

nuzo
.M414

IM/^R 14 1991

WORKING PAPER

ALFRED P. SLOAN SCHOOL OF MANAGEMENT

A METADATA APPROACH TO
RESOLVING SEMANTIC CONFLICTS

Michael Siegel

Stuart Madnick

February 1991

WP # 3252-91-MSA

WP # 03-91-20

MASSACHUSETTS

INSTITUTE OF TECHNOLOGY
50 MEMORIAL DRIVE

CAMBRIDGE, MASSACHUSETTS 02139

A METADATA APPROACH TO
RESOLVING SEMANTIC CONFLICTS

Michael Siegel

Stuart Madnick

WP # 3252-91-MSA

February 1991 WP # 05-91-20

m

II.I.T LIBRAH "^
IMR14 199f

RE

A Metadata Approach to Resolving Semantic Conflicts

Michael Siegel

Stuart E. Madnick

Sloan School of Management, E53-323

Massachusetts Institute of Technology

Cambridge, MA 02139

msiegel@sloan.mit.edu

Abstract

Semantic reconciliation is an important step in determining logical connectivity between a

data source (databcise) and a data receiver (application). Semantic reconciliation is used to

determine if the semantics of the data provided by the source is meaningful to the receiver. In

this paper we describe a rule-bzised approach to semantic specification and demonstrate how this

specification can be used to establish semantic agreement between a source and receiver. We
describe query processing techniques that use these specifications along with conversion routines

and query modification to guarantee correct data semantics. In addition, this work examines

the effect of changing data semantics. These changes may occur at the source of the data or

they may be changes in the specifications of the data semantics for the application. Methods

are described for detecting these changes and for determining if the database can continue to

supply meaningful data to the application. Though described in terms of the source-receiver

model, these techniques can also be used for semantic reconciliation aind schema integration for

multidatabase systems.

Keywords[data dictionaries, metadata, query modification, schema integration, semantic conflicts]

1 Introduction

With the development of complex information systems, the need for the integration of heterogeneous

information systems, and the availability of numerous online computer data sources, it has become

increasingly important that methods be developed that consider the meaning of the data used in

these systems. For example, it is important that an application requiring financial data in French

francs does not receive data from a source that reports in another currency. This problem is

further complicated by the fact that the source meaning may change at any time; a source that

once supplied financial data in French francs might decide to change to reporting that data in

European Currency Units (ECUs).

To deal with this problem, these systems must have the ability to represent data semantics and

detect and automatically resolve conflicts in data semantics. At best, present systems permit an

application to examine the data type definitions in the database schema, thus allowing for type

checking within the application. But this limited capability does not allow a system to represent

and examine detailed data semantics nor handle changing semantics.

McCarthy [McC82,McC84] describes the importance of detailed data description or metadata

systems for use in large statistical databases. Another system, the Information Resource Dic-

tionary System (IRDS) [GK88,Law88], allows a user to develop a metadata dictionary using an

entity-relationship model. These systems provide the ability to access and manipulate metadata

in a manner similar to that used for data. However, these systems do not include a well-defined

methodology for utilizing metadata for semantic reconciliation, the identification and resolution of

semantic conflicts.

This research examines the specification and use of metadata in a simple source-receiver model.

The source (database) supplies data used by the receiver (application). The source and receiver

may be at the same physical location, as in a local database management system accessed by an

application program, or the source may be in a different location, such as an online data service.

We describe a rule-based representation for both the database semantic specification and the

application's semantic view of the data. A well-defined model for data semantic representation al-

lows for comparisons between database and application rule sets to determine whether the database

can supply meaningful data to the application. Initially, we examine query processing strategies

that can be used to determine if the application query can be correctly answered using the semantic

definitions of the data at the source. Then, we examine query processing techniques for adding

restrictions to an application query to guarantee correct data semantics.

The methods proposed for semantic reconciliation allow for changes in data semantics in the

database or changes in the application's data semantic requirements. These methods can be used

to track changes automatically and determine, as a result of any changes, if the database can still

supply meaningful data. Additionally, we show that in some instances these methods can be used

to resolve semantic conflicts between the database and the receiver, thus allowing the database to

supply meaningful data.

This paper is organized as follows. In the next section we examine related work in the area of

metadata representation. In Section 3 we present examples of the problems that can occur in the

source-receiver model when methods for semantic reconciliation are not available. We introduce

a model for defining data semantics for use in identifying and resolving semantic conflicts. In

Section 4 we describe the use of metadata in semantic reconciliation. We define an architecture

for a system that can represent and manipulate data semantics. We then describe the process of

comparing metadata between systems (i.e., an application and a database) and present methods

for application query processing that can be used to automatically determine if a database can

provide an application with meaningful data. Then, in Section 4.3.3 we consider the use and effect

of query processing techniques that modify the application query to guarantee semantic correctness.

In Section 5 we examine the use of semantic reconciliation in a dynamic system environment where

changes occur in the application or database semantics. Finally, in Section 6 we present our

conclusions and describe areas of future research including the the use of metadata and semantic

reconciliation and schema integration in multidatabase systems.

2 Metadata

Metadata refers to data about the meaning, content, organization, or purpose of data. Metadata

may be as simple as a relational schema or as complicated as information describing the source,

derivation, units, accuracy, and history of individual data items.

In [McC82], McCarthy describes a metadata representation and manipulation language where

the metadata is part of the data files. The representation allows for the inclusion of a wide range of

metadata accessible through a set of specially defined operators. In [McC87] he demonstrates the

use of metadata in a Material Properties Database. The development of the Information Resource

Dictionary System (IRDS) for handling metadata is described in [GK88,Law88]. The IRDS allows

the user to develop an entity- relationship model description of the metadata. The IRDS includes

a set of primitive entities and relationships, and a set of operations to build new entities and rela-

tionships for describing metadata. [GSdB88] describes additional knowledge-based representations

for metadata. However, these approaches do not include a well-defined methodology for utilizing

this metadata for semantic reconciliation. [YSDK90] describes the use of concept hierarchies for

comparing attributes from different schemas. However, practical means for defining comparable

concept hierarchies are not discussed and these methods deal with attribute comparisons not data

comparisons.

It is important to provide a representation that is rich enough to describe the significant data

semantics and can be used in methods to identify and reconcile semantic heterogeneities. We are

interested in a representation that can be used for defining both the application and database

semantics. We intend to use this metadata for semantic reconciliation; more precisely, we intend

to use metadata to resolve the following questions in the source-receiver model:

1. Can the database provide data that is semantically meaningful to the application?

2. Is the application affected by a change in the database semantics? (or a change in its own
data semantics requirements?)

In the next section we describe a sample database and application and consider the problems

that occur when the semantics of the data provided by the database are not the same as those

required by the application. Then, we introduce a restricted rule-based representation for data se-

mantics and define a model for semantic representation that will permit the comparison of semantics

between systems.

3 Providing Metadata for Semantic Reconciliation

As a more detailed example showing the need for semantic reconciliation, consider a data source

that provides the trade price for a variety of financial instruments. The schema of the relation

containing this data is shown in Figure 1 along with two sample records. Each record contains the

type and name of the instrument being traded, the exchange that the instrument was traded on,

and the trade price. It should be noted that although we are using the notion of data source as a

database, the concepts apply equally well to a data stream such as a stock ticker, where records are

being continuously transmitted and the application selects those of interest to it.

A query that requests the trade price of Telecom SP will return the value 1107.25. Even in this

simple relation, the natural interpretation of this value might not provide a complete understanding

Instrument.Type

domain(Instrument.Type) = <equity, futurO.

domain(Exchange) = <nyse, madrid>.

domain(Currency) = <US dollars, French francs, pesetas>.

domainCIVade-Price-Status) = <latest-trade_price, latest_nominaLprice>.

Figure 2: Examples of Primitive Attribute Domains

where the value 115.25 represents the latest trade price in US dollars.

The basis for our model of data semantics is the assignability of values to the semantic domain.

An attribute is semantically assignable if there is some function that can determine sem(t) for each

<£domain(T). The assignment domain of attribute T is defined as

assign(T) = <Xi, Jf2,X3, ...,X„> where each X, is an attribute.

The assignment domain for a particular value t in the domain of T is defined as

assign(t) = <xi,X2,X3,...Xn> and x,fdomain(X,).

As an example of semantic assignability consider the following assignment and semantic do-

mains:

sem(Trade_Price) = <Trade_Price-Status, Currency>

assign(Trade_Price) = <Instrument.Type, ExchangO

We want some function F that maps values in the assignment domain to values in the semantic

domain:

/'<Instrument_Type, ExchangO ^ <'IVcide_Price^tatus, Currency>

Then, for a given trade price, the instrument type being traded and the exchange that it is traded

on determine the status and currency of the trade price.

Different classes of semantic assignability exist. An attribute Tis trivially assignable if for each

i€doraain(r), sem(t) is constant. That is, the assignment domain is not material in determining

the semantic domain, only the value t has any effect on the semantic domain. We say that the

attribute Tis primitive if T is trivially assignable and for all yiesem(T) Yi is primitive, for example,

primitive attributes might include Instrument.Type, Exchange, Currency and Trade_Price_Status

as shown in Figure 2. Then the semantics of a value for Currency, say, US dollars, is well-defined

among all systems that share this primitive concept. In Section 4.1 we describe the establishment

of primitive concepts for use in these systems.

The existence of primitive attributes provides a common language by which the semantics of

other attributes can be defined. We say that attribute T is semantically definable either it is

primitive or it is semantically assignable and for all X,eassign(T), Xi is semantically definable and

for all yicsem(T), Yi is semantically definable.

In this paper we use sets of rules as procedures for assigning semantics to each semantically

definable attribute. A semantic assignment rule for attribute T has the following form:

Ci{Xi),C2{X2), . .
.

,

CiiXi) => Ci+i{Yi), C.+2(y2), . .
. , C„(F„)

Ci,C2,- ,Ci are constraints on the attributes Xi, A'2,. . . ,A',€assign(T) and C,+i,C,+2 5- • >C'n are

constraints on the attributes Yi,Y2,. .., Ynfsem(T).

Examples of rules that might be used to define the database semantic specification for the

Trade-Price attribute are shown in Figure 3. The first rule says that if an instrument is an equity

traded on the Madrid Stock Exchange then the trade price is reported as the latest trade price in

pesetas. In the next section we show how this representation can be used in semantic reconciliation.

assignCIVadcPrice) = <Instrument-Type, Exchango
sem(TradeJ'rice) = < TradeJ'rice.Status, Currency>

1. Instrument.Type = "equity" and Exchange = "madrid" =
TVade-Price-Status := "latest_nominaLprice" and Currency := "pesetas"

2. Instrument.Type = "equity" and Exchange = "nyse" ^
TVade-Price^tatus := "latest.trade_price" and Currency := "US dollars"

3. Instrument.Type = "future" ^
TVadeJriceJStatus := '1atest.closing.price" and Currency := "US dollars"

Figure 3: Database Semantic Rules for Trade_Price

4 Using Metadata for Semantic Reconciliation

Figure 4 shows the proposed architecture for a system that uses metadata for semantic reconcil-

iation. The database metadata dictionary (DMD) defines the semantic and assignment domains

for each attribute and the set of rules that define the semantic assignments for each of these at-

tributes. The application semantic view (ASV) contains the application's definition of the semantic

and assignment domain and the set of rules defining the semantic requirements for the data. While

a conventional database view definition defines the application's structural view of the database,

the ASV contains the complete specification of the semantic requirements for the application. The

ASV acts as the semantic import schema for the application and the DMD as the semantic export

schema for the database [HM85]. The metadata manager creates and maintains data on the results

from comparisons between the semantic specifications in the ASV and the DMD. It also defines the

location of available conversion routines for resolving semantic conflicts (Section 4.2.1).

The rules shown in Figure 3 will act as an example DMD. Other attributes in the example

relation (Figure 1) are primitive and thus do not require semantic assignment rules. An example of

an ASV is shown in Figure 5. The specification contains two rules. The antecedents of these rules

define the domain for values of the Trade_Price attribute based on values of the assignment domain.

The first rule limits the domain of interest to equities traded on the Madrid Stock Exchange.

Trade_Price values with this assignment domain are to be reported (i.e., values of the semantic

domain) as the latest nominal price in pesetas. The second rule limits the domain of interest to

instruments traded on the nyse where Trade_Price values are to be reported as the latest trade price

in US dollars. Thus the total domain of interest of the application is limited to any instrument

traded on the nyse or any equity traded on the madrid exchange.

DATABASE

DATABASE METADATA DICTIONARY (DMD)

(
METADATA MANAGER]

APPUCATION SEMANTIC VIEW (ASV)

APPUCATION

Figure 4: Systems Architecture Using Metadata

as8ign('IYadeJ'rice) = <Instrument, Instrument.Type, Exchange>
sem(TradeJ'rice) = < TradeJ'rice.Status, Currency>

1. Instrument-Type = "equity" and Exchange = "madrid" ^
TVadeJ^rice-Status := 'latestJiominal.price' and Currency := 'pesetas'

2. Exchange = "nyse" ^
TVadeJ'rice.Status := 'latest.trade4)rice' and Currency := 'US dollars'

Figure 5: Application Semantic View (ASV) for TradeJ*rice

To decide whether a database can supply meaningful data to an application we must determine if

the rules in the DMD guarantee the data semantics specified by the rules in the ASV. In Section 4.2

we describe methods for comparing these rule sets. The results of these comparisons are used in

query processing to guarantee semantically meaningful solutions. Before we present these methods

we describe restrictions on the DMD and ASV that allow for comparison of these rule sets.

4.1 Restrictions on the Semantic Representation

So that data semantics can be compared between systems (e.g., an application and a database)

they must share some common language [ML90]. Data standardization is one method of imposing

common language requirements but this method is intrusive on the individual systems. Rather

than impose standards on the data we require that these systems share primitive attributes which

define a base vocabulary, terminology limited to a unique interpretation inside of the enterprise

domain of discourse. Any system in the enterprise can use this base vocabulary to develop rules

describing the semantics of semantically definable attributes. Terminology outside of this common
language must either be converted to the common language or remain non-comparable, making

semantic reconciliation undecidable.

The question remains how practical is it to define such a language and to require that metadata

definitions adhere to specifications of the language. A first reaction to this question might be

that this is no different than data standardization. Many of the problems of implementing data

standards over autonomous organization also exist in establishing and enforcing common language

constraints. However, it is intrusive to expect a data source to make data comply to a specific

external organization's standaxds especially when that data may be used by any number of different

external organizations while it is non-intrusive on the data operations to require that the source

supply metadata based on a shared vocabulary. Methods can be established that permit the

evolution of the shared vocabulary as required by changes in data semantics.

In addition to sharing primitive attributes, we require that the assignment and semantic domain

of an attribute defined in the ASV be a subset of the assignment and semantic domain for that

attribute in the DMD. In the case of our examples (Figures 3 and 5), the assignment and semantic

domains of the ASV must be subsets of the assignment and semantic domains of the Trade_Price

attribute as defined in DMD. As described in the next section, this requirement facilitates the

comparison of the procedures for semantic assignment in the ASV and the DMD. Present research

efforts are considering less restricted relationships between the semantic and assignment domains

of the ASV and the DMD.

4.2 Comparing Application and Database Semantic Specifications

Prior to the application requesting data from the database the metadata management system must

compare the rules in the ASV to those for the same attribute in the DMD. The purpose of these

comparisons is to determine for each attribute requested by the application whether the database

can deliver semantically meaningful data. Later, in Section 4.3.3 we examine how these comparisons

can be used to determine additional constraints that might be used to guarantee correctness.

The rule set comparison begins by selecting a single attribute whose semantics are specified in

the ASV. For each rule in the ASV that restricts the semantic domain of that attribute we need

to determine those rules in the DMD with matching antecedents. The basic types of comparisons

ASV Rul« Numb«r

For attribute Twith Xi€assign{T) and Yi€seTn{T)

1. Antecedent(APP) is a subset of Antecedent(DB)

APP:Ci(Xi)=>C4(yi)

DB : C2(Xi) A CaiX^) => C4iYi)

(a) if Ci(Xi) => C2(-'fi) then there is a match

(b) if C2(-'^i) ^ Ci(Xi) then there is a match

(c) otherwise no match

2. Antecedent(APP) is a superset of Antecedent(DB)

APP:Ci(Xi)AC3(X2)=>C4(yi)

DB : C2iX,) => C^iY,)

(a) if Ci{Xi) ^ C2{Xi) then there is a match

(b) if C2(A'i) ^ Ci(A'i) then there is a match

(c) otherwise no match

3. Antecedent(APP) overlaps Antecedent(DB)

APP:C,(Xi)AC3(X2)=>C5(yi)

DB .C2{X:)AC,(X3)=^C5{Yi)

(a) if Ci(A'i) ^ C2{Xi) then there is a match

(b) if C2iXi) ^ Ci{Xi) then there is a match

(c) otherwise no match

4. Antecedent(APP) disjoint Antecedent(DB)

APP : Ci(Xi) A C2iX2) => C3(Yi)

DB :C4(X4)=>C3(yi)

then there is a match

Figure 6: Four Types of Comparisons

10

senif) = < TVade-Price^tatusD, Currency^ >
seniyt = < TVadc-Price-Statusx, Currency/i >

sein(Trade_PriceD) = sem(Trade_Price^) if

5<nnj-eg««ro/en<(Trade_Price^tatusD, Trade_Price-Statu3^)

string-equivalent{CuTTency£) , Currency^

)

Figure 7: Semantic Equivalence for Trade_Price

semo = < T>ade_Price^tatusD, Currencyxj >
sem^ = < TVade-Price-StatuSyi, Currency^ >

sein(Trade_PriceD) = sein(TradeJ'rice^) if

s<nnj-egu:i;a/en<(TradeJ'rice_Status/), Trade_Price^tatus^)

cont)ert-currency(Currency£>, Currency ^i)

Figure 8: Semantic Equivalence Using Currency Conversion

4.2.1 Semantic Equivalence

The definition of semantic equivalence is left to the application developer and is included as part of

the ASV. For each non-primitive attribute the application developer must define the qualifications

for semantic equivalence over assignments to the semantic domain. A simple example is shown

in Figure 7 where the application requires that, for the Trade_Price attribute, assignments to the

semantic domain are equivalent only if the values for the database (i.e., subscript D) and those in

the application (i.e., subscript A) are identical strings. According to this definition the first and

second comparisons in Table 1 are equivalent while the last is not because latestJmde.price is not

the same string as the latest.closing.price.

There are a number of advantages in allowing the application to define semantic equality.

First, not all applications will have the same requirements for data semantics. For example, an

application may require trade prices whose semantics are string-equivalent for both Currency and

Trade_Price^tatus while another application may have less strict requirements that allow the latest

closing price in lieu of the latest trade price. Secondly, an application specification for semantic

equivalence may reference routines to convert data semantics. For example, if the metadata manager

has access to a method, that can be used to convert one currency to another then the application

can define the semantic equivalence of values of currency as shown in Figure 8. In this case, there is

equivalence between currencies if they are string equivalent or the currency defined for Trade_Price

in the DMD can be converted into the currency defined for Trade_Price in the ASV.

The function convert-currency is a boolean function that determines if two currencies are com-

parable. However, there must be a corresponding implementation that provides the exchange rate

for converting a trade price in one currency to a trade price in another currency. Knowing that

11

there is such a conversion function may not assure that at query execution time the conversion

can be performed (e.g., at specific times currency conversion rates may not be available for certain

currencies). The evaluation of semantic equivalence may have to be delayed if conversion routines

need to be executed at query run-time. In the remainder of the examples we assume that seman-

tic equivalence can be evaluated when comparing the rule sets. In Section 4.3.5 we consider the

changes in query processing methods when the evaluation of semantic equivalence must be done at

query execution time.

4.2.2 Results from Comparisons of Application and Database Metadata

Prior to query execution time, we can use the results from the comparison of the ASV and DMD rule

sets along with the definition of semantic equivalence to determine, for a given attribute, whether the

database can supply data with the correct semantics. As a result of the comparisons the metadata

manager can determine the semantic status for each non-primitive attribute, i.e., whether data

for that attribute attribute will never, always or may be meaningful to an application. In this

section we present an example for each of the three possible results.

First, consider an ASV with the following single rule for the semantics of Trade_Price:

Instrument.Type = "equity" and Exchange = "madrid" ^
Trade_PriceJStatus := "latest_trade4)rice" and Currency := "pesetas"

and the same semantic and assignment domains defined in Figure 5 and the definition of semantic

equivalence shown in Figure 7. Under these specifications the database can never supply a non-

null solution' because there is only a single rule in the DMD (Figure 3) that matches this rule

and the assignment to the semantic domain is in conflict. In this example, the database provides

the latest nominal price while the application requires the latest trade price. For this example, any

application query containing a reference to the Trade_Price attribute would have no meaningful non-

null solution. In addition, if there are no matching rules for a given attribute then the database

can never provided meaningful data.

Secondly, consider an ASV with the following rule:

Instrument-Type = "equity" tind Exchange = "madrid" ^
Trade_Price.Status := "latest-nominaLprice" and Currency := "pesetas"

and the definition of semantic equivalence in Figure 7. In this example the database can always

supply meaningful data for the Trade_Price attribute. There is only a single matching rule in

the DMD and the semantic assignment for that rule is semantically equivalent to the semantic

assignment defined in the ASV (i.e., for this example the table of comparison would be only the

first column in Table 1). The correct semantics are always provided because any query from the

application will refer to data with the meaning defined in the ASV and this meaning is guaranteed

by the database.

Finally, for the ASV shown in Figure 5 and the definition of semantic equivalence in Figure 7

the database may be able to provide data with the correct semantics. In this example the first rule

'For simplicity, we will only consider meaningful non-null solutions. In Section 4.3.2 we describe the conditions

where a meaningful null solution can be determined for queries where there are semantic conflicts.

12

in the ASV does not conflict (i.e., semantic equivalence holds) with the matching rule in the DMD.
The second rule in the ASV matches two rules in the DMD and conflicts with the second of these

rules. The conflict occurs because for futures traded on the nyse the application expects the trcide

price to be reported as the latest.trade.price while the database provides the latesLclosing.price.

Because of this semantic conflict, any application query that refers to Trade_Price data on futures

might return semantically incorrect data.

In the case where the database may deliver the correct data, an application query could be

modified to eliminate any possible conflict. However, additional query constraints may limit the

application beyond the restrictions specified in the query or the ASV. In this example, the appli-

cation query would have to be modified so that the Trade-Price for futures could not be included

in solution. This change in the application query might require that the application be notified

of a change to the original query. In Section 4.3.3 we describe the query processing strategies for

restricting application queries to guarantee semantic correctness.

The metadata management systems must create and maintain Table 1 which describes the

results of comparisons between rules in the ASV and DMD. These tables are created prior to the

submission of application queries. As shown in Section 4.3 these tables may be modified by the

introduction of constraints in an application query. As described in Section 4.3.3, the metaxiata

manager will have to reevaluate these comparisons as changes are made in either the application or

the database semantics. In the next section we examine query processing strategies, based on the

ASV and DMD comparisons, for determining when the application will receive meaningful data.

4.3 Query Processing and Semantic Reconciliation

In this section we examine the use of metadata in semantic reconciliation for application query

processing. Initially, we examine the stages of query processing where the results of comparisons

between the ASV and the DMD are used to assess the potential of the database to supply a mean-

ingful solution to an application query. Following this we describe a different approach to query

processing which uses the results of comparisons between the ASV and the DMD to define modi-

fications to the application query such that the application is guaranteed to receive a meaningful

but possibly partial solution to a query.

4.3.1 Query Processing: Stages for Detecting Semantic Conflicts

Prior to the submission of an application query the metadata manager has created tables similar to

Table 1 for each non-primitive attribute in the ASV. During the compile-time stage, query processor

must consider each attribute in the query (i.e., any part of the projection list of attributes and any

attribute constrained in the query) and determine if the database might (i.e., may or always)

supply the correct semantics. For example, there may be attributes in the database that will never

provide meaningful data (i.e., either all matching rules result in semantic conflict or there are no

matching rules). For a query that contains such an attribute, the outcome from query processing

with semantic reconciliation is:

Query Resolution by Semantic Conflict at Compile-time - there is a semjintic conflict between the

database and the application for at least one attribute in the query. The conflict can be determined

prior to query execution based on the results of comparisons between the ASV and the DMD cis

determined prior to query submission.

13

and as a result the query is aborted. The application can be notified that an unresolvable semantic

conflict was identified prior to execution (i.e., users could actually receive detailed descriptions of

the conflict so as to permit the user to work towards a resolution).

Still prior to query execution time the constraints in the query can be used to remove compar-

isons that are no longer applicable because the constraints in the query invalidate the comparison.

Determining applicable rules is equivalent to adding the constraints in the query to the antecedent

of each rule in the ASV. If a contradiction occurs between these added constraints and the con-

straints in the antecedent of a rule in the ASV then the rule no longer applies. The contradiction

signifies that the query will not require data from that portion of the application view. The re-

maining modified rules are matched against the DMD according to the methods for comparison

defined in Figure 6. As an example consider the impact of query Qi:

select Trade_Price iQi)

where InstrumentJ^zime = "future"

on the comparisons in Table 1. The constraint on Instrument.Type is in contradiction with the

first rule in the ASV (i.e., "future" ^ "equity"). The databcise wiU not be required to supply any

Trade_Price data on equities and this test for semantic equivalence is irrelevant. The second rule is

still applicable but only for Instrument.Type = "future". With this restriction the only matching

rule is the last one in the DMD. There is a semantic conflict in this portion of the application view.

As a result the database can never provide data to this query. For such a query the outcome from

query processing with semantic reconciliation is:

Query Resolution by Semantic Conflict at Compile-time through Reduction - after reducing the number

of appUcable comparisons there is at least one attribute that can never provide data with the correct

semantics. Again, this conflict can be determined prior to query execution time.

Also prior to query execution time it can be determined that a query whose attributes always

provide the correct semantics can be processed correctly. Query modification must be used to

include the constraints specified in the applicable rules in the ASV. Again, the comparisons between

the ASV and DMD may change with the consideration of constraints in the query. For example,

consider query Q2:

select Trade_Price (Q2)

where InstrumentJ4ame = "equity"

and the comparisons in Table 1. The constraint on Instrument.Type is in contradiction with the

conditions of the match between the second rule in the ASV and the third rule in the DMD (i.e.,

"future" / "equity"). The database will not be required to supply any Trade_Price data on futures.

This eliminates any possible semantic conflicts for Trade_Price. For this query, there are no conflicts

and the database can provide the correct semantics for the Trade_Price attribute.

Finally, there is the case where no conflicts occur at compile-time but there is at least one

attribute in the query that may provide the correct semantics. Again, the number of qualifying

comparisons is reduced to account for constraints in the query. There may still remain at least

one attribute for which there is a comparison between the DMD and the ASV where there is both

semantic agreement and semantic conflict. For example, consider query Q3,

14

select TradeJ'rice (Qs)

where InstrumentJ^ame = "IBM"

and the comparisons in Table 1. All of the comparisons in Table 1 are still valid because there

is no conflict (i.e., known prior to run-time) between the constraint in the query and those in

the antecedent of the rules in the ASV or DMD. However, the solution to this query may not be

meaningful because there will be a semantic conflict if the data retrieved is a future traded on the

nyse (i.e., "latest.trade.price" 5^ "latest.closing_price"). Query execution must be followed by a

process that checks for conflicting data. In this example, any data where the instrument is a future

would be in conflict. Query modification is used to add constraints and to add any attributes to

the projection list that are required for checking for semantic agreement. The modified query is as

follows:

select TYcide-Price, Instrument.Type, Exchange {Q4)

where Instrument_Name = "IBM'

and ((Instrument.Type = "equity" and Exchange = "madrid")

or (Exchange = "nyse")

At this stage of processing constraints are added to the query in a way similar to conventional

query processing using view definitions. Rather than constraints begin provided by the conventional

view definition they are provided by the ASV based on the results of comparisons with the DMD.
The query processor must (1) identify which constraints can be added to the query without changing

the semantics of the query (2) determine which additional constraints must be met to guarantee

semantic correctness, and (3) determine which attributes must be added to the projection list to

facilitate checking for semantic correctness. The procedures for identifying the correct constraints

are determine by the comparison type. For example, in Figure 9 we show the requirements for the

subset comparison type.

An example of this modification is demonstrated by the application query Q3 and the modified

query Q4. The first rule in the ASV (Figure 5) matches the first rule in the DMD (Figure 3)

through the subset comparison type. This adds the constraint on Instrument.Type and Exchange.

The second rule in the ASV matches the second and third rules in the DMD. The first comparisons

is an equivalence and adds to the query the constraint. Exchange = "nyse". The second comparison

results in a conflict so the new restriction defined in Figure 9 must be satisfied by any acceptable

solution. This new restriction:

no<(Exchange = "nyse" and Instrument.Type = "future")

must be added to the list of constraints that are used to test for semantic conflicts at run-time. So

that the new restriction can be tested at run-time the Instrument.Type and Exchange attributes

must be added to the query's projection list.^ Should any of these constraints be violated then

semantic reconciliation leads to:

Query Resolution by Semantic Conflict at Run-time - at query execution time the data retrieved from

the database is used to determine that there is a semantic conflict.

'Optimizations to these query modification procedures exist but are not considered in this paper.

15

For attribute T with Xi(assign(T) and yiesem(T)

4.3.2 Query Processing: Null Solutions

Thus far we have described a number of methods that can be used prior to query execution time

to determine that a query will not have a semantically meaningful non-null solution. Under certain

conditions such a query can actually be executed to determine whether a null solution is correct.

For example, consider the query Q5:

select Trade-Price (Qs)

where Instrument.Type = "future"

and InstrumentJ^ame = "XYZ"

and the comparisons in Table 1. The first two comparisons are removed by contradiction with the

constraint on Instrument.Type. The query is then resolved by semantic conflict through reduction.

However, the query can be executed because the constraints in the query are meaningful (i.e.,

they are restrictions on primitive attributes). Execution of the query may return a null solution if

constraints are not matched in the database, any other solution would be semantically meaningless.

Queries resolved through semantic conflict can be executed if the following is true:

Any attribute that is in semantic conflict either appears only in the projection list or it appears

in a join condition with another attribute that is comparable to it.

Attributes are comparable if they are semantically equivalent. Testing for comparability of two

attributes is identical to testing for semantic agreement between an attribute in the application

and the database. Selection conditions are not included because the data cannot be correctly

compared to the restriction in the constraint because the restriction is based on the application

semajitics which are known to be in conflict with those of the database.

4.3.3 Query Processing: Adding Restrictions to Guarantee Correctness

Query processing, as described in Section 4.3.1, used compile-time information used to test the

semantic correctness of the application query. Then there were query modifications that did not

effect the meaning of the query. The query was then executed and the results were examined to

determine if there were semantic conflicts. If a conflict occurred the query was resolved by semantic

conflict at run-time. The approach to query processing described in this section is identical except

that constraints can be added so as to guarantee semantically meaningful partial solutions to the

application query. An application (e.g., user) may be designed to accept partial solutions to queries

in exchange for semantic correctness. If permitted by the application, queries that would normally

be resolved through semantic conflict at run-time are candidates for this type of query modification.

As an example of the use of constraints to provide a correct partial solution, consider query Q3
from above. Under normal operations any violation of the constraint

no<(Exchange = "nyse" and Instrument.Type = "future")

would lead to query resolution by semantic conflict at run-time. This would be the case even

though there may be a partial solution that does not include conflicts. Rather than reporting that

the results are not meaningful the query processor can simply remove any incorrect solutions. For

17

For attribute Twith Xieassign(T) and Yi(sem{T)

• Antecedent(APP) is a subset of Antecedent(DB)

APP:Ci(Xi)=>C4(yi)

DB .C2{Xi)AC3{X2)^C5{Yi)

- if semantic equivalence holds then

1. if Ci(Xi) => C^iXi) then add Ci(Xi) ACaCXa)

2. if C2(Xi) =»Ci(Xi) then add C2{Xi) ACaiXi)

— if a semantic conflict occurs then

1. if CiiXi) => C2{Xi) then add the new restriction not{Ci{Xi) A CaC^a))

2. if CaCXi) => CiiXi) then add the new restriction not{C2{Xi) AC3{X2))

Figure 10: Constraints for Subset Comparison Type - Partial Solutions

query Qj and the comparisons in Table 1 the modified query Qe would include restrictions that

remove any tuples that are in conflict.

select Trade_Price (Qe)

where InstrumentJ4ame = "IBM"

and (Instrument-Type = "equity" and Exchange = "madrid")

or ((Exchange = "nyse" and Instrument_Type = "equity")

and 7»o<(Exchange = "nyse" and (Instrument.Type = "future"))

As in Section 4.3.1, the methods for adding constraints to the query are determined by the

comparison type. The constraints used in query modification for the subset comparison type are

shown in Figure 10. For example, consider query Q3 and the modified query Qe. The second rule

in the ASV (Figure 5) matches with two rules in the DMD (Figure 3). The first is an equivalence

so according to the Figure 10 the constraint:

(Exchange = "nyse" and Instrument-Type = "equity")

is added to the query. The second match results in a semantic conflict and the constraint:

no<(Exchange = "nyse" and Instrument.Type = "future")

must be added to the query. The negation of the constraint found in the DMD is added to the

query to limit the result to correct data. The addition of these constraints to the query changes

the meaning of the application query by reducing the scope of the original query. The result may
be a partial solution to the original query but it is guaranteed to be a semantically meaningful

solution. As for changes to the original query, the user can be informed of the added restrictions,

the reasons for the added restrictions, and a list of the records that were eliminated as a result of

these restrictions.

18

The logic for query modification is as follows. Each comparisons between a rule in the ASV and

a rule in the DMD can contribute at most one constraint (i.e., may be the conjunction of restrictions

on different attributes to the query). For an ASV rule with multiple matching rules in the DMD
the constraints from equivalence matches form a disjunction of conditions. The matches that result

in conflict Eire in conjunction with these conditions and in conjunction with the constraints from

other conflicting matches for the same rule in the ASV. Again, for a given attribute the conditions

resulting from each rule in the ASV form the disjunction of the possible interpretations for that

attribute. Finally, the conditions for each attribute form the conjunction of semantic restrictions

that must be added to the query.

4.3.4 Query Resolution by Semantic Restriction

During the process of query modification constraints are added to the query and the query statement

may be reduced to the point where the only acceptable solution to the query appears from logical

reduction of the constraint list. As an example, consider query Qj:

select Instrument-Type (Qj)

where TradeJrice > 50.00

and Exchange = "madrid"

and the results of comparisons in Table 1. The constraints in the table are added to the query to

produce the modified query Qg.

select Instrument.Type (Qs)

where TradeJrice > 50.00

and Exchange = "madrid"

and (Exchange = "madrid" and Instrument-Type = "equity")

The query can be logically reduced to:

select Instrument-Type (Qg)

where Trade-Price > 50.00

and Exchange = "madrid"

and Instrument-Type = "equity"

and further reduction leads to the only possible non-nuU solution:

Instrument.Type = "equity".

Unfortunately, this methods of query resolution may not produce the same answer as executing

the query. Because there may be no data for equities with a trade price greater than 50.00 on

the Madrid Stock Exchange the query could return a null result. A similar problem was found in

query reduction using semantic query optimization [CFM84,HZ80,Kin81,SSS91]. During semantic

query optimization integrity constraints may be added or removed from a query. Contradictions

may occur as they do in query processing using semantic reconciliation. In addition a logical

reduction of the query may lead to the only possible non-null solution to the query. But is was

19

shown in [SSS91] that the null solution was feasible and therefore some query execution is required.

Execution of these queries can be simplified because as soon as a single solution is found in the

database then the result determined by semantic restriction will be correct.

4.3.5 Query Processing: Semantic Equivalence

An application's definitions for semantic equivalence may include references to conversion functions

that must be executed at run-time to convert the semantics of the database data to those required by

the application. Checking for semantic equivalence includes the evaluation of boolean functions that

define the conversion capabilities. For example, the definition for semantic equivalence in Figure 8

contains a reference to a currency conversion function. The definition of semantic equivalence must

determine if the currency provided by the database is semantically equivalent to that required by

the application. This may depend on the ability, at run-time, to convert the database to those

acceptable by the application. In this example, this may involve a look-up for the exchange rates

between two currencies for a specified date and time. Should that exchange rate not be available

at run-time then the test for semantic equivalence would fail and the conflict would have to be

considered during query processing.

For run-time semantic equivalence testing, the metadata manager must reevaluate the compar-

isons between rules in the ASV and the DMD based on this run-time information and the query

processor must consider this new information during semantic reconciliation. Modifications to the

query processing routines to include run-time semantic equivalence must define a correct execution

order for semantic equivalence testing and methods for semantic reconciliation.

5 Semantic Reconciliation and Changing Database Semantics

It is important that the methods for determining semantic agreement among systems allow for

changes in the semantics of those systems. Rules defining the semantics of the database and the

application are likely to change many times during the life-cycle of the source- receiver relationship.

Most databases are not static and just as the structure may change so may the meaning of the

data. In fact, our experience leads us to believe that changes in the semantics of data are more

common occurrences than changes in structure.

The methods presented for query processing and semantic reconciliation can be used in such a

dynamic environment. As changes are made in the ASV or DMD (i.e., corresponding to changes in

the semantics of the database or application) the metadata manager must reevaluate any compar-

isons that are effected by these changes. A comparisons is effected if the ASV or DMD rule used

in the comparison is modified. Additionally, rules added to the ASV or DMD must be evaluated

according to the methods described in Section 4.2. The metadata manager can then determine any

changes in semantic status of the attributes in the ASV. For example, an attribute that may provide

meaningful data might be changed to one that always provides the meaningful data when the rules

in the DMD defining the semantics of that attribute are modified. For the comparisons in Table 1,

should the database decide to report latestJrade.price for futures rather than latesLclosing.price

then the semantic status of the Trade_Price attribute would change from may to always. The

methods for semantic reconciliation permit changes to the semantics at the database or application

as long as those changes remain inside of restrictions for the semantic representation model.

20

6 Conclusions and Future Research

In this paper we described methods for using metadata to automatically identify and resolve se-

mantic conflicts between a data source and a receiver. These methods apply to dynamic system

environments. When data semantics change at the source or data semantic requirements change at

the receiver these methods can be used to determine if the source can continue to supply meaningful

data.

We described a model for representing information on data semantics and provide an archi-

tecture for a system that uses this representation for semantic reconciliation. Our representation

model is general enough to define metadata for a variety of domains. Using metadata, we show how

an application can specify its requirements for data semantics and application specific definitions

for semantic equivalence. Allowing the application to define semantic equivalence has the advan-

tage that different applications can express different requirements for data semantics. Additionally,

applications can reference functions, defined in the ASV or DMD, in these definitions. These func-

tion can be used to automatically convert data semantics, making it possible for the application to

receive meaningful data from the source when such data could not normally be provided.

We presented methods for comparing rules that describe the application's semantic view and the

database metadata definition. The metadata manager maintains the results of these comparisons

for use in query processing. Prior to query presentation the metadata manager can determine

the semantic status of each non-primitive attribute. The constraints in a query then provide for

refinement of the comparisons of the attributes semantic rule sets in the ASV and DMD. Semantic

reconciliation may result in query resolution by semantic conflict prior to query execution. If no

conflicts occur at compile-time then the query can be executed and the solution tested for semantic

conflicts. At any stage of this process the user may obtain information describing any conflict that

has occurred. Alternatively, query modification can be used to guarantee semanticaUy meaningful

partial solutions.

Future research will examine a more general representation [SM89b] for data semantics that

will permit the application and the database to more freely define data semantics. This will in-

clude a better understanding of common language requirements and the relationship between the

semantic requirements for applications and database semantic specifications. The present repre-

sentation model and methods for semantic reconciliation address simple data semantics, complex

data semantics (e.g., derivation formula) will require additional data structures and algorithms if

they are to be considered in semantic reconciliation.

Methods for semantic reconciliation using metadata have been presented for systems that con-

form to the source-receiver model. These results can be extended so that they are useful in multi-

database systems. The need to represent and manipulate data semantics or metadata is particularly

important in tightly-coupled federated database systems where data is taken from multiple disparate

sources. Integration of multiple systems may require the definition of a global schema representing

the composition of the component database schemas [DK86,LR82,She87,Te87]. Typically, schema

integration algorithms have been developed for component databases with static structure and

semantics [BLN86,CRE87,SG89]. However, to allow for greater local database autonomy, schema

integration must be considered a dynamic problem. The global schema must be able to evolve to

reflect changes in the structure [BMW86,McL88] and meaning of the underlying databases. If an

application is affected by these changes, it must be alerted. Semantic reconciliation will be required

between and application and a global schema and between the component schemas and the global

21

schema [SM89a]. Similarly, in federated systems [HM85,SL90] metadata can be used to describe

the import and export semantics and methods defined in this paper can be used to determine the

semantic relationship between components in the federation.

Acknowledgments
The authors would like to thank Sandra Heiler and Arnie Rosenthal for their helpful reviews of

this paper. This work was supported, in part, by Reuters and the International Financial Services

Research Center at the Massachusetts Institute of Technology.

References

[BLN86] C. Batini, M. Lenzerini, and S. Navathe. A comparative cinalysis of methodologies for database

schema integration. ACM Computing Surveys, I8(4):323-364, 1986.

[BMW86] A. Borgida, T.M. Mitchell, and K. Williamson. Learning improved integrity constraints and

schemas from exceptions in databases and knowledge bases. In Michael Brodie and John My-
lopoulos, editors, On Knowledge Based Management Systems, pages 259-286, Springer-Verlag,

1986.

[CFM84] U. Chakravarthy, D. Fishman, and J. Minker. Semantic query optimization in expert systems

and database systems. In Proceedings of the Ftrst Intl. Conference on Expert Database Systems,

pages 326-340, 1984.

[CRE87] B. Czejdo, M. Rusinkiewicz, and D. Embley. An approach to schema integration and query

formulation in federated database systems. In Proceedings of the Third International Conference

on Data Engineering, February, 1987.

[DK86] P. Dwyer and K. Kasravi. A heterogeneous distributed database management system

(DDTS/RAM). In Honeywell Report CSC-86-7:8216, 1986.

[GK88] A. Goldfine and P. Konig. A Technical Overview of the Information Resource Dictionary System

(Second Edition). NBSIR 88-3700, National Bureau of Standards, 1988.

[GSdB88] P. Gray, G. Storrs, Jind J. du Boulay. Knowledge representations for database metadata. Artificial

Intelligence Review, 2:3-29, 1988.

[HM85] D Heimbigner and D. McLeod. A federated architecture for information management. ACM
Transactions on Office Information Systems, 3(3), 1985.

[HZ80] M. Hammer and S. Zdonik. Knowledge-based query processing. In Proceedings 6th VLDB,

pages 137-146, 1980.

[KinSl] J. King. QUIST : A system for semantic query optimization in relational databases. In Proceedings

7th VLDB, pages 510-517, 1981.

[Law88] M. H. Law. Guide to Information Resource Dictionary System Applications: General Concepts

and Strategic Systems Planning. 500-152, National Bureau of Standards, 1988.

[LR82] T. Landers and R. Rosenberg. An overview of multibase. In Distributed Data Bases, pages 153-

183, North HoUand, 1982.

[McC82] J . McCarthy. Metadata meinagement for large statistical database. In Proceedings of the Eight

International Conference on Very Large Database Systems, pages 470-502, Mexico City, 1982.

[McC84] J. McCarthy. Scientific information = data + meta-data. In Database Management: Proceedings

of the Workshop November 1-2, U.S. Navy Postgraduate School, Monterey, California, Depart-

ment of Statistics Technical Report, Stanford University, 1984.

22

[McC87] J. McCarthy. Information systems design for material properties data. In Proceedings of the First

International Symposium on Computertzaiton and Networking of Material Property Databases,

American Society for Testing and Materieils, Philadelphia, 1987.

[McL88] D. McLeod. A learning-based approach to meta-data evolution in object-oriented databases.

In Advances in Object-Oriented Database Systems, Springer-Verlag Lecture Notes In Computer
Science, 1988.

[ML90] T. Malone and J. Lee. Partially shared views: a scheme for communicating among groups that

use different type hierarchies. ACM TYansactions on Information Systems, January 1990.

[SG89] A. Sheth and S. Gala. Attribute relationships: an impediment in automating schema integration.

In Position Papers: NSF Workshop on Heterogeneous Databases, December 11-13, 1989.

[SheST] A. Sheth. Heterogeneous distributed databases: Issues in integration. Tutorial on heterogeneous

databases. In Proceedings of the Conference on Data Engineering, 1987.

[SL90] A. Sheth and J. Larson. Federated databeises: architectures and integration. ACM Computing

Surveys, September 1990.

[SM89a] M. Siegel and S. Madnick. Identification and Resolution of Semantic Conflicts Using Meta-

data. Technical Report #3102-89-MSA, Sloan School of Management, Massachusetts Institute of

Technology, 1989.

[SM89b] M. Siegel and S. Madnick. Schema Integration Using Metadata. Technical Report #3092-89-MS,

Sloan School of Management, Massachusetts Institute of Technology, (Also NSF Workshop on

Heterogeneous Database Systems, 1989), 1989.

[SSS91] M. Siegel, S. Salveter, and E. Sciore. Automatic rule derivation for semantic query optimization.

Accepted for publication to Transactions on Database Systems, ((Also Boston University PhD
Thesis 1989 - Siegel)), 1991.

[Te87] M. Templeton eind et al. Mermaid - a front-end to distributed heterogeneous databases. In

Proceedings of the IEEE, pages 695-708, 1987.

[YSDK90] C. Yu, W. Sun, S. Dao, and D. Keirsey. Determining relationships among attributes for in-

teroperability of multi-database systems. In Position Papers: Workshop on Multidaiabases and

Semantic Interoperability, November 2-4, 1990.

23

'+ B t| 2 !j 5 S

Date Due

yfrt' :')/^

,jic. »® T*
OCT. 7199J8

AUG 10^

Mil LIPRARIES

3 TDflD aQ7D153b 2

