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ABSTRACT

For a wide class of empirically tested dynamic marketing response

models a heuristic method for the determination of dynamically optimal

price and promotion levels is being developed. The future effects of

present marketing actions are measured by a marketing multiplier which

is partially based on managerial estimates. Very simple dynamic opti-

mality conditions for both single marketing variables and the marketing

mix are formulated. The application of the method to a number of em-

pirical models yields interesting insights into realistic magnitudes of

the dynamic impact.
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INTRODUCTION

Within the last few years a large body of empirical work on dynamic marketing

response models has emerged. In these models, the dependent variable sales or

market share is usually considered as a function of the lagged dependent variab-

le and of one or several marketing instruments. A wery genereral form of these

dynamic response functions can be written as

^t = ^^^ Vi ^ ^(^i,t"--"^,t^ (^)

where q^ sales in period t (units or market share)

f.(.) marketing response function in period t

X. . value of marketing variable j in period t (units or share)

a. absolute term (parameter)

A. carryover-coefficient (parameter)

The variables in (1) can be either in natural or in logarithmic dimension

so that the function comprehends both the linear and the multiplicative sales

model. Moreover, the parameters and/or the marketing responses can be either

constant or time-varying.

Reviews of a great number of empirically tested models of type (1) can be

found in [10, 11, 28, 39]. Table 1 provides a synopsis of the different

versions encountered in the marketing literature. These studies comprehend

more than 200 products or product-market-combinations.

INSERT TABLE 1 SOMEWHERE HERE

Due to the wide coverage in the literature it doesn't seem necessary to repeat

the rationale which underlies the different versions of model (1). We shall

focus on deriving a simple dynamic optimization heuristic which can be applied

to almost all of these versions.
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The numerous optimization approaches in the literature are almost exclusively

limited to advertising and the linear carryover-function. Optimal ity conditions

of this type are, for instance, given in [3, 15, 17, 19, 35, 48]; numerical

solutions can be found in [8, 27, 47]. Another group of approaches use modern

control theory in order to derive dynamic optimality conditions for advertising.

Schmalensee [32] gives very general conditions of this type but does not pro-

vide any numerical solution. Most of the control theoretic approaches are

limited to specific advertising models (in particular to the models of Vidale-

Wolfe [46] and Nerlove-Arrow [25]) which will not be investigated in this

paper, [4, 13, 14, 33, 43, 44] are of this type). An exception is the pricing

model of Spremann [40, 41] a version of which can be compared with function (1).

To date, the practical relevance of the control theoretic models has remained

very limited.

We are not aware of any work in which a unified optimization approach for all

versions of model (1) and different marketing instruments is provided. The

present paper is structured as follows. In the next section we define a simple

measure of the cumulative effects of a marketing action. This measure is sub-

sequently used to formulate optimality conditions. Finally a simplified pro-

cedure which takes advantage of these conditions in order to obtain numerical

solutions is proposed and a number of applications is discussed.

CUMULATIVE MARKETING EFFECTS

The applicability of the following derivations is limited to models in which

the carryover-effect and the sales response to the marketing variable on which

a decision is to be made are separable . This separability condition holds for

all models in table 1 with the exception of [24, 45, 50].

Measuring the short-run sales effect of a certain marketing activity x- ^ by
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means of the partial derivative 9q^./9x. ^., we obtain the total cumulative

sales effect (over time) attributable to this short-run response as

°° ^q^ ^q^.,_ 3q^. " 9q^.,^

^ T=0 ^^j,t ^^t ^^j,t 1=0 ^"^t

The sum term on the right hand side of (2) gives the total cumulative sales

effect of a marketing action as a multiple of the action's short-run effect .

Therefore, it seems reasonable to denote this sum term as marketing multiplier .

In the case of a linear carryover-function the multiplier for which we write

m is simply obtained as

^ = 1 ^h^hh^] ^\h^^ h^2^ ^3)

and if the carryover-coefficient A is constant over time and < A < 1

m^ = 1/(1 - A) (4)

which is the expression first derived by Palda [26]. Kotler [16] denoted (4)

as "long run marketing expenditure multiplier" and more recently - obviously

unaware of Kotler's denomination - Dhalla [11] used the label "long-term

marketing multiplier" for (4).

In the linear case, m. is independent from the future marketing activities,

whereas it depends on those activities in the multiplicative form of model (1).

The marketing multipliers of all models under consideration are given in table

2.

INSERT TABLE 2 HERE

By means of the marketing multiplier m. and the short-run elasticity a long-run

marketing elasticity E. ^ can be defined in the following way .

^j,t = ^-^j,t

where e. .
= 9q^./9x- ^ • x. ./q. is the usual short-run elasticity.



E. . gives the cumulative sales effect which is induced by a 1%-change in

marketing variable j as a percentage of current sales. Though, to date, little

observed in the literature, this elasticity seems to have highly interesting

empirical properties. Comparing the respective price elasticities of 12

detergents and 21 pharmaceuticals the author obtained the following amazing

results [39]
short-run marketing long-run

elasticity multiplier elasticity
(mean) (mean)

Detergents 2.37 1.75 4.15

Pharmaceuticals .76 3.64 2.77

Though the short-run price elasticities are highly different, the long-run

elasticities of both product groups are rather close together (not significant-

ly different at the 5%-level) due to the differences in the carryover-patterns.

It should be observed that both m. and E. . are sales ( quantity ) related
t J > t

measures of long-run marketing effects. In order to make optimal marketing

decisions, however, a value -related measure of the long-run effects is re-

quired. We obtain this measure by weighing each period (t+T)'s term in m

by the contribution margin dl^ and the discount factor (1 + r)"T The

resulting value-adjusted marketing multiplier is

dq

f:, "t+T 8q.
T=l ^t

"I'^l* I 'In Ji^ <^*^' <5'

For notational purposes we also need the respective term which excludes the

contribution of period t, we write for this term m"

Thus, m' denotes the present value of the cumulative sales effect produced by

a marginal change in q. and m" is the respective value of all future periods

(excluding t).
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GENERAL AND SPECIFIC OPTIMALITY CONDITIONS

The objective function to be maximized in period t is the sum of all discoun-

ted future profits

oo n

"t
= I tPt,, qt^

- C^,^(q^,^) - I X ](Ur)- (7)

T=0 j=2 ^'

where p.^ = x, .^ shall denote the price in period t+x, C.^ (q.^ ) is the

cost function, and q.^ is determined according to the dynamic response model.

In order to maximize (7) a hypothesis on the presumable reaction of competitors

to the firm's marketing actions is required. We assume that competitive reactions

are limited to the same marketing instrument, the so-called "simple direct

competitive reaction case" [18, p. 23], and to the same period so that the reaction

function can be written as x. ^ = g(x. .) where x- . denotes a uni dimensional

measure of the marketing efforts of all competitors in instrument j, e.g. the

sum of advertising expenditures, a market share weighted average price etc.

If this reaction pattern holds x. . can be replaced by g(x. .) and the neces-

sary conditions for the maximum of (7) can be derived.

Since the price p. and the non-price marketing variables Xp ^...-^x ^ enter

(7) in different ways the optimality conditions for both types of variables

are derived separately.

3^4. ^q^. «> 3q4.,^

h ^% " 8q.

where CI denotes marginal cost and d' =
(p^+x

-
^l+x^

^"^ ^^^ marginal con-

tribution in period t+x.

We readily recognize from (2) and (6) that the sum terms in (8) and (9) are



equal to the product of the value adjusted multiplier m" (excluding period t)

and the short-run response 9q^./3x. ^, j=l,...,n, so that (8) and (9) can be

rewritten as

^t ^ a^ (Pt - ^i " '"P = (^0)

with m" according to (6). Multiplying (10) and (11) by pJ^f and x. ./q.

respectively and solving for the optimal values p* and x* . leads to
t J »t

P! = T^T-I (^i
- ^V (^2)

p.t

where e .
= 3q^/3p^ • P^/q^ (14a)

"j.t= V^^j.t •

^j,t/^t J =2,....n (14b)

are the short-run price and promotion elasticities respectively.

For some function types, conditions (12) and (13) do not allow for a direct

computation of the optimal values since the right hand sides still depend on

the left hand variable. The two conditions reveal, however, yery clearly the

structure of the dynamically optimal marketing decisions and their relation

to the respective static values. The latter are simply obtained by setting

m^ = 0.

Thus, the basic difference between dynamic and static optimal ity conditions

is that, in the dynamic case, marginal cost C| is diminished by the present

value m" of future profits induced by a change in the marketing variable under

consideration. Economically, the term (CI - m") can be interpreted as "dynamic

marginal cost ".



The relation between optimal dynamic and optimal static values is determined

by the sign and the magnitude of m?; m" is positive if A^^ and d' are posi-
t t t+T t+T

tive for all x. It can even then be positive if some A^, and/or dl, , are
t+T t+A

negative. The author is only aware of three cases in which A turned out to be

negative and significantly different from zero (1 product in [29] and 2 pro-

ducts in [38]). Since the marginal contribution d' is equally unlikely to be

negative in the long-run, mj can typically be expected to be positive.

If this holds we can infer the following general findings from (12) and (13):

(1) The optimal dynamic price is lower than the optimal static price.

(2) The optimal dynamic promotion expenditure is greater than the optimal

static expenditure.

(3) In both cases the differences between optimal dynamic and optimal static

values are, ceteris paribus, the greater

- the greater the future contribution margins d' are,

- the smaller the discount rate r is,

- the greater the carryover-coefficients A.^ , t= 0, ,«> are

Relating conditions (12) and (13) we obtain a dynamic version of the Dorfman-

Steiner-Theorem which - as is well known - defines the optimal ity conditions

for the marketing mix. We first insert (12) into (13) and form the relation

PL. S,t/(^"^p,t);^q-/"t] (15)

>^J,t " ^j,t M^p,t/(i-^^p,t) tq-ni;:] - q + mp

This expression can be considerably simplified and written in the usual form

of the Dorfman-Steiner-Theorem

(16)
Pt^t_



The intermediate term in (16) is formally equivalent to Schmalensee's result

[32] which is, however, based on the assumption of an equilibrium situation

and the derivation of which required a more complex control theoretic approach.

The conditions derived by Jacquemin [14] and Bensoussan et al , [5] are equi-

valent in substance but different in form since they apply to a model of the

Nerlove-Arrow-Type. Under the aspect of applicability all of these models have

the additional disadvantage of being continuous with respect to time.

The most important result in (16) is that - in the case of a separable dynamic

sales response function of type (1) - the optimal sales-promotion-ratio is the

same under dynamic and under static conditions . Note, however, that the magni-

tudes of optimal dynamic and optimal static values of the marketing variables

are almost always different (as outlined above).

This result which is more specific than the aforementioned conditions [5, 14,

32] is conclusive since - due to the separability of carryover-effect and

short-run response - price and non-price variables produce exactly the same

carryover-pattern, i.e. m" appears both in the denominator and the numerator

so that the simplification which leads to the right hand side of (16) can be

made. Note that (16) does not imply that the sales-promotion-ratio should be

constant over time. Rather the contrary has to be expected since both price

and promotion elasticities are highly likely to change over time [2, 27, 38,

49].

Our relatively simple derivations call for a comparison with more complex

(in particular control theoretic) approaches which serve the same purpose.

Most of the aforementioned control theoretic models do, however, not allow

for a direct comparison since they are based on functions different from

type (1) [5, 13, 14, 33, 43, 44]. One exception is the model of Sprem^nn



[40, 41] in a version of which the continuous analogon of function (7) is

maximized. In control theory, the maximization of the original objective

function is achieved by maximizing an intermediate function, the so-called

Hamiltonian

H = [p(t) - C(t)] q(t) e"P* + v*(t) q(t) (17)

where (in addition to our usual notation)

e base of natural logarithms

p discount rate for continuous time

v*(t) adjoint variable

The adjoint variable evaluates the state of the system at any point in time

and is determined by the differential equation

and a terminal boundary condition

v(T) = (19)

where s(t) is a state variable (however defined) and T denotes the end of the

planning horizon. An extended economic interpretation of the adjoint system

can be found in [5]. Maximizing the Hamiltonian (17) with respect to p(t) leads

to the condition [40, 41]

P*(t) =
^^^P(^)

[C'(t) - v*(t)/e"P*] (20)

subject to (18) and (19). Comparing (20) with (12) we readily recognize that

the value-adjusted marketing multiplier m" in (12) is equivalent - not neces-

sarily equal since p*(t) f p* in almost all t - to the discounted adjoint

variable in (20). Analoguous conditions can be derived for non-price marketing

variables.
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This equivalence is of utmost importance since it shows that conditions (12)

and (13) contain the same economic information as a control theoretic model.

These conditions have, however, some considerable advantages over their control

theoretic equivalents. They apply to discrete, empirically well-founded models,

can easily be interpreted economically and explained to managers, and are

more suitable for computational purposes.

For most of the models encountered in the literature the general optimal ity

conditions given in (12) and (13) take on very simple forms.

It should be mentioned that many of the empirically

tested advertising response functions are linear so that no finite positive

optimal advertising level exists [e.g. 2, 9, 26 ]. Optimal ity conditions

for specific models which have a finite optimum are given subsequently.

(1) Linear, time-invariant carryover, logarithmic advertising response

[35, some versions in 26]

q^ = a + Xq^_^ + b-ln A^ (21)

Optimal advertising:

A* = b.(p^ - C[ + mp (22)

and, in the particular case, where the future contribution margins are

assumed to be constant, d' = d', x = 1,...,<».
t+T

A* = b.d7[l - X/(l+r)] (23)

This specific condition is practically the only one which can be found

in the marketing literature [3, 16, 18, 35, 48].

(2) Multiplicative carryover and advertising response [1, 17, 22, 27, 31, 34]

where e. is the short-run advertising elasticity and A* is obtained as
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A* = (e^ a
q^,.T

m;) ^ (25)

(3) Linear, tirae-invariant carryover and price response [42]

q^ = a + Aq^_^ - c p^ (26)

Optimal price: a + Xq , + c(C|- m")

"l
'

-Tl
—^ ("'

(4) Multiplicative , time-invariant carryover and price response

q, = a q^^_^
p^P (28)

Optimal price: p* = ep(C|. - m):)/(l + ep) (29)

Note that in this case pi is obtained by applying a constant mark-up on

dynamic marginal cost, "cost plus pricing" is an optimal decision rule.

(5) Linear carryover and price response, logarithmic advertising response

[12, 29, 30]

q^ = a + Aq ^^ + b-ln A^ - c p. (30)

a + Aq , + b-ln A* + c(Cl. - m")

Optimal price: p* = ^^ ~ —
^

2c

Optimal advertising according to (22) or (23) with p* inserted.

(6) Multiplicative carryover, price response and advertising response

[7, 17, 18, 23]

%-^c,l,\\l' (31)

Optimal marketing mix:

pi according to (29)

e l/d-e^)
, ,

A* = (e^ a qA.^ p* P m^) (32)

Note that p* is independent from A* whereas A* depends on p*. Since p*
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depends, in turn, on the price elasticity e., the latter actually determines

the marketing strategy. This relationship can lead to some strange results as

the author has shown for a specific model [15] in [37].

Condition (32) applies analogously to all other non-price marketing variables.

The relation between the optimal values of two non-price variables (Dorfman-

Steiner) is simply determined by the ratio of their elasticities.

Thus, if anyone of the non-price variables has been determined, all others can

easily be computed from (33).

It should also be noted that the equilibrium conditions usually given in the

literature [18, 19, 32] have general validity only for functions (21) and (28).

In all other cases discussed here the optimal value depends on the value of

the state variable which only by accident is at equilibrium.

NUMERICAL OPTIMIZATION

All expressions derived in the preceding section are necessary optimal ity

conditions. In general, they do not readily allow for a calculation of the

optimal values in period t since these values typically depend on the values

which the marketing variables will attain in later periods. The marketing

multiplier m" is a function of future contribution margins and, thereby, of

future prices, so that the optimum in period t cannot be determined indepen-

dently from these future prices.

Typically, the maximization of (7) involves a dynamic optimization problem,

the exact solution of which can only be found by means of dynamic program-

ming, branch-and-bound-, or nonlinear programming methods. In fact, all of

these methods have been applied to problems of this type [6, 8, 27, 38, 45, 47],
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The outcome of such an optimization is a series of optimal values x+ u.,...,x* ^

only the first one of which has the property to be binding in the sense that

an immediate decision has to be made and becomes effective. All other values

are tentative and will not become effective before period t+x, t=1,...,T.

Their actual realization depends on forthcoming, typically uncertain events.

This characteristic constitutes a fundamental difference between a multi-period

marketing problem and, for instance, a mathematically equivalent multi-stage

production problem, in which all decision variables become effective at the

same time and, hence, do not depend on future uncertain events.

As far as we can see, this problem has received yery little attention in the

marketing literature.

Besides the general difficulties which characterize the relationship manager -

quantitative marketing model the following particular issues occur in the

case of long-run optimization models:

- Usually a manager will not be able to conduct a dynamic optimization himself.

Unless a qualified management scientist is available such an optimization will

not be run at all

.

- Though managers are typically aware that present marketing actions have carry-

over-effects they are almost exclusively interested in the decision to be

made now . It seems hard to convince them that decisions are also to be made

for the 4th, 5th or 10th period after period t and that these decisions shall

influence the decision to be made now. Weinberg [47] gives a short discussion

of this issue.

- According to our experience, managers do not attribute much weight to the

future optimal values in the sense that they really believe in their realiza-

tion; they are, on the contrary, highly aware of their uncertain nature.
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In view of these limitations and the prevailing non-acceptance of complex opti-

mization models we suggest a rigorously simplified procedure which extends an

idea of Weinberg [47] who proposed for a linear function a so-called "dynamic

correction factor" in order to account for effects which occur after the planning

horizon. This correction factor is a special case of our value adjusted

marketing multiplier.

Instead of optimizing the marketing strategy over a number of periods t,...,T

we propose to optimize only the marketing action in period t and to account

for cumulative effects by means of the marketing multiplier.

In addition to the dynamic sales response function the knowledge (or at least

a subjective notion) of which is required for any type of rational marketing

decision we need only a few more informations:

Linear carryover-function: estimates of future contribution margins

Multiplicative carryover-function: estimates of the future values of all

marketing variables and current sales q^.

According to our experience, managers often have a rather clear-cut notion of

the probable magnitudes of these variables so that the required estimates

should be obtainable without great difficulties. This is in particular true

for established products.

After these informations and a discount rate have been supplied the multiplier

can easily be computed and used to determine the optimal value(s) of the

marketing variable(s). The optimal solution ican be obtained either directly

[e.g. conditions (22), (23), (25), (27), (29), (32)] or, in the general case,

by searching values for which equations (12) and (13) hold. Normally a pocket

calculator is sufficient to carry out those calculations.

In certain cases, e.g. linear carryover and assumed constant contribution

margins the procedure can be further simplified by preparing a table of
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marketing multipliers for a variety of possible carryover-coefficients.

In order to discuss the non-optimal ity associated with the proposed technique

we distinguish between a theoretical or ex-ante-error and two actual or ex-post-

errors. This issue is clarified in figure 1.

INSERT FIGURE 1 HERE

The heuristic is certainly likely to involve an ex-ante-error. It is, however,

hard to believe that, on the average, the ex-post-error of the heuristic is

likely to be greater than the ex-post-error of the exact optimization or, in

other words, that best managerial estimates should yield a less accurate pre-

diction of future prices, costs etc. than an optimization program. Due to the

fact that, in a real world market, most of the factors influencing the future

actions are not under control of the decision maker rather the reverse seems

true.

It is also not difficult to show that - within realistic magnitudes of m" -

the optimal values of the marketing variables are not very sensitive to mode-

rate changes in the estimate of future contribution margins. As we shall see

subsequently the typical magnitude of m" seems to be about 20% of marginal

cost or less. A 25%-change in the estimation of d' then leads to a change in

the optimal price or advertising value of about 5% or less (depending on func-

tion type and elasticities).

Another question which arises is related to the appropriate number T of periods

to be included in the calculation of the marketing multiplier which normally

cannot be calculated for T=«> (see table 2). A simple rule of thumb can be pro-

vided for a linear model with assumed constant contribution margins. In this

model a% of the total cumulative value effects occur within

ln(l - a/100)/ ln[A/(l+r)] (34)
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data interval units, (34) is the discount-adjusted form of the term derived

in [10, 16, 28].

Thus, if the multiplier shall account for e.g. at least 90% of the total

effect and A = .55 (Clarke [10]: mean of 59 studies A = .534, Simon [39]: mean

of 198 products: A = .595) and the discount rate is 10% the next integer grea-

ter than [In .1/ ln(.55/l .1 )j= 3.01 or T=4 data interval units is appropriate.

In practical applications T need hardly be greater than 6 or 7 which , in turn,

easens the calculation of the multiplier. The rule for T holds in the described

exactness only for the linear model, but it is also a good approximation for

the multiplicative model.

APPLICATION

In this section, we apply the conditions derived earlier to a number of empiri-

cally tested models in order to determine dynamic advertising and/or price

optima. It is particularly interesting to compare these optima with their

static counterparts in order to get a notion of the magnitude of the dynamic

effects. Since it is not our primary objective to discuss the issue of com-

petitive reaction and usually no information on this issue is supplied in

the published articles we subsequently assume that the competitive marketing

activities are given.

We would like to emphasize that the reaction function is much less a mathema-

tical problem than a problem of empirical verification and foundation, for

some of the difficulties see e.g. [18, 19], and it can hardly be doubted that

competitive reaction functions belong to the empirically worst founded issues

in marketing. Our non-reaction hypothesis limits, of course, the comparability

of "optimal" and actual values of the marketing variables.
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If not mentioned otherwise we apply a discount rate of 10% in the subsequent

cases.

Model 1 : Linear, time-invariant carryover, logarithmic advertising response,

J. L. Simon [36]

The market share function is

m^ = A m^_^ + b' log A^ (35)

In order to obtain the sales volume we multiply (35) by the mean market sales

R [36, p. 308] and use the transformation log A. = In kj In 10 so that we

obtain

q^ = A q , + b-ln A^ where b = b'-R/ In 10 (36)

which is identical with (21) for a=0. Since contribution margins d' are assumed

to be constant condition (23) applies and A* can easily be computed. The re-

sults for the 14 liquor brands for which Simon [36] has obtained reasonable

parameter estimations are given in table 3.

INSERT TABLE 3 HERE

Under the assumptions of this case. A* represents the exact optimal solution;

note, in particular, that A* does not depend on the state of the system.

On the average, the optimal dynamic advertising expenditures are 4.4 times

the optimal static values. Condition (23) gives a good illustration of the

point made by Simon [36, p. 309] that A* is equally sensitive to contribution

margin, carryover-effect, and advertising response. Thus, the fact that some

of the A* show substantial deviations form the actual values reported in [36]

may be attributable to errors in the estimation of any of these factors as

well as to inadequacies in the reaction hypothesis or in actual advertising

spending. The deviations between optimal and respective actual values are of

both positive and negative sign and show no systematic pattern.
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Model 2 : Linear, time-varying carryover, logistic advertising response,

ADBUDG-model , Little [20]

In our usual notation the sales function is

A"

^t = hh-} 'h^*^ ttV^ ^^^^
6 + A^

where A. and b. depend on non-advertising effects and on a seasonal index,

X* is the product class sales rate and a and 6 are constants. Advertising is

expressed as a multiple of maintenance advertising A = 486,000 $.

The necessary condition for optimal dynamic advertising is obtained as

b. X* a 6 A.
~

m! — 5-^ - A = (38)
^ (6 + A^)'^

o

For the given parameter values x* = 2.9-10 , a = 2.36, 6 = 4.33 (for details

see Little [21] and Weinberg [47]) and a discount factor of .93 which makes

our results comparable to Weinberg's, the optimal values given in table 4 are

obtained.

INSERT TABLE 4 HERE

The value multiplier m' (including period t) has been calculated for T = 200.

As in model 1, the A*'s represent mathematically exact optima since future

contribution margins are considered as given. The results of Weinberg [47]

who obviously applied a unified correction factor for all periods come very

close to these exact solutions.

This model is particulary interesting in that the optimal static advertising

expenditure would be zero. The advertising response in period t is too small

to recover the outlays in this period. Under dynamic aspects, however, adver-

tising turns out to be highly profitable due to the high carryover-coefficient

(A. in table 4). i
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For period 1, the discrepancy between dynamic and static objective function

values is clarified in figure 2.

INSERT FIGURE 2 HERE

Model 3 : Linear, time-invariant carryover, linear price response, Telser [42]

The price response function has the form

q^ = a +Aq^_^ + c p^' (39)

where q. stands for market share and p. denotes a relative price (ratio of the

product's price and the average price of competing products). Thus, the opti-

mization outcome is also a relative price of the same dimension. Since Telser

[42] does not give marginal cost figures we are obliged to make an assumption

on contribution margins, we assume that the margin accounts for 30% of the

actual average price. We also assume that
q._i

is equal to the actual average

market share reported in [42]. We take advantage of condition (27) in order to

compute pi, the resulting optimal dynamic and optimal static prices for

Telser's 4 instant coffee brands are given in table 5.

INSERT TABLE 5 HERE

On the average, the optimal dynamic price turns out to be 21.8% lower than

its static counterpart. Due to the differences in the individual value

multipliers, however, the variations across brands are considerable.

Model 4 : Linear, time-varying carryover, nonlinear price response,

H. Simon [38]

The dynamic price response function has the form

q^ = a + A. oi''^"*qt_-, + c^-sinh(c2-Ap^) (40)

where a, X, 0<a<l, c-,, and Cp are parameters; t denotes the product's
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period of market introduction, and Ap. is the price differential between the

product under consideration and competing products.

The optimal ity condition is

where according to table 2 and (6) (for T=5)

T=l

We apply condition (41) to a pharmaceutical product (product 4.2 in [38]) with

the following numerical values: a=936, X=.756, a=.96, Ci=45.7, C2=6.71, C^ =

.20, and estimated future contribution margins of d' = .45. In addition to

the usual dynamic and static values we also give the results of an exact branch-

and-bound-optimization in table 6.

INSERT TABLE 6 HERE

The comparison of columns (2) and (3) in table 6 reveals a considerable con-

formity between branch-and-bound~ and heuristic results in both magnitudes

and changes in prices over time. Whereas the conformity of the magnitudes is

mainly due to the choice of d' similar trajectory types would be produced

within a wide range of reasonable contribution margins as one can easily infer

from (41) and (42). This latter finding seems particularly important since the

determination of the appropriate trajectory type (e.g. penetration or skimming

strategy) has to be considered as the crucial issue in strategic pricing. This

example and a few other examples not reported here indicate that the simple

multiplier method performs very well with respect to this issue.

The comparison of optimal dynamic and optimal static prices (column 4 in

table 6) again elucidates our analytical result that the former are smaller
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than the latter, the average deviation being 6.5% in this case. Due to the

influence of the "obsolescence term" a the differences between the two

prices decrease over time.

Though very little empirical evidence is available to date, the value multi-

plier m" seems to be significantly different for various product groups. For model (40)

the author found a mean value of 10.3% for 13 detergents and of 40.3 % for

22 pharmaceuticals investigated in [38], the percentage is related to marginal

cost with an assumed contribution margin of 30%. The values apply to the

period of introduction, they are lower in later periods of the product's life.

Thus, due to the considerably higher carryover-coefficient (.78 versus .32,

see [39]) long-run considerations should play a more important role for

pharmaceuticals than for detergents.

Model 5 : Multiplicative, time-invariant carryover, price response, and

advertising response, Lambin [18], Moriarty [23]

The response function has the form

^t
= ' i-^ Pt' ^^ (^3)

Since none of the empirical models reported in the literature provides suffi-

cient information for optimization purposes we use the following numerical

example for demonstration: a=10, qa^_i
= 100, A=.55, e =-2, en=.10. Price is

expressed as a multiple of marginal cost C|=l and the future values of

prices and advertising are estimated to be p.^ =1.3(^d' =.3) and A =5

respectively.

In order to be able to compute m" we make the simplifying assumption that, in

t, ^t'^^t-l
^^^ according to (6) and table 2 we obtain m" = .24 which means

that the value multiplier reduces (static) marginal cost by 24%. From (29)

we obtain the optimal dynamic price as p* = 1.52, its static counterpart
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being p. = 2. Inserting p* into (32) yields the optimal advertising expend-

iture as

A* =(. MO. 100'^^. 1.52"^-. 76)^-^^ = 4.84

stat
The respective static optimum is A. = 3.57.

The former results of the optimal dynamic price being lov;er and the optimal

dynamic advertising expenditure being higher than the respective static

values are confirmed.

Inserting the optimal values into the Dorfman-Steiner-Condition (16) we recog-

nize the analytical result that the sales-advertising-ratio is the same under

dynamic and static conditions though the magnitudes of the respective dynamic

and static marketing variables differ by 24% for the price and 35.5% for

advertising.

„ r,
„stat„stat

Pt^t Pt ^t !r
A* ^stat e^

96.8 ^ 2\A_ - il - on
4.84 3.57 " '

.1
~ "^^

In both cases, the optimal advertising expenditures account for 5% of sales.

SUMMARY

A simple heuristic method for the determination of dynamically optimal levels of

marketing actions for models with separable carryover- and response effects

is proposed. The core of the method is a marketing multiplier which measures

the future effects of present marketing activities. Marginal cost is

diminished by this multiplier and approximately optimal values of the

marketing variables can be computed without applying complex optimization

techniques.
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Simple optimal ity conditions reveal very clearly the relation between dynamical-

ly and statically optimal levels of marketing activities. A dynamic version

of the Dorfman-Steiner-Theorem shows that, for the class of models under con-

sideration, the optimal sales-promotion-ratio is the same under static and

dynamic conditions though the magnitudes of the variables are typically

different.

Applications to a few empirical models indicate that the dynamic impact on

the optimal levels of prices and advertising expenditures is, almost generally,

by far too large to be neglected. The method seems to produce accurate

trajectories over time.

Though the number of practical applications and experience is yet very limited

managers seem to find the method intuitively appealing. They appreciate in

particular its simplicity which enables them to make the necessary calculations

themselves and gives easy way to sensitivity analyses.
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TABLE 1 : SYNOPSIS OF EMPIRICAL STUDIES OF CARRYOVER-MODELS

^**^\^^ Function
^^-N^^Type

Carryover^'\^
Coefficient *^,^^^
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TABLE 4: OPTIMAL ADVERTISING ADBUDG-MODEL [$ 1000]

period

t
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TABLE 5: OPTIMAL RELATIVE PRICES FOR 4 INSTANT COFFEE BRANDS

Brand
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TABLE 6 : OPTIMAL PRICES FOR A PHARMACEUTICAL PRODUCT IN DIFFERENT PERIODS

Period

(1)



30

FIGURE 1: EX-ANTE- AND EX-POST-ERRORS IN A DYNAMIC DECISION MODEL

Actual future

values

.DIFFERENCE f 0_
-> ex-post-error

Estimated future

values

DIFFERENCE f

^ ex-post-error

Dynamically

optimal future

values

DIFFERENCE f

> ex-ante-error
(theoretical error)
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FIGURE 2 : LONG-RUN PROFIT AND SHORT-RUN PROFIT AS FUNCTIONS OF

ADVERTISING IN THE ADBUDG-MODEL

Profit

[$•1,000,000]

Long-run profit (=present value in t=l)

Short-run profit in t=l

Advertising [$ * 486,000]

3 4 6 7
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