adjusted to arrive at the composite efficient FTE level as

follows: (.844) (26) - .141 = 21.80. Each of these terms is

included in Table 3.
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One final observation which should be noted is that the

composite solution is not the same as the input-output vector

of H3 . While Hl7 was based on H3 to create an obviously ineffi-

cient unit, the degree of inefficiency and adjustment required

to become efficient is based on the efficiency reference set

which may include only one efficient unit, as is the case of

H16, or which may include a number of efficient units. The

efficiency reference set might not have included H3 in the eval-

uation of H17 even though we developed H17 based on H3. DEA

selects the efficient reference set to give H17 the highest

possible efficiency rating and will select from any of the

efficient hospitals to accomplish this.

We will now consider Hll to complete the interpretation of

the DEA efficiency rating and provide a more complete indication

of management implications. Hll was correctly located as

inefficient by DEA. From Exhibit 1 we also know that the source

of the inefficiency in Hll is excess supplies and an excess number

of FTE ' s for the realized outputs. The excess supplies amounted

to $65,000 and the excess FTE ' s amounted to 8 units. From earlier

discussion, there are three clear ways for Hll to improve its

efficiency rating of h* = .85 to the level of 1.0: 1) It can
o

reduce its inputs to 8 5% of current levels, holding outputs

constant; 2) It can increase its outputs to 118% (1 t .85) of

the current level, holding inputs constant; or 3) It can adjust

its inputs and outputs. This is illustrated in Table 4, along

with the DEA linear program output for Hll to be used in the

following analysis.
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This third possibility from Table 4, column E, suggests

that to become efficient, i.e., to increase h* to 1.0, Hll must

decrease FTE ' s by 5.1 units, decrease supplies by $45,000, and

increase teaching outputs by 96.4 units. This adjustment is

calculated by comparing the composite inputs and outputs based

on a weighted sum of the efficient reference units. These

weights correspond to the dual variables assigned by the linear

program to each of these units H7 and H4 . The solution suggested

in Table 4 to make Hll efficient has the following effect:

decrease FTE '

s

decrease supplies

increase teaching
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Management of Hll may determine that the changes to increase

Hll's efficiency noted in Col. E of Table 4 are not all possible;

e.g., it may be impossible to increase teaching by 95.4 units of

output. Management's objective would be to select some set of

implementable changes in inputs and outputs to increase efficiency

by .148 which would result in an efficiency rating of 1.0.

Recall that the actual adjustment to make Hll efficient based

on the underlying production function was to reduce supplies by

$65,000 and FTE ' s by 8 units. The virtual rates of transformations

defined by H4 and H7 reflect an increase of efficiency of .073

(= 65 X .001 + 8 X .001). Thus, this adjustment would appear to

increase h* to (.853) + (.073) = .926 which is less than the •

efficient evaluation expected. As the inputs and outputs are

adjusted, Hll moves toward another section of the frontier which

has a different efficiency reference set and different virtual

rates of transformation. Such an adjustment, which we know is

sufficient to make Hll efficient, is not apparent except to the

extent that the LP indicates these ranges over which the VRT '

s

are fixed. Once an adjustment goes beyond this range, DEA must

be rerun to determine the new efficiency reference set.

DEA applied to this simulated data base is found to 1) accur-

ately locate relatively inefficient units when inputs and outputs

are correctly specified, 2) indicate the magnitude of inefficiency

by reference to a specific efficiency reference set of units

against which the objective unit's inefficiency is being measured,

and 3) indicate alternative sets of adjustments to inputs and

outputs to increase the efficiency of an inefficient unit to 1,0.
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5 • Alternative Methods to PEA for Identifying Inefficient Units

DEA has been shown to be one useful approach to locating

relatively inefficient members of a group of units. Other

techniques have been, and are, used to accomplish similar ob-

jectives to DEA. These techniques are generally single output

oriented in contrast to DEA which is designed to incorporate

multiple outputs.

Typical single output efficiency indicators for hospitals

include average cost per patient day, average cost per patient,

FTE ' s or nurses per patient day, average length of stay, supplies

per patient, etc. A few of these indicators are presented in

Table 5 for the same group of 15 hospitals for which DEA accur-

ately identified the inefficient units. The first measure, aver-

age cost per patient, is portrayed under column A along with a

parenthesized number which represents rank in an average cost

array. Evidently, H6 would be misclassified as inefficient and

so might H3 which is tied in rank with H9 . Conversely, HIS,

known to be inefficient, would have rank 6 and hence would be mis-

labeled as efficient.

In real applications, the patient output is acknowledged

to require some adjustment for case mix. In this data set, the

relative cost of severe versus regular patients is known. Hence,

using the data of Exhibit 1 we can weight the severe patient units

by the ratio of severe to regular patient cost— $170 t $130=1.3.

For example. Hi would have adjusted patients of 3,000 regular +

2,000 x 1.3 severe patients for an adjusted total of 5,600 patients,

This in turn would result in an adjusted average cost per patient

of $138.48 versus the unadjusted cost of $155.10 per patient.



-39-



-40-

Continuing in this manner, the other adjusted costs and new

ranking listed in column B of Table 5 are obtained. Even with these

adjustments, however, trouble is still experienced, since hospitals

H3 and H4, are now in the group of eight highest cost per patient

hospitals, while H13 continues to be characterized as relatively

efficient. This is more clearly illustrated in Table 6 where hos-

pitals are listed from lowest cost (top) to highest cost (bottom) for

unadjusted and adjusted cost per patient. Teaching output levels

have not been adjusted for in this case mix adjusted data which

explains the misranking in Table 5 column B. Note that the efficient

units H3 and H4 ranked below inefficient units H9 and hl3 are the

ones with higher teaching outputs (see Exhibit 3) . This occurs

because teaching costs have been allocated to the adjusted cost

per patient day. Columns C and D segregate the case mix adjusted

cost per patient between hospitals with high and low teaching out-

puts which result in a correct ranking for each set of hospitals.

This final adjustment is often considered unnecessary in real

application. Hospitals are often segregated into teaching and

non-teaching groups for which intragroup cost comparisons are

made as in column B, Table 5, which result in the misranking

of certain units.

A further problem arising from this approach is determining

the cost level that segregates efficient from inefficient hospitals.

A simple rule - units above the mean cost per patient are inefficient

- in the case mix adjusted data in Table 5 column B would exclude

two of the eight inefficient units as candidates for study to improve

efficiency. Another arbitrary rule (which has been adopted in
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TABLE 6

Single Output Measure Rankings

Case Mix Adjusted

Average Cost per Day Average Cost per Day

Efficient Inefficient Efficient Inefficient

H7

H5

H2

HI

H6

H13 H13

H3 H9

HIO H3

H6 H4 .

Hll Hll

Highest H8 H12 , H14

Least"
H12, H14 H8

*

Efficient H15 H15*

HIO*

Hospitals more than one standard deviation over average cost

Lowest
Cost =

Most
Efficient
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certain regulatory settings) is to examine all units more than

one standard deviation above the mean cost per patient. This

would exclude five of the eight inefficient units. In any case,

some arbitrary rule would be required and there is no assurance

that the set of units selected for remedial study will be the

relatively inefficient units.

A final observation is that the levels of cost per patient

between hospitals after correction for case mix and teaching level

still does not provide any insights into the magnitude of the

inefficiency as was available with DEA.

6. DEA Strengths and Limitations Contrasted with Single Output
In put Measures

a. Robustness in Identifying Inefficient Units

DEA accurately and objectively located units which were

technically inefficient with respect to their inputs and outputs

compared to other units in the study This result occured when

simulation inputs and outputs were properly specified as physical

input and output units. The relatively efficient units identified

by DEA are not, nor are they meant to be, the absolute efficient

units, but rather they form efficiency reference sets against

which other units' inefficiencies can be objectively measured.

The true production function in actual application is rarely

known and unlike the example presented here, the function is

not necessarily the same across all units. DEA seeks out relatively

efficient units on the basis of repeated application of an extremal

principle and mode without regard to a single production function, and
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results in a relatively efficient production frontier which is piecewise

linear reflecting different rates of substitution of inputs within

each segment. Hence, the underlying production function or functions

need not be known to use DEA and it therefore can be applied without

specific knowledge of the efficient input output relationships. A

further distinctive strength of DEA is the quantification of the

magnitude of inefficiency and the ability to determine sets of

adjustments required to improve efficiency to the level of the

relatively efficient units in the set. Further study with real

hospital data and hospital managers is required to understand

the full extent to which this tool can be utilized by managers in

seeking sources of inefficiency and the magnitude of inefficiency.

Another area requiring further research and clarification in

applying DEA to real data is the sensitivity to the number of ob-

servations and the number of inputs and outputs. For example, one

recently implemented hospital case mix taxonomy includes 38 3 diagnos-

tic related groups (DRG's) each of which represents a different type

of care requiring differing amounts of hospital resources [18] [19] . If

each DRG were treated as one output for DEA applications, there may

be few or no units isolated as relatively inefficient when the sample

of hospitals is small.

Single output measures (in contrast to DEA) require that an

arbitrary or subjective cutoff be designated as the point of rela-

tive inefficiency, e.g., units with average cost over one standard

deviation beyond the mean might be designated as the relatively

inefficient units for review. Even when this cut-off point can be

established in some objective manner, other problems associated
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with this approach severely limit its reliability. As illustrated,

the inability to evaluate multiple outputs simultaneously may result

in the inclusion of technically efficient units in the inefficient

set. Specifically, this will occur where there is no accurate set

of weights which can be applied to combine all outputs into a single

adjusted output measure. Currently, no such set of weights is avail-

(21)
able to combine patient outputs into a weighted patient output.

Similarly, there is no set of weights to combine patient care,

teaching, and research outputs of hospitals. In addition, the

single output measure is input oriented and therefore does not

consider the possibility of output adjustments as a means to improve

efficiency.

The weights that were assigned to each of the multiple outputs

to obtain a single output efficiency measure result in a weighted

output measure for which it is difficult to interpret the meaning

of differences between various units' output levels. In contrast,

DEA can utilize absolute units of each output which can be directly

interpreted

.

A similar but more basic issue arises with respect to the need

to collapse all the inputs into a single measure such as dollars.

In Table 3, where costs per patient were listed, it was assumed

that all hospitals paid the same price for each input. (In DEA,

no such assumption is necessary, as the physical quantities of each

input can be used.) Real hospital input data measured in actual

dollars will reflect different costs incurred for similar inputs.

This cost variation which relates to price efficiency could further

confound the cost per patient ranking considered in Table 5. Such

a ranking would reflect a combination of technical, price and

allocative efficiency and would therefore not be beneficial in
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isolating technically inefficient units where there is potential

for improved utilization of resources. For example, a unit which

has a relatively low cost per patient may be highly efficient in

its ability to purchase inputs at a low cost. This unit may still

be technically inefficient suggesting that fewer of these inputs

may be needed to produce the same outputs, suggesting that costs

might be further reduced.

One problem which may affect both DEA and single output anal-

ysis is that data may be available only in the form of indices or

percentages (such as an index of severity or quality) . In such

cases, the only alternative available will be to weight the related

input or output and use this adjusted value rather than the raw

physical input or output in the analysis. The results in such cases

will be only as reliable as the indices or weights applied. In

addition, the interpretation of the results will be more complex.

DEA appears to be most useful at evaluating the technical

efficiency as distinguished from issues of price and allocative

efficiency. For this purpose, DEA appears to be more appropriate

than the widely used single output measure approach. The results

of the DEA analysis would nevertheless be tempered by price and

allocative efficiency considerations. For example, DEA will

suggest alternative routes toward improving efficiency, i.e.,

alternative sets of adjustments of inputs and outputs. The routes

which are chosen by management would naturally include consideration

of the cost associated with these alternatives. Along these lines,

DEA may be a useful analytic tool which management of inefficient

units can use to evaluate the impact of alternative sets of input

and output adjustments on that units relative technical efficiency.
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In addition, where a unit is inefficient because of certain unman-

ageable characteristics such as the size of the plant or the demand

level for its services , DEA can be reapplied to evaluate the

efficiency with respect to manageable elements. For example, if

the plant is known to be excessive with no ability to reduce the

size, a revised DEA evaluation can be completed using the

ideal reduced plant input level to determine if the unit is still

relatively inefficient when this uncontrollable element is assumed

to be corrected in the analysis.

b. Constant Returns to Scale

The version of DEA applied herein assumes constant returns

and therefore does not correct for units which might be inefficient

solely due to their size. This problem can be addressed by comparing

only units of similar output levels; however, caution is needed here

as a hospital may experience increasing returns with respect to

certain outputs and decreasing returns with respect to other outputs.

Single output measures are subject to similar limitations. This

issue is often addressed with respect to single output measures by

controlling for size and by ignoring the returns to scale with

respect to the other outputs. An expanded version of DEA which

incorporates economies of scale is under development (see [10]).
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c. Potential Application of PEA

DEA appears to be a promising method of evaluating relative

technical efficiency of nonprofit organizations with multiple in-

puts and outputs, and where there are no market prices to objectively

collapse these inputs and outputs into common units. This approach

provides a potentially reliable basis for evaluating the relative

efficiency of a set of similar units and specifically to select

less efficient units for audit or management review. It provides

both a method of identifying relatively inefficient units, and

information about the magnitude of inefficiency which provides

a basis for possible management action to improve efficiency. Thus,

DEA appears to be appropriate for the hospital manager that wishes

to compare one hospital's operations with other comparable hospi-

tals much like one might use profit or return on investment to

compare firms in an industry. In addition, with further field

research this tool may indicate that DEA is an alternative basis

for establishing health care reimbursement rates which determine

the amount paid to a hospital for each service rendered. Current

reimbursement systems primarily reimburse hospitals based on

their actual or projected costs. Using DEA, reimbursement

rates may be established based on the input-output relationships

of the relatively efficient units, thereby filtering out ineffi-

cient units from the rate setting base.

This paper has illustrated some of the potential benefits

and limitations of a new efficiency measurement technique--Data

Envelopment Analysis. DEA clearly presents new possibilities for

efficiency evaluation, and particularly in the nonprofit sector.

Broader understanding of the feasibility of potential applica-

tions will require going beyond the data simulation phase to
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real health care data applications of DEA. Of greatest inter-

est in field evaluation would be the practical limitations imposed

by real data, as well as operational, political and legal con-

straints that may be encountered among potential health care users

of DEA.
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Exhibit 1

Structural Model (Efficient Hospital Operations):

Efficient Input-Output and Cost Relationships Assumed in the

Hospital Production Model to Create

the Artificial Data Base in Exhibit 3.
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One Unit of Output

Efficient Cost
of Outputs

Outputs





O 01

to n)

>

+-)

•r-

X

4J

4-
(U

c

o

<4-

4->

Q.
to

O

o

(U
10
(C
CO

ro
+->

fOQ
if-

O

O

s-
4J
to
C
o

o
O)
r—
Ql
E
to
X

3

4-1

D
O

(-1

73
tM (1)

U
XI CO

0) rH
Sj 0)

•H pi
3
O- QJ

01 ^
Pi -u

CO tH
•U O
D
O. iJ

C -HM C

a
to

w

to m

1^ ffi

K

Q)





Footnotes

(1) Note, for example, that an organization may be highly-
effective and also inefficient.

(2) See N.C. Churchill and W.W. Cooper [12] for further discussion.

(3) See [5], [6] , and [7]. See also the earlier work by
S. Carlson [4].

(4) See [1] , [5] and [7]

.

(5) We shall use the value e = 0.001 in the discussion for numer-
ical convenience. Although still smaller values may be used,
a series of checks needs to be made in any case (as we have
done) to ensure that the niomerical value assigned to e does
not alter the resulting optimal solutions.

(6) The marginal rate of transformation is defined as the slope
of the production possibility frontier - ^^2 and represents

dy]_

the relative change in one output which is required for a
change in another output holding inputs constant. The marginal
rate of productivity or the rate of technical substitution
is the slope of the isoquant dx2 representing the rate of

dx^
change in one input required for a change in another unit
with output held constant. See [13] Ch. 3 for further dis-
cussion.

(7) As determined by the model and the computing procedures
utilized.

(8) The analogy is with respect to concepts like "virtual work"
or "virtual displacements" in physics and engineering. See
A Charnes and W.W. Cooper [9] for other uses of these concepts
in mathematical programming.

(10) These outputs represent simplified breakdowns of true hospital
outputs where more severe types of patient diagnoses require
more intense utilization of inputs than less severe (in this
case "regular") diagnoses.

(11) Methods for dealing with these considerations are not very
far advanced,

(12) Note that statistical approaches such as least square regres-
sions, etc. would fail even more badly. Econometric approaches
to address this problem for the single-output case are reviewed
in [13] .



{13) To put the matter differently, DEA would provide a conser-
vative measure with E being at least as inefficient as the
DEA analysis suggests,

(14) A new computer code for effecting these computations without
requiring complete LP reruns has been developed by J. Kennington
in association with A. Charnes, W.W. Cooper, and A. and W. Bessent,
See [15] . See also [ 3 ] for an earlier formulation.

(15) The format of the linear program is illustrated in Exhibit
4 for hospital 8.

(16) This is proved in [16].

(17) An efficient computer code for effecting the wanted compu-
tations and data printouts has been developed by Jeff
Kennington in association with A. and W. Bessent and A. Charnes
and W.W. Cooper. See [15].

(18) These are shown under the columns headed "Outputs Version B"
in Exhibit 2.

(19) The inefficiency might, for example, be justifiable if a
hospital were inefficient because it is operating in a low
population area where continued operations are deemed necessary
for public health policy reasons.

(20) See CCR [6] for further discussion.

(21) An example of a comprehensive attempt to ascertain the cost of
care is one developed at Yale University and which is now being
applied to New Jersey hospitals. Here costs have been esti-
mated for 383 Diagnostic-related groups (DRG's). See, e.g., [19].
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