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MODELING THE DYNftMICS OF SOFTWARE PROJECT MANAGEMENT

Summary

The development of software has been marked by the problems of cost

overruns, late deliveries, poor reliability, and users' dissatisfaction
which continue to persist in spite of the significant advances that have
been made in the software engineering field to tackle the technical
hurdles of software production.

The objective of this paper is to enhance our understanding of, and

gam insight into the general process by which software development is

managed by integrating our knowledge of its multiple activities into an
integrated continuous view of the software development process.

The model is currently being used as an experimentation vehicle to
study/predict the dynamic implications of an array of managerial policies
and procedures pertaining to the management of software projects.

The impressive improvements that are continuously being made in the

cost-effectiveness of computer hardware are causing ar\ enormous expansion in

the number of applications for which computing is becoming a feasible and

economical solution. This in turn, is placing greater and greater demands for

the development and operation of computer software systems, fl conservative

estimate indicates a "tenfold increase in the demand for software each

decade, or a hundred fold increase between 1965 and 1985" (Musa, 1985).

This growth in the demand for software has not, however, been painless.

The record shows that the development of software has been marked by cost

overruns, late deliveries, poor reliability, and users' dissatisfaction

[(Buckley and Poston, 1984), (Ramamoorthy et al., 1984), and (Newport,

1986)].

In an effort to bring discipline to the development of software systems,

attempts have been made since the early 1970s to apply the rigors of science

and engineering to the software production process. On the technology side,

significant progress has been made over the last decade, leading to the
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d»v»lopm«nt of a large number of methodologies (e.g., structured programming,

structured design, formal verification, language design for more reliable

coding, diagnostic compilers, and so forth) that address many of the

t*?t!Di?§i problems experienced in software development.

fi comparable evolution on the managerial front has not occured, however

[(Zmud, 1980) and (Beck and Perkins, 1983)].

Software engineering project management (SEPM) has not enjoyed the same
progress (as the technology of software development). While it might be

argued that SEPM has been defined, it is far from a recognized discipline
... The major issues and problems of SEPM have not been agreed on by the
computing community as a whole, and consequently, priorities for

addressing them have not been widely established. Furthermore, research

in this area has been scant (Thayer et al., 1981).

This position is further substantiated by a survey, reported in the same

paper, which revealed that only a handful of U.S. universities offer courses

in the area of software project management.

This "deficiency" in the field's research repertoire is being blamed by a

growing number of researchers and practitioners for the B§CiiiiiD2f o^ our

difficulties in producing software that is on time, within budget, and that

meets user requirements [(Pooch and Gehring, 1960), (Thomsett, 1960), and

(Weinberg, 1982)]. P chief concern expressed is that, as of yet, we still

lack a fundamental understanding of the software development process, and

that without such an understanding the possibility or likelihood of any

significant gains on the managerial front is questionable [(Basili, 1962) and

(McKeen, 1963)].

This paper reports the results of an ongoing research effort designed to

address the above concerns. Specifically, it is our goal to develop a

comprehensive mathematical model of the software development process and to

use such a model as a laboratory vehicle to study, gain insight into, and



2

make predictions about the software project management process.

In the remaining parts of this paper we present and discuss the

integrative dynamic model of software project management that has been

developed. We will provide an overview of both the model's structure and its

behavior. We begin our presentation, however, by first presenting the

arguments for the utility of such a formal dynamic modeling approach in the

study of software project management.

Ibg_bi3b_Q9™Bi§><it^_2f_tbi_i9ftyi!2§_E!22Jf£t_M§nagement_Process

Project management often is based simpl istically on a "mental picture"

captured by the single-loop model shown in Figure 1 (Roberts, 1981). The

model portrays how project work is accomplished through the utilization of

(1) project resources (manpower, facilities, equipment). Ps (£) work is

accomplished on the project, it is reported (3) through some project control

system. Such reports cumulate and are processed to create the (4) project's

forecast completion time by adding to the current date the indicated time

remaining on the job. Assessing the job's remaining time involves figuring

out the magnitude of the effort (e.g., in man-days) believed by management to

be remaining to complete the project, the level of manpower working on the

project, and the perceived productivity of the project team. The feedback

loop IS completed (closed) as the difference, if any, between the (5)

scheduled completion date and the (4) forecast completion date causes

adjustments (6) in the magnitude or allocation of the project's resources.

What is attractive about the above model is that it is both reasonable

and simple. It is, therefore, a mental tool that is not too difficult to

wield. But is it an adequate model for the dynamics of software project

management?



(5) SCHEDULED COMPLETION
DATE

(61 RESOURCE CHANGE &
ALLOCATION DECISION

FORECAST COMPLETION •*-

DATE

(4)

(1)

PEOPLE i OTHER
PROJECT RESOURCES

(2) WORK RATE

REPORTED PROGRESS

(3)

FIGURE (1)

A MODEL OF SOFTWARE PROJECT MANAGEMENT
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Th» •oftw«r« project management system is a far more complex conglomerate

of interdependant variables that are interrelated in various nonlinear

fashions. By excluding some vital aspects of the real software project

environment, the above model could seriously misguide the unsuspecting

softwar* manager. To see how, let us consider some of the typical decisions

pondered in a software project environment.

6ddiD9 !!!2!2§ Bi9Bii 1° § i§t§ B!29Ji?t! The mental picture of Figure 1

suggests a direct relationship between adding people resources and increasing

the rate of work on the project, i.e., the higher the level of project

resources the higher the work rate. Subscribing to this simplistic view of

the world has led many a software manager into serious trouble (Brooks,

1978).

For example, one vital aspect of software project dynamics that no

software manager can afford to ignore is captured by the feedback loop of

Figure 2. It portrays some of the dynamic forces that create the phenomenon

known as "Brooks' Law", i.e., that adding more people to a late software

project makes it later (Brooks, 1978). fis the figure indicates, adding more

people often leads to higher communication and training overheads on the

project, which can in turn dilute the project team's productivity. Lower

productivity translates into lower progress rates, which would delay the late

project even further. This in turn could trigger an additional round of

workforce additions and another pass around this "vicious cycle."

In Figure 3a we, therefore, amend Figure 1 by incorporating the vital

link between the workforce level (and the associated communication and

training overheads) and productivity.

ftdjusting ttli_i£!l!§dyii_2f_§_U§t§_E!!2J§9t' Another part of the real system

ignored by Figure 1 is the human element in project actions and decisions.

The attitudes and motivations of software developers and their managers.
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. their knowledge of the schedules, and current estimates in the project, all

affect the real progress that is achieved, as well as the progress and

problems that are reported upward in the organization.

For example, when faced with schedule pressures that arise as a project

falls behind its schedule, software developers typically respond by putting

in longer hours and by concentrating more on the essential tasks of the job

(Ibrahim, 1978). In one experiment, Boehm (1981) found that the number of

man-hours devoted to project work increased by as much as lOOX. Most of this

gain was achieved by reallocating people's slack time by spending less time

on off-project activities such as personal business, coffee breaks,

non-project commmunicat ion.

This link between schedule pressure and productivity is captured in

Figure 3b. Does this mean, then, that software managers need not worry about

adjusting the schedule of a late project and should rely, instead, on simply

maintaining the pressure on their project teams?

The impact of schedule pressures on software development is not limited

to the above relatively direct role. Schedule pressures can also play less

visible roles. For example, as Figure 3c suggests, schedule pressures can

increase the error rate of the project team and thus the amount of rework on

the project [(Radice, 1982) and (Mills, 1983)3.

People under time pressure don't work better, they just work faster ...

In the struggle to deliver any software at all, the first casuality has
been consideration of the quality of the software delivered (DeMarco,
1982).

The rework necessary to correct such software errors obviously diverts

the project team's effort from making progress on new project tasks, and thus

can have a significant negative impact on the project's progress rate.

Alto, contldtr tht impact of schedule pressure on the workforce turnover

rate (Figure 3c). There is evidence to suggest that workforce turnover
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increases when unreasonably tight scheduling situations persist in an

organization (Freedland, 1987). This can be quite costly, since a higher

turnovtr ratt tr«nil«t«i into low»r productivity on the project.

EiD§ii^i Hoe Bi§iiy Late is_a_Late_Sgftware_Proj.ect "5 Before a software

manager can succeed in rescuing a lagging software project and bringing it

back on track by adding people, adjusting the schedule, etc., it is

imperative that the assessment of the magnitude of the delay be on target.

But software is basically an intangible product during most of the

development process. This lack of visibility can produce a significant

difference between the real achievement and the B§C£§iy§d progress on the

job. To the extent that the perceived progress rate differs from the real

progress rate, an error in perceived cumulative progress will gradually

accumulate (Figure 3d). This undoubtedly poses yet another complication that

is too real for the software project manager to exclude from any model or

analysis of the process.

8_y§§^_f9!2_§D_l!l!ii9!2§*i^§_B§!!iB§?li^§_2f_Softwart_Devel^OBment

The above discussion illustrates that there are a large number of

variables, both tangible and intangible, that impact the software development

process. Furthermore, these variables are not independent, but are related to

one another in complex fashions. Perhaps most importantly, understanding the

behavior of such systems is complex far beyond the capacity of human

intuition (Roberts, 1981).

ft major deficiency in much of the research to date on software project

management has been its inability to integrate our knowledge of the micro

components of the software development process such as scheduling, progress

measurement, and staffing to derive implications about the behavior of the

total socio-technical system in which the micro components are embedded
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(Thayer, 1979). In the words of Jensen and Tonies (1979): "There is much

attention on individual phases and functions of the software development

sequence, but little on the whole lifecycle as an integral, continuous

process.

"

The model presented in this paper provides such an integrative

perspective. It integrates the multiple functions of the software development

process, including both the management -type functions (e.g., planning,

control, staffing) as well as the software production-type activities (e.g.,

design, coding, reviewing, testing).

ft second unique feature of our modeling approach is the use of the

feedback principles of System Dynamics to structure and clarify the complex

web of dynamically interacting variables involved in the development and

management of software projects. Feedback is the process in which an action

taken by a person or thing will eventually affect that person or thing.

Examples of such feedback systems in the software project environment have

already been demonstrated in the above discussion and are evident in Figures

1 through 3.

The significance and applicabilty of the feedback systems concept to

managerial systems has been substantiated by a large number of studies

(Roberts, 1981). For example, Weick (1979) observes that,

The cause-effect relationships that exist in organizations are dense and
often circular. Sometimes these causal circuits cancel the influences of
one variable on another, and sometimes they amplify the effects of one
variable on another. It is the network of causal relationships that

impose many of the controls in organizations and that stabilize or
disrupt the organization. It is the patterns of these causal links that
account for much of what happens in organizations. Though not directly
visible, these causal patterns account for more of what happens in

organizations than do some of the more visible elements such as
machinery, timeclocks, ...

The third distinctive aspect of our modeling approach is the utilization

of the computer simulation tools of System Dynamics to handle the high
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complexity of the resulting integrative feedback model. The behavior of

systems of interconnected feedback loops often confounds common intuition and

•ntlyiii, tven though the dynamic implications of isolated loops may be

reasonably obvious. The feedback structures of real problems are often so

complex that the behavior they generate over time can usually be traced only

by simulation (Richardson and Pugh, 1981).

Before describing the model and experiments performed, there are several

point! that are important to clarify. First, due to its length and complexity

only A portion of th* entire modal can be presented and explained in this

paper. For more details the reader is referred to C (flbdel-Hamid, 1984) and

(flbdel-Hamid and Madnick, 1987a)]. Second, the focus of this research is on

the di;nami^cs of software projects; that is, aspects that change during the

life of the project, such as workforce level and productivity, rather than

aspects that are decided once and then remain constant throughout the

project, such as choice of programming language.

Third, it is necessary to have a perspective about what the model is and

IS not intended to accomplish. This is particularly relevant because this

research is primarily intended to provide yD^i!Z§t§!I}^iDS °^ *^b dynamic

behavior of a project (e.g., how variables like workforce-level and

productivity change over time and why) rather than to provide

E2i!2tzE!!§^i£ti2Di ^s. g., of the number of errors generated).

Fourth, although the model was developed based on field studies and a

careful literature review, a model is, by definition, a simplification. Thus

a model's value ultimately depends upon its ability to help us understand an

otherwise overly complex situation. Specific benefits are that unlike a

mental model, a System Dynamics simulation model can reliably trace through

time the implications of a messy maze of assumptions and interactions,
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without stumbling over phraseology, emotional bias, or gaps in intuition.

Our integrative dynamic model of software project management was

developed on the basis of a battery of 27 field interviews of software

project managers in five software producing organizations, supplemented by an

extensive database of empirical findings from the literature. Figure 4

depicts the model's four subsystems, namely: (1) the Human Resource

Management Subsystem; (2) the Software Production Subsystem; (3) the

Controlling Subsystem; and (4) the Planning Subsystem. The figure also

illustrates some of the interrelationships among the four subsystems.

ThB_Human_Resource_Management_Subs^5tern:

The Human Resource Management Subsystem captures the hiring, training,

assimilation, and transfer of the human resource, as shown in Figure 5.

The schematic conventions used in Figure 5 are the standard conventions

used in System Dynamics models. From a System Dynamics perspective all

systems can be represented in terms of "level," "rate," and "auxiliary"

variables.

^ i§Y§i is an accumulation, or an integration, over time of flows or

changes that come into and go out of the level. The term "level" is intended

to invoke the image of the level of a liquid accumulating in a container. The

flows increasing and decreasing a level are called rates. Thus, "NEULY HIRED

WORKFORCE" is a level of people that is increased by the "HIRING RATE" and

decreased by the "WORKFORCE RSSIMILflTION RATE.

"

Rates and levels are represented as stylized valves and tubs, as shown

below, further emphasizing the analogy between accumulation processes and the

flow of a liquid.
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^
RATE

LEVEL

RfiTE

The flows that are controlled by the rates are usually diagrammed

diff»r»ntly, d«p»nding on the type of quantity involved. We will use the two

types of arrow designators shown below:

INFORMftTION FLOUS

OTHER FLOWS

(e. g. , People)

fill tangible variables are either levels or rates, i.e., they are either

accumulations of previous flows or are presently flowing. Auxiliary

variables, on the other hand, are information-type variables in the system,

and capture things like concepts (e.g., the concept of a "WORKFORCE GPP") and

policies (e.g., the policy for allocating "DAILY MANPOWER FOR TRfllNIING").

Auxiliary variables are represented by a circular symbol.
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Finally, variables that are defined in other sectors of the model are

represented by enclosing the variable name in parentheses as shown below.

/VORIfiBLE FROm\

\ ONOTHER sector/

Notice that the project's total workforce in Figure 5 is comprised of two

workforce levels, namely, "NEWLY HIRED WORKFORCE" and "EXPERIENCED

WORKFORCE." Disaggregating the workforce into these two categories of

employees is necessary for two reasons. First, newly added team members are

less productive (on the average) than the "old timers" (Cougar and Zawacki,

1980). Secondly, it allows us to capture the training processes involved in

assimilating the new members into the project team.

On deciding upon the total workforce level desired, project managers

consider a number of factors. One important factor, of course, is the current

scheduled completion date of the project, fis part of the planning subsystem

(to be discussed later), management determines the workforce level that it

believes would be necessary to complete the project within the scheduled

completion time. In addition to this, however, consideration is also given to

the stability of the workforce. Thus, before adding new project members,

management typically contemplates the duration for which the new members will

be needed. Different organizations weigh this factor to various extents. In

general, the relative weighing between the desire for workforce stability on

the one hand and the desire to complete the project on time, on the other,

changes with the stage of project completion. For example, toward the end of

tht project th«r« could b« considerable reluctance to bring in new people,

even though the time and effort perceived remaining might imply that more
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paopl* «r» needed. This reluctance would arise from the realization that

there just wouldn't be enough time to acquaint the new people with the

mechanics of the project, integrate them into the project team, and train

them in the necessary technical areas.

Figure 6 demonstrates the kinds of dynamic behaviors reproduced by the

model. It depicts the model's output that resulted from simulating the

behavior of one of NASA's software projects, the DE-fl software project (NASA,

1983). (See the Appendix for more details on the DE-A project.) The model's

r«»ulti conformed quite accurately to the project's actual behavior

(represented by the points in the figure), as is documented in detail in

(Abdel-Hamid, 198A).

Notice that the workforce pattern here differs from the "typical"

workforce pattern as discussed in the literature, i.e., the concave type

curve that rises, peaks, and then drops back to lower levels as the project

proceeds towards the system testing phase (Boehm, 1981). The reason why the

workforce level here shoots upwards towards the end of the project has to do

with NASA's tight scheduling constraints. Because NASA's launch of the DE-A

satellite was tied to the completion of the DE-A software, serious schedule

slippages were not tolerated. Specifically, all software was required to be

accepted and frozen 90 days before launch. As this date was approached,

pressures developed that overrode the workforce stability considerations.

That is, project management became increasingly willing to "pay any price"

necessary to avoid overshooting the 90-day-before-launch date. This

translated, as the figure indicates, into a management that was increasingly

Milling to add more people.

The_Sof t ware_Production_Sub5ystem

The four primary software production activities are: development, quality

assurance, rework, and testing. The development activity comprises both the
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design and coding of the software, fls the software is developed, it is also

reviewed (e.g., using structured walkthroughs) to detect any errors. Errors

detected through such quality assurance activities are then reworked. Not all

errors get detected and reworked, however. Some "escape" detection until the

testing phase.

The Software Production Subsystem is too complex to fully explain in the

limited space of this paper, but rather than provide just a high level

overview of the total subsystem we Hill, instead, discuss in some detail the

structure of one of the subsystem's important components, namely, the

structure that captures the dynamics of software productivity.

The model's software productivity structure is depicted in Figure 7. It

IS based, in part, on a model of group productivity proposed by the

psychologist Ivan Sterner (1972). Steiner's model can simply be stated as

follows:

Octual Productivity = Potential Productivity - Losses Due to Faulty

Process

where losses due to faulty process basically refer to a group's communication

and motivation losses. Paraphrasing Steiner (1972):

Potential productivity is defined as the maximum level of productivity
that can occur when an individual or group ... makes the best possible
use of its resources (that is, if there is no loss of productivity due to
faulty process) ... Potential productivity can be inferred from a

thorough analysis of task demands and available resources, for it depends
only upon these two types of variables. Actual productivity, what the
individual or group does in fact accomplish, rarely equals potential
productivity. Individuals and groups usually fail to make the best
possible use of their available resources. Problems of coordination
and/or motivation are responsible for inadequacies in process, and for
consequent losses in productivity.
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Thus, according to Sterner, Botential productivity 15 a function of two

sets of factors, the nature of the task and the group's resources. The

effects of various factors belonging to these two sets of determinants on the

productivity of software development have been widely investigated in the

literature. These include factors such as product complexity and database

siz* (examples of task-type variables) and personnel capabilities and the

availability of software development tools (examples of resource-type

variables)

.

Notice that while most of the above factors would tend to vary from

organization to organization (e.g., availability of software tools, personnel

capability, and computer-hardware characteristics) and from project to

project within a single organization (e.g., product complexity, database

size, and programming language) they, however, would tend to remain constant

throughout the development life of of any one Bi!;ticul.ar project. This

observation is quite significant for this discussion. It means that in

studying the dynamic patterns of software productivity during the lifecycle

of a Bitzticyiar software project, which is our concern here, the above

variables would tend to remain constant and, therefore, would not play a

dynamic role. Thus, in representing the dynamics of software productivity

throughout the life of a software project such factors could be captured by a

single invariant paramter. In our model this is termed the "NOMINfiL POTENTIAL

PRODUCTIVITY" parameter.

Not all determinants of EQliDtiii pi'oduct ivity are, however, of such a

non-dynamic nature. Two variables identified in the literature that do play a

dynamic role are the workforce experience level (Chrysler, 1978) and

increases in project familiarity due to learning [(Shell, 1972) and

(Weinberg, 1982)]. These dynamic variables are captured in Figure 7.
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Due to the losses incurred in communication and motivation overheads,

actual productivity rarely equals potential productivity. Communication

ov»rh»«d ii th» drop in th» productivity of the average team member caused by

the losses incurred in communicating with others on the project. The nature

of the relationship between communication overhead and team size has been

investigated by several authors. For example, it has been suggested that
2

communication overhead increases in proportion to n , where n is the size

of the team [(Brooks, 1978), (Zelkowitz, 1978), and (Shooman, 1983)].

To understand the effects of motivation losses on productivity we need to

make the same distinction mb made above between factors that remain constant

during the life of any one particular project and those that tend to change

throughout the life of a project. Many of the motivational factors discussed

in the literature (e.g., possibility for growth and advancement,

responsibility, and salary) are factors that tend to characterize the overall

organizational setting and climate. In our formulation, such non-dynamic

factors would be implicitly incorporated within the definition of the

potential productivity parameter.

On the other hand, goals and schedules play a dynamic motivational role

throughout the life of a software project. Boehm (1981) suggested that the

motivational role of schedule pressures and project deadlines is specifically

to expand or contract the project members' "slack time." Slack time is the

fraction of project time lost on off-project activities, e.g., coffee-breaks,

personal business, and non-project communication.

The motivation mechanism in the model captures such dynamic motivational

impacts of schedule pressures on "slack time." In the absence of schedule

pressures the fraction of daily hours allocated (on the average) by a

full-time team member to project-related work is captured by the parameter

"NOMINAL FRPCTION OF ft MftN-DftY ON PROJECT. " Several studies indicate that the
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value of this parameter lies within the 50-70X range [e.g., see (Brooks,

1378), (Pooch and Gehring, 1980), and (Boehm, 1981)]. For example, a &0-A

value implies that an employee allocates, on the average, 0. 6 X 8 = 4. 8 hours

to the project (assuming an S-hour day). Under such conditions, the loss

amounts to a ^0% cut in potential productivity.

Th» lost In productivity du« to motivational factors does not, of course,

remain constant throughout the life of the project. The motivational effects

of schedule pressures can push the "PCTyflL FRfiCTION OF ft MfiN-DfiY ON PROJECT"

to both a higher value (under positive schedule pressure) as well as a lower

value (under negative schedule pressure).

When positive schedule pressures build up in a late project, software

developers tend to work harder by compressing their slack time in an attempt

to compensate for the perceived deficit, and to bring the project back on

schedule [(Boehm, 1981), (DePree, 1984), and (Ibrahim, 1978)].

But what if such a situation persists? Would workers be willing to work

harder indefinitely'' The answer, based on our own field study results, was

overwhelmingly no (fibdel-Hamid, 1984). Our findings indicate that there is a

threshold for how long employees would be willing to work at an

"above-normal" rate. In other words, workers need their slack time and they

typically would not tolerate a prolonged deprivation of such "breathers."

Compressed slack time, therefore, exhausts them (psychologically more so than

physically) in the sense that it cuts into their tolerance level for

continued over-working. [ft significant portion of the productivity structure

in the model is devoted to handling these intangible dynamic forces. The

interested reader should refer to (ftbdel-Hamid, 1984) or (flbdel-Hamid and

Madnick, 1987a).]
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The dynamic behavior of the "ACTUAL FRACTION OF A MAN-DAY ON PROJECT" for

the DE-A project is depicted in Figure 6. Notice the "spike" that occurs as

the end-of-development milestone is approached. To understand why this

happens we need first to observe (in Figure 6) that when project DE-A

started, management had underestimated its true size by 45X. As the project

developed, "new" job tasks were discovered causing upward adjustments in the

project's scope as measured in man-days. As is typically the case, however,

the man-day adjustments made were not quite enough. This created a deficit

in the project's man-day allocation which only became visible towards the end

of the development phase when the development work was almost finished and

the man-day budget was almost used up.

As the man-day deficit became visible the project's team reacted by

working harder and longer hours in an attempt to bring the project back on

track. This translates in the model into the higher values of the "ACTUAL

FRACTION OF A MAN-DAY ON PROJECT" as shown in Figure 6.

But as was explained above, project teams are not, in general, willing to

maintain an above-normal work rate indefinitely. On project DE-A this is

exactly what happened. That is, the persistence of the work backlog

eventually overwhelms the workforce's intensified efforts, and around day 300

arrangements were made with project management to handle the remaining

project deficit through adjustments to both the project's man-day budget and

its schedule.

I!lli_Q2!2t!!9i_iyk§^5t.§!D

Decisions made in any organizational setting are based on what

information is actually available to the decision «aker(s). Often, this

available information is inaccurate, i.e., not identical to the primary

variables it represents. The information may be late, biased, and noisy.

Apparent conditions may, therefore, be actually far removed from the actual
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or true state, depending on the information flows that are being used and the

amount of time lag and distortion in these information flows.

True productivity of a software project team is a good example of a

variable that is often not knowable by members of the project. To know what

the true value of productivity is at any point in time in the project, one

needs to know the true values of both the total amount of project work

accomplished to date and the resources expended. This, however, can be

difficult to evaluate because the software product remains largely intangible

during most of the development process.

How, then, is progress measured in a software project? Our own field

study findings corroborate those reported in the literature, namely, that

progress, especially in the earlier phases of software development, is

measured by the rate of expenditure of resources rather than by some count of

accomplishments. For example, a project for which a total of 100 man-days is

budgeted would be perceived as being 10% complete when 10 man-days are

expended; and when 50 man-days are expended it would be perceived as 50?4

complete, etc.

It IS essentially impossible for the programmers to estimate the fraction
of the program completed. What is A55C of a program? Worse yet, what is

A55C of three programs'" How is he to guess whether a program is ^0% or 30%
complete'' The easiest way for the programmer to estimate such a figure is

to divide the amount of time actually spent on the task to date by the
time budgeted for that task. Only when the program is almost finished or

when the allocated time budget is almost used up will he be able to
recognize that the calculated figure is wrong (DeMarco, 1982).

This surrogate for measuring project progress has some interesting

implications on how management assesses the project team's productivity. When

progress in the earlier phases of software development (call it time period

tl), is measured by the rate of expenditure of resources, status reporting
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ends up being nothing more than an echo of the original plan. That is,

"MftN-DfiYS PERCEIVED STILL NEEDED FOR NEW TfiSKS" (MDPNNT) becomes, under such

conditions, simply equal to the "MPN-DfiYS PERCEIVED REMfilNING FOR NEW TASKS"

(MDPRNT)

:

MDPRNT = MDPNNT
tl tl

But "MflN-DPYS PERCEIVED STILL NEEDED FOR NEW TfiSKS" (MDPNNT) is

(implicitly if not explicitly) equal to the value of "TASKS PERCEIVED

REMfilNING" (TSKPRM) divided by the manager's notion of the team's

productivity, i.e., by the value of "PERCEIVED DEVELOPMENT PRODUCTIVITY"

(PRDPRD). That is,

MDPNNT = TSKPRM / PRDPRD
tl tl tl

Substituting MDPRNT for MDPNNT, we get

MDPRNT = TSKPRM / PRDPRD
tl tl tl

which leads to,

PRDPRD = TSKPRM / MDPRNT
tl tl tl

This IS an interesting result. For, it suggests that as project members

measure progress by the rate of expenditure of resources, they, by so doing,

would be i!5Eiicitl_^ assuming that their productivity equals "TfiSKS PERCEIVED

REMfilNING" (TSKPRM) divided by the "MfiN-DftYS PERCEIVED REMfilNING FOR NEW

TASKS" (MDPRNT). What makes this interesting is the fact that such an assumed

value for productivity is solely a function of future projections (i.e.,

remaining tasks and remaining man-days) as opposed to being a reflection of

accomplishments (i.e., completed tasks and expended resources).

This implicit notion of productivity is captured in the model by the

variable "PROJECTED DEVELOPMENT PRODUCTIVITY" (PJDPRD), defined as,

PJDPRD = TSKPRM / MDPRNT

At th» projtct «dv*nc»« toward! it» final stages, and accomplishments
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become relatively more visible, project members become increasingly more able

to perceive how productive the workforce has actually been, fts a result,

perceived productivity ceases to be a function of projected productivity and

IS determined instead on the basis of actual accomplishments. That is,

"PERCEIVED DEVELOPMENT PRODUCTIVITY" approaches the value of the project

t»«m'« "flCTUftL DEVELOPMENT PRODUCTIVITY" (fiCTPRD), i.e., the value of

"CUMULATIVE TfiSKS DEVELOPED" (CUMTKD) divided by the value of "CUMULATIVE

MON-DflYS EXPENDED" (CUMDMD).

ThUi I'h Ihi final ttAgtl of a toftwart projtct (call it time period t2),

PRDPRD > ACTPRD
t2 t2

where,

flCTPRD = CUMTKD / CUMDMD

To recapitulate, in the early phases of development, "PERCEIVED

DEVELOPMENT PRODUCTIVITY" is implicitly determined on the basis of future

projections (i.e., ri!!!§iDiD9 tasks and man-days). Towards the end of the

project, on the other hand, "PERCEIVED DEVELOPMENT PRODUCTIVITY" gets to be

explicitly determined on the basis of actual accomplishments. People's

assumptions about their productivity, therefore, change as the project

progresses. The change, however, is typically gradual not abrupt.

One "infamous" consequence of this error in perception deserves some

discussion. It is the "90* syndrome phenomenon." Baber (1982) provides the

following description of the problem:

... estimates of the fraction of the work completed (increase) as
originally planned until a level of about 80-90S is reached. the
programmer's individual estimates then increase only very slowly until
the task is actually completed.

There is ample evidence in the literature on the pervasiveness of the SOX

syndrome in software development projects (DeMarco, 1982). Its manifestation
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in the simulated DE-fl project is depicted in Figure 8. By measuring progress

in the earlier phases of the project by the rate of expenditure of resources,

status reporting ended up being nothing more than an echo of the project's

plan. This created the "illusion" that the project was right on target.

However, as the project approached its final stages (e.g., when 80-90* of the

resources are consumed), discrepancies between the percent of tasks

accomplished and the percent of resources expended became increasingly more

apparent, flt the same time, project members became increasingly able to

perceive how productive the workforce has actually been. This results in a

better appreciation of the amount of effort actually remaining, fls this

appreciation developed, it started to, in effect, discount the project's

progress rate. Thus, although the project members proceeded towards the final

stages of the project at a high work rate because of schedule pressures,

their net progress rate slowed down considerably. This continued until the

project completed.

It!§_Bi§DDiC3_iybs^5tern

In the Planning Subsystem, initial project estimates <e. g. , for

completion time, staffing load, man-days) are made at the beginning of the

project. These estimates are then revised, as necessary, throughout the

project's life. For example, to handle a project that is perceived to be

behind schedule, plans can be revised to add more people, extend the

schedule, or do a little of both. The Planning Subsystem is depicted in

Figure S.

By dividing the value of "MAN-DAYS REMAINING" (a measure of the magnitude

of the effort still remaining) at any point in the project, by the "TIME

REMAINING" a manager can determine the "INDICATED WORKFORCE LEVEL. " This

would represent the workforce size believed to be necessary and sufficient to
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complete the project on time based on the currently scheduled completion

date. If this indicated workforce size turns out to be lower than the value

of the actual workforce level on the project, excessive employees would

simply be transferred out of the project. If on the other hand, the opposite

is true, then this would indicate a need to add more people.

However, as has been explained in the Human Resource Management

Subsystem, hiring decisions are not determined only on the basis of

•ch»duling considerations. Consideration is typically given to the stability

of the workforce. Different organizations weigh this factor to various

extents. For example, workforce stability had relatively little weight in

NPSft' s DE-ft project, as we saw. Such organizational differences are captured

ifi the MOdtl by th« policy variable termed "WILLINGNESS TO CHANGE WORKFORCE

LEVEL," and whose form is organization-specific.

By dividing the value of the "WORKFORCE LEVEL SOUGHT" (that emerges after

the above set of factors is contemplated) into the value of the "MflN-DfiYS

REMftlNING, " management determines the time it perceives to be still required

to complete the project. Once this, in turn, is known, it can be used to

adjust the project's "SCHEDULED COMPLETION DATE," if necessary.

Referring back to Figure 6, notice how project DE-0' s management was

inclined not to adjust the project's scheduled completion date during most of

the development phase of the project. Adjustments, in the earlier phases of

the project, were instead made to the project's workforce level. This

behavior is not atypical. It arises, according to DeMarco (1982) because of

political reasons:

Once an original estimate is made, it's all too tempting to pass up

subsequent opportunities to estimate by simple sticking with your
previous numbers. This often happens even when you know your old
estimates are substantially off. There are a few different possible
explanations for this effect: It's too early to show slip ... If I

re-estimate now, I risk having to do it again later (and looking bad

twice) ... As you cart see, all such reasons are political in nature.
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With this discussion of the model's Planning Subsystem we conclude our

overview presentation of the model's structure and behavior. For the

interested reader, a more detailed description of the model's structure, its

mathematical formulation, and of its validation is provided in [ (fibdel-Hamid,

198A) and (fibdel-Hamid and Madnick, 1987a)].

It}i_?!!9d§i_§i_i!l!_E>lB§!2i![l§Dl§ti9!J_yibiQi§

Many authors have argued for the desirability of having a laboratory tool

for testing ideas and hypotheses in software engineering (Thayer, 1979). For

example, Weiss (1979) commented that in software engineering it is remarkably

easy to propose hypotheses and remarkably difficult to test them.

The computer simulation tools of System Dynamics provide us with such an

experimentation vehicle to test ideas and hypotheses relating to the software

project management process. The effects of different assumptions and

environmental factors can be tested. In the model system, unlike the real

systems, the effect of changing one factor can be observed while all other

factors are held unchanged... Internally, the model provides complete control

of the system's organizational structure, its policies, and its sensitivities

to various events (Forrester, 1961).

Currently, the model is being used as an experimentaion vehicle to study

and predict the dynamic implications of managerial policies and procedures on

the software development process in areas such as: scheduling, control,

quality assurance, and staffing. Three types of results are:

! yDSO^iCiDfl dil§fyD£iiQD§i £9Dlf9y§D£i§ 9f S95!§ SyCCSDli^ S^ogted

ESliQiti- ^^ (ftbdel-Hamid and Madnick, 1986) we investigated the project

scheduling practices in a major U.S. minicomputer manufacturer. In the

particular organization, software project managers use Boehm' s (1981) COCOMO

model to come up with initial project estimates, which are then adjusted
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upwards using a judgmental "safety factor" to come up with the project

estimates actually used. The purpose of the experiment was to investigate the

implications of this safety factor policy.

The results demonstrated how "a different schedule creates a different

project." That is, if a software project were conducted twice using two

different initial schedule estimations, the outcomes would be significantly

different in nature (e.g., in terms of the actual completion time, workforce

pattern, productivity). This is because a project's schedule creates

pressures and perceptions that significantly affect how people behave on the

project. The implications of this are:

o. ft more accurate estimate is not necessarily a better estimate, fin

estimation method should be judged not only on how accurate it is,

but, in addition, it needs to be judged on how costly the projects

it "creates" are.

o. It IS clear that both the software manager as well as the student of

software estimation should reject the notion that a new software

estimation tool can be adequately judged strictly on the basis of

how accurately it estimates historical projects.

£. EHQYi^lDS §yEE2!2t_f2!2_!!!§D§Si!2iii_^§?iii2!I!_[!!§hiD9' ^^ <fibdel-Hamid and

Madnick, 19fl7b) we reported on how the model is used to analyze the economics

of the Quality Assurance (Qfi) function and to support the selection of the

optimal investment level in Qfi.

3. ECS^idiDS D§y iDSistlts iDt.2 i2fty*I!i B!22Jf£t BtlfD2!D§D§- ^^^ such

phenomenon we examined is "Brooks' Law" (fibdel-Hamid, 1987). Brooks' Law

states that adding manpower to a late software project makes it later

(Brooks, 1978). Since its "enactment," Brooks' Law has been widely endorsed
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in the literature. Furthermore, it has often been endorsed indiscriminately

for systems programming-type projects and applications-type projects, both

large and small. Interestingly, this wide-spread endorsement of Brooks' Law

has taken place, even though the "Law" has not been formally tested.

Our objective in this experiment Mas to investigate the applicability of

Brooks' law to the environment of medium-sized application-type software

projects. The experimental results showed that while adding more people to a

late project of this type does cause it to become more costly, it does not

always cause it to complete later. The increase in the cost of the project is

caused by the increased training and communication overheads, which in effect

decrease the average productivity of the workforce and thus increase the

project's cost in man-days. For the project's schedule to also suffer, the

drop in productivity must be severe enough and late enough in the project's

lifecycle to render an additional person's net cumulative contribution to the

project to be, in effect, a negative contribution. Our experimental results

indicate that this happens only under extremely aggressive manpower

acquisition policies and where management's willingness to add new staff

members persists until the very final stages of the testing phase.

Summary:

The tremendous growth in the demand for software systems over the last

two decades has not been, for many organizations, a painless one. The record

shows that the development of software has been marked by cost overruns, late

deliveries, poor reliability, and users' dissatisfaction. Some refer to this

set of difficulties as the "software crisis." These problems persist in spite

of significant software engineering advances made over the last decade to

tackle the technical, hurdles of software production.

In recent years, the managerial aspect of software development has gained
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r«coQnition «• bting at th» corm of both the problem and the solution, fllorig

with this recognition, though, serious and legitimate concerns have been

raised. Chief among them is the belief that as of yet we still lack a

fundamental understanding of the software development process, and that

without such an understanding the likelihood of any significant gains on the

managerial front is questionable.

The objective of the research project reported in this paper is to

enhance our understanding of and gain insight into the general process by

which software development in managed. To achieve this, we developed an

integrative System Dynamics model of the software development process. The

model complements and builds upon current research efforts, which tend to

focus on the micro-components (e.g., scheduling, programming, productivity)

by integrating our knowledge of these micro-components into an integrated

continuous view of the software development process, fin overview of the four

subsystems of the model, namely, (1) human resource management, (2) planning,

(3) control, and (4) software production was presented and discussed.

The model is being used as an experimentation vehicle to study and

predict the dynamic implications of an array of managerial policies and

procedures pertaining to the management of software projects. Important

results have been obtained in areas such as understanding the impact of

schedule estimation and manpower adjustments on actual project performance.
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BEPiNDix

The DE-fl software project was conducted at the Systems Development

Section of NfiSfi' s Goddard Space Flight Center (GSFC) at Greenbelt, Maryland

in the 1979/1980 time period. The basic requirements for the project were to

design, implement, and test a software system that would process telemetry

data and would provide attitude determination and control for NfiSfl' s DE-R

satel lite.

The development and target operations machines were the IBM S/360-95 and

-75. The programming language was mostly FORTRfiN. Other project statistics

include:

o Project Size (in Delivered Source Instructions) 24,000 DSI

o Cost (for design through system testing)

initial estimate 1,100 man-days

actual 2,220 man-days

o completion time (in working days)

intial estimate 320 days

actual 380 days
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