

LIBRARY

OF THE

MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

«!<t!

WORKING PAPER

ALFRED P. SLOAN SCHOOL OF MANAGEME]

METHODS FOR THE SOLUTION OF THE

MULTI- DIMENSIONAL 0/1 KNAPSACK PROBLIir

177-66

METHODS FOR THE SOLUTION OF THE

MULTI- DIMENSIONAL 0/1 KNAPSACK PROBLEM*

177-66—
H. Martin Weingartner and David N. Ness

April 1966

i-/ork on this study was supported by the Ford Foundation's Grant to the
Sloan School of Management for Research in business finance. It was
also supported in part by Project MAC, an M^-I.T. research program spon-

sored by the Advanced Research Projects Agency, Department of Defense
under the Office of Naval Research Contract N\jnber KONR-i4.102(Ol). Re-

production in whole or in part is permitted for any purpose of the United
States Government. This paper was prepared for presentation at the 29th
Annual Meeting of the Operations Research Society of America in Santa
Monica, California, May I8, I966.

RECEIVED

JUN 23 1966

M \. T. LlBKAK\i:.b

METHODS FOR THE SOLUTION OF THE MULTI- DIMENSIONAL 0/1 KNAPSACK PROBLEM

H. Martin Weingartner and David N. Ness

ABSTRACT

In the knapsack problem, given the desirability of each of a number
of items, one seeks to find that subset which satisfies a constraint on
total weight. The multi-dimensional variant imposes constraints on addi-
tional variables of the items; the 1 specification means that an item
is either taken or not, i.e., multiples of the same item are not con-
sidered, except possibly indirectly. Traditionally the 1-dimensional
knapsack problem is solved by means of dynamic programming. The multi-
dimensional problem is usually reduced to a one-dimensional one by use
of Lagrangian Multipliers which, however, do not generally yield the
exact solution to the problem posed. The present paper considers methods
for obtaining the exact solution to the problem, and not an approximate
one. Additional algorithms are developed which are applied within a
dynamic programming framework. Given these, the object is to obtain
solutions efficiently, and in attaining this goal heuristic methods are
employed. Efficiency of the methods is based upon the use of an inter-
active computer system in which the heuristics of the problem solver are
applied and changed as the character of the solr.tion process evolves.
The project was conducted with the Compatible Time Sharing System of
M.I.T. 's Project M^.C. The problem arises in the context of capital
budgeting, but has obvious applications in a variety of other areas.
The methods have been employed for solving numerical problems ^/ith as
many as 105 items, the parameters having been obtained from industrial
applications

,

INTRODUCTION

The knapsack problem is a familiar one in Operations Research. In

its simplest form, the problem is to find the most desirable set of arti-

cles a camper should pack in his knapsack given a measure of the desirability

of each item and its weight, as well as the maximum weight which the knap-

sack (or hiker) can carry. In the multi-dimensional knapsack problem, ad-

ditional limitations, e.g., on volume or height, width and length are also

imposed. The O/l qualification to the problem, which is the one to be dis-

cussed here, disregards the possibility (except perhaps indirectly) of

taking along more than one of a given article. Thus the question is sim-

ply that of inclusion or exclusion of an item.

The general knapsack problem has been discussed in the literature

in a variety of places [3]. Motivation for the present approach was pro-

vided by certain capital budgeting problems in which investment projects

are to be selected subject to expenditure limitations in several time

periods, or to limitations on several inputs. The propriety of the model

for budgeting has been fully discussed in [6]. It should also be born

in mind that in many budgeting applications in which the constant terms

of the constraints are not entirely rigid, a different formulation, based

on linear programming, may be more appropriate, as was analyzed in [7]- A

i4j_
jij?

if^1- ^)f the two formulations, rigid and "flexible'^ limitations also

occur5 in practical problems.

The purpose of this paper is to describe computational methods, based

on dynamic programming, for the solution of allocation with rigid con-

straints. These methods all seek to attain the optimum solution, not

merely good solutions, for sizable problems and are not based on the use

of heuristic methods. They make essential use of an interactive computer

system in which the course of the computations is controlled

oy the user, who responds to the status of the problem solution.

THE E^.SIC MODEL

For descriptive purposes (if not for computation) the problem may be

stated as an integer programming problem. Let b. be the payoff from in-

clusion of project i, c the outlay required in period t on project i,

C, the maximum to be spent in period t. Further, let x. be the "fraction"

- 3 -

of project i accepted, so that x. = 1 means acceptance, x. = rejection.

The basic model then is

(a) Maximize / b.x.

i=l

n

(1)

(b) Subject to) c x. < C , t=l, ...,T

i=l

(c) < X. < 1, i=l, . . .,n

(d) X. integer

Since, in the present interpretation of the problem, all c are

nonnegative the model in (l) may be solved, in principle, as a dynamic

programming problem as follows

:

(2) f.(C-^,C^,...,Cp = max^ [b.x. + f ._^(c^-c^.x^, C^-c^.x. , . . ., C^-c^.x.)];

i=l, . . .,n

x.=0,l
1

for

C' - ex. > Oj t=l,...,T: i=l,...,n.

and

fQ(C') =

k -

where f
. (C) is the total value of the optimally selected projects with

projects i+1, i+2, ..., n still to be considered, and the unallocated

funds are given by the vector C = (C', C', . . ., C'). As stated above, the

stages of the dynamic programming calculations are the computation of un-

daninated feasible strategies (vectors of values for the x., j=l, ...,i)

which result from consideration of an additional project. Undominated

here means that the strategy is not simultaneously lower in payoff and

2
higher in outlay in all of the budget years. Feasibility means simply

that the strategy does not violate any of the budget constraints.

The algorithm given in (2) may be thought of as using either

backward or forward optimization or neither of these. The reason is that,

as far as the algorithm is concerned, the order is arbitrary. Projects

may be arranged in any way, although some ways may be better than others.

However, the arrangement of projects is more properly regarded as a pre-

processing operation and as such will be discussed in a separate section,

below.

Straightforward application of dynamic programming to this problem,

as reported in [6j, proved inadequate to the task v;hen more difficult

problems were attempted. For this reason further computational methods

were devised and the computer programs were rewritten using entirely dif-

ferent concepts of data handling.

THE COMPLMENT PROBLEM AND ALGORITHM

The difficulty of growth in the length of the list of undominated

feasible strategies, possibly beyond the high-speed memory capacity of the

computer, or the requirement of an uneconomical amount of computer time

- 5 -

can arise in even modest sized problems. VAien t>ie budget constraints are rela-

tively lodBe, making possible the acceptance of most, though not all,

projects, it is possible to speed up the calculations by solving the

complement ' problem in which it is desired to eliminate projects, rather

than to accept them. The model corresponding to (2) is obtained as follows.

Let

(3) C^=2^ c^i, t=l,...,T

i=l

and

(4) _C^_ = C^ - C^, t=l, ...,T.

Further, let

(5)
^i = ^ "

""i

so that if y. = 1, project i is excluded: if y. = 0, it is included.

Then C^ is the smallest amount to be eliminated from each budget starting

v;ith an amount equal to the total of outlays i-eq.uired for inclusion of

all projects. This is to be achieved by the elimination of the least

aggregate payoff consistent with this requirement. The model then becomes

(a} f.(C^,C2, -..,C^) = min [b.y. +
fi_i(^i-Cij.yi. C^'-c^.y^, . . ,, C^-c^^y^)]

i=l, o c .,n

y-0,1

for

(6) (b) c; - c..y. > min (c;',0), t=l,...,T; i=l,...,n.

and

(c) fQ(C") =

where C" = (C'', C '',.-., C") is the vector of budgeted amounts still to be

eliminated, and f. (C") is the optimal amount of payoff deducted from the

total possible payoff vrLthout constraints with C" still to be eliminated

from the budgets and vath projects i>l, i+2, ..., n still to be considered.

The complement problem appears to bear a certain resemblance to the

dual method of linear programming. A minimization has been stubstituted

for the original maximization, and the side condition now is to ascertain

when a feasible solution has been obtained, as opposed to the requirement

that the solutions remain feasible. The complement algorithm may take

more or less tine than the direct algorithm, and also more or less internal

memory. Before, however, entering into a discussion of its relative merits,

ve turn instead to different devices which are useful in speeding up the

computations

.

'LOOK-AHEAD" IffiTHODS

Some small refinements can lead to substantial decreases in the number

of branches of the tree of potential strategies which must be examined.

Experience with a variety of problems has demonstrated dramatic improve-

ments in running time and maximum list length from employment of these

additional algorithms. The simplest of these which has been used in this

study applies especially when budgets are loose, the situation mentioned

in connection with the use of the complement algorithm.

At any stage i, define a strategy called "Rest'' in which x.=l for
J

j=i, ...,n, i.e., the projects remaining to be considered are included,

and x.=0 for j=l, ...,1-1, the projects already consideredo At this stage,
J

test to see whether it is possible to add the strategy "Rest" to a given

strategy on the list of strategies so that the resulting strategy satisfies

the original constraints . Specifically, for the strategy represented by

f._^(C'), if

n

(7) A'^J-'^'
t=l,...,T

then the new strategy consisting of the given one plus all subsequent pro-

jects is optimal for the total amount of budgets consumed thereby. Hence

this strategy at stage i needs not be considered at subsequent stages. In-

stead, the combined strategy can be put directly on the output list for

final ranking of the f (C) at the end> or othen-.'ise used,o n

As can readily be seen, Xirith loose budgets in which but few projects

must be rejected, once some projects have been eliminated, the subsequent

stages for the given strategy would lead to the inclusion of all remaining

projects.

The Took-ahead computations can also be adapted to the complement

problem: However, instead of testing for the possibility of nonoptimality,

the test is for the possibility of nonfeasibility. Let C. be the constant

of constraint t, as before, and define C and C as in (3) and (k) above,

respectively. Then, if at stage i for a given strategy

n i-1

(8) I ^tj<^t-I ^j^j' t=l,,.„T

j=i j=l

then this strategy can never be part of a feasible one. Excluding all

remaining projects will not sufficiently increase the amounts that must

be eliminated to attain a solution within the original constraints. Hence,

this strategy can be disregarded for further computation.

- 8 -

No doubt more complex Ipok-ahead methods can be devised. The

simplicity of these, however, makes them advantageous for rapid calculations.

LOWExR BOUND ELIMINATION METHOD

A device similar to the Look- ahead is the following. At stage i

eliminate any strategy from further consideration which, if it were aug-

mented by all projects remaining to be considered, would yield a payoff

less than the highest payoff already achieved. That is, see if for a given

strategy (or alternatively, for given C') at stage i

n

(9) f._,(C').^b.

j=i

is less than the highest payoff of a feasible strategy already obtained.

This method requires noting the best feasible strategy. It can be extremely

useful, especially when combined with the Upper Bound method, to be described

below. It does, however, have the limitations of driving toward the sin-

gle best strategy without making the next best strategies available.

One method of obtaining a good feasible solution to use as a Lower

Bound is to solve (l) as a linear programming problem, but ignoring the

fractional projects which result. This method is costly if general pur-

pose LP programs must be used. It is quite evident, however, that the

simple structure of the problem can lead to the linear programming solution

speedily by other methods. The first of these is especially simple if

there are only two constraints.

The following procediire is based on the dual to (1; regarded as a

Q

linear programming problem, i.e., ignoring constraints (id). The projects

are ranked by the quantity

(10) a^ + (1 - a) ^
i i

9
from the lowest to highest, for a given trial value of (X, The payoff as

well as the outlays in each period are cumulated, and the solution desired

is that which, while includinf5 only integral projects, comes closest to

exhausting the allotted budgets without violating any of them. The process

is repeated in principle for all possible values of < Q: < 1,.

UPPER BOUrJDS

The Lower Bound Elimination Method requires finding a feasible solu-

tion to begin the branch-paring process. The higher tne lower bound, the

more branches may be discarded, and the faster the computations will reach

the optimum. It is often worthwhile to find an upper bound to the solution,

for several purposes. First, if the computations become too long or

require more high-speed memory than is available, it is useful to knov/ how

far the best feasible solution already obtained differs from an absolute

maximum. Secondly, it is sometimes helpful to inject a trial lower bound

into the computational procedure in the hope that it will yield a better

value, in fact, the optimal one, more quickly than would the use of feasible

solution lower bounds For this purpose one needs to know what the theoreti-

cal maximum is.

An obvious upper bound for these purposes is the linear programming

solution including the payoff frcan fractional projects. It is clear that

no integral solution can exceed this payoff since it imposes additional

conditions on the problem. Again, the linear programming solution as

- 10 -

required here may be obtained by short-cut methods as outlined above. In

the two constraint case for each trial value of C, after the projects have

been ranked and the intecral projects which fall within the constraints

have been identified, the indices of the next two projects in the rankings

are noted. A simple two-equation two-unknown problem is then solved to

find the fractions of these projects which are to be accepted for the

given value of a.

Let C' be the remaining amounts in the budgets after the integral

projects have been taken out. Letting x. and x, be the fractions of the

two projects sought, they are obtained by solving

(11)

c, .X. + c X, = C'-

The value cf the payoff from the fractional projects, i.e., b.x^ + b,x^

is added to the pa\ off from the integral projects, and the total is noted

for comparison v;ith the payoff obtained from other values of a. Since

the optimum value of a requires that the fractional projects satisfy (ll)

in the non- degenerate case and they must also be the next in this rank-

ing scheme, the procedure will locate the LF optimum. Although the opti-

mal dual values are unique in the general case, there is generally a

range of a over whi.ch this procedure yields the optimal solution.

Further, since this is a continuous problem, there are no 'gaps and

13
finding the optimum is guaranteed.

11

USE OF AN INTERACTIVE COMPUTER SYSTEM

Initially the use of an interactive facility such as M.I.T. 's

14
Project MAC was simply for aid in debugging and fast turn-around. Early

results indicated, however, that the order in which projects were taken up

affected the time and storage requirements dramatically. The need for

finding good ordering methods suggested that a more fruitful approach

would be to utilize the interactive feature to respond to the status of

the computations . Making it simple for the user to Interpose his heuristics

on the solution proces requires two components. First, the progress being

made must be displayed conveniently, on request, and second the decisions

made by the user must easily be implemented.

Perhaps most important is the additional requirement that the user

be able to aid his judgement by obtaining side information about the alter-

natives from which he must choose before making his decisions. Ultimately,

all of these components might be collapsed into a machine- learning procedure

in which the computer takes over the tasks performed by the user. In

complex problems this need not be the best way of accomplishing the goal,

and, in any case, it was not the method followed here.

PROJECT ORDERING

As will be detailed below, either during or preceding the ccmputa-

tions, it may be important to change the order in which the dynamic pro-

gramming algorithm processes additional projects. At different times,

various alternative methods for ordering the list of remaining projects

may be called on. The most important of these are the following.

-12-

1. Payoff. This ranks the projects in decreasing order of the

payoff, b .

.

2. Consumption- This is in decreasing order of the sum of the

T

project's outlays in each period,) c .

t=l

3. Weighted Consumption (a). Here ranking is done hy weighting the

consumption by a project in a given budget by the ratio of the

total consumption required for all projects remaining to be

considered to the original budget ceiling, then summing over the

budgets; i.e., by

n

T L^ "^tj

(^^) 1 =ti '

^^i^
1

.

t=i
'

taken in decreasing order.

Weighted Consunption (b). In this ordering the remaining projects

are ranked after weighting the consumption' for a project in each

budget by a measure of the tightness of that budget ceiling at

this stage. Specifically, projects are ranked in decreasing order

of

T

(13) ^ [max (^^ c^. - C^,0)] c^..

t=l j=i-tl

13

5. Consumption t. The ranking here is in decreasing order of

consumption in the given budget t, c .

6. Best. This is in decreasing order of payoff divided by Weighted

Consumption (a),

(1^)

b.
1

1 ,—

I^i^I ^to'\)
t=l j=i+l

7. Worst. This inverses the order of Best. It is used for

purposes of comparison, and to eliminate this project from the

Look-ahead solution

=

8. Inverse Payoff. This is the inverse order of payoff and is used

with the Backward solution--the solution of the complement

problem

.

9- Inverse Weighted Consumption. This is the inverse order of

Weighted Consumption (a) for use with the Backward solution

method.

10. Projects nay be selected by the following criterion. At any

stage i it may be determined what the maximum value of any solu-

tion, feasible or infeasible, would be if a given project not

yet considered were somehow unavailable. Denoting the set of

project already considered by J, for any project k, k ^ J,

this quantity is

b. - b, .

Ik

Let be the best payoff already obtained, or the payoff corres-

ponding to a Lower Bound or to a guess j as in an Upper Bound.

Then, if

^k "^ ^1-1^^'^ <^

then the strategy corresponding to f. -.(C) would be deleted by

Lower Bound Elmination from the list if project k were brought

in at stage i. The number of potential deletions by this method

may be obtained for any project not yet considred, and this

number is reported for some or all of the remaining projects.

Although Payoff ranking will be the same as ranking by this

method, the minimum number of deletiotB obtained in this way may

be combined with estimates of the number of deletions produced

through the application of other criteria. These deletions may be

in addition to those resulting from dominance. The chief charac-

teristic of such a selection device is that it requires only one

pass through the list of feasible strategies at this stage. It

differs from incorporating a project in that the latter requires

dominance checking, which involves an order of magnitude more

computation.

THE BASIC PROGRAM

17
It may be useful to outline the basic computing method by contrasting

it with the approach followed in [6] in which a detailed flow chart is

given. In simplest terms, a project is considered alone and in combina-

tions with other projects. In either case it must lead to a feasible

15

solution, i.e., one which satisfies the ori;jinal constraints. In the

program utilized before, a new project is first tested for feasibility.

By maintaining the list of strategies (or conbinations as they have been

defined before) in increasing order of payoff, the nex,r project is tentatively

inserted into the list in its appropriate place. It is then compared v/ith

all preceding item.s to see whether one or more strate£;ies are dominated

by the new one, and next comparing it '..-ith items following it to see

whether it, itself, is dominated. Dominance here means that either the

payoff of one is higher than the other and the outlays in each budget are

the same or less, or the pa; off is the same but the outlays are less in

at least one budget. If undominated the new item is added to the list in

its appropriate place. Then it is added to each item in the previously

existing list, and the dominance tests are repeated.

This program recuires both a temporary and a permanent list of strate-

gies at each stage. Further, as an item is inserted, all succeeding items

of the list must be moved dovm one line^ as an item is deleted, all succeed-

ing items on the list must be moved up one line. These procedures require

a substantial proportion of the time used by the program.

The chief departure from this earlier approach that was followed here

pertains to the utilization of a more flexible storage scheme. Instead

of ordering the list of strategies by payoff, items are appended to the

list as they are generated. Each item now contains the address of the next

item on the list. Deletion of an item is accomplished by changing the

address contained in the preceeding item to that of the following one.

Thus all references to the deleted item have been obliterated, and the

storage space corresponding to it may be made available for later use^

16

In addition, the file of projects is kept up-to-date by flagging those

projects which have already been considered-

Dominance testing may be thought of in terms of traversing the current

list of strategies and the separate step of testing individual items on this

list. Taking the latter first, it is necessary to decide whether the new

item dominates, is dominated by, or neither dominates nor is dominated by,

the item from the list. Let J be the set of projects included in the

given strategy from the list, i.e., for which x.=lo Such an item may
J

then be represented by the vector

(^5) (Z^j' ^1 -IV '2 -Z^2j' -- ^T -I^Tj)
=

j€j jGj jej

A new item, which may be a single project the first time it is con-

sidered or a project being considered in combination with others, resem-

bles (15)- For present purposes, call the new item A and the item from the

existing list of strategies B, Comparison of A and B proceeds term by

term. \Then the first component of A exceeds the first term of B, if all

subsequent components of A are not exceeded by the corresponding components

of B, then A dominates B. If, on the other hand, at least one subsequent

component of B exceeds the corresponding one from A, then neither dominates

the other. As soon as this condition is discovered, comparisons are termin-

ated. A is dominated by B when, in the above, the conclusions follow

after interchanging "uhe roles of B and A. Ties are similarly resolved

lexicographically

.

In traversing the list of feasible strategies at the given stage, if

an item of the strategy list is dominated, it is marked for deletion. If

the new item is dominated, consideration of it ceases and a new combination

17

is generated. If the new item is not dominated by any item on the list it

is appended to the list, and consideration shifts to the creation of a new

combination. For reasons of computational efficiency the first new item

appended to the list at any stage is flagged. This flag is used to

terminate creation of ne\T combinations and dominance checking.

The programs for this study were written, for the most part, in

assembly language. Further, in order to improve computational efficiency

without detracting unnecessarily from flexibility, certain important

19
variables were made parameters of the assembly. By writing some recur-

sive macro-definitions, it was thus possible to generate a program which

would handle any number of projects and constraints, subject only to the

limits of core storage. This program has very few "red-tape" instructions;

e.g.., it avoids loop- counting by making a string out of the most frequently

executed loops.

PROGRAM OPERATION

The different test problem are kept in '"files" which are available

on demand from a large volume disc store- \-Jhen the program is started,

it first requests the name of a block of data and a ''direction" of approach,

i,e., original (For./ard) or Complement (Backward) as explained earlier.

The program then reads in this data and puts each project into a block

of cells which are strung together to comprise the File of Projects. A

null project, one with zero payoff and unallocated resources equal to the

constraints, is placed on the List of Strategies c The program then turns

control over to the user who may do any number of different things'

18

Fii^ure 1

SCHEKATIC REPRESENTATION OF AN ELEMENT FROK THE LIST OF STRATEGIES

.vord 1

Word 2 throutjh

c'jord K+1

.-Jord K+2

.Vord K+5 throuijh |

ivord K+T+2
1

Pointer .Vord

» Stratr-^v Vector iVords

Payoff for this Strategy

t Unallocated Resources

! \ords

K - rnlii—r^] , i.e., the integer part of (n+;^5)/>o, for a

56 bit /word machine
n, T are as defined earlier

Pointer has the address of the next block of words on the list,
or if this is the last block on the list.

V. is 1 if this block is to be deleted during the next deletion
pass, otherwise.

F is 1 if the block is "flagged" and G otherwise

The K words, no.s 2 through K+1, contain a bit-pattern representing
this strategy vector.

;'vnri] K+2 contains the ar:ount of the payoff for this strategy.

The T words, no.s K+; through K+T+2, contain the amount of the
budgets unallocated by this strategy in budgets 1,2,...,T,
resoF-ctively.

19

1. "Guess'' a solution--e.g., the Linear Programming Lower Bound

solution--for use in Lower Bound Elimination.

2. Select a project Troin the File of Projects which best satisfies

any one of a number of preprogrammed criteria and directly in-

corporate it, or obtain a print-out of the selected project's

characteristics

.

3. Define a new criterion, by programming it on-line, and apply it

as in 2. above.

h. Directly incorporate any designated project 'w-hich has not been

incorporated previously into the List of Strategies according

to the algorithm being used, i.e., Fon:ard or Baclmard.

5. Copy the current list on a secondary, bulk- storage medium for

later runs.

6. Restore the status of the lists from secondary storage.

7. Print out any portion of either the List of Strategies or the

File of Projects.

8. Ask the program to make a "guess" about what will happen if a

certain project is incorporated next (to be e:q3lained below).

9. Print out summary information about all of the projects not yet

considered.

20 -

STATUS INFORMATION

After each project has been considered the program prints the project

number, the time of day, the number of additions to the List of Strategies,

the number of deletions, the new list length, the number of feasible com-

binations generated, the amount of computer time (in seconds) consumed

during this pass, the total amount of time consumed so far in the run,

the percentage change in list length, the value of the best solution to

date, and an indication of how this best solution was obtained (by a "guess,

by Ljok-ahead or directly). The program maintains a list of fi-ee space,

i.e., memory available for blocks but at present not being used, and

whenever this list is exhausted the program attempts to find space for

100 blocks at the top of the currently used portion of memory. As this

is done it informs the user by a message on his console.

This information along with the optional printout described above

give a reasonable indication of the status at any given point. It is

employed to help decide on a course of action.

LARGE PROBLBl COMPUTIIIG STIViT5GIES USED

During the course of this study a large problem was solved in several

different ways. Some experience was also gained with a problem which has

not, as yet, yielded to these methods. This experience has led to some

heuristics which, while not claimed to be optimal, nevertheless seem to

produce reasonable computational efficiency.

The usual procedure is as follows. First, the Linear Programming

22
Lower Bound solution to the problem is obtained, and this solution is

21 -

set as the minimum for Lower Bound Elimination. At first the projects

are considered either by the Payoff or by the Weighted Consumption (a)

ordering. In the early stages, until the Look-ahead produces a feasible

solution, it appears that Payoff keeps the list length as small, on the

average as does Weighted Consumption (a), while the other ordering methods

seem to behave significantly worse. With tight constraints the Payoff

ordering is superior to the others. If a feasible Look-ahead solution is

produced, ordering is by Payoff from this point on.

Should the list length appear to "blow-up, " the question is raised

whether one may be able to attain a solution at all. It is possible to

obtain some indication about the likelihood that this will take place by

establishing an artificially high minimum as, for example, something near

the sum of all project payoffs. This Upper Bound trims the list of strate-

gies by Lower Bound Elimination very heavily, and unless one is lucky, it

will not producj a feasible solution at all. Nevertheless, it yields some

information about the magnitude of the problem at the cost of relatively

little computation time, as follows. Another run is made next with a some-

what lovrer minimum, which while still not yielding a feasible solution, does

give an indication of how the size of the list of strategies is increasing.

Since it is knovm that a solution exists which is at least as good as the

Linear Programming Lower Bound solution, some reasonable guesses about the

amount of time which would be required to obtain the optimum is not too

difficult.

On occasion when applying these procedures of estimating the size

of the problem, certain projects seem to eliminate relatively large

numbers of strategies from the list. When this occurs such projects are

- 22

designated for early direct incorporation in subsequent runs. Generally,

however, the Payoff ordering method is utilized without variation.

THE COMPUTING ENVIROIMENT

Before presenting the experience gained with these programs

some comments on the method of timing computer runs are in order. First,

all references to tine are to central processor time used. The time-

sharing system within which this work was conducted makes a distinction

between the time that a program is actively operated on for the production

of the user's results, and the time spent moving that program into and out

of the central memory. Central processor time bears little relation to

the amount of time the user actually spends at his console. The latter,

of course, depends not only on system load, which determines the speed

with which requests from the user's console are executed, but also on the

time the user takes to decide on a course of action in exploiting the

interactive facility of the program.

Second, if a course of action were predeteirained for a problem

it would be possible to implement a batch processing version of these

procedures. Such programs v;ould obviate the need for some intermediate

output and its generation, and further they would not require facility

for gaining control of the computing process during a run. The resulting

batch-processing times would be expected to improve on the results obtained

here.

It is important to note that this research was carried on over

the course of several months and on an experimental time- sharing system.

During this time the computer environment was undergoing a continual

23

23
evolution. While most of the system changes did not affect the operation

of these programs, the timing figures presented are subject to some small

(certainly less than 1 per cent) variation, since the time consumption

characteristics of certain system subroutines were not invariant. It v/as

observed, for example, that the time required to assemble the main pro-

gram apparently increased from approximately 30 '^^^ ''-5 seconds. Since,

however, by far the greatest portion of the timing figures given was

actually consumed in programs directly under user control, it is clear that

this necessary and important evolution in no '^.^a^ detracts from the results,

EXPERIMENTAL RESULTS

Two two- constraint problems were used to develop and test the

program described above. These problems, derived from actual applications,

involved 28 and 10? projects, and are given in Tables 1 and 2, respectively.

Each v;as run several times using different heuristics regarding order of

consideration of the projects during the computations.

The results of the 28-project problem runs are summarized in Table 3=

The firsu coluran of this table gives the budget ceilings, while the second

presents the optimal payoff, the third column states the method of solu-

tion, Fo3rv/ard or Backward. The lower bound, if any, used in lower Bound

Elimination is given in the fourth column^ The fifth column specifies

the maximum number of feasible strategies which was required during the

entire ruuc Time of run is given in column six, and the final colinnn

marked "Comment" gives more qualitative information about the chief method

25
for ordering project consideration.

- 2k -

Table 1

PAYOFF AND OUTLAYS FOR 28- PROJECT PROBLEM

First Second
Project Budget Budget
Number Payoff Consumption Consumption

30
20

125

5
80
25

35
73
12

15

15
40

1

- 25 -

Table 2 (continued)

PAYOFF MD OUTLAYS FOR 105- PROJECT PROBLEM

- 26 -

Table 3

RESULTS OF COf-lPUTER RUNS V7ITH THE 28- PROJECT PROBLEIvl

Payoff in Maximum
Lower Bound Length of

Budget Optimal Solution Elimination List of
Ceilings Payoff Method Method Strategies

$600, :^6C0 $lUl,278 Fonvard

$600, $600 $1^^1,278

$600, $600 sl4l,273
$600, $600 $141,278

Forward
Forward
Forward

$600, $600 $141,278 Fon,-ard

$600, $600 $141,278 Forward

$600, $600 $141,273
$600, $600 vl^l,278

139508^
139508^
139508

139508*

xVorward 141277"^

3ack^^/ard

$600, $600 $141,278 Bacluvrard
^.

$600, $600 ;pl4l,278 raclward 139508

$500, $500 $130,883 For-/ard
^

$500, $500 $130,883 Forvrard 129723
$300, $300 $ 95,677 Forward

$300, $600 $119,337 Forward
$600, $300 $98,796 Fon/ard
$562, $497 $130,623 Fon;ard

2443

869
447
40

25

21
112

266
1153

24
20

27
32
26

Time*
(sees) Comment

731-5 V/'ithout Special devices.
See Text.

213.7 Worst criterion.
36.3 Natural order.
2.4 I/eighted Consumption (a).

criterion.
1.8 Payoff criterion

=

3-5 Weighted Consumption (a)

criterion.
1.8 Payoff.

5-3 Weighted Consumption (a)

criterion.

19.9 Reverse payoff.
174.8 Reverse V.'eighted Con-

sumption criterion.
2.1 Payoff
1.6 Payoff.
2 .

4

Mixed

.

2.2 Payoff.
2.1 Payoff.
1.8 Payoff.

Optirr.oin set v;ith ceilings of $6C0, $600 includes 14 projects:

Jos

,

3, 7, 8, 10, 12, 13, 14, 19, 21, 23, 24, 26.

''^Although times are reported to tenths of seconda, they must be regarded as accurate
only to •1:.5 seconds;

Payoff of the Linear Programming Lower Bound solution.
+
One less than the opti:.iurn payoff

»

27

An early run of this problem, without user intercession during

the computations and "before the Lower Bound Elimination Method and the

Look-ahead were implemented, required 731 seconds.

The fastest run, to date, required only 1.8 seconds, of which

27
at least one second may be attributed to ''overhead. '' It is particularly

interesting to note that even when using the Linear Programming Lower

Bound solution, Lower Bound Elimination and Lock-ahead, one run took 214

seconds. This provides an indication of the effect of order of consideration.

The results of runs made with the larger problem are summarized in

Table k. This problem was large enough so that it was necessary to stop runs

v;hich would have required vast amounts of computer time. The best run

one could reasonably expect for this problem took 3I seconds. Using a

different ordering the same problem required 3^7 seconds. Several runs

which would have required much more time were abandoned after 100 to 200

seconds had been consumed.

SOME OBSERVATIONS ON THE COMPUTATIONS

The program presented here has solved a large problem » It should

28
be noted, however, that the constraints were either "loose" or 'tight.

"

Neither of these circumstances presented anj^ difficulties. When the

constraints are reasonably tight a large number of strategies are in-

feasible, and the list length is kept within manageable limits. When

the constraints are loose the Look-ahead and Lower Bound Elimination Methods

eliminate a substantial number of feasible strategies. In an intermediate

range, as, for example, when both budget ceilings were set at $2,000, the

lists produced grew sufficiently long to have necessitated terminating the

28 -

Table 4

RESULTS OF COMPUTER RUNS WITH THE 105-PROJECT PROBLEM

Budget
Ceilings

Optimal
Payoff

Solution
Method

Payoff in
Lower Bound
Elimination
Method

$3, 000, $3, 000 $1,095^^^ Forward 109^4-591

$3, 000, $3, 000 $1,095^^+^ Forward 109^591

$3, 000, $3, 000 $1,095j^^^ Forward

$3,000, $3,000 $1,095,^^^ Backward

$3,000, $3,000 $1,095A^^ Forward

$3,000, $3,000 $1,095,'+'^-'+ Forward 1095^^^

$ 500,$ 500 $ 624,319 Forward 605^+77
*

Maximum
Length of
List of
Strategies

6kk

167

752
10514-

379
157
405

Time"
(sees) Comment

316.7

30.9
2'+0.0

392.7

li+9.4

23.7
120.2

Weighted Con-
sijmption (a)

criterion.
Payoff criterion.
Payoff criterion.
Payoff and other
criteria.
Mixed criteria.
Payoff criterion.
Mixed Payoff and
Weighted Con-
sumption (a).

The optimal set of projects with ceilings of $3,000 and $3,000
excludes Nos. 36, 72, 79, 80, 8k, 87, 93-105-

JL

"Although times are reported to tenths of seconds, they must be regarded as accurate

only to t. 5 seconds

.

*
Payoff of the Linear Programming Lower Bound solution.

»
One less than the optimum payoff.

Payoff of a feasible solution from an aborted run.

29

run. Evidently, more powerful devices are still needed to bring the com-

puting time vithin the range of experience with loose or tight budgets.

Consideration has been given to the possibility of allowing the

user to bring a project in and to back-up and bring in a different project

in its place if desired. Since this facility was provided easily by the

time sharing system being uced, it was not directly incorporated into the

program. It is possible that such a technique would be quite helpful in

certain situations, but not enough experience with it was obtained to

charactertize the circumstances under which it would be appropriate.

The results obtained, especially with respect to the time for

computing large problems, are not necessarily the best obtainable. They

depend not only on the efficiency of the computer programs themselves, but

more directly on the heuristics employed. These were limited by the in-

sights the authors were able to generate. An important inference seems to

be warranted. This is that in the computation of large combinatorial

problems, the sepax-ation of algorithm construction and computer programming

may be considerably less efficient than bringing the applied mathematician

into a close partnership with the computer. The combination may obviate

the necessity for devoting substantial effort to the solution of the meta-

problem--the rules for applying the algorithms. The mathematician may be

able to develop insights into the nature of the process and to respond to

characteristics of the particular n-umerical problem at hand without speci-

fying ad hoc how he wishes the computations to react to such variations.

- 30

FOOTNOTES

1. Alternative formulations, allowing for negative c as implied by the

generation of funds or other resources, are most appropriate to a
different class of models. These have been treated in [7] Chapters
8 and 9 and vill not be taken up here.

2. This verbal description is not entirely accurate, leaving out ''degen-

erate cases. Strictly, one strategy dominates another if the payo'ffs

are identical and so are the outlays in all but one period, in which
the dominated one requires m.ore, or the outlays are all identical
and the payoff of the dominated one is lower. See also below.

3. It should be pointed out here that Bellman's method [1] employing a
LaGrange multiplier for one or more constraints cannot be relied upon
to produce the integer "olution sought here, and vn.ll not be taken
up further. See also [kl and [6].

k. The naximum number of strategics that might have to be considered is,

of course, £ , where n is t

is approximately 3> 356, 000,

of course, £ , where n is the number of projects. For n = 25, this

5. The exam.ples discussed in the final sections will help to illustrate
these remarks.

6. The maximal number of fractional projects is given by T, the number
of constraints, as simple extreme point arguments v/ill prove. See

[7j, Sec. 3,8.

7. This was first suggested by V. L. Eastman.

8. See IT], Sec. 3.5.

9. If the dual vai'iablos corresponding to the two budget constraints (lb)

A
are denoted by yO and yO , then a =

A*^2
10. V.'ith the availability of an interactive computer system, it is possible

to remain flexible, i.e., not to fix a search procedure.

11. Degeneracy in the primal solution here means that either x. or x^ or

both are zero in (ll). Degeneracy in the dual means that either a = 0,

or 1, i.e., not all budgeted quantities are utilized in the optimal
solution. Neither of these introduces any difficulties.

31

12. It is important to note that the value of a which yields the LP
Upper Bound is not necessarily the same as that which produces
the LP Lower Bound, above, which is the best solution ignoring frac-
tional projects.

13. See [k].

Ik. At the time of writing, this consists of an IBM 709^ Computer set up
for time- shared use on remote Teletype and IBM IO5O consoles.

15. See, for example, machine learning in programs for playing checkers,

[5].

16. That is, this Worst project is removed from the list of projects still
to be considered, and its is probably not combined with strategies
on the list because such combinations are dominated.

17« The basic program discussed here omits reference to Look-ahead methods
and other devices.

18. That dominance testing may be suspended at this point follows from
the theorem that any new strategy cannot dominate or be dominated by
another new strategy.

19- The nunber of constraints, T, and the maximum number of projects, n.

20. As in the earlier program in [6], the strategy vectors were condensed
into binary strings. See Figure 1.

21. A block is a set of contiguous memory locations as defined in

Figure 1.

22,. This is done by a program separate from the one described above.

23" The major effect of this evolution on the research reported here was

the frequent change in system softvrare.

2k-. This is in addition to a 25-project problem of Cord [2j discussed in

detail in [6], The computing time reported there, using the program
referred to earlier, was 65 seconds. Using the same computer system,

this time was reduced to 1^6 seconds here.

25. The terms used there are defined in the section on Project Ordering.

26. This problem never yielded to the program reported in [6].

27. I.e., to a virtually irreducible set of housekeeping instructions.

28. The ceilings of $3>000 in each budget came from the actual application.

32

REFERENCES

[1] Bellman, R., "Comment on Dantzig's Paper on Discrete-Variable Extremum
Problems, " Operations Research , October 1957, pp- 723-24.

[2] Cord, J., "A Method for Allocating Funds to Investment Projects when
Returns are Subject to Uncertainty, " Management Science , January
196k, pp, 335-^1'

[3] Dantzig, G., "Discrete-Variable Extremum Problems,'' Operations Research
April 1957, pp. 266-77.

[h] Everett, H., Ill, "Generalized LaGrange Multiplier Method for Solving
Problems of Optimum Allocation of Resources, " Operations Research,

May- June I963, pp. 399-^^17.

[5] Samuel, A< L., "Some Studies in Machine Learning Using the Game of

Checkers, " IM Journal of Research and Development , III, No. 3

(July 1959), pp. 210-229.

[6] H. M. Weingartner, "Capital Budgeting of Interrelated Projects: Survey

and Synthesis, " Management Science , XII, No. 2 (March I966),

pp. 485- 516

»

[7] , Mathematical Programming and the Analysis of Capital

Budgeting Problems, Englewood Cliffs: Prentice- Hall, Inc., I963.

Date Due

MAR 9. '7ft.

ifnTf
3 '^OflD 003 flJ^V"^

73-6^
ST

(1(1
lir^itrr;'

"""'-

I, , „,M,i 1 11 \i^-^G
J '^OfiO 003 a^T Tifl

3 Toao 3 ATT TE

76-C&

Jit.)o

e-?».

3 TDflO DD3 flbfl T54

MIT LIBBARIES

3 TDflD D

l^-(oC

)7^-^t

03 flbfl T47

3 TOflO

MIT LIBRARIES

!l!||

3 TOfiO D

MIT LIBRARIES

3 flbfl TD5

ftRIES

|ll||l||l||lll|||iiiiii|i||i|iiini|

D3 abT DflS

Mil LIBRARIES

3 TOflO 003 flbfi T=i

wn LIBRARIES

llllllllllillllll

3 TDfi

TOfi

003 fi

MIT LIBRAHIES

lllllllllllllllMl

T 002

003 fib'l 0T3

3 TOflO

MiT LIBRARIES

03 a T OMM

MIT LIBRARIES

|l|i|IIIUIII|l|lll|ll|

3 ^OaO 003 TO 03T

