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Abstract

Traffic signals can be synchronized so that a car, starting at one end

of the street and traveling at preassigned speeds, can go to the other end

without stopping for a red light. The portion of a signal cycle for which

this is possible is called the bandwidth for that direction. Ordinarily

the bandwidth in each direction is single, i.e., is not split into two or

more intervals within a cycle. For this case we formulate the following

problem as a mixed integer linear program: Given an arbitrary number of

signals, red times for each signal, upper and lower limits on signal period,

upper and lower limits on speed each way between adjacent signals, limits

on change in speed and a fixed constant of proportionality between the two

bandwidths, find a common signal period, speeds between signals, and the

relative phasing of the signals so as to maximize the sum of the bandwidths.





1 . Introduction

In an earlier paper J. Morgan and the author have developed an

algorithm for solving the following two problems in synchronizing traffic

signals along an arterial street:

1. Given an arbitrary number of signals, a common signal period, the

green and red times for each signal, and specified travel times between ad-

jacent signals, synchronize the signals to produce bandwidths that are equal

in each direction and as large as possible.

2. Adjust the synchronization to increase one bandwidth to some

specified, feasible value and maintain the other as large as is then poss-

ible.

Subsequently, R. Oliver pointed out to the author that a two-signal version

of problem 1 could be set up as a linear program. We here expand this idea

into a rather general formulation of the maximal bandwidth problem. The

formulation comes out as a fairly sizable mixed integer linear program.

For problems 1 and 2 this offers no advantages and many disadvantages.

However, the linear programming format opens up the possibility of solving

more general problems involving the introduction of new decision variables.

For example, maximal bandwidth calculations as usually performed have

a disconcerting feature. On a long street the critical signals that con-

struct bandwidth may turn out to be very far apart. Then a small change in

one of the speeds along the street is likely, upon re-solving the problem,

to result in a different synchronization and a different bandwidth. Yet,

drivers do not hold their speeds particularly constant and, indeed, as ia

well known, tend to adjust their speeds to the signals. Thus, it makes a

good deal of sense to let speed between signals be a variable. At the same
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time, it is a fairly simple matter in a linear program to put limits on the

speeds that can be assumed.

Another variable that can be introduced explicitly in a linear program

is the signal period. In Problem 1, period is a constant and, although it

is not too difficult to use our earlier methods to examine a considerable

number of values in an organized way, the continuous variation of the linear

program formulation seems preferable.

2. Definitions

Consider a two-way street having n traffic signals. Directions on the

street will be identified as outbound and inbound . The signals will be de-

noted S., S ,...,S with the subscript increasing in the outbound direction,
i 2 n

Under some circumstances, a car can start at one end of the street and,

by traveling at preassigned speeds, go to the other end without stopping.

The portion of a signal cycle during which this is possible will be called

the bandwidth in this direction. (Ordinarily the bandwidth in each cycle

is single, i.e., is not split into two or more intervals within a cycle. We

restrict ourselves to this case.)

Figure 1 shows a space-time diagram for travel on a street. Heavy

horizontal lines indicate when the signals are red. The zig-zag lines re-

present trajectories of cars passing unimpeded along the street in the

directions shown. Changes in slope correspond to changes in speed. The set

of possible unimpeded trajectories in a given direction forms a green band

whose horizontal width is the bandwidth for that direction. Although drawn

but once, it is clear that the green bands appear once per cycle in parallel

bands across the diagram.

Certain signals, usually two or three of the n, form the ultimate

limitation or bandwidth and will be called critical signals . A signal S.

is said to be a critical signal if one side of S.'s red touches the green
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Land in one direction and the other side touches the green band in the other

direction. Thus, in Figure 1 signals S, and S are cirtical, but no others
1 i

are.

3. Basic Maximal Bandwidth LP

First we set up the basic Problem 1 above as a mixed integer linear

program.

3.1 Notation

Let

r = red time of S on street under study, (cycles)

b (b) = outbound (inbound) bandwidth, (cycles)

t (t ) = travel time from S to S in outbound direction (travel

time from S. to S in inbound direction), (cycles)

0. (0.) = distance from center of red at S to the center of a

particular red at S • See Figure 2. The two reds are

chosen so that each is immediately to the left (right) of

the same outbound (inbound) green band. 0. (0.) is posi-

tive if S. 's center of red lies to the right (left) of

S 's. (cycles)

w (w.) = distance from the right (left) side of S 's red to the

green band. See Figure 2. (cycles)

m. = 0. + 0.
J J .1

Note that a quantity having dimensions of time can always be expressed in

cycles by dividing by the period.

3. 2 Formulation

From Figure 2 can be read the identities
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Figure 2. Geometry of the green bands. Notice that

9+9. must be an integral number of cycles
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The values of and 0, have the very important constraint that their sum

is an integer, but otherwise they are unrestricted. Therefore, the above

two constraints can be replaced by

(w +v
x
) - (tv^) - \ « < rrV - ( t

i
+
s.

)

m. = integer .

i

From Figure 2 we also see that

w + b < 1 - r

and that a similar expression holds for the inbound direction. Consequently,

Problem 1 can be represented by the linear program:

LP1. Find b, b, w^ w^ n^ to

Max (b + b)

Subject to:

b = b (LP1.1)

WjL
+ b < 1 - r / (LP1.2a)

_ _ V i = l,...,n
w
t
+ b < 1 - r (LP1.2b)

(w.+w ) - (w.-t-w.) - m. = (r.-r ) - (t.+t.) )i = 2. ...,n (LP1.3)llii i l 1 ill ' '
v

mi = integer ( (LP1.4)

b, b, v., w >

LP1 has 3n equations and 3n+l unknowns, not counting slack or artificial variables

4. More Decision Variables

Next we let period and speed be variables. Each will be constrained

by upper and lower limits. In addition changes in speed from one street
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segment to the next will be limited. Finally, instead of requiring equal

bandwidths in each direction, we generalize to let one bandwidth be a fixed

proportion of the other.

4.1 Notation

Let

k = constant of proportionality between b and b.

T = signal period, (seconds)

d = distance from S. , to S., i = 2, .... n . (meters)
i l-l i

v. (v.) = speed between S. and S outbound (S and S. inbound),

i = 2, ..., n . (meters/second)

We wish to put limits on speed, say,

:

e < v. < f i = 2, . . .,n
,

i - i
—

i

or, equivalently,

111.
i i i

We also wish to constrain change of speed. This will be done by constraining

change in reciprocal speed. Although the two are not quite the same, con-

straining change in the reciprocal surely satisfies the basic intention,

which is to have a means of preventing large abrupt speed changes. For nota-

tion, we use

.
1_ < ±_ - jL < -L- i = 3, . . . , n .

hi" V
i

V
i-l- g

i

Limits for T can be denoted

T. < T < T,
i

—
<

Next, let

y. (y,) = time to travel from S. , to S J outbound (S. to S. , inbound),
3 x

J
x l-l i i l-l

i = 2, . .
.
,n. (cycles)





Then

z = 1/T = signal frequency (cycles/second)

d.
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1
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k

2, . . ., n

Similar expressions can be written involving y. and t.

straint relating b and b is

b = k b

Finally, the con-

4„ 2 Formulation

The above can be assembled into

LP2o Find b, b, w . w, y. y., m. to

Max (b + b)

Subject to
:

b = kb

(1/T2 ) < z < (1/T
1
)

w. + b < 1-r
i — i

w. + b < i- r .

l — i

<W " (Vw
i
) -

m
i
+

k?2
(W = (rr r

i>

m. = integer

(d./f.) z < y. < (d./e.) z
l l i i

(dj/fj) z < y
±
< (dj^/e ) z

i=l, . . . ,n

i=2,...,n

(LP2.1)

(LP2.2)

(LP2.3a)

(LP 2. 3b)

(LP 2. 4a)

(LP2.4b)

(LP2.5a)

(LP2.5b)
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(d./h.) z < y. - y. < (d./g.) z
)

(LP2.6a)11 —
1 l-l li

/
S i=3, ...n

(d /h.) z <y
±

- y
± _ l

< (d./g.) z J (LP2.6b)

b, b, w , w^ y^ y
±

, >

LP2 involves (lln-10) constraints and 4n variables, not counting slack

and artificial variables

5. The Synchronization

The linear programming variables determine the synchronization of the

signals. Let

9 = relative phase of S and S , measured as the time from
J 1 J

the center of a red of S, to the next center of red of

S . (cycles) By convention < < 1. See figure 1.

A set of Q., j = 2, . ..., n
;
will be called a synchronization.

From Figure 2, we see

0. = man
i l

where "man" stands for "mantissa of" (e.g., man (5.2) = .2, man (-1.3) = .7)

Here

= l/2(r -r.) + w, + t. - w. .

i 1 l lii
This can easily be computed from the linear program results.
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