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THE MEANING AND MECHANICS OF INTELLIGENCE

1.0 INTRODUCTION

By this time, many people have lost interest in the

controversial question, "Can a machine think?" For one thing,

the question stubbornly resists attemtJts at operationalization.

Turing, for example, suggested the alternative question, "Can

a machine pretend it is a person of ST5ecified sex as well as a

oerson of the opposite sex who lies about its identity?" Others

have argued that the important question is, "What are the common

features of biological and artificial comnutational networks

that account for the production of accurate solutions to

problems?" To these questions can be added a myriad of possible

distinctions between human and machine intelligence. Among

these are issues of intelligence, learning, motivation, ratio-

nality, induction, synthesis, conceptualization, analogy, under-

standing and consciousness.

These are undoubtedly among the most prominent and intract-

able questions which we face. It is my principal thesis that

even the most abstract of these ideas, such as consciousness,

can be operationally defined in a suitable framework. In this





monograph, a machine will be described which will exhibit some

of these "Intelligent" properties. It Is my hone that those

capacities which remain unattainable by this particular machine

will, however, become explainable and comprehensible by

contrast.

It is Important at the outset to clarify exactly what my

purposes are. First, I intend to Introduce a level of abstraction

into more practical research on Intelligent systems. That is,

a single machine (which may helpfully be considered as a pro-

grammed computer) is discussed In order to facilitate the investi-

gation of all machines that exhibit similar properties. Thus, a

machine capable of learning about Its environment provides a

comparative basis for understanding other intelligent systems.

Including people. Secondly, I hope to demonstrate that Induction

by machine is not only feasible but is auite simple in certain

contexts

.

Moreover, it will be suggested that the activity of induc-

tion can be accorded the qualities of spontaneity and hlaher-

order Intelligence only in a somewhat contrived sense. Induction,

like problem-solving. Is shown to be a purely mechanical and

natural effect of more basic operations on the part of the orga-

nism.

Finally, by considering the properties of a prototyplc

thinking machine, Inferences can be drawn about many interesting

problems. The ramifications of this work extend to machines and

organisms in creneral , and these "reneralltles will occupy the remsind<=-r





of the paper. In the end , many of the seemlng-ly refractory

issues related to Intelli^rence , rationality, and thinking should

becoire soluble and comprehensible in the context of our framework.

1.1 An Outline of the Paper

In such an effort as this, potential semantic pitfalls

abound. Thus, the next section will introduce several definitions

upon which we will rely throughout the paper. We will construct

somewhat unusual definitions for concepts like knowledge , learning ,

and concept . Prom these, we will be led ultimately to hierar-

chically defined notions of conceptualization. Intelligence, and

consciousness.

Armed viith these operational statements of the properties of

intelligent systems, we will describe the operation of one such

machine in section three. It will be shown that a machine

equipped vrith a few rudimentary features can learn to solve many

problems which transcend the capabilities with which it is origi-

nally endowed. Moreover, the machine provides a demonstration

of the mechanized genesis of predictive models. Without specific

pre -programming, the machine discovers salient attributes of

symbolic sequences and proceeds successfully to solve many diverse

prediction problems.

In section four, we will address the question, "Does this

machine think?" It will be possible to consider this problem

directly and operationally. The classes of -oroblems which the

limited thinking machine can and cannot solve are considered.

Notions of limited Intelligence and mechanisms v^hereby such a





machine could expand its knowledge are Introduced.

In section five, the Induction problem is reconsidered. It

is shoi«m that the question, "Can a machine perform induction?"

is of limited interest and importance. Instead, it is the construc-

tion and integration of concepts Into the conceptualizing framework

of the machine x«rhich are of significance. The class of behaviors

typically regarded as inductions or syntheses, I will argue, are

not distinguishable from many other logical behaviors. Thus, the

original induction question is robbed of whatever significance

it may have been presumed to possess.

The topic of the sixth section is the macroscopic pattern

of behavior of Intelligent organisms. The relations among behavior,

intelligence, and personality are explored. In particular, we will

focus on the way in which the behavior of an organism is structured

and organized by its intelligence mechanisms. Some common but

complex behavioral patterns, both personal and interpersonal, are

considered In this way. It is In this section also that the

arbitrariness of Ideas is demonstrated. As corollaries to this

significant finding, we will consider the possibility of boundless

knovrledge and the patently fallacious positivism underlying the

common Intelligence test.

In the seventh section, consideration Is given to the state-

of-the-art in intelligence science. Especial attention is paid to

the significance of our prototypic thinking machine and to its

limitations. Other related topics which were overlooked are con-

sidered in this section in a somex-Jhat broadened perspective. A





formal disclaimer is made of the accuracy or appropriateness of

this particular machine as a descriptive model of human Intelli-

gence. Nevertheless, I will suggest that any machine which

exhibits intelligence and which may effectively simulate some

human activities is a provocative datum in the study of human

psychology.

At the conclusion of the monograph, in section eight, a

brief summary is presented. Those Issues which emerge from

this study as particularly salient are recommended for further

investigation, and some of the prospects for future achievement

are informally sketched.





2.0 CONCEPTS AND DEFINITIONS IN THE SCIENCE OF INTELLIGENCE

Anyone who has pursued study in cognition, artificial

intelligence, or the philosophy of knowledge must share the

comnion frustration stemming from the inadequacy of the termi-

nology with which processes of thinking and intelligence are

discussed. It is not the circularity of definitions relating

these terms which alone is confounding. Such circularity of

meaning is intrinsic in language. Rather, it is the concomi-

tant lack of precision and of referents in these terms which

precludes achievement of operational and testable descriptions

of Intelligent processes.

In order to rectify the serious condition of our termino-

logy, it will be necessary to set forth new and precise mean-

ings for the important concepts which we must negotiate. In

doing this, some friction with pre-existing habits is to be

expected. It is not easy to emnloy familiar words in narrow

and novel ways, but It is essential to this endeavor. To the

extent that we can agree upon the meanings of our words vrill

vje be able to argue profitably about the observations vre

describe. In vihat follows, it is not my intention to suggest

that other nuances and connotations associated with these terms

are without significance. I wish simply to restrict these words

to particularly precise meanings for the duration of this study.

I have no doubt that as the processes of intelligence become

more fully understood, the language will be nroperly extended

and refined to accommodate these needs. In the interim, the
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best approach is to put our words and meanings in the open in a

T^ray in which all can agree upon what is being said.

In the definitions and discussion which follow, certain

assumr»tions are made. First, it is assumed that all machines

and organisms discussed occupy the same environmental space,

wherein all events and attributes x^ihich can be perceived are

objectively confirmable. The motivation for this assumption is

to avoid difficult eplstemological issues which are not parti-

cularly important here. Second, the environment of an organism

(machine) includes all things which are theoretically perceptible

or denotable in the total space, including internal states of

the machine Itself or of other machines. Any perceptible or

denotable condition can be considered an attribute of the environ-

ment. Within the real-world context provided by these assump-

tions, we can consider now the major concepts vital to our study.

2.1 Knowledge

Definition; Knowledge . Knowledge is a capacity to predict

the value which an attribute of the environment will take under

specified conditions of context.

Figure 2.1 here

Let me clarify this definition before offering examples.

Knowledge is evidenced whenever an organism nr machine v>Tod\xces

inforiflation or reduces a priori uncertainty about its environ-

ment which is synthesized from other data and not simply contained

within them. An attribute of the environment is any measure or





method of scaling '.-J^hich theoretically can be applied to the

environment. Or, recursively, an attribute may be a measure

based. Itself, on one or nore attributes. An attribute value

is the specific measurement obtained in one assessment of an

attribute. To predict is to produce an estimated value of an

attribute which can subsequently be confirmed by direct measure-

ment. Finally, conditions of context are the environmental

attributes used as the basis for prediction.

Examples of knowledge are certainly plentiful. I know the

name of ray wife. Therefore, I am capable of predicting the name

Fox from the attribute value my wife . Knowing how to add means

a capacity to predict the sum of a set of numbers. A prediction

of the next number of the sequence 0,1,2,3,4,5 reflects, at least,

some knowledge of the natural numbers. The ability to predict

the identity of the famous politician and President who was shot

in Dallas is also knowledge.

From these few examples, several Inferences can be dravm.

Prediction, in the sense in which it is being used here, does not

imply the foretelling of the future In any usual sense. Instead,

the predicting organism simply presages an unknown attribute in

advance of its confirmation. Thus, you can have knowledge of the

past as well as of the present or future. This leads directly to

our next definition.

Definition; Types of Knowledge . Knowledge can be divided

among several types according to the relationship it shares with

each. Tyi-ies of knowledge are necessarily neither exclusive nor





denumerable. Each type of VnowlR(ia;e Is an equivalence class of

one or more capacities for prerllctlng events. Each capacity in

such a class relates to every other by virtue of a single

common attribute.

Figure 2.2 here

What this definition suggests Is that clusters of knowledge

can be organized Into distinct types whenever salient attributes

arise which can act as the basis for classification. For example,

knowledge relating to past, present, and future predictions

about an organism can be divided among ontogenetic , diagnostic,

and prognostic types of knowledge. The distribution of university

courses and researches among different departments reflects a

similar organization with res-oect to types of knox-xledge, e.£.

mathematics, physics, and literature. As another example, the

specialization of labor in a -oroduction process is related to the

development and exploitation of diverse types of knowledge.

Less obvious means of organizing knowledge into types are

possible. Because any attribute of the environment is a priori

suitable as a basis for the formation of a type of knowledge, an

individual's knowledge can be partitioned in numerous ways. For

example, we may consider his ability to predict the behavior of

others with whom he interacts as one type of "Interpersonal"

knowledge. His ability to predict how: he himself will behave

during interaction is another. The Freudian system of id, ego.
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and superego provides an example of a particular taxonomy of

knowledge about human behavior. Of course, both the validity

and utility of this system are problematic. These considerations

motivate the following definitions.

Definition; Event , Consider a specific attribute value

prediction X^ with knowledge K. Suppose that the occurrence

of an n-tuple E of attribute values (X^ ,X2 , . . . .X^) is sufficient

to support this prediction by K. Further, suppose that no m-tuple

(Xj.Xg,... .Xjj^) entirely contained within E is sufficient to

produce Xp with K. In this case, the attribute set E is an event

under K.

Figure 2,3 here

Definition: Perception . Consider, as above, a prediction

Xp made with knowledge K. Consider the set of events P of all

events E^^ which support the same prediction X^ with K. The set

P Is a perception under K.

Figure 2.4 here

De fmition ; Erro

r

. Error is a measure of the difference

between a prediction made with some knowledge and a measured

observation of the environmental attribute being predicted.

Any measure of the discrepancy is a priori suitable for this

purpose.
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Definition: Scope (Domain) . The scope (domain) of a

knowledge Is a measure of the events or perceptions which can

affect predictions made with that knowledge. The scope of

knowledge Is precisely the union of all events or perceptions

under that knowledge. If all predictions made with a knowledge

are Independent of the environment, the scope of that knowledge

Is nil.

Figure 2.5 here

Definition: Range . The range of knowledge is a measure

of the universe of predictions which could potentially be made

with that knowledge. The range of knowledge Is simply the union

of all predictions made under all events in the scope of that

knowledge. When the knowledge is theoretically capable of

predicting (without consideration of accuracy) all possible

events of the environment, we say the knowledge Is universal .

Otherwise, the knowledge is limited or bounded .

Definition: Domain of validity . The domain of validity

of a knovrledge Is the subset of events D in the scope of that

knovjledge for which any error of prediction is always within a

prespeclfled tolerable class. Conversely, we say knowledge Is

valid over a domain of events if no prediction which it supports

could result In an error vrhlch exceeds the bounds of some pre-

speclfled tolerable error class. The tolerable error may be

specified as zero or none.
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Figure 2.6 here

Definition; Def^ree . The degree of knovrledge Is a measure

of the relative perfection of the knowledge. The measure Is a

proportion of two terms. The second term, the denominator, Is

a measure of the range of the knowledge. The first terra, the

numerator, Is a measure of the subset of the range which

Includes those predictions which can only be supported by events

In the domain of validity. When these two sets are equivalent,

we say the degree of knowledge Is -perfect . Otherwise, the degree

of knovjledge Is Imperfect . '-/hen the degree of knowledge Is

Imperfect, the difference between the two terms Is a measure of

the set of predictions supported by that knowledge which are

always or may be occasionally In excess of the tolerable error.

Figure 2.7 here

Definition; Precision . The precision of a knowledge with

respect to a specific purpose P Is a measure of the relative

adequacy of K for the purpose for which its predictions may be

utilized. Consider a second knowledge T which is defined as the

minimal or simplest knowledge required to predict perfectly the

activity of the purpose P* That is, T is a logical equivalent of

P and is Isomorphic to the machine that executes the purpose P.

Now consider the scope S of all perceptions of T. Each perception
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represents those events that can lead to a distinct behavior of

the machine associated with P. Now consider a mapping between

S and the range R of predictions of K. This mapping shows which

predictions by K can lead to which perceptions by T. If each

prediction in R can be as soc later' with at most one perception in

S, we say K is precise with respect to P and T. Otherwise, K

Is not precise . The measure of relative precision is a proportion

of two terms. The second term, the denominator, is a measure of

the scope S of T. The first term, the numerator, is a measure of

the subset of perceptions of S which are exclusively associated

with predictions in the range R of K which meet the one-to-one

requirement from R to S. In other words, the precision of K

with respect to P is a measure of the proportion of perceptions

which can be made without ambiguity in the performance of P or

in its prediction by T.

Figure 2.B here

At this point, we have Introduced all of the essential

concepts pertaining to knowledge. Several of these are relatively

complex. The most outstanding feature of these definitions,

however, is the quality of relativity which they reflect. In the

study of knowledge, the only absolutes are the assumed objective

measurements of rela attributes in the environment. Knowledge Is

then definable as an ability to predict one or more of these

attributes from some others. There is no absolute measure of the
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value of knowledge, because each prediction may carry signifi-

cance for each of many different puposes. In fact, the precision

of knowledge itself is a function of the use to which it must be

t)Ut. To someone without taste buds, the distinction between

lemons and limes is without import with respect to eating. The

same person, however, may attach great significance to the same

distinction in the laboratory or when purchasing fruit for a

table decoration.

Many interesting relationships can be exhibited among these

measures of knowledge when various assumptions about the source

and distribution of events are made. These questions, however,

lie beyond the scope of the current paper. Nevertheless, these

deflntlons will prove useful in considering our special problem,

the nature of Intelligence.

2.2 Logic and the Concept of Rationality

In this section, I wish to Introduce the major concepts

pertaining to logic and rationality. It will be Interesting to

consider how several knowledges may be combined by a logic, and

how, together, they may comprise a rational system.

Definition; Attribute and Environment .

An attribute A is a transformation applied to the current

environment which produces a single valuation. The attribute may

be considered as a functional mapping A; © -^ 9, where 9 is the

state of the environment. The domain of this mapping is called

the scope of the attribute. The range is called the range or

scale of the attribute.
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Thus every attribute is based on the environment and is

part of the environment. The current environment is, in fact,

definable by the current value of all attributes: A^(9), A^C©), ...

That is, an attribute of the environment Is any possible mapping

from some elements of the environment to some others. The envi-

ronment Is logically equivalent to the collection of all attri-

bute values at any moment in time.

These definitions are, of course, tautological. I have said

that the environment is the set of attributes of the environment

and that an attribute of the environment is any function which

maps the environment into itself. The definitions are not

worthless, however. They lead to the following important theorem.

Theorem 2.1 . An environment 9 is identical to the set of

all definable functions.

Proof . Assume the opposite is tnae. This implies the

existence of at least one function 3: A A, where A Is some

arbitrarily defined space and where B is not included in the

environment. But by definition B is an attribute of all environ-

ments which include A. Meanwhile, A is an attribute of those

environments which contain it, because we can define a reflexive

function A: A ^ A where A(x) is defined as:
CA If x=A

A(x) =(_undef Ined, otherwise.

Thus, the existence of the space A implies that B Is an attribute

of the environment, which contradicts the assumption and completes

the proof.

Corollary 2.1.1. Any definable function Is suitable as an
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attribute of all environments.

A vrord should be said on the term definable . The whole

structure which we are building depends on the assumption of

an observable and measurable reality. Definable, in such a reality,

is equivalent to operationalizable . Thus, any function vrhich can

be computed by any means is a potential attribute of the environ-

ment. This Implies the possibility of hierarchically defined

attributes which are compositions of several operations.

Definition; Procedure . A procedure is a rule for computa-

tion, i..e. it is the full specification of a transformation from

one state of the environment to another.

It is possible to have a complete knowledge of a procedure.

This means the capacity to predict every action of the procedure

under all condtions of context.

Definitions; Equivalent and Subsumes . Consider a procedure

P:t^ »vy where (t/ is part of the environment. Consider, also, some

knowledge K: * 9 which is capable of predicting every attribute

of P and no more. In this case, K and P are equivalent. If K

is in addition capable of predictions about 9 which are not

attributes of P, vje say K subsumes P.

These definitions lead to the additional observation,

Fact ; Any procedure P: 9 -^ 9 or any knovrledge K; 9 -^ 9 of

the environment 9 is Itself an attribute of 9. Conversely, any

attribute of the environment is equivalent to at least one pro-

cedure.

Definitions; Onerator and Operation. An operator is any
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procedure. An operation is the transformation of the environment

resulting from the am:)lication of a procedure.

Definition; Logic . A logic L is a set of knowledges which

is equivalent to a set of attributes and procedures of the envi-

ronment 'Thich are closed under the operations of the set. A

logic is thus equivalent to a set of connected graphs. Each node

represents an attainable attribute value. The connection between

two nodes represents a possible transition from one state of the

environment to another under a specific operator.

Figure 2.9 here

This definition of logic is somewhat unusual and deserves

further consideration. Within our framework, any set of attributes

is sufficient to define a logic If no transformation of an attribute

leads to another attribute xi^hich is not included in the logic.

It is interesting to consider what would be required of a

logic for it to be "rational" or "logical." Note first that each

achievable attribute value (node) of the logic can be considered

the end result of some procedure operating on other attributes.

Further, each transformation between two nodes of the logic is

equivalent to a knowledge that predicts it. If each of the know-

ledges thus implied is valid over the attributes which they trans-

form, then the logic which embodies them is rational.

Definition; Rationality . Consider a knovrledge K which is

equivalent to a logic exclusively comprised of tranformations which
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occur within the domains of valicllty of their associated know-

ledj^es. Such a knowledge K Is said to possess rationality.

Several Implications can be drawn from this notion of ratio-

nality. Rationality Is a quality of logics which transform the

observed environment Into new attributes. The transformations, of

the logic must be operatlonallzable and their results conflrmable.

No transformation can result in a deduction v^hlch lies outside

of the logic Itself. As a measure of validity, an arbitrary degree

of error is tolerable for each transformation within the logic.

Thus, rationality Is a quality of those logics which consistently

avoid excessive errors. To the extent that rationality Is violated

by any knowledge, we may ascribe the quality of irrationality to It.

Definition; Recursion . Consider a logic L and am original

attribute state S^^ contained in L. Suppose the tranforraation of

Sj^ by an operation gf-^ leads directly to a new attribute state Sg

in L. Suppose however that the transformation of S^ to S2 also

results in the occurrence of a new attribute Sj_ owing to thesTjecially

changed conditions of context. The logic may In this case be

applied recursively to the new occurrence of S^. This Is the

process of recursion. Alternatively, the logic may transform S2

by other available operations without recursion.

In essence, this definition allovrs a logic to transform a

fixed portion of the environment at a time. l-Ihen the conclusion

of such a transformation is reached, the logic is recursively

applied to another portion of the environment. This second portion
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of the environment Includes the conclusion of the earlier appli-

cation as one attribute of the larger context.

Definitions; Proof and Premise . Consider a logic L and

an unbroken path from one attribute state S^^ to another S2. The

initial state S^ is called a premise of the proof of Sg. The

proof of S2 is an ordered set of operations (0^ ,02, . . . ,0^^) which

result in the tranformation of S^ into 82* That is, 82= ^n^^n-l

( • •
• (0l(S^ )

)• •
• ). Each state which is attained between S^ and

S2 by a partial series of tranformatlons, including S2, is a

conclusion by deduction from S-^ in L, Any set of attributes T

which are transformed to a set U by recursion in L is called the

set of premises of the proof of U In L. The proof of U is the

ordered set of operations formed by the concatenation of the

individual transformations of each application of L in the recursion,

To illustrate the notions of logic and proof vie will discuss

a logic for Boolean algebra or the prepositional calculus. This

lo.Tilc may be considered to operate on an ordered set of symbols

including (false), 1 (true), & (conjunction, and) and /v( negation )

.

Any problem in this logic can be expressed in suffix functional

form, where an operator (& or /v) is applicable to the operands

or 1 which Immediately precede it. For example, OOfr is equiva-

lent to "false and false" which Is false. The problem, OO&Nl&rJ

is also equivalent to 0. The tinth of this statement can be seen

In the following stages of a proof:
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^11^A/

0.

The complete recursive logic required to compute all problems

iThlch are expressed In this form Is given in Figure 2.10. In this

Figure 2.10 here

logic the attributes x^rhich are sought constitute the set of states.

Each attribute means "transform the first occurrence of this pattern,

moving from left to right." For examiDle, the pattern 00<?- means the

first such set of symbols, found while going from left to right,

in the problem environment. It can be seen that the proof of the

state from the premise set OOe^^l&t^ is {02i<^c^i^i^i0i) • That is,

= 0^(0i^(03(02(OO<^-A/l^--A/)))).

2.3 Models

An Important concept in most discussions of intelligence is

the notion of a model. Science abounds with models (of the atom,

of homo economicus, of social systems) and these all share common

defining properties.

Definition; Model . A model is a knowledge.

In what ways can it be seen that model and knowledge are

synonyms? A model is supposed to be employed in making predictions

about certain attributes. For example, economists create a model.
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homo econoniicus, with certain attributes and premises. In order

to deduce conclusions about possible eventualities. In its use

as a tool for judging ^rhich alternative outcomes seem reasonable

or likely, the model is being used for prediction. Thus the

model is part of some knowledge. It also embodies knowledge

because it is Itself a capacity for prediction. Thus, a model

is fully equivalent to a Icnowledge.

Definition; Types of /lodels . Synonymous with types of

knowledge.

When people discuss types of models, they are usually classi-

fying knowledges on special types of attributes which are histo-

rically accidental in that role. For example, we consider the

raathematical school of model building which provides a taxonomy

of models closely paralleling the taxonomy of problems of simul-

taneous equations of several unknowns. Thus, there are linear,

Quadratic, and polynomial models; there are first-order (like

Industrial dynamics), second-order, and higher-order differential

models; there are Interaction and non-interaction models, of both

stochastic and. non-stochastic variety.

In psychology, we can see a similar preeminence of models

ifhlch reflect discriminations among diverse academic views in that

1. The equivalence of these terms is evident in the following
quotation from Klnsky, "We use the term 'model* in the following
sense: To an observer B, an object A* is a model of an object A
to the extent that B can use A-^ to answer questions that interest
him about A." Prom H. Klnsky, "Matter, Mind, and Models," in
li. Minsky (ed.). Semantic Information Processing . Cambridge, Massa-
chusetts: The MIT Press, 196^.
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field. 'Je do not find frequent disagreements about which mathe-

matical type of model is most ap-oropriate, because that is an

unasked question in most psychological arguments. The really

significant question for these people is which model—develop-

mental, gestaltist, physiological, behavioral, cognitive, or

psychodynamic—predicts what and how. Similarly, these psycho-

logical diversities have never made a significant impact on the

development of mathematics.

The general principle which I have been illustrating above

is fairly important. Fields of knowledge develop in order to

predict particular attributes of importance to the people in that

field. The models which they talk about are simply representations

of the knowledge which they have constructed .

The study of functions is within the scope of mathematics.

Thus, it is not surprising that different types of mathematical

models have developed reflecting the major differences that have

been specifically assigned to individual functions. The extra-

polation of significant attributes from one problem to another
of

seems characteristic^human problem-solving behavior, in general.

It is a fallacy to hold that models provide information

which is not intrinsic in the events which they represent. A

model, as a means of making predictions, is only as valid as its

coiaponent predictive relationships. If a model makes a particular

prediction and the premises on which it operates are even slightly

erroneous, the prediction may be utterly incorrect.

Prom this can be seen at least two sources of value in models.
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There is a familiar sense in which models are valuable. That is,

a model is valuable If it makes predictions which are useful for

some purpose. But there is a concomitant issue related to the

scope and structure of the model. In this sense, models may be

valuable if they are simply interesting or provocative by virtue

of the attributes on which they operate. For example, the model

of the steam engine played a significant role in the development

of other models, e..£. man, calculators, and Institutions. In this

case, the value of a model of the steam engine derived in part from

the other sets of attributes which could be considered in a similar

way to the set of attributes of the steam engine. That is, the

potential for analogy between the steam engine and other engine

systems Increased the value of that model.

The consideration of the structure or interrelationships

within a model is the aim of all fields of study. However, no

field of study has a monopoly of useful models. If the steam

engine is a useful model of the workings of a man, then a man is

a useful model of the workings of a steam engine. The genesis

of models is an important issue v/hich we consider often throughout

this monograph.

2.^ Motivation and Drive

To this point, little has been said of the apparently universal

aspect of organisms related to their purposiveness or goal directed-

ness. It may have seemed that organisms were supposed to possess

complete discretion of choice and behavior. It might seem that

such an organism could be designed. These ideas motivate the
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following definitions.

Definitions: Hotlvation and Drive . Consider an organism

whose behavior Is completely predictable by some knowledge K.

For any state of the environment ©, the organism will behave in

a determlnisltc way and execute a certain behavior B(©). Consider

nny other potential behavior of a similar organism, B'(e). To

the extent that acts in way B(9) as opposed to B'(©). we say

that is motivated to act according to B as opposed to B*. Any

function of the difference between B and B* can be called O's

drive to achieve B or O's aversion to B' with respect to B.

As an example of drive we may consider the commonly cited

sex drive. For some psycholanalysts, the sex drive is considered

Inherent in a person and is held responsible for all sorts of

behaviors, including lust for one's mother or father. For

ethnologists, sex drive is tantamount to the tendency for repro-

ductive and nest-building actlvites. For organized religion, a

sex drive is something that is alternatively recognized, denied,

condemned or ordained. In all of these, the notion of a drive for

sex is a measure of the supposed tendency of organisms to behave

sexually vis-a-vis a particular sexless model.

Definition; Reinforcement . Again, consider the organism

predictable by K. Suppose perceives some attribute A(e),

..leaning that A(©) is a perception of K. Further, suppose that

behaves in such a way as to repeat a behavior B(G) which occurs

whenever A(©) is perceived. In this case, we call A a reinforcement

for 0. The perception of A(9) reinforces the behavior B.
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I wish to clarify the word repeat used in this definition.

Repeating a behavior means exhibiting two behaviors which are

measurably similar in two contexts separated necessarily by a

lapse of time. In this definition, attention is also to be paid

to the role of the perception of A(e). The perception need not

iraiaediately precede the execution of B(9) or coexist with it or

follow it. Much of the work of experimental psychology is con-

cerned specifically v/ith determining the nature of the relation-

ship between B(9) and A(©). A(9) may, for example, be an

internal state of the organism.

Definition; Punishment . Again, consider predictable by K.

Sup-oose perceives some attribute A(©). Further, suppose that

behaves in such a way as to repeat a behavior 3(0) whenever

A(0) is not perceived. In this case, A(9) Is a punishment for 0.

Definition; Goal . A goal is a reinforcement.

Definition; Incentive . An incentive is any attribute A (9)

'•'^hich is perceptible under some conditions as a reinforcement

A(9), that is, is equivalent to a perception of A(9) for some values

of 9.

This definition clearly embodies the common meaning of

Incentive. It is useful in an explanation of the failure of some

incentives to have the desired reinforcing effects under all cir-

cumstances.

Definition; Drive for Predictability . Once again, consider

loredic table by K. If C is reinforced by a peroer)tion in K that

Itself has a made a valid prediction, can be said to possess
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a drive for predictability.

Definition; Drive for Complete Predictability , Consider

predictable by K. If is reinforced by a perception that

Itself has validly predicted all perceptible events, possesses

a drive for complete predictability.

Definition: Drive for Economy . Suppose 0, as above, is

predictable by a knowledge K which is, in turn, representable as

a particular computational procedure P. Let exhibit some

behavior A* which is measurably identical to another behavior A

for some observer E (A and A* are perceived identically by E).

If A' can be executed by P in less time than A and if is rein-

forced by the execution of A*, can be said to possess a drive

for economy of time with respect to A, A', and P.

The notion of a drive for economy is extendible to other

attributes than time, such as memory, energy, and weight. However,

it should be clear that the notion of economy is relative. It is

very difficult to imagine even generally desirable drives for

economy in an organism—consider love-making or reading activities.

As many organisms are combined to form a society, legislated

societal drives for economy are more easily comprehended if

intra-organlsm differences are ignored.

2.5 Concepts, Ideas, and Ideogenesls

I have given considerable attention elsewhere to the nature

of concepts in human activities^, but the notion of concept in the

1. F. Hayes-Roth, The Structure of Conce-pts . 'lorking paper of
the Sloan School of Management, Cambridge, Massachusetts, April 1971.





27 -

abstract frajnework T-te are novj creating Is somevrhat different.

Definition; Concept . A concept is a procedure for trans-

fonaini? the environment into a perception of the environment or

for transforming one perception of the environment into another.

The scope of the concept is the scope of an equivalent knowledge.

We have already shown in section 2.2 that the environment

is the set of all computable functions. Consider a knowledge K

which is incapable of predicting all attributes of the environment.

A concept in K is a rule which explains how perceptions in K relate

to and are produced by other aspects of the environment. For

example, my concept of large is a rule which explains my perception

of large . This explanation may involve interactions among aspects

of the environment x-rhlch are Individually Imperceptible to me.

Also, concepts may be reflexive transformations. For example,

I have many concepts of concepts. The concepts noun and verb

are applicable to specific verbal concepts, such as to the nouns

apple and speed and to the verbs fructify (to cause to bear fruit)

and speed (to move very quickly). Because verbal concepts—of

v/hich noun, verb , apple , speed , and fructify are examples—are the

only relatively precise tools of daily interpersonal cominunicatlon,

they have a significant impact on human experience which is not

possible for non-verbal concepts. Hovrever, it vjould be an error to

assume that significant conceptual transformations depend on the

existence of corresponding words. That supposition, although

frequently encountered, is total unreasonable in my opinion.

Definition; Idea. An idea is either a concept or the perception
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of an event In the scope of the concept.

This definition of idea is intended to cover its two most

frequent meanings. The meaning of idea as concept has already-

been explained. The meaning of idea as a perception is easily-

illuminated. Consider an organism which is predictable by K.

If an environmental event occurs which is in the scope of a con-

cept of 0, then V7ill transform the perceived event by utili-

zation of the concept. Thus, if a dog appears in the environ-

ment, can have the idea dog if he perceives it. This does not

mean that he must see or hear it, but that he has invoked one of

the same procedures (concepts) which he would if he did actually

see or hear it. Thus, reading the vrord "dog" for an organism

which reads, sees, and knows the concept (like the reader, for

example), results in an experience which is identical in some

respects to the visual recognition of a dog as dog.

'•Je consider now the issue of the generation of concepts. In

this definition, we will establish a critical and salient attribute

of intelligent systems.

Definition; Ideogenesis (Concept Formation) . Consider an

organism predictable by K. Ideogenesis (concept formation) is

the creation of a new concept in 0.

Ideogenesis is the process whereby an organism changes the

way it responds to the environment. ''Jhen a new concept is formed,

the organism may have percetitions which are totally unlike those

it had before. Remember that a perception is the set of all

environmental events that are transformed in an identical way.
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Thus, when a child forms the concept doR he has developed a

capability which would allovr him to respond identically to all

dogs. That he does not respond, identically to all dogs indicates

only that the knowledge which would predict his activity must be

more complex than simply predicting whether or not something is

perceived as do^.

Definition; Ideogenetic Drive . Again, consider predictable

by K. If can be observed to exhibit ideogenesis, it is possible

to define and measure the various attributes of this behavioral

tendency. These operations can constitute operational definitions

of ideogenetic drive.

The relevance of ideogenetic drives can be seen in a simple

hypothetical problem. Suppose you were required to choose betxreen

two machines X and Y for application to an industrial process.

Both machines are originally programraable for a specific simple

task, and one of the machines, say X, is capable of ideogenesis

regard ins its task environment. Clearly, if X is capable of

generating valid and useful concepts to correct its performance, it

is preferable to an unchanging Y. This is Just the case when X and

Y are thermostatic controls, and when X is additionally capable

of maintaining a valid temperature calibration independent of any

erroneous readings on its dials. The alternative thermostat Y may

be thought of as gradually and unalterably losing its calibration.

The variety of concepts which people possess suggests a

wealth of questions about ideogenesis. For example, V7e may wish

to discover how -oeople foimi specific concepts or concepts in general.
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vjhich concepts facilitate or inhibit the learning of other concepts,

and vrhat the developmental concomitants of Ideogenesls are. All of

these questions are studied currently In various fields of

psychology, although frequently indirectly.

Por ray purposes, it will suffice to define three additional

terms related to ideogenesls. In these definitions, the major

psychological Issues can be found, albeit somewhat transformed.

Definition; Abstraction . Consider an organism predictable

by K. Consider also a set of O's perception F = (Pi,P2,...).

If each of the perceptions P^ in P is transformed into a common

TDerception Q under a series of conceptual operations, x^re say Q

is an abstraction of P. We may say that has abstracted the

property Q from P.

Definition; Developmental context of ideogenesls . Consider

as above. Consider, further, the set of all possible environ-

mental events C which could accompany, simultaneously, the formation

of a new conceDt I. This set C is called the developmental context

in of the ideogenesls of I.

Definition; Induction . Consider as above. Suppose that

has abstracted some attribute Q from a set of perceptions P which

is potentially more extensive than P—!..£.» the set of possible

perceptions S exhibiting Q properly contains P, the set from which

Q was abstracted. The Ideogenetlc formation of a concept v;hich

transforms S Into Q is called induction by 0. We say that has

induced Q about S from P.

I worry that this proliferation of precise terms may be confusing
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the relatively straightforvrard relations vrhlch they are intended

to sifoiify. In the case of induction, it is essential that the

reader grasp the basic processes Involved. I will illustrate

these with an exaple.

Suppose a child knows the concept of number only to the

extent that it can properly identify the single digits 0, 1, 2,

or 3 a-s cases of number . Suppose, further, that vrhen queried by

an observer the child first denies that the pairs 00, 01, 10, and

11 are numbers. Novr, suppose the child is provided with corrective

feedback from the observer to the effect that, "You are wrong;

00, 01, 10, and 11 are all cases of number ." If the child can

subsequently generate a concept of number that permits him to

identify all of the symbols 00, 01, 02, 03, 10, 11, 12, 13, 20, 21,

...as numbers, we say he has induced the allowable property of

tvro-dlgit-ness of numbers

.

'iTe cannot, hovrever, deliver a certain explanation of x-rhat he

has induced vrithout discovering what all the ramifications of

his ideogenesls are. One might have alternatively said in explaining

his behavior that "he has Induced the fact that two numbers placed

side by side constitute a number." Actually his behavior in recog-

nizing novel two-digit numbers as numbers is consistent v/ith this

explanation, but it is insufficient to Justify it. If this alter-

native explanation were valid, the child would be able to recognize

four-digit numbers also, because they are formed from juxtaposed

two-digit numbers. By the same reasoning, the child should be able

to recognize any number of adjacent digits as a number. That is,
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of course, the correct concept of number which is ultimately

sought. No one who has studied children, however, would be

surprised if the child could not recognize all possible numbers

correctly after his first induction. In many cases, induction

does not lead to complete and valid knowledge even if it produces

a fevr correct responses to novel situations .

2.6 Conceptualization and Problem-Solving;

Definition: Conceptualization . Conceptualization is both

the process and result of the transformation of the environment

(including perceptions) under concepts. Conceptualization is

the application of conceptual procedures to the environment.

Definitions: Thinking; and Thought . Thinking is that part

of conceptualization which is restricted to the process of trans-

forming the environment under concepts. A thought is the result

of thinlcing. An organism which thinks is said, alternatively, to

conceive.

Definition; Problem-Solving . Suppose an organism conceives

of a possible attribute of the environment A(0) which is theore-

tically realizable although not currently perceptible by 0. may

thinlc of a means for realizing that attribute or causing A(9) to

become perceptible. 0*s thinking in this case is called loroblem-

colving. The series of procedures which constitute the means of

1. For a detailed analysis of the stages of development
of a concept, with regards to such partially valid inductions,
I recommend Vygotsky's wonderful research. See L.S. Vygotsky,
Thought and Language . Cambridge, Massachusetts: The MIT Press,
191^2;!
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instrvunentally alterinrr; the environment to cause the attainment

of A(©) is called the solution to the problem A(©).

From this definition it is evident that many organism, other

than people, think and solve problems. For example, my dog thinks

about where her ball is, I observe this because she executes a

rather extensive household search (limited, of course, to her

usual haunts) when I present the problem to her, "Go get your

ball." The remarkable chimpanzees of Kohler's Insight experiments

must also think a fortiori ^.

It follows from these definitions that problem-solving behavior

is sufficient evidence of both thinking and the existence of concepts

IJhether or not the problems which organisms solve or the concepts

'i±th which these are solved are In some way restricted to a par-

ticular type was a motivating question behind Gestalt psychology.

That is, a Gestalt principle Is nothing more than an attempted

statement of those properties of the "Thole context which are

prerequisite to successful problem-solving with the problem parts.

In this sense, a chimpanzee may be able to use a stick as a tool in

one particular setting, but unable to conceive its use in a similar

role in another context. This Gestalt attribute of the tool-In-

setting may, by similar reasoning, be defined in terms of a failure

on the part of the chimpanzee to abstract the utility of the stick

from the stlck-ln-setting.

1. See W. Kohler, Intelligenzprufungen an Menschenaffen .

Berlin: Springer, 1917. Translated. The Mentality of Apes I

London: Kegan, Paul, 192^.
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2.7 LeamlnT

Many definitions of learning already exist. Learning is

one of the fen topics we cover that has "been extensively studied

froni a comparative and scientific vieTArpolnt. Nevertheless, we

will find a slightly more abstract definition than the common

one quite useful.

Definition; Learning: . Consider an organism predictable

by an equivalent knowledge K. Any change in behavior directly

related to the application or withdrawal of reinforcement or

punishment is learning. Such learning will be manifested by

changes in subsequent predictions in K.

Reinforcement and punishment were defined (section 2.^) as

oerceptions which supported and negatively supported repetitions

of behaviors, respectively. Learning then is any measure of the

tendency to repeat a different behavior after punishment or a

similar behavior after reinforcement.

Excluded from this definition are changes in the organism

which are not related to reward and punishment. These may include

changes produced through growth, cell mutation, or simple behavioral

aberrations which do not tend to be repeated.

One might vzonder, given the circularity of these definitions,

".Thy learning is significant. Clearly, the knowledge K which

perfectly predicts O's behavior can predict any change in behavior

which vrill undergo. Why, then, specially characterize those

which relate to reinforcement and punishment? The ans^^^er lies in

our wish to build, design, and comprehend teleological (purposeful)
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systems. That is all. It is not difficult to see that a

teleologlcal organism is also a physical system and that all

learning could therefore be explained as mechanical adaptation

without reference to the organism's goals which are essentially

intermediate variables in our model. This tjrpe of explanation

is actually preferable in some ways. Nevertheless, the concepts

of goal and purpose can help clarify the issues faced when consi-

dering alternative mechanisms of feedback in the design of such a

system.

Prom this definition of learning, it can be seen that there

are numerous possible measures of learning behavior. Changes in

accuracy, speed, latency, duration, and frequency of behaviors are

all measures of learning. Notice that each of these measures may,

vfithout difficulty, be directly transformed into a measure of

ret)etition or probability of occurrence of some attribute of the resnon-

ding organism. For example, increases in accuracy at a task may be

defined in terms of the increased probability of Issuing a perfectly

accurate response.

2.8 Intelligence

We have reached the first major objective. Armed viith the

system of concepts Just Introduced , we can set forth the following

important definition.

Definition; Intelligence . Consider an organism predictable

by an equivalent knovrledge K. First, suppose is at any moment

capable of computing some attributes of the environment. That is,

suppose perceives through senses which provide measurements of
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the environment. Second, suppose is theoretically capable of

performing any and all abstractions possible vjithin the limitations

of its environment sensing apparatus. Third, suppose is capable

of an ideogenesis incorporating any abstraction. That is, must

be capable of performing and applying induction. Fourth, suppose

TDossesses a drive for complete predictability. In this case,

we say possesses intelligence and that or K is intelligent.

This definition immediately motivates the ones which follow.

Definitiont Components of Intelligence . The components of

intelligence are: (1) perception, being sensation plus contingent

conceptual behavior; (2) a capacity for abstraction; (3) a capacity

for ideogenesis; and (k) a drive for complete predictability

without error. The second and third components may be considered,

together, as the capacity for induction.

Definition; EndoT'ment . Consider an organism 0. The combination

of any of the four components of intelligence which are present in

that organism at some moment, usually at its inception, is called

its endowment.

Prom these definitions it can be seen that there are many

possible endoTTOients which do not qualify as intelligence. Some

of these may be supplemented during the life of the or.'^anism in

such a way as to transform an unintelligent organism into an intel-

ligent one. For example, we can Imagine an organism incapable of

any Ideogenesis at its inception subsequently being altered in

such a vj-ay as to overcome this deficiency.

It is debatable, of course, whether this definition of Intel-
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ligence is the best for all purposes. I vrould hold only that it is

both -useful and testable. It is valuable as a guide in an inquiry

into intelligence, because it isolates attributes of systems which

are frequently observed but rarely found in full complement. We

may thus pinpoint the deficiencies and strengths of alternative

systems. Fiirther, we are now in a position to ask other related

questions which depend utterly on a precise knovrledge of intelli-

'^ence.

.Before erploring other implications of this definition, it

may be desirable to relate some of the previously discussed topics

to intelligence. Note that any Intelligence contains some logic,

because it is a closed system of transformations on perceptions.

The operators of the logic are the concepts of the organism.

The scope of an organism's knowledge is limited to the set of

perceptions which it can have. The range of Its kno^-rledge Is the

set of all predictions it can make.

An intelligent organism jQust be capable of performing all

abstractions and Ideogeneses: it is capable of universal inductions,

Every function of the environment may be considered as Just that

property which is Induced from a set of observations of that

function over a limited domain. Thus, an intelligent organism

is ca-oable of predicting all comriutable functions of the environ-

ment. For this reason we state that the knowledge vrhich is poten-

tially attainable by an Intelligent organism is universal and

unbounded. If the environment of an intelligent organism includes

finite sequences of zeroes and ones which can be sensed, altered.
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and shifted one digit at a time by the organism, that organism

can compute all computable functions of all Turing machines and

subsumes a universal Turing machine. Any knoTrledge that subsumes

that of such a universal Turing machine is also universal.

Definition; Cause . Any set of attributes, A, the observation

of which is sufficicient for the prediction of an event E is a

cause of E.

Definition; Explanation . Consider an organism predictable

by an ea^uivalent knowledge K. Suppose discovers by induction

a set of events E each of which is predictable by an attribute A,

In this case, induces that A causes E. We say that A is an

explanation of E in K.

Definition; Hypothesis . Consider an organism predictable

by an equivalent knowledge K. SutDpose A is andnduced explanation

of E in K. In this case we may say that hypothesizes that A

causes E. An hypothesis is an explanation. This hypothesis is

denoted by A->E or E*A.

One of the implications of this discussion is that intelli-

gent organisms may have many explanations for the same event. These

explo.nations may or may not be mutually consistent with respect to

the irange of predictions vmich they support. For example, the orga-

nism may need to predict the next term in the sequence 0,1,2,,.. .

If the organism explains the set (0,1,2) as a series of integers

beginning at zero and increasing by 1, it vrill subsequently predict

a 3, However, if the organism thinks that the sequence 0,1,2 has a

periodicity of length three, it will predict another 0, If it
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thinks alternatively that the sequence Is a representation

of increasing natural numbers which are not trivially factor-

able (prime numbers including zero), it may also predict a 3

or perhaps a 5» 7» or H* Needless to say, since these are all

effectively computable sequences, each is an explanation that

an intelligent organism could possess and employ in this prob-

lem. Each explanation is an induction from the set (0,1,2).

The resolution of this problem lies not in a limitation

of the possible explanations which an organism can possess.

The fact is that each of these explanations is equally valid

although mutually inconsistent with respect to the next pre-

dicted digit. An Intelligent organism learns to make correct

"guesses" in such situations by abstracting other properties

of the problem context which are of relevance. In this parti-

cular problem, most humans in our culture will respond vrith

the digit ?, which is produced in accordance with the first

suggested explanation. If the problem is restated in such a

way that the objective becomes the prediction of the most

common response among humans in this culture, 3 Is the correct

answer.

Theorem 2.8.1 . An intelligent organism may hold an infi-

nite number of inconsistent hypotheses which are valid over the

entire domain of its experience. These hypotheses will lead to

different predictions of the future.

Let us suppose that the capacity of an intelligent organism

to retain hypotheses is limited. 'Je know that the organism is
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sensitive to reinforcement, because It has a drive for complete

predictability. Thus, let us suppose that the organism behaves

In a way which maintains over time any of its finite number of

explanations which are consistent with its observations.

Suppose also that It replaces those which are no longer consis-

tent with its observations by others which are. Suppose also

that we directly control the environment which provides this

organism with observable data.

Now it is interesting to consider the learning behavior

of this organism as viewed over time. Clearly, what it learns

and possesses as hypotheses at any moment is a function of the

events we have presented to it, the reinforcing rule we have

employed, and its internal structure. If we had employed either

a different sequence of events or another reinforcement schedule,

we would as likely as not have produced an organism with diffe-

rent hypotheses, hence with different knowledge.

Definition; Training Sequence . The continuous set of

observable events In the environment including the reinforcement

associated with these constitute the training sequence for an

organism.

It follows from what has been said that the knowledge K

possessed by an intelligent organism with fixed endowment is

a function of the training sequence only. This holds whenever

the endovred caoacities are fixed at its inception and are

subsequently never altered exogenously.
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2.9 Consciousness, Mind, and Time

The last concepts to be discussed are those most closely

pertinent to the human experience of existence or awareness.

It was Implicit In the previous definitions that awareness of

oneself vms unnecessary for the acquisition of Intelligence.

Nevertheless, in this section I vjlll attempt to briefly describe

how awareness is operatlonallzed , The implication, that a

machine can be built with similar properties, Is straightforward.

Let us consider first the concept of time. We have relied

upon various qualities and existence of time implicitly in some

of what has already been said. For example, the concept of

reinforcement was dependent upon the measurement of a behavior

repeated over time . But what is time? I proijose the follov^ing

definition.

Deflnltlont Time . Consider an organism 0, in environment ©,

which is Dredlctable by an equivalent knowledge K. Suppose

possesses tvfo different hypotheses about the environment which

are not inconsistent with its training sequence 0, where is

one possible value of 9. Call these two hypotheses A(9) and

b(9). The validity of these hypotheses over the domain of the

training sequence Is sufficient for the condition k{0) = d>{0).

That is, both hypotheses fully explain past events consistently.

However, suppose these two hypotheses support different predic-

tions for some other states of the environment, that is,

A(X) ^ B(X) for some X which is a possible value of 9 vihlch is

not Included in (I.e., X^9 - 0), The domain of validity for
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the two conditions (1) if A(9) is true then B(©) is false and

(2) if B(©) is true then A(e) is false is called time in the

framework of K. Time is thus a partitioning of the environment

with respect to the conditions (1) and (2).

This definition states that time is the condition which

precludes the t)ossibility that opposing predictions are both

true. Thus, time is for us simply a constraint on the validity

of knowledges. Knowledj^es v;hich fail this constraint are

invalid.

I suppose this definition is a bit bland compared to the

personal exTDerience of time. Time does not appear to have this

simple logical structure. Rather, time seems to flow smoothly

past my senses like the sand in an hourglass. Of course, my

loj^ic is to be preferred to my sensation as a modality of commun-

icating to others. A little reflection will show how the condi-

tion of the sand in the hourglass is equivalent to the state of

the environment with res-oect to time. Because the percentible

states of sand in the hourglass are dependent uoon the volume of

sand in either side, one's knowledge of the sand is contingent

unon those relations which can validly describe the pebbles in

any specific volume. Change the volume of sand and you accord-

ingly change the world with the hourglass. No two logically

complementary measures of the volume can both obtain. The is^orld

is divided among those things v;hich are confirmable and their

nervations which are not. Any organism which perceives this con-

dition can be said to perceive time.
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In this respect, ne can exrdain the relatlvistlc effect

of time dilation, as the product of a change In the logical

constraint on a system. Consider a stationary observer and a

system S which Is speeding at some velocity close to the speed

of ll-^ht with respect to 0. The apparent expansion of time In

S with respect to Is representable by a modification of the

constraint on mutually exclusive predictions In 0. In fact,

valid predictions made by about events In 3 can be considered

invalid for unless account is taken of the dependence between

the validity of a measurement and the frame of reference in

which it is used. The relatlvistlc nature of all knowledge is

thereby assured.

Figure 2.11 here

Definition; Consciousness . Consider an organism predic-

table by an equivalent knowledge K. Suppose induces a pro-

perty about itself and Ideogenetlcally forms the corresponding

concept. The application of this concept to the environment

is called O's consciousness. When thin^ks with this concept,

vje say is conscious.

From this definition it can be seen that consciousness is

tantaimount to self-awareness. These are both terms for the

property of an organism which considers itself as part of the

problem environment. The existence of consciousness can be

inferred for any presumed intelligent organism which is capable
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of predicting the consequences of its own instrumental acts

which alter the environment.

Theorem 2.9.1 . Any Intelligent organism Q, tjredlctable by

an equivalent knowledge K,which alters the environment by an

instrumental response predictable in K and perceptible by

will attain consciousness with some particular training sequence.

However, there are training sequences which would preclude the

attainment of consciousness by 0.

I will conclude this chapter with one final definition

which may prove helpful.

Definition; Mind . Consider an intelligent organism pre-

dictable by an equivalent knowledge K. If possesses conscious-

ness, we say K is the mind of 0.
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3.0 A PRIHITIVS INTELLIGENT l^CHINE

In the current chapter, I will describe a machine which I

believe Is the first designed which possesses intelligence. The

machine is of little immediate value to us as a practical device,

but I have no doubt that it will serve as a useful model for

many inquiries into the subject. The machine is designed for

implementation on a computer although the coding as a program

has not yet been performed^. However, it is not the actual

performance of the program that is of interest. Rather, the

value lies In the structure and design of the machine. It would,

of course, be useful for some purposes to see the program actually

perform, but my goal here is to relate the findings vrhich the

design itself provides. Therefore, I will introduce the design

characteristics first and subsequently discuss the behavior of

such a machine with respect to a variety of problems.

The reader will see in the current chapter how many of the

concepts explicated in the last chapter reach full operationality

in the machine as they are included as programs in its endowment.

In this chapter, operationallzable means programmable. It is my

belief that all of the concepts of chapter 2 are programmable.

Although this particular machine does not embody all of them, the

reader should sense the fact that such a goal Is realizable.

1. As the reader gains familiarity with the machine, it will
become apparent that the design makes parallel processing of con-
ceT5ts highly desirable. In fact, an interrupt driven computer
would be preferable to most common computers as an implementation
device. Alas, these considerations must be put aside temporarily.





- k6 -

3.1 The Problem Environment

I will refer to this machine simply as P. The environment

in x^hich P operates must be fully described. Without being too

misleading, x-xe could describe P as a corauuter program to predict

terms in symbolic sequences. A sequence of symbols is fed to P

via a computer input device. P attempts to develop an explana-

tion of the behavior of the sequence and predicts the next set

of symbols. The trainer who has provided P with the original

input sequence subsequently "judges" P's behavior by supplying

it with the correct response. If P's prediction is the same as

the correct response, P adapts in such a way as to increase the

probability of identical behavior on its part in future similar

circumstances. If P's prediction is Incorrect, P also modifies

its behavior in an attempt to reduce the probability of error

In the next similar stimulus situation.

The problem environment can be represented symbolically

by isolating several variables which P can sense. First, there

is I, the input sequence of symbols. These symbols are read

from left to right, and each "word" is separated from the sur-

rounding ones by an intervening blank space.

In addition to sensing I, P is able to generate and sense

its prediction, N, of the next symbols in the sequence. P's

prediction can be thought of as a single word or number. P can

also sense the time T at which the input I was read and AT, the

total amount of elapsed time before P made its prediction. The

reader can consider T to be the reading of an eternal interior
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computer clock when I Is read. AT can be considered the reading

of another short-term clock which is restarted every time I is

read

.

P must be able to sense the trainer's response R to P's

prediction N. If P predicts N=5 and the trainer responds with

R=5, P senses that Its prediction was correct. If R=^, P can

sense a difference bett^reen N and R and can utilize R in the

development of new behaviors.

There are other properties of P's Internal environment which

P can sense. However, a full understanding of these can be gained

only through detailed study of P's structure and operations.

These are the topics of the subsequent sections.

3.2 The Conceptual Endowment (Logical, i4athematical

)

The endowment of P is a fairly rich one. Not only does P

sense I, N, R, T, and AT, but P posesses many additional concepts

which guide its behavior. These concepts are the subroutines of

the computer program which would be necessary to build P.

Furthermore, P possesses an extensive memory and several drives,

including drives for predictability and economy. In this section,

I will provide a detailed description of P's logical and mathe-

matical conceptual framework. This task will be somewhat arduous,

but the clarity of meaning provided by the technicality of these

descriptions should assure that the entire effort is a fruitful

one.

There is a recurring Question of notation which should be

Introduced at the outset. The foremost requirement of any notation
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is that it effectively communicate the operations which it des-

cribes. For this reason, I will freouently employ an informal

riescriptlve meta-lsnguage based in normal English which Is

complemented by familiar logical or mathematical symbols where

needed. However, both a formal rigorous language for these

operations and a comparable programming language are available

and will be Introduced. lAfhere it is illuminating, the formal

description of a concept will be given. Any actual implementa-

tion of P would necessitate the development of programming

descriptions for all concepts which operated on their formal

notations as data. This is not needed for the purposes of the

current paper. The reader may be assured that every concept,

regardless of the informality of its description, is fully des-

crlbable in both formal and programming notations.

Each concept to be Introduced represents a computer subrou-

tliae that recognizes valid occurrences of the principles which it

embodies. Some of the concepts, in addition, are pro-active in

that they seek out supporting evidence in P's memory. These,

too, represent programs but may be considered as goal-oriented

procedures which recognize an occurrence of a concept vrhen they

find one. We can now proceed to Introduce P's endowment.

Concept; Symbol . A symbol is any of the characters that

can validly appear on the input I. Thus, a symbol may be a blank,

any digit, any letter, or any mathematical symbol. We may write

this formally, using =df to mean "is defined to be", as follows:

symbol =df 0/1/2/?A/5 /6/7/8/9 /a/b/c/d ..

.
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In this formal notation, the slash separates equally possible

alternatives. It can be read as "or".

Concept; Set (Ordered Set, List) . For the purposes of this

machine, a set, list, and ordered set are synonymous. A set Is a

collection of denumerable elements x^j^ , X2 f x-^,... . V/e denote

the set S of such elements by writing S =df (x^ ,X2»X3, . . . )

.

These elements are ordered and constitute a sequence. The first

member Is x^ , the next is x^ , and so on. A set may also be a

collection of sets. A set of only one element may be written

without parentheses.

Formally, set =df (x^ ,X2 ,X3, . . . ) where each Xj^ =df symbol/set.

Concept; './ord . A word is any sequence of symbols, taken

left to right, surrounded by blanks on the input I.

Concept; Digits . The digits are a set D =df (0,1,... ,9).

Concept; Number . A number N is a finite set of digits

taken right to left. For example, the number 103 is the set (3,0,1)

The direction is chosen here as a convenience for P only.

Concept; Relation . A relation r is a set of sets (ri,r2»...)

where rj^ =df (xj^q, (x^^^ ,x. p , . . . ,x, ) ) . x^q is called the conclusion

(attribute value) of the relation r under the premise (condition,

argument) which is (x. . ,Xj^2 , . . . ,x^j^ ) . It is possible to consider

a relation as a set of two-tuples, r =df ( (c^ ,p^ ) , (C2 >P2 ) » • • •

)

where each c^|^ is the conclusion of the premise p.. Relation is

synonymous with rule.

Concept; Veil Formed Formula (WFF) . A wff W is an ordered

set of valid relations where the conclusion of each relation is the
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premise of the next one. W =df ( (c^ ,P;i^ ), (c2 ,P2 )•••» ^^n'^n^ ^
•

1 is a wff if and only if {c^,v^) is a member of some valid relation

(for all i) and if v^^c^^^ (for i=l ,2 , . . . .n-1 ) .
Describing W we

nay say that p^ is the premise and c^ is the conclusion (k=l ,2 , . . . ,n)

,

If each (cj^.Pj^) is presumed to be a member of some relation r
j_

,

the set (ri,r2,...,rn) is called a loroof of c^ under condition p^.

Example: Let W =df ( (happy , healthy ), (healthy ,well-fed )

,

(well-fed .wealthy)). If each of the relations In W is valid, it

follows that wealthy people are happy. The proof of this statement

is that wealthy Implies well-fed, well-fed implies healthy, and

healthy implies happy.

Concept; Assumption and Axiom . An assumption is a relation

presumed to be valid. Assumptions may be defined relations in

which case they are called axioms. They may also be relations

which are induced from partial knowledge and which are presumed

valid in novel circumstances of similar structure. Axioms are

assumptions of the first type. Induced relations are assumptions

of the second type.

Concept; True . Any axiom S is true. We write this as the

wff (tinie,S) or equivalently (S,true). Induced relations are

presumed to be true. If T Is an assumiDtion of this type (second),

we write (p-true,T) or (T,p-true) both of which are valid wffs.

Any definition is expressible as a valid wff. If P =df Q,

both (P,Q) and (Q,P) are valid wffs.

Whenever S is true, we may informally write S as an abbrevi-

ation for (true,S). The conclusion of any wff composed exclusively
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of valid relations is either true or p-true. viffs are true if

composed solely of true relations and p-true otherwise.

Concept; Nep-ation {oj) . Negation is a relation which changes

the truth value of a x-7ff . We define negation by the following

axioms.
j^false if W is true
\true if W is false

:

Oi'-J =dfjp-false if W is p-true
(j)-true if W is p-false

If any of the component relations in a wff is only p-true,

the entire conclusion is p-true as stated above. Therefore, it

villi not be necessary to define the remainder of the relations

both in terms of true and p-true values. In the following defi-

nitions, p-true and true are synonymous. The conclusions will

differ according to whether or not one of the presumed true

premises is actually p-true as explained.

Formally, negation is indicated as (/u,^).

Concept; Conjunction {8:) . Conjunction is a relation which

composes the truth values of two wffs.
Ctrue if both A and B are true

A ^v B =df'bfalse, otherwise

This can be written in formal notation as (fr,A,B) or equivalently

(^.,3,A) 7;here true =df ((<S:,A,B) , ( true,A ) , ( true,B) )

.

Concept; Disjunction (/) .

( true if A is true
A / B =df -< true if B is true

l^false, othen*7ise

In formal notation, (/,A,B) or (/,B,A).

Concept; Conditional (=>) .

rtrue if B is true
A => B =df \ true if A is false

\/alse, otherr-rise

In formal notation, (=>,A,B).
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Gonoe-pt; Blcond Itional ( = )

.

^ rtrue if A and B are both true

A = B =df /true if A and B are both false

\false, othervTise

/e will use the notation = to mean "if and only if". In formal

notation, A-3 is "rritten ( = ,A,B) or ( = ,B,A).

ConceDt; Null Set (0) . The null set is the set of no members.

Concept; Element (6) .
•"'

C true if X is a member of the set Y

X e Y =df (^false, othervrise

If X 9 Y, we write formally (e,x,Y).

Concept; Subset (C) .

X C Y =df (a e X) =^ (a G Y)

It is, additionally, an axiom that C X, for any set X. Formally,

we write (C,X,Y).

Concept; Bouality of Sets,(=) .

X = Y =df (XCY H- YCX).

Formally, (=,X,Y) and (=,Y,X) are equivalent.

Concept; Ordered Equality i=^).——
S true if both ordered sets are identical

X =4i- Y =df "Lfalse, otherr-Tise

For examr^le, if both X =df (1,2,3,^,7) and X =* Y, we can deduce

that Y =df (1,2,3,4,7). Formally, (=*,X,Y) and (=*,Y,X) are

equivalent.

Concept; Ordered Subset (C») . X is an ordered subset of Y

if it is contained within Y as a subsequence of Y. With reference to

X as defined above, (1,2) C* X, (2,3,4) C* X, but not (2,4,7) C^ X.

Formally, (C^^X.Y) is written when X is an ordered subset of Y.

Concept; Concatenation(.//) .

X // Y =df (X,Y).





53

Concept: Correspondence (-•"•) «

Consider a relation r =df ( (x^ ,yi^ ), (X2 ,y2 )•••» (xruYn) »••••) ^

(xi,yjL) Is a wff for 1=1 ,2, . . . ,n, . . . . Let X=*(xi ,X2 , . . • »Xn)

and Y=--'-(yi ,y2> . . • jYn) • ^^® then define a correspondence between

X and Y as X ^«- Y. The element pairs x^ and y^^ (for each 1) are

called corresDondents. This means simply that there Is some

relation which associates each element of X with a corresponding:

element of Y.

Concept; Parameterization (P) » A parameterization P Is

a set of two elements (p,l). p Is a list of parameters (p^,P2,..

Pj^). 1 is a list of components (1^ jlg » . . . ,1,^) . Some of the lj_

contain, as elements, the elements r>y A parameterization is

simply a procedure for indicating where replacements of the p

can be made in Ij^ vrhen the values of xj are substituted for the

parameters p^. Formally, we denote the parameterization (or

procedure ) as (P,p,l).

Concept! Invocation (I) , '/fhenever a p?)rtlcular set X is

to be substituted for the parameters p of a parameterization P, we

Informally denote this as P(X). X is called the set of arguments
is

of the invocation or execution of P. P(X) is the set whlch/yidenti-

cal to the set of components of P, except every occurrence of any

parameter has been replaced by its correspondent from the set of

ar.c^ments X, where X =* p, r =* ( (xi ,D;|^ ), (x2 ,P2 )»•.• (^n'^n^ ^ * '^^

less formal language, the Invocation of P with arguments X produces

the set of components of the parameterization vrhere the 1 narameter

is consistently replaced by the 1^" ar:^uraent. Formally, we denote

the Invocation of P with arguments X as (I,X,P).
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An example of a parameterization and Invocation will be

quite illustrative. Suppose we wish to parameterize a series

of five numbers which always end with (3,^,5) so as to make the

first t^-ro numbers replaceable. We could describe this parame-

terization as P =df ((x.y),(x,y,3,^,5)). An invocation of this

parameterization with the set (1,2) as arguments could be written

P(l,2) =df (I,(1,2),P) =* (1,2,3,^,5).

Cnnce-Dts; Equivalent Parameterizations (S) and Reorderinss.

Consider two procedures (parameterizations) Q=(p,l) and Q'=(p',l').

If the parameterizations are identical in the structure of 1 and

1» except for differences in the names and ordering of the elements

of p and p', they are equivalent parameterizations. In this case,

we write Q E Q' or Q* E Q. This may be operationalized as follows.

If there exists some set q such that q=p' but not necessarily

q=*p' such that the Invocation Q(q)=*l', then QEQ' .
Further, the

set H=((Pi,qi),(P2,Q2),....(^n'"n)^ defines a reordering relation

such that p =* t.'. That is, {v^.v[) is a valid relation as a member

of R. H describes how the parameters of equivalent procedures need

to be reordered from one to the other. Formally, we may write

(S,Q,Q*,R) for equivalent parameterizations.

Concept; Extension (z!) . Consider a procedure P=(p,1). The

set of all sets X for which P(X) is a wff is the extension of P.

Informally, we write ^(P) for the extension of P.

For example, suppose Q is a parameterization (using x) of

the statement "x has blue eyes." Let Q =df (p,l) ='' (x,(x has

bine eyes)). The extension of Q, Zf(Q), includes all creatures and

objects for which (x has blue eyes) is true. Fornially, (2J,P) is t{V)
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Concept; Existential Quantification (3) .'^(x) P(x) means

"there exists at least one x such that P(x) is true." This is

equivalent to the statement that the extension HKP) Is not empty

(the set 0). Pormally, we write (3,x,P).

Concept: Universal Quantification (V) . V(x,P(x)) Q(x) means

"for all X such that P(x) is true, Q(x) is true." P and Q are

parameterlzations. Thus, universal quantification is equivalent

to the statement that the extension t{V) C EKQ). That is, all

X for which F(x) is true belong to i!(Q), the set of elements for

which Q(x) is true. Formally, we write (¥,x,P,Q).

Notice that P does not possess any concept of the natural

numbers or of arithmetic operations. For these concepts, P will

be required to induce relations from the environment which effec-

tively compute the relations desired. What P has been given In

this section is a basic complement of logical operations. In

the subsequent sections, we will augment this endowment with

additional concepts that empower P to manipulate experiences

and to perform Induction.

3.3 The Conceptual Endowment (Id lologlcal)

In the last section, a set of concepts was introduced which

forms the basis of P's logico-mathematlcal system. In the current

section, I will Introduce concepts which P possesses about Itself.

I call these idlologlcal concepts. The first of these definitions,

that of concept Itself, is without doubt the most important single

mechanism for a thorough understanding of P's behavior.

Concept; Concept (K). A concept C is a riarameterlzation
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(X,T), where T =df ( t^ .t^ , . . . , t^) . l^ach t^ Is a rule for the

transformation of some attributes of the environment into some

others.

If we let each t. be a set of two r)arameterized comtDonent

lists (q. ,p.), we can call p^ the preconditions and q^ the post-

conditions of the concept. The meaning of a concept C is easily

explained: The value of an invocation of a concept C(X) =df

q^{X) if Pj^(x) is true.

Note that every concept is a parameterization and every para-

meterization a concept.

Let me demonstrate the meaning of concept with a special

example. Suppose C is to be the concept which describes types of

polygons. The concept can be partially described as follows.

Concept; Type of Polygon (T)

Parameter =df (x)

tj: If X has 0, 1, or 2 sides, x is no t)olygon

tg: If X has 3 sides, x is a triangle

to: If X has h sides, x is a quadrangle

t^^: If X has 5 sides, x is a pentagon

Suppose P possesses another concept called # and //(x) equals

the number of sides of some ob.lect x. The concept T is then

expressible as follows.

t^: #(x) e (0,1,2) => T(x) =df (no T)olygon)

tj: ^(x) =3 =^ T(x) =df (triangle)

t^: ^(x) = ^ =?' T(x) =df (quadrangle)

t24.: #(x) = 5 =^ T(x) =df (T^entagon)
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It is possible to express this concept completely as a

set of -Daramterlzerf lists. Because it is .lust such lists upon

which P*s concept handling routines operate (theoretically),

we vrlll do this formally for the concet>t type-of-polygon as an

example.

T =df (x,(t^,t2,t3))

t^ =df (p^.q^)

Vi =df (e,(I,x,#),(0,l,2))

qi =df (no polygon)

t2 =df (P2,q2)

P2 =df ( = ,(I,x,//),3)

Qw =df (triangle)

t^ =df (p^.q^)

T53 =df ( = ,(I,x,^),i^)

q-^ =df (auadrangle)

A concept is, in sum, a named set C denoted formally (K,C),

where C =df (X, (tj^ ,t2 ,...)) , which r>rescrlbes how values are

assigned to that name according to component transformational

rules tj^. Examples of occurrences of concepts are members of

the extensions of the corresponding relation. For Instance, the

extension of the relation type-of-polygon = triangle is seen to

be Just those elements of ?I((x,P2)). Thus, any x for vrhlch #(x)=3

will qualify as an example of triangle.

Some concepts produce only true or false values. An example

of this sort of concept is the pattern recognizing concept dog .

Occurrences of dogs are members of the set ^(dog)

.
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It is important that the reader realize that all of the

lo^lco-mathematlcal concepts Introduced In the last section are

encoded in this formal precise way In P. It Is not necessary for

us to demonstrate these codings, but we must remember that all

concepts are of a common format.

roncetpt Meta-T^nguage (CML) . It will be very valuable, both

for the current and future projects, to employ a precise meta-

language in the description of concepts. The parameterized nota-

tion is one which is feasible, but It is far too complicated and

unnatural for the purpose of communication among humans. Instead,

by following a short detour en route to my main objective. I will

describe a more effective and precise notation for the represen-

taifcbn of concepts.

The language which I will use is a natural vehicle for the

ext^ression of the two-part parameterlzatlons embodied in concex^-

tual transformations. I call the language Ci«, for Concept Meta-

Langiiage. In the following pages, I will give a very brief

description of the CML language and demonstrate its utility for

our particular problems.

Name. A concept is a named set of transformation rules.

Parameters . Each concept is partially expressed in terms

of a set of parameters X =df (x-j^ jXg.x-^ , . . .
.x^) •

Arguments. Whenever a concept is invoked, a set of argument

valuefriubsktuted for the set of parameters IJ^^he arguments

of the invocation are Y =df (y. ,y2 , . • • .Yn) ' ^1 ^^ substituted for

any occurrence of x^ , for all 1 - l,2,...,n.

Preconditions . Preconditions are l°f^^^J^^^,^f,^^°^? l^V"^
are e ither true or false depending in part on the value of the

arguments

.
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Postconditions . Postconditions are the related logical expres-
sions which are caused to become true (effected) when the precondi-
tions are determined to be true.

Level . Every precondition Is associated with a level number.
The first level within the concept is level 1 and is represented
by a (1) prefixed to the precondition.

I'/hen the concept is invoked, the level 1 preconditions are
simultaneously evaluated. If none obtains (is found to be true),
the concept cannot be evaluated and simply terminates its activity.
'Jhen any one of the level 1 preconditions obtains, any associated
postconditions is effected.

Subsequently, any level 2 preconditions nested within the
obtaining level 1 precondition are simultaneously evaluated. If
any one of these obtains, the associated level 2 postconditions
are effected .This process continues Indefintely until no further
nested preconditions exist, at vrhich point the evaluation orocess
begins anew at level 1.

Termination . When a value is finally computed for the named
concept being evaluated, that value is returned to the invoking
concept and the valuation of this concept is terminated.

Notation . Preconditions are preceded by a parenthesized level
number^ (0) is crefixed to the concept name, which itself is fol-
lowed by the parameter list.

The preconditions are succeeded by a colon (:). Any associated
postconditions are vj^ritten immediately following the colon. Several
postconditions are separated by semicolons (;).

V?nriables . Any named set which is utilized in the conceptual
procedure is a variable. Those variables vrhich are not included in
the parameter list represent either other known concept names or
temporary sets which are used only for the purpose of computation
within the immediate concept. A temporary variable is created for
any named set in the conceptual procedure which is not the name of
a known concept or a parameter. All temporary variables are
initially equivalent to the null set (0) at the inception of the
concept.

Assignment . When postconditions express an equality which Is
to be effected when preconditions obtain, this relation is expressed
by the assignment notation ":=" as in the ALGOL language. If a
concept C(x) is to be evaluated as eoual to 1 whenever P(x) obtains,
we write this postcondition as C := 1. ";=" means "is subsequently
assigned the value of and becomes equal to."

Start . At the inception of the concept evaluation, an auto-
matically constructed variable start =df true. As soon as any level
(1) precondition obtains, start := 0.
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It Is nof-r possible to illustrate the simple CML language,

Let us describe the familiar concept T ( type-of-polygon )

.

(0) T(x):
(1) '^(x) e (0,1,2)
(1) #(x) = 3

(1) #(x) = U

(1) #(x) = 5

T := (no polygon);
T := (triangle);
T := (quadrangle);
T := (pentagon);

As a more complicated example, I will show the CML program

for next (x) which is a concept to produce the number (x+1) without

utilizing rules of addition. This concept employs the more

rudimentary concept count . Count (x) produces the next number after x

but is restricted to x = 0,1 ,2 , . . . . ,9. Both count and next are

concepts which should be acquired by P during its training. The

training of P requires that count be learned by rote but next is

to be learned by induction. How these concepts are acquired vrill

be described later. For the moment, the descriptions of count

and next will be provided to extend the reader's grasp of CML

concept procedures.

(0) count (x):
(1) X =

(1) X = 1

(1) X = 2

count := 1;
count := 2;
count := 3;

(1) X = 9 : count := (0,1);

1. Ay motivation for illustrating this concept is the consi-
deration of developing a machine capable of solving many of the
sequence problems discussed by Simon and others. Fundamental to
their problem-solving programs which tackle numerical sequences are
tr^ro concepts, next and periodicity . Periodicity simply examines
a sequence and returns the number which equals the length of a
repeating pattern in that sequence. Both of these concepts are
attainable by P without specific programming. Therefore, P should
be able to learn to solve sequence problems of this sort as well as
sequence problems of a more general sort (which is exactly its
primary task). A. Newell and H.^. Simon, Simulation of Human Pro-
cessing of Information, Amer. Math . Monthly, February 1965.
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Pointers . To describe the concept next (x) , it will be neces-

sary to Introduce the concepts relating to pointers which P possesses

A pointer Is a variable which locates a member of a set ("points"

to it). Concepts exist for first , last , forward , and back which

produce values of pointers which locate the first, last, next, and

previous elements of the argument of these concepts, respectively.

l<nien a variable, say P, is a pointer, it must be used in

conjunction with a particular set to extract an element value. '^e

connect the pointer P and any set X for which it locates members by

an arrow, as P->X. If ,X=(x;^ ,X2,x^) , the postcondition P :
=

first(X) will change the value of P so that P->X = x^. If, subse-

quently, we write P := forward ( P-> X) , this will produce P->X = Xg.

The other pointer operations are effected in similar ways,

mutatis mutandis . Whenever the bounds of a set are exceeded by

forward or back operations, the pointer value nil is assigned.

Armed with these additional concepts, we now describe the

concept next as a CML procedure! Any precondition at level (i)

which is complementary to another at that level may be written as

a null precondition ("Otherwise :"). Such preconditions obtain

whenever the other preconditions fail. Comments describing each of

the conditions in the procedure are included between the symbols

A and */.

1. An important point should be made about the uniqueness of
the concept to be described. There are clearly an Infinite number
of mechanisms which could achieve equivalent results to those pro-
duced by the concept next which is actually described. In my
opinion, each of these constitutes a distinct concept. The equiva-
lence of their outputs Is^relatlon which allows all of them to
be considered as members of the same extension, a fact which can be
valuable for some purposes.
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(0) next (x) : /* computes x+1 without addition */

(1) start s /* first obtaining precondition */
m := x; A m is a variable where x+1 */

A can be computed */

p := first(m); /* d is a pointer to first */
A (rightmost) digit in m */

(1) otherwise: /* evaluation continues here after*/
/* start postconditions */

digit := count(p->m);
/* digit is a temporary variable */
A which contains the next •«/

/* count after the original */
/* digit in the p-th position */

A (from right to left) */
(2) digit = (0,1) : A is there a carry in this place */

p-^m := 0; A replace digit by */

p := forward (p-^ m)

;

A when there's a carry, advance */
A to next digit */

(3) p = nil : A no more digits left? */
next := m // 1;

A concatenate carry to the end */
A of the number, making it one */
A digit longer than originally •«/

A the next value is returned and */

A com-DUting terminated here ^/
(2) otherwise : A there is no carry needed */

p->m := digit; A the advanced value Is stored */
next := m; A the completed value is returned*/

/* and the concept computation */
/* is automatically terminated */

Relation between CML and parameterizatlons . Every CML pro-

cedure is directly translatable into a parameterized concept in P.

These parameterlzations are the lists and sets upon which P actually

operates. CML descriptions are simply convenient human-oriented

descriptions of conceptual operations. For our purposes, it is

sufficient to say that each precondition and each postcondition

is converted to a single parameterized component list. The entire

set of these are then composed into a single concept. This process

of forming one concept from many transformations is called systema-
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Events and memory . P is equlpiDed with an extensive memory

for recording sets. In particular, P may record concepts and

events. Events are the encodings of experiences of Interactions

with the trainer. Concepts are the componenets of explanations

of experiences.

Suppose, temporarily, that P's memory is unlimited. Let

every Interaction with the trainer be recorded as a distinct

five-tuple including the (1) input I, (2) prediction N, (3) response

R, (4) date-time T, and (5) elapsed time AT. Thus, an event is

a set (I,N,R,T,AT) , which is added to the existing list on happening.

Concepts are stored In memory as sets of parameterized

transformations as already discussed. When new concepts are gene-

rated by P, these are added to the list of concepts Just as events

are added to the list of events.

Every concept and event is assigned a uniaue identifying

name which can be generated in any arbitrary vray, for example,

by using the time T at which it is recorded.

Concept; Attribute and Attribute Value . When we say r is

an attribute of Y, we mean that there is some set X such that

r((X,Y)) is valid. Thus r must be some parameterization or

computational procedure. Whenever r((X,Y)) is a valid relation,

Tre say X is the attribute value of Y under the attribute r.

For example, let X =df (x^,Xp) and Y =df (x^,X2,x^). Since

X C Y, X is an attribute value of Y under the subset operation C.

This is true because (C,X,Y) is a wff. There are many other

attributes of Y for vrhlch X is an attribute value, including C*

since X C-> Y and /v= since /v(X = Y) is a vrff

.
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Concept; Sxplanatlon and Prediction . When P receives input

I from the trainer, it immediately attempts to produce an expla-

nation of I. An explanation of a sequence of symbols is any

concept E for which the sequence I is a sufficient precondition

for the evaluation of E(I). The predicted symbol set N is assumed

to be S(I). That assumption is p-true.

These are important concepts. It should be noted that there

may be many E^^ for which I is a sufficient precondition for the

computation of E^^ (I ) . The extension H of this relation includes

all feasible explanations of I. Suppose this extension H is par-

titioned into as many subsets H^, H2 » Ho,... as there are unique

predictions E^(I). Each class H^ contains a set of feasible and

consistent explanations of I. When the trainer's response R is

made available to P, some of the K. vrill be invalidated and

others will not.

Let (Hq, H* ) be a partition of the H^ such that all E^ in

Kq are explanations vrhich lead to predictions not invalidated by

R and all Ea in H' are explanations directly Invalidated by R.
r

,

Any parameterlzatlon/^such that r(h ) is true and r(h ) is false,

for any h 9 H^ and h* 9 K', may be considered an explanation for

the validity of the explanations. This notion, that there are pro-

perties of concepts vfhlch explain the validity of predictions, can

be of great utility to our machine. It is but one example of the

practical concepts of ideogenesls, to which vie now turn.

3.^ The Conceptual Endowment ( Ideogenetical)

It is now possible to describe procedures for induction and
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ideogenesls. First, it will be helpful to describe the nature

of inductions from our newly constructed viewpoint. Once we have

described Induction somewhat informally, vg will set forth several

concepts which will achieve programmed induction for P.

In section 2.5, induction was first described purely and

simply. In that definition, we said an organism had induced a

property Q when the occurrence of Q became a sufficient condition

for the prediction of a definite behavior by 0. That is still

true and remains far too abstract. We are now interested in

refining this concept sufficiently to make such change-oriented

behavior controllable by P.

For my current purposes, it will suffice to Introduce four

methods of induction. Of course, these classes are arbitrarily

defined and overlapping, but they reflect significant differences.

Let us call these four types of induction types one through four

or, alternatively, the methods of (1) pure abstraction, (2) systema-

tlzatlon, (3) extension, and (^) composition. Each of these will

now be discussed in turn.

Figure 3.1 here

Type 1; Pure Abstraction . Consider a set of events P =df

(Ei,E2,...,Ej^) where each E^ =df (I^ ,Nj^ ,Rj^,Tj^,^Ti ). Suppose there

exists a subset Q of these events in vzhlch all R^ =* R^ and no

E^ e P which is not in Q has R^ =•«• Rq. That is, there may be a

subset Q all of which lead to the same response Rq by the trainer.
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If all of the events In Q share some common attribute values of

their inputs, for example if all 1^ =* (0,1), it is feasible that

this input I =* (0,1) is sufficient for the prediction N =* Rq.

In other words, if it is found that those events in a parti-

cular extension of a relation on I, say r(I), are also members of

the extension of events for I'fhich R =•«• Rq, the induction that

r(I) => R =* Rq is feasible (p-true). Such an induction is called

the pure abstraction type and is the basis for classical category

rule concepts.

Type 2; Systematization . Suppose we have a set of events

P =df (Ej^,E2, . . . ,E^) as above. Further, suppose we have induced

by pure abstraction the several concepts h-^, h2, hj such that

h^: r^(I) #R =* Rq , hg: t^H) =^ R =* Hq^, and h^: r^d) ^R =* Rq .

Suppose, finally, that the r^ are logically exclusive in the sense

that only one of t-^, rg, or r^ could simultaneously obtain for any

given argument I. That is, the extensions of the r^^ partition F.

In such a case, the Induction of a systematized concept H including

the individual transformations as components is feasible. The

formation of one concept from may diverse transformations is called

systematization. Systematization is classically considered the

formation of a taxonomic hierarchy.

As an example, consider the three concepts h-j^j I=-»(0,0) =^R=1,

hg: I=*(0,1) =#'R=2, h^: I=(0,2) =^ R=3. These are, in fact, quite

similar to the first three component transformations required by the

concept count discussed in section 3.3. If each h^^ is written as a

parameterization (I,q^), the induction of the concept H =df (I,

(q|,q2,q-^)) is a feasible assumption.
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Type 3: Extension . Consider a parameterization P of one

parameter I and Its extension ?I(P). Suppose there are some

events In memory, E^ ,E2 » . . . ,E^, for which P(I^) Is valid for

1^ e E^. From these events I^ and R^ are taken to form the

set K =df ((Ii,Ri),(l2,R2).... »(In'^) )• I^ there exists some

parameterization r(x,y) such that r(Ij^,Rj^) Is a wff for all

(Ij^,Rj^) In K, the assumption that this relation r will hold for

all events satisfying P Is called an Induction by extension.

Specifically, 2!(P) C tir)

.

Type U: Composition . Consider a parameterization P of

one parameter I and Its extension Bl(P). Suppose, as above,

events E^ which satisfy P and are elements of El(P). Suppose the

existence of a set of concepts (C^ , , . . ,Cjjj) with m greater than 1

such that Rj^ =» C^{C^_^{ . * . {C^{I^)) . . .)) , for all I^^ and R^ In

these E^» The assumption that this relation will hold for

all events satisfying P is called an induction by composition.

The concept H which is induced, such that Rj^ =* H(I^, ), Is called

the composition of concepts C^,...,Cjjj. It may be written

H =<^^ VCm-1*---*^!-

It should be noted that inductions of type ^ subsume the

other three types. As an example of composition, we may suppose

that P originally possesses two concepts A and B where A(x) =*

(XjX) and where 3(x) =* (x,x,x). If the Ij^-R^ pairs in events in

H:{P) Include (a, ((a, a), (a, a), (a, a))) and ( 1 , ( { 1 ,1 ) , ( 1 ,1 ) , (1 ,1 ) ) )

,

the induction that H^ =* H(Ij^) where H =df B*A is feasible.

Procedures for Induction . It is, of course, necessary for an
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Intelligent machine that all of the induction methods just desc-

ribed be computable and programmable. P must therefore possess

apposite concepts for each of these induction mechanisms. The

descriptions above, though operational, are Insufficiently

detailed to utilize as procedural descriptions.

Although it vjould be possible to describe induction concepts

as CAL procedures, I will not do this here. Instead, I will

briefly discuss how such procedures might be programmed. In the

following section, we wllladdress questions of efficiency and

motivation without vjhich the actual programming of a desirable

machine vrould not be possible.

The basic stinacture of the concepts of induction is simple.

First, we have provided definitions of feasible Inductions of all

four types. A procedure for computing Inductions to explain a

nartlcular input would necessarily search memory for past events

and existing concepts satisfying the induction preconditions.

If an event is found during this search which exactly matches

a new input I, the explanation used in making a prediction can be

"this is like a T)revlous event and the prediction should match

the trainer's previous response." When no such event is found, P

must instead compute feasible inductions as explanations of I.

For type 1 inductions, as an example, a concept C must be

found which is both computable for I and for which the extension

G of all events x such that C(x)='»'^C(I) is non-empty. Further,

all events in G must have R=''''Rq for some constant Rq. At this

point, a new concept r is created dnd added to memory. r is
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defined by the CML procedure:

(0) r (I):

(1) C(I) =» C(x) : r := Rq ;

where x Is any event In G, In processing subsequent experiences,

this new concept r Is available as a ready p-true explanation

for all events satisfying its precondition.

It should be reiterated that there are possibly an Infinite

number of feasible Inductions of this sort. There are many

strategies, each with different strengths, for coping with this

problem. One alternative Is to randomize the search for feasible

explanations and place a celling on computation time during search.

Another Is to develop hypotheses according to the most successful

conceptual components of past events. Both are possible strategies

and each Is desirable under particular circumstances. In the

next section, the second strategy Is advanced In more detail.
Is

not because It Is preferable, but because It^ the more provoca-

tive for our theoretical development.

7.5 Drives for Efficiency and Predictability

P Is a purposeful machine. It strives to achieve the maximum

degree of predictability about the trainer's responses. Further,

it attempts whenever possible to minimize the length of time which

It spends computing predictions. These two goals or purposes

constitute P's drives for predictability and efficiency.

The mechanisms whereby predictions can be formulated have

been explained in the last section. The additional mechanisms

required to assure that the predictions made by P continue to
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improve probabilistically can now be Introduced. I will propose

here one simple but arbitrary mechanism to achieve increasing

likelihoods of accurate predictions. This particular heuristic

may or may not be the best, but it seems intuitively clear that

it vrill be relatively efficient for training sequences which do

no contain a great number of "surprises."

At the outset let me remind the reader again that the rela-

tive value of one mechanism versus an alternative is calculable

only when no uncertainty exists about the environment in which

it operates. One must be careful to realize that even the suppo-

sition of probabilistic distributions and the introduction of

random variables into a mechanism does not meet this complaint.

It only shifts the question of uncertainty to the issue of why

use one assumed distribution and not another. There is no escape

from this problem. Simply stated, an induction machine designed

with any drive for efficiency, however it is stated, will be at

a disadvantage in some environment with respect to a machine designed

with some alternative drive.

Theorem 3.5»1 . Consider two intelligent machines P and Q

which differ only in the mechanisms of their drives for efficiency.

Suppose, for exsimple, P prefers to reduce computing time and Q

prefers to reduce computing storage required for their predictions.

Unless these two purposes are operationally identical for all possi-

ble measures—which would violate the assumption of their being

different—there must exist two separate training sequences T and

U with a common last problem I such that the relative efficiency of

P and Q on I depends on which training sequence was follox^ed. That
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Is, P achieves greater efficiency on the last trial of T than on

the last trial of U while Q achieves greater efficiency on the

last trial of U than on the last trial of T.

To implement P's drives, I iDropose these mechanisms. Let

P maintain for each concept in its memory an overall count of the

number of successful applications of that concept minus an

Increasingly weighted count of failures resulting from that concept.

A successful application is defined as any use of a concept in an

induction or explanation which leads to a correct prediction. A

failure is defined correspondingly. Call this difference the

utility u of a concept.

Whenever P must choose among several possible concepts in the

computation of an explanation (for a sequential processor, such

choices are made at every branch of a decision network) let it

order the alternatives in accordance with the value of each con-

cept's utility. The higher the utility, the more preferred is

an application of that concept.

When several concepts are composed to generate a new concept,

let P most prefer the induction 1, which has the greatest value

for the term

V. =df 2:u.

.

J=i ^

where u. . Is the utility of the H^^ component concept of the 1^

alternative induction comprised of n. total components. This

particular heuristic would favor "shorter" explanations than

longer ones and thereby accords well with the "la-vr of parsimony."
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For this reason, v^ is called the parsimony value of the induction

Whenever a concept is used successfully in the development of

a prediction its utility increases by a fixed amount, say one.

IJhenever a concept is used in the development of a prediction vrhich

is rejected by the trainer, its utility is decreased by the total

number of failures-to-date. Thus, failures continue to be weighed

at a linearly increasing rate of significance while the significance

of another success remains constant.

Whenever a concept is induced and added to the memory of P,

I would have it assigned an original utility equal to the parsimony

value Vj^ of its explanation. And whenever choices are to be made

among diverse concepts for the purposes of prefering one explana-

tion to another, P should accept only those for which v^^ is

no less than Vm, the parsimony threshold value,

V/hen several explanations arise in P for a single problem I

which are all in excess of the parsimony threshold value, P should

prefer these in accordance with its drive for efficiency. This

drive is mechanized by having P make its prediction N from that

explanation with the smallest elapsed time AT. Thus, P favors

the more efficient concept of two which are both parsimonious v;ith

1. Notice that the "law of parsimony" is really not a law at
all. First, it cannot be operationallzed except within a particular
knowledge K, Once that knowledge is fully described, measures of
parsimony are arbitrary orderings of some attributes of K. I have
suggested one measure which favors explanations requiring fevxer

components to those with more, ceteris paribus . I do not sugp^est that
this is an ideal measure. By Theorem 3.5.1 It is obvious that such
a measure can be ideal for an uncertain environment only accidentally.
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respect to a specific prediction problem.

Any rule designed In consonance with this objective would be

as a priori equally acceptable as any other. It seems more desirable

in fact, that P actually prefer concepts which have the greatest

time-utility value w^, computed as follovrs. Suppose P must choose

among m alternative explanations H^,....,Hj^. Each E^ is presumed

to have parsimony values v^ which are no less than the parsimony

threshold value Vm. Each Hj^ requires t^^ seconds of computing

time. Let w =df v^/t^. That H. for which w = max(Wj^, 1=1,2,...,

m) is P's preferred explanation.

In short, P may have to choose between alternative behaviors

in many-points in its execution. I propose that P be guided by

drives which accomplish its purposes. In choosing one particular

concept over another in the competitive search for a feasible

Induction, It can be guided by the utility u. The feasibility of

explanations is determined relative to the parsimony threshold

value Vm. In choosing among equally feasible parsimonious expla-

nations, P prefers explanations Inversely with respect to their

computing time. The most preferred feasible explanation is used

to produce P's prediction N. When the trainer responds with the

correct answer, the utility of concepts leading to successful

predictions is strengthened while that of concepts utilized in

making erroneous predictions is diminished.

Thus, P will exhibit many types of learning. Correct pre-

dictions by P will be self-reinforcing as will the mere development

of feasible alternatives. P can be said to be motivated for com-
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plete predictability and for efficiency of time. Whether or not

P achieves any particular goal depends on the environment (the

training sequence), P*s computational and memory capabilities,

and the initial values assigned to utilities of endowed concepts.

In the next section, the relation of these properties to P's

development is pursued.

3.6 Training for Intelligence

The most significant fact reflected by the design of P is

that, although endowed with a sufficient set of concepts to Induce

all possible relations, P requires a well planned training sequence

to learn Important ideas and to become efficient. P possesses

at its Inception multifarious computational capabilities but does

not know, a priori, which concepts to employ to solve which T>roblems.

Rather, P will necessarily begin learning by fcrlal-and-error

—trying one method of induction here, another there—until It has

Induced sufficiently complex and precise concepts to reduce the

most complicated problems to simple transformations. The original

discovery of a complicated compositional induction which leads to

a successful problem solution will appear "insightful" to a naive

observer of P. Subsequently, hoxiever, P will begin to stereotype

that problem-solving behavior so that what seemed originally novel

and insightful becomes the commonplace and predicted.

Our problem then Is to provide a training sequence for P vrhich

facilitates its continued learning in a particular environment. For

example. If we are Interested In teach P a certain systematized con-

cept, it vjill be advantageous to teach each component transformation
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first. Subsequently, P could learn the systematizatlon by stralght-

fonward Induction of type 2. In a similar way, inductions of com-

positions of concepts can best be trained by the piecewise develop-

ment of partial compositions developed one-at-a-time until the

total composition is achieved. The correspondence between this

procedure and the method of "chaining" in operant conditioning-

is obvious.

I propose that we begin P's training by teaching external

symbolic names for each of the simple concepts which P possesses

internally in its endowment. That is, we should teach P the logical

and mathematical symbols that we use informally to describe P's

own behavior. We could then utilize these symbols to Instruct

P in the performance of more difficult tasks or to actually teach

such concepts as next(x) = x+1. By developing an instructional

language, we can acquire the power to teach P anything which vre

can operat ional i z e . That is, it seems to me, precisely how we

teach most adults most concepts.

In the subsequent section I will discuss the significance of

teaching P verbal concepts for its internal oioerations. The signi-

ficant fact to bear in mind is that inductions of explanatory

concepts from a set of natural events are tantamount to the adoption

of rules for behavior supplied by verbal or symbolic concepts. In

some sense, P is the slave of its trainer. P must induce . It must

induce behaviors that lead to reward whether or not the events in

the training sequence are symbolically meaningful to the trainer .

At some point, events which the trainer supplies P—for example,

measurements taken of an exceedingly complex process—may in fact be
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incomprehensible to the trainer. P is totally insensitive to

this event and x^^ill continue inducing relations until it has
has been

achieved predictability or/yturned off. Perhaps, at that -noint,

when P has reached an understand in e; of the problem, the trainer

vrill examine P's concepts and acquire ne\~J knowledge about this

previously incomprehensible activity.

To begin, then, we choose some very simple concept to be

acquired, supply P with examples of its use, and each time ask

P to predict the value of the next term in the sequence (the

conclusion). We continue this process until P has demonstrated

that it has learned the desired concetst.

As the first, I suggest we teach the concept of value, ^rhere

value (x)=x when x is simply a symbol or value (x)=true when x is

a wff, ''Jithout loss of generality, I will presume that P auto-

matically constructs from the input I =df "value (x)" the set

(value,x). The method it uses can be presumed to be a concept

in its endowment; that is not important.

suppose the trainer supplies the input (value, 1). P recognizes

two attributes of 1 and none of "value". It recognizes 1 S D

(the set of digits) and 1=1. Suppose P prefers—because of

initial utility values—the relation 1 = 1 as an explanation.

If P predicts 1, the trainer responds that 1 is the correct ansv;er.

But what changes, ideogenetically speaking, have occurred?

One possible induction that P could have made is; when

the string "value" occurs and "1" follows it, "1" is the correct

prediction. This is, of course, equivalent to the recording of





77

the event where I=-«-(value,l ) , R='»*-(l). Another concept that

could have been used is the concept of "=" that says x=x, or

in this case, 1=1. 'Jhlchever of these or others occurred is

reinforced by the successful prediction.

Over time, however, a set of inputs is supplied which vary

the arguments of the function and complicate the possible consis-

tent explanations. At some point, P may actually have achieved

a concept vxhich "vrorks" fairly well. Suppose P has actually

constructed a concept which says; "if the letters u and e are

members of the first symbol string, the value is equal to the

second symbol string." It Is not until the trainer begins providing

counter examples like (valeu,a)=false and (eulav,a)=false and

(balue,c)=false that P discovers one induction that fully explains

the exioeriences the trainer has provided. At this point, P will

have discriminated those events which it predicted accurately

(those spelled correctly) from those it made errors on( those not

spelled "value").

In all of the correct predictions based on the "=" concept,

the relation (value) C* I was found. At some point, P induces the

conceTDt value by type 3 Induction:

1. The skeptical reader should be advised that this behavior
is genuinely programmable. The concepts in P's endowment are suffi-
cient to guarantee the discovery of this induction in finite time if
appropriate initial utilities are assigned. For a detailed discussion
of a more specialized sub-lntelllrent induction program, I recommend
Winston's thesis. Learning Structural Descriptions from Examples ,

Cambridge, Massachusetts: MIT Project MAC, TR-76, September 1970.
In that landmark project, Winston used specific model building heuris-
tics to develon structural models of graphic designs. The extension
to sets of symbols and generalized models as advocated in this paper
seems, to me, quite natural.
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(0) value (x) !

(1) ( value, x) =* I : value := x;

The next concept taught to P Is the concept of truth of

wffs expressed in the trainer's language. The trainer supplies

examples of vrffs and responds "true" or supplies non-wffs and

responds "false," Of course, this concept will continue to

acquire new component transformations as long as new axioms are

introduced until P acquires the more complex notion that "any

axiom or axiomatic deduction is true." Nevertheless, a partial

concept can be constructed given only one well defined operation,

that of value . To accomplish this P is taup;ht the s.ymbol "=".

.'/henever the terms on either side of the = are in fact equivalent,

the trainer responds "true". Otherwise, he responds "false".

The following are exemplary input-response interactions.

lal
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value Is extendible to cover true and false values also. The

following training- sequence would be appropriate:

Trial Input Response

1 value (true) true
2 value (false) false
3 value (x=x) true
4 value (value (x)=x) true

It is now desirable to discuss hovr concepts which are once

induced can be modified subsequently In the face of counterexamples.

In P, this behavior Is easily explained. Consider P's concept of

value , for example. Suppose value is not completely correct and

for some non-wffs P's concept value response Is true and for some

valid wffs its response is false. The component concepts which

r orlc;lnally utilized in development of the Induced concept value

are still available for further inductions of alternatives to

the erroneous value concept. As value continues to err, its

utility decreases at an increasing rate. At some point, the

time-utility value of an alternative explanation will surpass that

of the old concept value . At that noint, the new concept will

usurp the old one. That is an explanation of hovi old behaviors

vanish. They simply become less desirable to the machine than

alternative ones. The trainer actually elicits an incompatible

response from P which effectively surpresses its erring behavior.

In like manner, I propose that P be taught the remainder of

its Internal concepts. This includes all of the loglco-raathematical

concepts in section 3.2 and additional concepts of pointer operations,

At that point, P is equipped to learn more complicated instructional

sequences and can be used as an effective problem-solver.
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3.7 Teachlnp; with Lan^ua^e

It almost seems that our original problem has vanished. In

the beginning, our goal was to construct a machine that was intel-

ligent. I suppose the motivation was to study a machine which

sensed the environment, grappled with unknowns, and reached a

meaningful interpretation of events. To do this, we endowed P

with many concepts and proceeded to teach it verbal tokens xfhlch

signified each of the endowed concet)ts. At that point, v:e had

acquired a language which v;e ©ould use in teaching P new concepts.

P could then either acquire new concepts directly via instructions

from the trainer or by continuing to abstract relations from

some other (non-verbal) environmental events. When doing the

latter, P discovers that previously unexplainable events are

reducible to a subset of an extension of a particular composition

of r)reexisting concepts.

This process can shed much light on the nature of learning

in general and on the mechanisms of language in particular. Con-

cepts, originally described as the rules by which diverse events

could be classified as a single perception in an organism's beha-

vior, have how been fully explicated. The meaning of a verbal con-

cept is quite clear, as a result. Every time we teach P a token

for some internal set of operations—for example, truth (x) , which

is simply the label of the operation which determines the vrell

formedness of P's internal operations—we have given P a verbal

concept. Quite precisely, a verbal concept is an element of a

language ^^^hose vrffs can be put in isomorphism with the vTffs of
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the Internal operations of some computing machine . A token

signifies a conceptual parameterization In P which is Invoked to

predict events In the environment from which that token was

learned.

Thus, a language is a set of tokens and the procedures for

prediction which sets of tokens are wffs. The acquisition of

language in P through induction seems quite feasible. P must

learn for each token which ordered sets of tokens are valid and

which are not. Learning that a set of tokens is valid means

possessing procedures that transform the set of tokens into a valid

prediction of the environment. P learns this precisely by dlscoverinR

a system of concept compositions which produce internal wffs in

parallel to wffs in the environmental language.

The language of P continues to expand indefinitely as the

nevr events and predictions are introduced. As the language of P

grows, so does its capacity to recognize distinct explainable

events. Every externally supplied input event I must be compre-

hended in P as the composition of concepts which take I into a

correct (true) or an assumed (p-true) prediction . Whether the

Input is verbal (composed of tokens) or non-verbal is Irrelevant

to the operation of P. If P can t)redlct the next symbol from a

set of symbols, P must have a concept (by definition) for that

transformational behavior.

Once P has learned most of its basic verbal concepts, teaching

P the concept next (x)=x+l is ouite easy. Simply, P is taught

separate components of the cr4L procedure for next , one-at-a-time.
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Systematically, these are composed until P acquires the full

concept next which transcends each of the individual comr)onents.

At that -Doint, P will have learned to count.

Learning to count veritably opens Pandora's box to P.

Once numbers are available so are many other ideas. If the numbers

are associated with the operations of listing each item of a set

—that is, setting a pointer to the first element, then the next,

then the next, and so on— P vjlll be able to induce the real meaning

of number as a measure of quantity . P can then be taught arithmetic

as operations on numbers which represent quantities. For example,

addition can be iteamed as a counting process, like counting on

one's fingers. Such a procedure might be very much less efficient

for computational purposes than an exact procedure for addition

which is based on adding digits one-at-a-time and using a carry for

overflow. However, It does not follow from such a premise that

learning addition as a counting process is less desirable than

learning it as a routinized procedure utilizing column by colu;un

addition. To the contrary, the question of best method is emniri-

cal. Only by knowing vrhat the machine must do during its entire

existence and Icnowing exactly what training it will subsequently

receive can vre determine what is the best way to teach it a parti-

cular operation. It is clear, nonetheless, that alternative mecha-

nisms which take identical inputs into identical outputs are diffe-

rent concepts . The value of different concepts in the development

of subsequent concepts based, in part, on the contents and structure

of the earlier ones is not determinable in uncertain envlronjnents.
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This is especially true when the organism is taupiht one or the

other and not both of the alternatives.

At this point, I concur in part with the developmental

psycholoi"5ist Jean Piaget, There may be many thinp;s that organisms

learn to do at one particular age which they could alternatively

lea.rn to do at some point earlier in their development. V/e do

not infer that they ought therefore to learn everything as early

as they are physically capable. In fact, it may be taken as a

corollary to Theorem 3.5.1 that for some task W which it is taken

as P's purpose to accomplish at a point later in its life, two

different training sequences T and U could be imagined such that
to

P would actually be unable /Njaccompllsh W if preceded by U but not

if preceded by T.

Consider again the question of the better way to teach P

addition. The first method is to teach it to count, as on its

fingers, from the first number by ones until it has counted as

many ones as the numerical value of the second number. The alter-

native method involves teaching the use of a table of sums for

tuo one-digit numbers plus a carry digit that is either or 1.

Addition in this nethod is performed by invocation of the table

while working from the first (rightmost) digit to the last, a

column at a time. The question, Which of these methods is better'

is clearly undecidable without rauch greater context. If counting

on one's fingers enables one to learn rhythm as an analop:ue of

the physical process, is it not good for that reason? It laay not

teach one the value of systematic comr)Osition of concepts as





8^

learning to add in a forraal vray raight. In some unpredictable

'•ray, either of these concepts might be extraordinarily valuable

for particular purposes or extraordinarily inhibiting for others.

In short, our machine P is capable of learning what we wish

to teach it. We teach by designing training sequences of verbal

or non-verbal events vrhich effectuate appropriate inductions by

P. The burden of determining optimal of desirable training sequences

rests squarely with the trainer. Our machine is ready to learn

whatever we will.
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U.O DOSS THE INDUCTION MACHINE THINK?

It Is now clear that emphasis on the question, "Can a

machine think?" is inappropriate. Any organism that converts

problem environments into predictions of successful responses

thinks. The more interesting question, "How does this machine

think?" will be considered in this anc^/the following sections.

In this section, we will discuss problems which P can solve

and those which it cannot. In doing this we will be concerned

with characterizing the class of solvable problems. In the

next section we will pursue a more general functional/relation-

ship between characteristics of problems and characteristics of

thinking machines.

4.1 Problems which P can Solve

Since P reads sequences of symbols, compares them to pre-

viously encountered sequences, and computes many conceptual

transformations, its performance is necessarily dependent on

several exogenously determined parameters. Basically, the consi-

deration of what capacities to provide P such as volume of

memory, computation speed, and capability for parallel-processing

can greatly affect the problems whcih P can effectively solve.

P should be able to learn verbal tokens for all of its

endowed concepts. Thereafter, any concept which can be expressed

as a CML procedure should be attainable by P. However, not all

of these procedures will necessarily be acquired. Of those

which P actually develops, some will be internalizations of verbal

descriptions and others will be the conceptual induction of abstracted

relations.
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Which concepts P Is taught should depend on which tasks

It Is to be assigned later' in its tralnlnsr seauence. The initially

endowed concepts will enable P to accomplish many ideogeneses of

simple natures. For example, P can learn the equivalence of

different sets for a common purpose, common orderlngs of attributes

of events, the significance of some aspects of a problem with

Irrelevant or noisy attributes, and so forth.

P can be taught value systems as concepts of preferential

orderlngs. Systems of orderlngs can be developed as correspon-

dences between possible preconditions and desired postconditions,

P can be taught to Invoke values In some circumstances and not

in others.

In particular P can develoD concepts of "good" and "bad"

methods of solving problems. In this way, P can be trained to

use the scientific inductive method while another machine Q is

trained to pursue an analytical, unempirlcal, method. P can be

taught to compute utility distributions for the trainer's prefe-

rences and to employ these in selection of optimal Bayesian

decision strategies.

In short, P can be taught many different behaviors. All of

these will be tantamount to transformations on sets of symbols.

The capacity of P to solve novel problems is thus dependent on

P's capacity to recognize salient attributes of such sets as pre-

conditions for problem transformations. The sallency of an attri-

bute is to be determined only in full view of its context. P

must be trained systematically to recognize those sets of attributes
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which In composition constitute a single salient aspect of a

problem.

k.Z Ambiffuity and Error

Every concept which P possesses Is absolutely concrete .

That is, a conceptual precondition is evident or it is not.

Abstraction occurs not from real sensations to imagined sensa-

tions. Ratherj abstraction is the process of finding just those

concrete sensations on which to base an action. For example,

the concept dog is not abstract. It is just that condition of

stimuli—eyes, feet, ears, whiskers, body—vrhich define dog .

Nujgber is neither more nor less abstract than dog . It is just

that condition of stimuli—countable—which define numbers.

There is one sense in which concepts are not absolutely

concrete. That is, concepts are representations of events which

are approximate and inexact. Concepts learned by induction are

always only p-true. This is true because there are always nume-

rous feasible inductions not all of which lead to the same pre-

dictions or support the same inferences. Because of this intrinsic

flexibility of conceptual explanations, concepts Include domains

of error over which their conclusions are actually false of p-false.

The approximate validity of learned concepts, owing to the

p-true status of the Induction, is both a source of value and cost

for any machine. It is precisely because concepts can be used

sloppily (with ambiguity of meaning) that people can accomplish so

much with so few words. The machine P is also capable of such

ambiguity in its own thinking. The induction of a concept which
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Is only partially complete can provlfie the stimulus for many

subsequently erroneous actions. The accidental but correct

prediction of some event will reinforce P's mistaken concepts.

Since mistaken concepts of this sort are never deleted, they

can reassert themselves as means of explanation throughout P's

life. In some cases, understanding of environmental events

depends exactly on such erroneous concepts. In other cases,

erroneous explanations will be punished and Inhibited by the

trainer.

The ability of P to exhibit all of the salient stages of

concept formation is clear. P can exhibit mistaken associations

in the induction of concepts, either due to overspecif Icatlon of

general properties or to over generalization of specific concepts.

Furthermore, P may choose inappropriate bases for concepts which

accidentally correlate with the valid bases. In such a case, P

will exhibit correct conceptual behavior most of the time even

though employing incorrect transformations. Correcting this parti-

cular sort of conceptual error could be quite difficult for the

trainer and, perhaps, impossible.

Thus P Is a machine which is capable of handling noisy or

Inexact Inputs in an intelligent way. In fact, P can develop

specific concepts of noise and thereby recognize certain events as

1. For an excellent Introduction to studies of concept for-
mation, I recommend L.S. Vygotsky, Thought and Language, Cambridge,
Massachusetts: The MIT Press, 19^2. See also J.S. Bruner, J.J.
Goodnow, and G.A. Austin, A Study of Thinking , New York: Wiley,
1956.
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noisy occurrences of more regular lawful relationships.

^«3 Behaviors which are Unattainable by P

There is much that P simply cannot do in its current design.

It cannot run, hear, or see: in that sense it is really quite

limited. Furthermore, P is generally unlikely to induce relations

about events which are not of direct relevance to its primary

purpose, achieving predictability.

In training P, we must remember that it desires to predict

whatever we think Is correct behavior. If we wish it to predict

what we see , we may have to introduce new forms of Input and new

concepts in its endowment. Specifically, we should introduce

two or three dimensional networks and relevant primary concepts

about these networks. To have it predict sequences of visual

image f^ , we would need to train P on sequences of the three dimen-

sional sets. I am not suggesting that this is a good method for

achieving a seeing machine. Rather, I am Interested in demonstra-

ting that P's knowledge is bounded by the primary attributes which

it is able to perceive.

Specifically, P Is capable only of inducing relations which

represent compositions of the operations which it already possesses.

If a stimulus environment is encoded in terms of elementary attributes,

such as lines and contrasts, these attributes must be perceptible by

P If P is to understand the environment. The remarkable speciali-

zation of human sensory apparatus lends sunport to this obsei^atlon.

^.^ Hierarchical Knowledge

It is now possible to understand the nature of hierarchical
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knowledge. Basically, P Is endowed with a set of computational

procedures and concepts which determine hov: ideogenesis is to

occur. Every new concept is built hierarchically upon some old

ones and attains integrity as an alternative mechanism for compre-

hending the environment. To the extent that concepts are utilized

in the formation of an induction are they attribute values of that

nevr concept. This attribute is loosely called "hierarchy" of

concepts.

As I have shown elsewhere, concepts can be related hierar-

chically in many ways. The development of concepts which recog-

nize such hierarchies is a straightforward example of inductions

of type 2. For example, the discovery that for some purposes

dog, cat, guinea pig, and parakeet are equivalent is the basis for

the induction of a category, in this case of house pet . Subsequently,

many different systematlzations utilizing these same concepts can

be effected by training.

Alternatively, it is possible to connect every concept with

every other by some chain of conceptual associations. These associ-

ations are simply relations among concepts rather than among purely

external events. Nothing is surprising about this. When P uses

concepts to describe events it is using procedures which are them-

selves analyzable sets. The discovery of novel properties of those

parameterlzatlons which represent concepts which, In turn, facilitates

improved predictions by P is possible. The concept noun, for instance

1. F. Hayes-Roth, The Structure of Concepts , Carabrldge, Massa-
chusetts: Sloan School of Management Working Paper, April 1971.
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can be taught to P as aoon as examples and counter-examples of

noun exist for P to study.

4.5 Analogical Reasoning

Many people cite the ability of people to reason by analogy

as significant and as distinguishing human intelligence from other

varieties. It is now possible to reconsider the process of

analogical reasoning and to relate it to the reasoning of P.

When we say "A is to B as C is to D" we may mean several

different things. In general, these diverse meanings can be

subsximed under the statement, "If C and D are in relation r, such

that r(C,D) is true, then r(A,B) is true, and vice versa ." That

is, both sets (A,B) and (C,D) are members of the extension of

r(x,y). For example, apple is to fruit as cabbage is to vegetable,

because apple Is a kind of fruit and cabbage is a kind of vegetable.

It is quite easy to^see that an analogy A:B as C:D is valid if there

exists some concept r(x,y) such that r(A,B; s r(C,D).

Analogical reasoning is similar to induction by composition.

In induction by composition, two events (A,B) and (C,D) are dis-

criminated and a relation r is composed such that r(A,B) and

r(C,D) are both true. The purpose of the induction is to fabricate

an explanation for the equivalence of the tvro sets. That is pre-

cisely the purpose of an argument by analogy, to argue that the

similarity of different sets of events is so significant as to

outweigh, the importance of their obvious differences.

We have already shown how P can be programmed to induce that

I => R for an I which is like the I's in other events. For P to
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riroduce the prediction R and the explanation R Is to I as R^ is

to I^ for all events E Is analogical reasoning. Training P to

analogize Is unnecessary. P Is a bom generallzer.

4.6 Systematic Behavior Traits

We have come to the end of the descriptive road. P has

been Introduced and its capabilities extensively discussed. All

that remains Is to give perspective to P as an organism: In v;hat

way does P resemble other natural organisms? A propos to our

discussions In section 2, it is desirable to focus on the questions

of perception, prediction, and learning.

P perceives the environment through its reader R. The Input

to P Is produced In accordance vrith natural laws , as far as P is

concerned. These laws are the rules that govern the trainer's

behavior. P is capable originally of perceiving a variety of

symbolic patterns In its inT>ut. Those patterns which are immediately

recognizable as satisfying the preconditions for conceptualization

might be called primary perceptions. These include the set I,

the prediction N, the trainer's response R, the timers T and AT, and

the set of symbols. Each of these primary perceptions is, in

turn, perceptible by P as satisfying preconditions for secondary

concepts. For example, the elements of I can be recognized as subsets

of I or subsets of I can be considered equal to previously encountered

sets. In general, many possible sets of composed concepts may be

satisfied by the occurrence of an input.

Those input events which result in equivalent outcomes In P

constitute as a set one perception . It may now be seen that it is
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Tjossible to distln^ilsh many different levels of perception

accordinn- to the particular measurement of "equivalent" we use.

At the loT^rest level, we may talk of sensation defined as being

the state of P Immediately upon reading I. Or ^^re may describe

perception , at the highest level, as that conceptual composition

and the requisite stimulus preconditions for P to produce its

prediction. In between, it Is possible to assess a myriad of

measurements of the perceptual (read cognitive) processes.

P nay be defined as equivalent to some knowledge K which

is adequate to predict completely P's actions. That may sound

amusing since P Itself is a machine for predicting the trainer's

responses. Nevertheless, it is always useful to remember that

knovjledge is not Irnmanent in the organism but is in some sense

Independent of It. The machine P is considerecl in terms of a

knowledge K ,1ust as the trainer's behavior is expressed in terms

of a knowledge L.

Neither the scope nor the range of the two knowledges, K and

L, need be totally Intersecting. The reason for this lies in the

ability of P to abstract extensive relations which Incorrectly

exceed the domain of validity of such a concept. Thus, each concept

induced carries the potential for introducing error. Predictions

made by K on the basis of such concepts need have only the most

superficial dependence on the true explanatory concepts as seen in

L.

As a learning machine P is quite compelling. All learning is

adaptation, and P is therefore an adaptive machine. 3ut P is also
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teleological, seeklns^ to replicate those behaviors which lead to

revrards and to avoid others. Other machines have been constructed

which exhibit definite tendencies to stereotyt)e rewarded behaviors.

All such previous learning machines with which I am familiar,

hovjever, v;ere not equipped with ideogenetlcal capacities. They

coi'.ld definitely perceive and learn to selectively discriminate

salient pre-specif led attributes of problems.

Nevertheless, they were unable to fl;enerate new concepts or

attributes vrhich they could utilize in subsequent conceptual compo -

sitions .

In sum, F can be shown to exhibit all of the attributes of

intellif^ence which we frescribed in section 2. Many diverse

measures of P's systematic behavior tendencies would therefore be

possible. In the remn.inder of the paper, we will examine a few

of these problems in a broadened psychological context.

1. See for exam-ole the description of stat-rat, a simulated
rat in discrimination learning, in E. Love.loy, Attention in Discri -

mination Learning; , tian Francisco: Hold en-Day, 196'^.
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