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PREFACE

This text is designed to serve as a supplement to intermediate-

level courses In macroeconomic theory. Its raison d'etre is that simula-

tion techniques can be profitably errployed in the teaching and learning

of macroeconomics. These methods are useful, first, because they make

it possible to consider fairly conplex systems, systems which go well

beyond the usual textbook models in embodying many of the basic element

,

of economic reality. Second, it has been the author's experience that

stu'^ents enjoy simulation. They find that actual numerical solutions

to models provide more insights and ideas than conplex general formulae.

Where interest and involvement are high, learning is facilitated.

The models discussed in this text were designed and implemented

on the TROLL system at M.I.T. Chapter II provides a brief introduction

for students to the use of this system, and two appendices show how the

models and their associated data files "look" in TROLL. The instructor

should be familiar with the TROLL manual. Other simulation systems

do exist that can handle these models, but TROLL should be used if

possible.

We then examine some static models. Chapter III presents two

models that illustrate the fact that markets are interdependent. They

ai'e models of general economic equilibrium in conpetitive economies

Livolviiig two goal and two factors of production. Chapter IV presents
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two variants of the standaixi textbook IS-LM macro model. We have

Incorporated the government budget constraint in these models,

thougli in a rather simple fashion.

The remainder of the text is concerned with a sequence of dynamic

models. Chapter V Is a conpact discussion of difference equations

and distributed lags. It is certainly not necessary that students

master all of the raathematic presented, but they should have a good

grasp of the key concepts before reading subsequent chapters. Chapter

VI discusses a basically sinple model that involves the multiplier, the

accelerator, and natural barriers to the motion of GNP. This chapter

is necessary for those that follow, as the models presented in Chapters

VII - IX are essentially modifications of the simple model of Chapter

VI.

In Chapter VII, distributed lags are added at several points in

the system. In Chapter VIII, the basic model is further

modified to take account of businesses' production decisions. Changes

in final goods inventories, both planned and unplanned, are Introduced.

The model presented in Chapter IX adds a market for real cash balances

which determines the rate of interest as an endogenous variable.

The govem::ia£Lt budget constraint is not considered in this model.

We shall attempt to explain and motivate all the models presented

in tMs text. But our discussion will be confined exclusively to

those models. This is not designed to be the only textbook in a

macroeconomics course. It is assumed that students know some macroecononics^,

aiKi it is fialher assumed that they are receiving more general information
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than that presented here. The ccmblnation of the usual readings

and lectures and some experience mth simulation models should produce

a deeper understanding of macroeconomics than could the conventional

materials alone.

E^ch chapter contains a discussion of the kinds of exercises

that can be performed with the models it presents. These discussions

are not intended to be exhaustive. Especially in the case of the last

three dynamic models (Chapters VII - IX), there are a variety of

interesting things that can be explored. Short papers should be

assigned on several models. Part of the assignment might involve one or

more of the specific problems mentioned. Students should, however,

feel free to explore the models on their own; the assignments should be

understood to be somewhat open-ended. Curiosity and learning go hand

in hand.

Pew works as long as tliis one are truly the work of only

one individual . This text is definiteiy not. I am indebted to the

Edwin Land Foundation for considerable financial support. Charles

Revler, Stephen Fisher, and Daniel Lui^la provided able research

assistance. Robert Solow's comments caused me to make major changes

in the models of Chapter IV. Edv;in Kuh provided the inspiration

and incentive for this project, worked with me on the design of the

models, and Incisively criticised earlier drafts of this text.

Mai^k Eisner and the rest of the TROLL staff helped us considerably,

aiid Mai'k wote the second part of Chapter II. Finally, I would like

to thank the students who endured my experlnents with the materials

pi'esented liereln.





Part I

Introduction





CHAPIER I

Introduction and Overview

Models

Any discussion of observable phenomana makes use of models.

Tliese may be explicit or implicit . That is, the models may be

presented in ccanplete detail, or they may be implicitly present in

statements about the world. Newtonian physics is based upon an

explicit model, while the assertion that deficit financing of

government spending is the road to economic main derives from an

implicit model of the economic system.

The crippling difficulty with inplicit models is that their

implications cannot be logically deduced and tested. Implicit models

cannot be proved or disporoved. Disciplines that aspire to

the status of sciences are concerned with developing explicit models

of the parts of reality that concern them. Such models can be

rigorously tested, applied, and checked for Internal consistency.

One can divide explicit models into verbal and mathematical

models. Mathematical models have the advantages of clarity and

definiteness; the language of mathematics is often mor^reclse than

English or any other spoken language. In addition, mathematical

models of couplex phenomena are usually a good deal easier to

anali'L'-o than the corresponding verbal models. The tools of mathematics

a;id the inethals of deductive reasonlrig ai-'e in some fundamental sense

the same, but the fonner are often easier to apply.
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Another useful distinction is betweefT static and dynamic ^^

models. Static models do not Involve time in an essential way. Such

models react instantly to changes in their environments. The usual

models of pri:e theory are static in this sense. Irithe theory of

household behavior, for instance, no mention is irade of tire time it

takes a household to react to changes in relative prices. Dynamic

models describe systems that evolve over time. Almost all of the

physical sciences ai^ based on dynamic models . A model that

describes changesln the velocity of a falling ball is dynamic
_^*

a model wliose only predlctio is that a ball with no forces acting to

hold it up will fall is static.

It is possible to use static models in situations where

the phenomena being considered are essentially dynamic. We say that

a dynamic system is stable If it returns to a condition of either

rest or steady evoluation after it is disturbed. Apendulum is a

stable system; a ball at rest on a mountain top is not. Static model."§

can be used to compare the equilibrium positions of stable systems

Indeed, this t t}ieir main use in econanics. Models of

^equilibrium situations tell us where a dynamic system is tending,

thouj_';ti they will be unable to say anything about the path to the new

equilibrium.

\
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Variables

There are two basic types of variables in all models. Exogenous

variables are those determined outside the model being considered.*

Rainfall is exogenous to most economic models, though it is endogenous

in mete..rological models. Endogenous variables are those determined

within the model being considered. (It is perhaps clearer to say

that endogenous variables are those whose values are determined b;^

the model under consideration). Notice that variables are defined as

endogenous or exogenous with regard to a particular model; this

distinction does not refer to any particular characteristic of the variable.

Gross National Praluct may sensibly be taken as exogenous to a model

explaining the price of beet sugar, but it will be an endogenous variable

In models concerned with the level of aggregate econcmlc activity.

We may distinguish two kinds of exogenous variables. First,

there are those quantities that come from outside the system and that

cannot be readily controlled. An example would be rainfall in economic

models. Such variables are simply termed exogenous. A second class of

variables is comprised of those directly under the control of po] icy-

makers. Tile usual exarrple here is government spending. These quantities

ai^e usual li' refered to .as policy variables^

In L^ynamic models, the distinction is made between endogenous

ajid predetei-mined vai'iables. All exogenous variables are predetermined.

So are larj^.ed values of endogenous variables. Consider a model in

which consumer spending last quarter influences consumer spending

* Students of econometrics will recall that exogenous

variables are assumed to be distributed independently of the disturbance

terms in behavioral equations.
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this quarter. The equation for consumer spending will have as one of

its variables lagged spending, and that quantity is a predetermined

variable.

Constants that Influences a model's behavior are called

parametere . Two classes of parameters must be distinguished. The

first are structui^al or behavioral parameters. An example would be

the marginal propensity to consume, a constant that is inherently

part of most macroeconcmic systems. Changes in structural

parameters represent changes in the system, while changes in policy

parameters represent actions upon the system. An example of a policy

parameter might be personal Income tax rates. Clearly there is no hard

and fast distinction between policy variables and policy parameters. In

v\4iat follows, we shall gnnerally speak of all policy instruments as

parameters. We do this mainly because it is compatiable with he useage

of the TROLL ccmputer system, discussed in detail in the next chapter.

Some of tlois discussion may be clarified by two simple

exanples. Consider a sijiple, static, Keynesian macroeconomic model:

(1.1) Y = C + I + G

C = a + bY

I = c + dY

Consunption is denoted by C, investment by I, government spending by G, and

gross naliorcil product by Y. In this model, C, I, and Y are endogenous,

G is exogenous; it is either a policy variable or a policy parameter,

depending on convention. The constants a, b, c, and d are structural

parameters ofi the system.
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Suppose now that the economy is a dynamic one. A simple

extension of model (1.1) Is the following:

(1.2) Y(t) = C(t) + I(t) + G(t)

C(t) = aY(t) + bC(t - 1)

l(t) + c[Y(t) - Y(t - 1)] + dl(t - 1)

The quantities in parentheses refer to time periods. Thus Y(t),

C(t), and I(t) relate to the current time period. These are our

endogenous variables, and G(t) is exogenous as before. The constants

a, bj c and d are still of course, structural parameters. The new

elements are the predetermined variables that appar in model (1.2);

these are C(t - 1), I(t - 1), and Y(t - 1), The last two equations

relate quantities in different time periods, and they are called

difference equations . In both these equations, the ikgged values of

the left-hand variables act to spread or distribute the influence

of Y over time. These equations are said to embody distributed lags .

Difference equation systems, especiali^ systems with distributed

lags, are very impori:ant in dynamic economics, and Chapter V will

examine them in some detail.

Analysis

How does one work with a model? Verbal models can only be

manipulated verbally, according to the rules of deductive logic. For

si::u:le models, tliis ^ quite satisfactoiy . But when the models become
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at all complicated, this is difficult or impossible and often leads

to errors. Mathematical models of complicated situations are

easier to work with than equivalent verbal models.

MathaMatical models can be examined two ways. The first

approach is to solve the model analytically . The model is manipulated

until the endogenous variables are written as functions of the predetermined

variables and the parameters determining the structure of the system.

A model expressed in this way is said to be a reduced form . The

original exi:)ression of most models involves equations in which

endogenous variables are functions of botheidogenous and predetermined

variables; this is said tobe the structural form . Both models (1.1)

and (1.2) are written in structural fonn. The reduced form

of (1.1) is

Y = (a + c + G)/(l - b - d)

(1.3) C = a + b(a + c + G)/(l - b - d)

I = c + d(a + c + G)/(l - b - d).

Here the only predetermined variable is G, which is exogenous. The

reduced form of (1.2) would involve C(t), I(t) and Y(t) as functions

of the predetermined valuables G(t), Y(t - 1) , C(t - 1), and I(t - 1)

.

Of this List, only G(t) is exogenous.

Qj-ice the reduced form is obtained, it is usually fairly

easy to examine the effects of changes in the predetermined variables

or parameters. In static models, simple algebra is involved. In dynamic

models, the reduced form represents the first step in the solution of
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of a set of difference or differential equations, and the effects

of equilibrium and dynamic behavior can be found.

When models are at all complicated, analytical solution

poses a number of problems. Sometimes, no anal^'tlcal solution

exists. This is often the case when the structural equations are not

linear in the endogenous variables. When an analytical solution can

be obtained, it describes the system's behavior under all possible

conditions. Generality is to be prized, but is r^ften purchased at

the cost of conplexity. Analytical solutions are often quite

complicated and it is veiy difficult for most people to obtain

much insight from complex formulae.

The alternative to analytical solution is simulation

Simulation does not involve examining a model's behavior under all

possible conditions. Rather, simulation consists in generating

the response bf a system to particular changes in exogenous conditions

or to particular changes in the structure of the system itself.

Instead of formulae, simulation yields numbers - either as tables or

gr^hs. Simulatioii temis to yield gi-'eater intuitive understanding

of complex nicdels than analytical methods, but this understanding

relates only to tlie pai'-ticular set of numerical values used in the

simulations

.

Whether this is a great handicap or not depends on circumstances.

If the marginal propensity to consume has always been between . 85 and . 97/

a clear understanding of how the economy behaves when this parameter

raices oil values in this range will be more useful than a complicated
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formula that permits solution for the case where MPC = .25. On the

other hand J if it is desired to pick the best tax rate for

some purpose, an4 no constraints on the rate are present, an

analytical solution may well yield more insight.

How does simulation work? A detailed description of the

methods used would take us far afield, but we can easily indicate

the general principles involved. Consider a static mathematical

model. All such models that we will be concenred with may be

written as a system of simultaneous equations. There will be N

equations and the N unlviioim endogenous variables. Most general -

purpose simulation programs use iterative techniques to solve

such systems.* The user supplies an initial guess

as to the values of the endogenous variables. On the first

intera_7tion, the computer uses these values to generate a set of

trial values, another set of guesses. These are then used on the

second iteration to genei^ate anotherset of values, and so on. When

there is a little difference between Nth such guess and the N + 1st

guess, the N + 1st guess is talcen as the solution. If the system has

been correctly set up, the sequence of guesses will converge to the

true solution.

T\ie process of solution of dynamic models is similar. The

systaii is solved for the first period using an iterative method. The

* Wlien tie model can be expressed as a system of simultaneous
linear equations, exact solutions based on matrix algebra can be used
efficiently'.
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solution values of the endogenous variables will be functions of the

exogenous variables, the structural and policy parameters, and tne lagpjed

values of the endogenous variables supplied by the user as initial condi-

tions . The solution values of the endogenous variables for the first

period are then used as predetermined variables in the solution for the

seccnd period, and so on. In order to examine the dynamic properties

of a system, many periods may need to be simulated in this fashion.

Ihis Ifext

xhe models discussed in tiiis text were designed and implemented on

the TROLL system at 14. I. T. Chapter II provides a brief introduction to

the use of tliis system with these models, and tvro appendices show how the

models and their associated data files "look" in TTDLL.

In part II, we present four static nodeIs. The models of Chapter III

illustrate market Interdependence. Ihe economies they depict are more

often discussed in microeconomics than in macroeccnonlcs , but analyzing

them provides a good foundation for macixieconomlcs. Chapter IV presents

t^o variants of the standard textbook IS-LM model. Ihese models are based

on the original theory of Keynes and its e;q30sition by J. R. Illcks.

Part III of this text is concerned witii a sequence of dynamic models.

We first discuss economic dynamics in general and distributed lags in parti-

cular. Tiie concepts developed in Chapter V v;ill be useful in the subsequent

ciiapters. We then discuss the simplest possible model involving both the
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multiplier of stati c analysis and the accelerator of business cycle theory,

adapter VII presents a modification of the model in Chapter ^/I. The changes

Involve adding distributed lags at several points in the system. This model,

and the ones presented in succeeding chapters, v;ould be quite difficult

to solve analytically. In Chapter VIII, the basic model is further modified

to take account of businesses' production decisions. Changes in inventories,

both planned and unplanned, are introduced. Ihe first three dynamic models

treat the Interest rate as exogenous. Chapter IX adds a maricet for real

cash balances which determines the rate of interest as an endogenous

variable. 'Ihis is a rather conplex model; it mirrors most of the basic

features of full-blovm econometric models of the U. S, econony.





CHAPTER II

Simulation on the TRCLL System

The TROLL time-shared computer system is rather complex.

It can perform a vai-^iety of functions useful to economists in general

and econometrlclans in particular. TROLL makes possible the estimation

and simiilation of large models on a routine basis. This chapter is

not an introduction to the TROLL system. Our intent Is rather to

provide the reader with just the information needed to handle the models

discussed in this text.

As this is being written in July of 1970, TROLL is available

onl^ on the CTSS time-sharing system, implemented on an IBM 109^ at M.I.T.

Sometime early in 1971, the 7094 system vdll be discarded as an jjrproved

version of TROLL will be running on the IM 36O/67 time sharing system

at M.I.T. Tine first section of this chapter discusses the use of

7094 TROLL. The second section, \\rritten by TROLL project director

Mark Eisner, translates this discussion into 36O/67 TROLL. You should

read only the section that describes the system you will be working with.

We shall assume that the user wants to examine aimodel

already installed in the system. Further, we assume that the user knows

how to obtain access to TROLL. This mil involve turning on a console,

linlclng it to the central computer, and typing one or more passwords or

other messages. Messages typed in at the console are in lower case and
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and underlined, whereas the computer responses are in capitals.

Note that user responses

during an actual console session must not be underlined.

709^ TROLL

We shall examine a hypothetical console session. Assume the

user has logged into the CTSS system and has gained access to TROLL.

(How this is to be done will be specified. ) The conputer then

types

GOOD EVENING

TROLL is now entered, and you are at the controller level .

The other level of 709^ TROLL is the phase level . The phases to be

employed must be specified at the controller level, as well as the

model you will analyse. The controller will then send you to the

phases, where the work is performed. At the controller level,

you have three commands at your disposal: DEFAULT, EXECUTE, AND QUIT:

DEFAULT - By typing default archnm , you are telling the

system to look for data in the archive named "archnm". The

ai^chive name correspondiiig to each model described herein will be

indicated below.

IvXI'lCUTE - The execute command allows the user to specify

the model ;iiid phases he wishes to use. The phases of interest to us

ai'e siJiiulation and simulation output . The list of phases must be

terminated by an asterisk (*).
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QUIT - When you have finished with TRIJL, type quit to return

to the command level of the CTSS system. The correct way to leave that

system will be specified In class.

Let us suppose, for purposes of concreteness , that we wish

to use the ISLMl model (described In Chapter IV) and the associated

data files In archive Islm. The dialogue would then proceed as

follows

.

TYPE COMT'lAND - default Is In

You have told the computer which data files you will be

worlvlng with. Had you wished to work with either of the GE models

(described In Chapter III), you would hafve typed default geneq to call

for archive geneq. Data f(^ the DYNEC models (ChaptersVI - IX) are

In archive dynec. To specify which model the system should employ

and what operations you will perform, you must proceed as follows.

TYPE COMMAND - execute Islml simulation slmout *

TROLL now knows which model to use. It also knows that you will perform

some simulations and then look at jsour output in the simulation

output phase. (TROLL has a number of other phases, but these will

not concern us here.) Note the asterisk at the end of the phase

list. Use of asterisks to end lists is a convention throughout 709^

TROLL.
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TROLL will accept commands In a string. That is, you could

have typed the above commands all on one line In response to the first

"TYPE CGMMANDS -" request as follows:

TYPE CCMMANDS - default Islm execute Islml simulation simout *

If TROLL discovers an error in a command, for instance, a

misspelled word, that coimiand and all that follow it are Ignored, but

all that precede it are accepted. TBOLL will print out a message

explaining the error. If you notice an error before hitting the carriage

return, you may type @ ko delete (cause the computer to Ignore) an

entire line. You then start the line over. If the error is not so

serious, you may use a number of #'s to tell the conputer to ignore

the preceding character or characters. For Instance, the following

line

then was & r.bwiis not#M thee# time for all

will be read by TROLL as

now is the time for all

After you have given default and execute commands as above,

tlie canputer will type

SIMILATION PHASE

SETUP SIMLILATION

TYPE COMMAND - continue

RUNNAME - doodle
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You ma^y pick any collection of six or fewer letters as your run-

name. Ihls vd.ll identify your output for later examination in the

simulation output phase.

TIME BOUNDS

START DATE-2

FINISH DATE-5
'

You have told the system that you will obtain three solutions to

the static ISLMl model. The first xvill be labeled year 2, and the last

labeled year 5- All static models should have a start date of 2, and the

dynamic models should be started in year 3-

CURUSE = 3

SIMULATieN CONTROL

TYPE COMMANDS-

At this point the user has several options. First,, the methods

used by the system to find a solution may be altered. This is necessary

for the GEl. GE2, ISIMl, and ISML2 models, but not for DYNECl - DYNECI.

If you are using either GE model, you must type the following:

tune divtune 5. 5 10. ignore convtune 5. 5. 500 .0001

damp step continue

For the ISIM models, the following command must be issued here:
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tune convtune 5 5 1000 .0001 damp .3 continue

Each model has a parameter file stored with it , giving values for

Important quantities In the model. Parameters correspond to policy

variables that might be altered by the government, to exogeneous influ-

ences such as population, and to structural characteristics of the

system such as the marginal propensity to consume. If you wish to find

the solution corresponding to the pre-set parameter values, type

process 1 in response to the system's request for a command after you

have "tuned". The solution values will be stored and labeled year 2

for your later Inspection. The computer will then type

SIMULATION CONTROL

TYPE CCMVIAND-

Suppose now that you want to change one or more of the parameters

and see how this affects the solution. You would then type the command

replace , followed by a list of the parameters to be changed and their new

values. To raise G to l45. and lower MPC to .85, you would type

replace £ 1^5. npc .85 ^

Any number of parameter-value pairs may be Included, but the list must

be terminated with an asterisk. Each new value must contain a decimal

point, and it must be a postive number. Ranember that once a parameter

has been changed, it remains set to the new value until you leave the

simulation phase, unless you "replace" it again. To observe the current

values or any of the parameters, you may type
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look parametername1 parametemame2 ... *_

followed by a carriage return after any "TYPE COMMAJMDS-" request from

the ccanputer.

After you have chatiged parameter values, the dialogue will

procede as follows:

TYPE COMMAND - process 1

SIMULATION CONTROL

TYPE COMMAND-

The computer has now found solutions for years 2 and 3. If this is

enough, type close in response to this request. If solutions for years

4 and 5 are desired, repeat the sequence of changing parameter values

and processing as above. IVhen year 5 has been considered, the computer

will type

FINISH DATE HAS BEEN REACHED

TYPE COMMAND- close

Typing c lose causes the results of your simulation to be saved in

files which can be identified by your runname.

If at any time TROLL Indicates a failure to find a solution and

asks for a request, type kill. You should then change seme of the para-

meter values and try again.
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In the case of static models, the one-year-at-a-time approach

outlined above Is probably the best way to proceed. The solution for

year 4 will not depend at all on the solution for year 3; it will be

determined entirely by the parameter values prevailing in year k.

To examine the impact of parameter changes in dynamic models,

however, this is not a useful approach. Changing something like the

marginal propensity to consume will affect the evolution of the system

through time. Instead of typing process 1 after a parameter change, one

should type process n, where n is some number greater than one, or

process finish . The latter command will cause the simulation phase

to ccmpute the evolution of the system from the year being considered

until the finish date. Typing process 20 , on the other hand, will cause

the machine to examine what happens to the model in the next twenty

periods - unless, of course, the finish date is reached before twenty

periods have been considered.

In fact, the following approach may well be the best one for the

dynamic models. At the controller level, instead of typing simulation

simout* after execute amd the model name, one might type

simulation simout simulation simout simulation simout*

You might then replace parameters, type process finish , and look

at the output. When you leave the simulation output phase, TROLL will

place you back in the simulation phase automatically, and you can repeat

the process.
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Let us now examine the simulation output phase. After the user has

typed close In the simulation phase, the computer vail type

SIMULATION OUTPUT PHASE

RUN NAME: doodle

The runname tells the computer \^rtilch simulation's output you wish to

examine. There are two ways you can look at the re-sults of your

simulations. You may request tahles of numbers, or you may ask for a

graph of one or more variables over time.

To obtain tabular output, the dialogue is as follows.

TYPE COMMAInID- pttype

TYPE PLOT OFTlONS-sJjnulated

These two user responses tell the machine to print in tabular form the

simulated values of the endogenous variables of the system.

RANGE: all

Your response to this request tells TROLL which periods you wish to

examine. The response all will cause data for all years for which

simulation has been performed to be printed. If you want to look at only

a sub-set of these years, type the first year and the last year of
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the sub-set J
separated by one or more spaces. Thus typing 3. 5. followed

by a carriage return would cause data for years three, four, and five to

be printed.

VARIABLES: namel naine2 najne3 . .
*

The names namel - name3 are the actual variable names fron the model

for which you want to see data. The names should be separated by one

or more spaces, and an asterisk should follov? the last name In the list.

If you want to see all the endogenous variables, type all ^ followed

by a carriage return.

If you want graphical output, your response to the first request

from the computer after you have given it the runname is as follows:

TYPE CQMMAIJD-pgtype

TYPE PLOT OPTIONS-title this is the title//*

The above response will cause the words "this is the title" to be

printed at the top of your graph. If you do not want a title, type

an asterisk in response to this request.

PLOT TYPE- simulated

RANGE: all
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These two responses are the same as when tabular output Is desired.

Next you must tell TROLL the scale limits on the graph. You can

specify them yourself by typing the values - for Instance

SET LOWER SCALE LIMTT-IOO

SET UPPER SCALE LIMIT-300

Alternatively, you can let TROLL decide on the scale as follows.

SET WWR SCALE LIKET-flx

SET UPPER SCALE LBCT-fix

Finally, you must tell TROLL the variables you desire to plot.

The maxlmvn number Is five per graph. Remember to have only variables

of roughly the same magnitude on the same graph. For Instance, do not

try to plot GNP and Interest rates on the same graph. The variables

should be separated by a space and the list terminated with an asterisk.

VARIABLE LIST- c 1 ^^ *

These variables are present In the Islml model.

SET PAPER AND HIT RETURN
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You should use the carriage roller to set the paper to the top of a

new page and press the carriage return. TROLL will then type your graph.

After It has typed a graph or a table, the system will print

TYPE COMMAND-

If you want another graph or table, type pptype or pgtype and proceed

as outlined above. If you desire no more output, type quit . If you

have completed your phase list, the conversation proceeds as follows.

CONTROLLER

TYPE CCMVIAND-

' You may then type quit to leave TROLL, or execute to continue

work. If the phase list you initially gave the controller was

simulation simout simulation simout*

typing quit in the simulation output phase the first time you enter that

phase (that is, after your first exit from the simulation phase) will

return you to the simulation phase.

If you are ever hopeless]^ confused, type $$ (superqult) and you

will be returned to the controller. You can then type a new default and

execute command to start over, or you can type quit to leave TROLL. Super-

quit should be used only as a last resort.
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360/37 TROLL

We shall examine a hypothetical console session. Assume the user

has logged into the time-sharing system and has gained access to TROLL.

(How this is to be done will be specified) . The conputer then types

GOOD EVENING

TROLL is now entered, and you are at the controller level .

At this level conmands are entered which identiry the model to be simulated

and the data library from which set-up data are to be obtained. Here you

tell the coirputer that you will do a simulation. The commands at this

level are as follows:

ARCHIVE By typing default archnm , you are telling the

system to look for data in the archive named archnm. The archive name

corresponding to each model described herein will be Indicated.

LOADMOP By typing loadmod modelname , you specify the

model on which you wish to perform simulation experiments.

SIMULATE By typing simulate startdate , you cause the

system to enter the simulation phase. The "startdate" argument specifies

the time period in which simulation will begin.

All commands in 360 TROLL have the following form

conmand arg, arg, arg, arg;

Tliat is, a conmand name followed by a set of arguments. Each argument
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Is followed by a comma except the last argument, which Is followed by

a semi-colon. If some arguments contain lists, each element in the

list is separated by one or more blanks.

Let us suppose, for purposes of concreteness, that we wish to

use the islml model (described in Chapter IV) and the associated data

files in archive islm. The dialogue would then proceed as follows.

TROLL CGMVIAND - classname islm •_£

You have told the conputer which data files you will .be working

^^ath. Had you wished to enploy either of the GE models (described in

Chapter III ) , you would have typed classname geneq to call for archive

geneq. Data for the DYNEC models (Chapters VI - IX) are in archive

dynec.

To specify which model the system should enploy and what operations

you will perform, you must proceed as follows.

TROLL COMMAND - loadmod islM;

TROLL CGMVIAND - simulate 2 j_

TROLL now knows which model to use. It also knows that you will perform

seme simulations.

TROLL mil accept canmands in a string. That is, you could have

typed the above commands all on one line in response to the first

"TROLL CCMMANDS-" request, as follows:

TROLL COMMAND - archive islm; loadmod islml; simulate 2;
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If TROLL discovers an error In a command, for Instance, a misspelled

word, that command and all that follow it are Ignored, but all that

precede It are accepted. TROLL will print out a message explain:Lng the

error. If you notice an error before hitting the carriage return, you

may type @ to delete (cause the computer to ignore) an entire line.

You then start the line over. If the error is not so serious, you may

use a number of #'s to tell the computer to ignore the preceding charac-

ter or characters. For instance, the following line

then was @ now is not #M thee/^ time for all

will be read by TROLL as

now is the time for all

After you have given the SIMULATE command with a startdate of 2,

you have told the system to perform simulations on the static macroeco-

ncmic model ISLMl, labeling the first solution vath a date of 2, the

second ^^d.th a date of 3, and so on. All static models should have a

startdate of 2, and the dynamic models should be started In year 3- The

systan will continue with the request

SIMULATION COMMAIOS -

At this point the user has several options. First, the methods

used by the system to find a solution may be altered. This is

necessary for the GEl, GE2, ISLMl, and ISLM2 models, but not for DYNECl,

- DYNECl. If you are using either GE model, you must type the following:
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tune divtune ^ ^ 10. Ipyiore convtune ^ 5. 500 .0001 damp

step continue

For the ISLM models, the follovd.ng command must be issued here:

tune convtune 5. 5. 1000 .0001 damp .3 continue

Each model has a parameter file stored with it, giving values for

Important quantitites in the model. Parameters correspond to policy

variables that might be altered by the gove3:mmentj to exogenous influences

such as population, and to structural characteristics of the system such

as the marginal propensity to consume. If you vash to find the solution

corresponding to the pre-set parameter values, type doslm 1; in response

to the syston's request for a ccanmand after you have "tuned". The solu-

tion values will be stored and labeled year 2 for your later inspection.

The ccmputer will then type

SIMUK'ITION CCMMAI©-

Suppose now that you want to change one or more of the parameters

and see how this affects the solution. You would then type the command

setVBl followed by a list of the parameters to be changed and their new

values. To raise G to l'l5. and lower MFC to .85, you would type

setvalue £ l45. mpc .85 J.

Any number of parameter-value pairs may be included, but the list must

be tenninated with a semi-colon. Remember that once a parameter has





-30-

been changed, it remains set to the new value until you leave the

simulation phase, unless you use "setvalue" again. To observe the

current values of any of the parameters, you may type

llcvalue parametername1 parametemame2

followed by a carriage return after any "SIMULATION COMMAND-" request

frcm the computer.

After you have changed parameter values, the dialogue will proceed

as follows:

SmULATION COMMAND- dosim 1 j_

The computer has now found two solutions, labeled as year 2 and

year 3. If more solutions are desired, repeat the sequence of changing

parameter values and processing as above. To terminate simulation pro-

cessing, you use the SAVESIM and QUIT commands. By typing savesim runname ,

the results produced in previous simulations will be saved for later examina-

tion. The runname, which serves to identify this output, can be any

collection of up to eight letters. By typing quit , the user leaves the

simulation pliase and returns to the controller level.

In tlTe current example, the dialogue to save output under the

name isout an-i cease simulation would be

SIMUIATION COMMAND - savesim isout

;

SIMULATION CCMMAND - quit;

If at any time during simulation TROLL indicates a failure to find

a solution and asks for a request, type kill . You should then change seme
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of the parameter values and try again.

In the case of static models, the one-year-at-a-time approach

outlined above Is probably the best way to proceed. The solution

for yeai' k vd.ll not depend at all on the solution for year 3; It will be

determined entirely by the parameter values prevailing in year H.

To examine the impact of parameter changes in dynamic models,

however, this is not a useful approach. Changing something like the

marginal propensity to consume will affect the evolution of the system

through time. Instead of typing dosim 1 after a parameter change, one

should type dosim n, where n is ome number greater than one. Typing

dosim 20, on tlie other liand, will cause the machine to examine what happens

to the model in the next twenty periods

.

In fact, the following approach may well be the best one for the

dynamic models. After giving the archive and model names, proceed as

follows

:

TROLL COMMAND- simulate 3; setvalue "parameter-value list

one' j_

SIMULATE COMMAND - dosim "number of periods"
j_

SIMULATE CCMMAND - savesini "runname one" j_ quit

Ojie (;;ui repeat tTils sequence of canmands for a different parameter - value

list ;ind a ilifferent runname. The results of two or more such simulations

wltli tlie same archive avd model can then be conpared in the simulation

output phase, to v.'hich we now turn.
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Two controller-level cornmands allow you to examine the output of

simulation runs:

TABSIMV - This command genetrates tahles of results by variables

across various runnames. It is useful for compai^ing the results of

different experiments with the dynamic models, or for presenting one

set of experiments on the static models. The command can generate not

only the simulated values for any run, but also first differences and

error values in relation to other runs.

HjSBIV - This command produces the same information as the table

command, but in the form of a graph rather than a table.

To obtain tabular output, the dialogue is as follows:

TROLL CCMVIAT©- tbsimv

ENTER TABLE TYPES- sindata ^

The argument "table types" specifies what kind of infonnation is to

be generated. Here the user has requested on'ly simulated data. For

other possibilities, see the TROLL Maniial.

ENTER RANGE - all ,

Your response to this request tells TROLL which periods you wish to

examine. Tlie respcaise all will cause data for all years for which

simulation has been performed to be printed. If you want to look at only

a sub-set of these years, type the first year and the last year of

tlie sub-set, separated by one or more spaces. Thus typing 3. ^ j_ followed

l)y a c:un4:\";;e retimi would cause data for years thr^ee, four, and five to

be printed.
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I

ENTER VARIABLES : najnel name2 nameS . . . ^

The names namel - nameS are the actual variable names frcm the mcdel

for which you want to see data. The names should be separated by one

or more spaces, and a comma should follow the last name in the list.

If you want to see all the endogenous variables , type all ^ followed

by a carriage return.

ENTER SmOUT SETS : runl run2 run3 • • -1

The names runl - runN are the runnames attached to tlie simulation

runs from wMch data is to be extracted. The runnames should be separated

by one or more spaces, and the list should be teminated by a semicolon.

The sequence of ccramands just illustrated will cause a table of the

simulated data from all tte indicated runs to be printp'd. Very often

in using the DYNEC's, It Is of Interest to compare one or more runs

with a control solution. Suppose runl is the runname of the control

solution, and runs with runnames run2 - runN are to be compared to it.

The necessary sequence of commands Is the following:

TROLL COMMAND - slmcontrol runl tbslmv simdata simerr simpct ,

ENTER RANGE - all , "list of variable names", run2, run3

. . . runN ;

To obta-bi gi^ciphical output, enter the TROLIj command plslmv . After

that the dialogue can be exactly the same as the table command. After
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a graph Is ready to be printed, tlie message

SET PAPER, HIT RETURN

will be printed. Use the carriage roller to set the paper to the top

of a new page and press the carriage retirrn.

If you wish to have a title on either a graph or a table, the

controller level caiimand title followed by the desired title and

terminated by a semi-colon will produce this title on the next graph

or page printed.

To leave TROLL, sdjnply type the command quit v/hen at the controller

level.

If you are ever hopelessly confused, type $$ (superqult) and you

will be returned to the controller. You can then start over again or

leave TROLL. Superquit should be used only as a last resort.





PART II

Static Models





CHAPTER III

TV/o I43dels of Market Interdependence

Introduction

In price theory, we examine what happens in individual markets

when external influences like factor prices and ccnsumer incomes change.

.

i^bst of microeconomics proceeds en a ceteris paribus basis; all other

tilings are assumed coistant. In analyzing the real vrorld, this assurp-

ticn is rarely ret. \i/l-iat goes on in one market v;ill affect other markets.

'iJieie may be feedback effects; chants in one market mav trigger changes

in other markets, and these may in turn affect the first maricet. A fun-

danental fact of economic life is that mar^f.'ts are interdependent.

Consider a tax on coffee. Partial equilibrium analysis, the

usual approach of microeconomics, says tliat such a tax will act to raise

the price of coffee and lower the quantity purdiased. Partial analysis

stops there, for that is indeed all that happens if all other prices and

money incones in tne economy are unchanged. A general equilibrium analysis,

on the other hand, looks at the effects of the tax en other markets and

at the inplicatiais of those effects for the coffee market. Ihe tax on

coffee will cause consumers to demand more tea at the going price. Unless

tea is in perfectly elastic supply, the price of tea will rise. This

will tend to move consumers back to coffee, and the eventual fall in

tiie quantity of coffee demanded will be less than the fall predicted by

partial anal^'sls.
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In this exanple, the qualitative implications of partial and

general analysis were the sane: both predicted a fall in the arrount of

coffee demanded. The difference lay in the quantitative results: the

general analysis predicted a smaller fall. Ihe qualitative inplications

of general and partial analysis may differ also. Suppose all households

decide to save a larger fraction of their after-tax incoire. Partial analysis

says that savings would rise. A general analysis says that lower consu-

riKr spending on goods and services v/ill result in less demand on the part

of producers for factors of production. Ihis will lower consumers' incoires,

and may well result in lower absolute savings. This is, of course, the

famous paradox of thrift.

Partial equilibrium analysis would probably yield very good results

in our first exauple. The iirportance of other markets is probably

sli^t. In the second example, though, partial equilibrium analysis would

badly mislead. Macroeconomics is based on general equilibrium analysis;

its first proposition is that the interaction of the markets in an

econon^ must be considered to properly understand the econoniyls behavior.

In this chapter, v/e shall present two sinple static models that illus-

trate market interdependence. Both models consider sinple economics

with two factors of production, land and labor, in perfectly inelastic

supply. Ihe only goods produced are two consumer goods, food and

clotiiing. All markets are perfectly conpetitive, and all prices are

perfectly variable. These are models of conpetitive p^neral equilibrium .

Ihey do not formally resemble the usual models encountered in macroeco-

nomics, but they represent the logical antecedents of such models, since

they focus en the interactions among maricets.
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In model GEl, prices are determined by the intersectlcn of domestic

demand and sipply schedules; the econorr?/ does not trade abroad. Model GE2

describes a small country that is free to trade with other countries. The

ratio of the price of clothing to the price of food is determined in the

world market, and the actions of the small country being modeled cannot

affect these prices.

We shall briefly consider the general structure of static models

of conpetitive general equilibrium. In the first place, there is no

grcwth. Such models describe equi'llbrlum with capital stocks, population,

and technology given. Secoid, all factor and product prices are perfectly

flexible. As v;e shall discuss in the next chapter, tliis is not a very

realistic assunption. Among its implications is that all factors of

production are always fully-enployed. Modem macroecaiomics assumes

that prices and wagjss are fairly sticky, and it places great wei^t en

income changes and on income effects in demand equations. Finally, money

is not present as a store of value.

Ihe general static conpetitive equilibrium model with no trade

considers an econony with M products and N factors of production. There

are tnus M product prices and N factor prices, for a total of 2(M+N)

unknowns. The amount of each product supplied will depend on all product

and factor prices under conpetition, so we have M product supply curves.

Gimilarly, there will be N factor supply equations, reflecting household

decisiois, and N factor demand equations, eirbodying firms' production

decisions. Both sets of schedules will depend, in general, on all

(MfN) prices. There will also be M product demand functions, reflecting

household tastes and incomes. But one of these equations is redundant.
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Household liacome must equal household spending, so if all prices, the

quantities of all factors of production, and the amounts of M-1 products

are given, the amount of the Mth product demanded is determined by the

budget constraint.

Ilius sudi models have 2(M+N) unknowns and 2(MfN) - 1 independent

equations. Two approaches to this problem can be taken. The first is

to take one price as given and equal to unity. Ihis eliminates one

of the unknowns, but it does not really change the model, since only

relative prices aTfect decisions in a world where money is not a form

of wealth. The secoid approach, which we take here, is to assume that,

via one mechanism or another, the government keeps the level of prices

fixed. Iliis inplies that some index of prices is constant and adds the

needed equation.

IVhen international trade is permitted, it is usually assumed that

the money value of exports must equal the money value of luports. If

deficits or surpluses in the balance of payments were to be permitted,

a static equilibrium model would no longer be appropriate. For a small

country, the usual assunption is that the price ratios of traded goods

are determined on the world market, and that they will be unaffected by

the country's actions. Suppose R goods can be traded. We then have R

new unlmowns: the net exports of each good. If the R-1 price ratios

are given exogenously to the model, these plus the equation requiring the

balance of trade to be zero will determine the R net exports.

To obtain versions of these models that can be easily understood,

we have had to make a large nunter of simplifying assuirptions. Not

everything that is true for GEl and GE2 will be true for all static
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gsneral equilibrium models. In particular, the assumption that factor

supplies do not depend on relative prices is quite special, thou^ often made.

But enou^ of the properties of these tv;o models are of general validity

that their study can be quite instmjctive.

We shall discuss the structure of the tvjo models in some detail

in the next two sections. We then discuss the sort of exercises that can

be performed with these models. Table III.l describes the variables used

in both models. Tables III. 2 and III. 3 list the equations that describe

the two economies. Ihe notation is fairly standard, v/ith one exception:

x**y means x to the y paver, 'ihe TROLL versions of the models are given

in Appendix A, and archive geneq is described in Appendix B. Ihis archive

contains data used to find solutiois to the two systems. The parameter

values stored in the system are given below.

'Ihe Structure of GEl

The equations in Table III. 2 are equilibrium conditions for a static

econon^y tnat does not trade abroad. Several of them clearly do not represent

decision rules. All that can be said is that when the econony is in

equilibrium, the relatioTS written must hold. We thus have a static model

as discussed in Chapter I, a model that describes equilibria but offers

no information on how they are attained.
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Consider Table III. 2. The first two equations are the Cobb-Douglas

production functions for tie food and clothing industries. The general form

of a Cobb-Douglas production function with factor inputs land (T) and

labor (L) is the following:

(3.1) Q = A L^ t'^.

An increase in A permits more output for given real inputs, and we inter-

pret the multiplicative constants AC and AF as indicators of technology .

An innovation in the clothing industry, for Instance, would increase AC.

Suppose that L and T in equation (3.1) are replaced by Idi and

kT respectively. Tlien the left-hand side of (3.1) is multiplied by

k . If b+c is less than one, we have decreasing returns to scale, while

if this sum exceeds unity we have increasing returns to scale. In both pro-

duction functions in SCI, b+c=l, and we have constant returns to scale .

This means, for instance, that doubling both inputs will exactly double

output

.

We assume that food and clothing production are carried en by

perfectly conpetitive industries. Ihis means that the marginal value

products of labor (land) in the two industries must both equal the wage

(rental) rate. Let P be the price of the final product in either industry.

'Ihen equation (3.1) yields the following expressions for the marginal

value products:

(3.2)

MVP = P b QA

IWP^ = P c Q/T
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Ihe sets of equations liieled II and III in Table III. 2 are easily

interpreted. In block II, the marp-Jjial value products in the two industries

are equated, and the equatiais are solved for the amounts of labor and land

enployed by the clothing industry. In block III, tlie marginal value products

of the two factors in the clothing industry are equated to the two factor

prices.

Equations (3.2) yield a comparison of the technologies of the two

industries. Under ccnstant returns to scale, c = 1 - b. Set the two

marginal value products in (3.2) equal to tne factor prices w and r and

divide. Ihis yields

(3 3) k = _b_ £ •

Since b in the clothing industry equals .75, while b in the food industry

is only .30, it is clear that for given factor prices the ratio of labor

to land in the clothing industry, LC/1'C, will be greater than the ratio

of labor to land in the food industry. We say that the clothing industry is

more labor-intensive than the food industry. This, of course, inplies that

the food industry is more land-intens ive tlian the clothing industry.

It is assumed that all labor available and all land available will

be offered to the labor and land markets regardless of the v/age and rental

rates. The supply curves in both maricets are therefore verticle lines.

As mentioned above, this is a special assunptlcn. Since prices by

l^iypothesis are perfectly flexible, this inplies that both factors of

production will be fully eirployed at all times. In block IV, supply is set

equal to demand in both markets by requiring full enplojmTent of land and

labor.
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The next block consists of two identities that determine the

Incomes of landlords and woricers.

We assume that the demand functions for food and clothing have unit

price elasticity, another special assumption. That is, the fractions of

total income spent on food and clothing by workers and landlords are fixed.

Hiese fractions add to unity, as there is no saving. Ihe first equation in

block VI determines the price of clothing by the condition that the total

amount of money spent on clothing by workers and landlords must equal the

total amount of money received by producers of clothing. (This becomes

obvious if both sides of the equation are multiplied by QC.)

'Ihe second equation in block VI determines the price of food from

tiie requiremsnt that the level of prices remain constant. The measure of

the level of prices remain ccnstant. The measure of the level of prices

chosen is the following price index:

(3.4) I = [ PC QCq + PF QFq ]/[ PCq QCq + PFq QFq ],

where the "0" subscripts refer to a base period. In ttie base year chosen,

the quantitites on the ri^t of (3.4) took on the following values:

PCq = 1.046 QCq = 61,000

PFq = 1.000 QFq = 50,000

Setting I equal to one, substituting the values into (3.4), and solving for

PF, we obtain the second equation in block VI.

In block VII, the incomes of both factors of production and the

tastes of both classes are used to detennine how much of each good each

class consuiTKS. The distribution of consunption between workers and
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landlordG is of Interest in its own ri^t, but the quantities calculated

in block VII do not feed back Into the rest of the system; it is only the

total demand curves that matter.

Ihe pai-ameters of (El have been pre-set to the folliwing values:

LT = 100,000 VffC = .1^00 AC = 1.0

TT = 100,000 KTC = .755 AF = 1.0

Notice that these parameters provide information that is basic to any

econoTTy: factor endowments (LT and TH) , tastes of consumers (WTC and RTC),

and technologies (AC and AF).

Corresponding to these parameter: values is the following equilibrium

solution:

TC = 31,118 W = .677 QC = 60,839 RCC = 36,832

TF = 68,822 R = .5102 OF = 50,157 RCF = 12,500

LC = 76,026 PF = 1.000 WI = 62,769 WCC = 2^,007

LF = 23,97'l PC = 1.0^^6 RI = 51,020 WCF = 37,66l

Ihe Structure of GL2

Ihe econoffltr modeled in GE2 is free to trade abroad in food and clothing

at fixed world prices. Thus the ratio of the clothing price to the

food price, II^CF, is a paraiieter in this model, rather than an endogenous

variable.

Conparing Tables III. 2 and III. 3, it is clear that the main differences

between the two models arise in block VII, which is not present in GE2.

In (2i2, the equations in blocks I - III relate to the domestic production
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of food and clothing, as they did In GEl. But production of either commo-

dity need not equal consunptlon of that commodity, since trade Is now

possible. We must distinguish between QCP and QFP, the production of food

and clothing, and QCC and QFC, the consunptlon of food and clothing. 'Ihe

first equation in block VIII determines the quantity of clothing consumed

from the sane identity used to obtain PC in GEl. (Multiply both sides by

PC to clarify this.)

Ihe quantity of food consumed is determined from the requirement

that trade be balanced. Ihat is, the value of exports must equal the value

of inports . This equation reduces to

PF*NXF + pc»NXC = 0,

where NXC and NXF are the net exports of food and clothing. For this

equation to hold, either both HXC and NXF must be zero, or one must be

positive and the other negative. Ihe country either exports nothing, or

it exports only cne commodity.

Itolel GE2 has two more unknowns that do not appear in model CEl:

these are the differences between domestic production and coisunption in

the two Industries. Two additional conditions are supplied with which

to determine these quantities: the ratio of the food price to the clothing

price is given as a parameter, and the requirement that the country's

balance of trade must balance is supplied as an equation.

For this model, the parameters are pre-set at the following values:

LT = 100,000 WTC = .^00 AC = 1.0
IRPCF = 1.046

TP = 100,000 RTC = .755 AF = 1.0
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Conr^spondlng to these parameter values Is the following equilibrium

solution:

TC =
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(r J IRPCF AC FltI •
^^5

•66 < -^ l,pjr| < 1.55.

If the lower inequality is violated, the economy should specialize in

food, and if the ipper inequality is violated equilibrium will involve

specialization in clothing. If both inequalities hold, the eccnoi^y

will produce both goods, and a solution to the model can be found.

Coirputer Analysis and Exercises

As mentioned above, both Gh;! and C2i2 are static models. In the

THDLL system, both should be solved for year 2 and succeeding years. Ihe

solution for year N will depend cnly on the paraiieters prevailing in year

N, not on the solution for year N-1. Ihe years are purely artiitrary labels

attached by the conputer to separate and unrelated solutions.

Normally', if the parameters are chosen sensibly, there will be no

difficulty solving the models on TROLL, provided the simulation algorithm

has been "tuned" as described in Chapter II. If trouble is encountered, try

again with parameters closer to the pre-set values.

Ihe basic exercise that can be performed with GEl and GE2 involves

varying the parameters one at a time by at least 10%. Each parameter

change will cause several of the endogenous variables of the system to

change. It should be possible to intuitively explain these changes in

terms of the markets of the econoriqy. A conparison of general and partial

equilibrium solutions may be undertaken, and the reasons for the differences

between them may be detailed.
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It Is instructive also to conpare the two models. Is the econon^y

always better off if it is allowed to trade? (This question raises a

very fundamental issue: how do you measure whether the econorry is, in

fact, better off? You should think about this.) What paramsters in GE2

do not affect production, and why? In general, how do the two economies

react differently to the same parameter changes, and why?

As you work with these models, keep in mind that they are quite

sinple, in the sense that any real eccnony has a large nunber of factor

and product maricets, rather than two of each sort. Many of these markets

are not perfectly conpetitive. We have ignored all dynamic aspects,

including population gra^^th and capital accumulation. Yet GEEl and (E2

are fairly conplex in another sense. Ihe repercussions of any parameter

change are not usually iimedlately obvious; considerable thou^t is often

required to interpret what happens.
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Table III.l

Notation Used in GE Models *

I. Parameters

LT Total labor force

TT Total supply of land

AC Coefficient of level of technology in clothes-making (pure number)

AF Coefficient of level of technology in food-making (pure number)

WTC Fraction of workers' budgets spent on clothing (fraction)

RTC Fraction of landlords budgets spent on clothing (fraction)

IRPCF Ratio of clothing price to food price on the world market [GE2 only]

(pure number)

II. Production

QC Production and consumption of clothing [GEl only]

QF Production and consumption of food [GEl only]

QCP Production of clothing [GE2 only]

QFP Production of food [GE2 only]

LC Labor employed by the clothing industry

TC Land employed by the clothing industry

LF Labor employed by the food industry

TF Land employed by the food industry

III. Prices and Incomes

W Wage rate (dollars/unit)

R Rental rate (dollars/unit)

PC Price of clothing (dollars/unit)

PF Price of food (dollars/unit)

WI Workers' income (dollars)

RI Landlords' income (dollars)

IV. Consumption

QCC Consumption of clothing [GE2 only]

QFC Consumption of food [GE2 only]

WCC Workers' consumption of clothing

WCF Workers' consumption of food
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(Table III.l, Continued)

RCC Landlords consumption of clothing

RCF Landlords consumption of food

V. Foreign Trade

NXC Net exports of clothing [GE2 only]

NXF Net exports of food [GE2 only]

*Unless indicated otherwise, all variables are to be thought of as being in

physical units, such as tons, manhours , yards, or acres.
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Table III.

2

GEl; No Foreign Trade

I

I. Production Functions

QC = AC*(LC»*.75)*(TC«*.25)

OF = AF*(LF**.30)*(TF**.70)

II. Equality of Marginal Value Products

LC = (.75*QC*PC)/(.30*PF*QF/U')

TC = (.25*QC*PC)/(.70«PF*QF/EF)

III. Factor Prices Equal Marginal Value Products

W = .75*PC«QCAC

R = .25*PC*QCAC

rv. Factor Market Clearing

LF = LT - LC

TF = IT - TC

v. Income by Class

WI = W»LT

in = R»Tr
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(Table III. 2, Continued)

VI. Determination of Prices

PC = (WTC*WI + KrC*RI)/QC

PF = 2.276 - 1.22*PC

VII. ConsunptIon by Class

wcc = wrc*v«/pc

WCF = WI-VvTC*WI

RCC = HrC*RI/PC

RCF = KL-riTC*RI
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Table III.

3

GE2: Free Trade at Fixed World Price Ratio

I. Production Functions

QCP = AC*(LC»*.75)*(TC**.25)

QFP = AP*(LF**.30)»(T1'^**.70)

II. h^ualj ty of Marginal Value Products

LC = (.75*UCP*PC)/(.30*PF*QtTAi'0

TC = ( .2tj*QCP*PC/( . 70*PF*QFP/IF)
If

III. Factor Prices L^ual [%r[^nal Value Products

W = . 75*PC*QCPAC

K = .25«PC*QCP/TC

rv. Factor Market Clearing

LF = LT - LC

TF = 'ri: - TC

v. Income by Class

WI = W*LT

lil = H*T£
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(Table III. 3, Continued)

VI. Determnatlon of Prices

PC = IRPCF«PF

PF = 2.276 - 1.22*PC

VII. Consunptlon by Class

WCC = WT'C*WI/PC

WCF = WI - WTC*WI

RCC = i^iTC*RI/WI

RCF = RI - ia\:*Rl

VIII. Domestic Demand and Forelgi Trade

QCC = (WTC»WI + OTC*RI)/PC

QFC = (QFP + PC*QCP) - PC*QCC

NXC = QCP - yCC

NXF = QFP - QFC





CfiAFIER IV

'iWo Hicksian Macroeconomic ^bdels

Introduction

Ihe models examined In the last chapter raise two basic issues

that we must deal with before proceeding. First, can the approach of

explicitly considering all markets be usefully applied to real economies?

Ihe answer is clearly no, since any actual econorriy has hundreds of

thousands of markets, and the amount of information that would be

needed to model all of them and their interactions is little short

of infinite.

f'lacroeconomics generally proceeds by means of aggregation. We

groi4) goods and services into aggregate quantities, ana we speak, for

instance, of the "market" for consumer goods, when no such martcet really

exists. We thus consider the econoiny as composed of a small number of

interdependent "markets" for economic aggregates. It is by no means

obvious a priori what level of aggregation should be enployed for any

particular problem. Choosing the ri^it level is often the key to getting

useable answers.

A second observation based on Chapter III is the following. Both

GEl and GL'2 always had full employment of both factors of production.

This is a ctiaracteristic of conpetitive economies with no rigidities, even

when allowance is made for the presence of mcnetary and non-monetary
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wealth. But real eccnomies do e;q)erlence involuntary unerrployment , for

at least two reasons. First of all, most real markets are not perfectly

conpetltive. Second, there are rigidities in the system. Since Keynes,

economists have placed great enphasis on rigidities in the labor market,

on the "stickiness" of wages. These two elements are not really indepen-

dent, of course, since rigid prices are characteristic of inperfectly

coirpetitive markets.

In this chapter, we corrblne the notion of inulti-maricet equilibrium

with the ideas of aggregation and rigidities to produce two static macro-

economic models of the usual textbook variety. We call them Hicksian

models, since they follow from J. R. nicks' classic interpretation and

generalization of i\eynes. Both nr>dels take into account the government's

budget constraint, recently enpiiasized, via an interesting simulation model,

2
by C. F. Christ. Fodels of the sort presented here are usually called

IS-LM models in textbooks, hence our naires for them.

ISLMl is a model of aggregate demand in a closed economy in which

the prices of all goods and factors are rigid. The inplicit assuirption

is that any demanded level of output can be produced with no increase

in unit costs, so that ISICl mi^t best be thought of as a deep depression

'J. R. Plicks, "Mr. Keynes and the 'Classics'; A Suggested Interpretation,"

Econometrica . 5 (April, 1937), 1^7-159.

^C. F. Christ, "A Sliort-Run Aggregate-Demand Model of the Interdependence

and Effects of tonetary and Fiscal Policies with Keynesian and Classical

Interest Elasticities," American Econonlc Review . 57 (I^, 1967), ^3^-4^3.
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model of a closed economy/. In ISLM2, an aggregate supply schedule has

been added. Also, changes in the price level, income, and interest rates

affect the balance of payiTEnts.

Both models are static; they describe only equilibrium situations,

todels of the IS-LM sort are called "short-period" equilibrium models.

Ihat is, equilibrium is assumed to be attained quickly enough that technology,

labor force, and capital stock are unaltered.

Table IV. 1 presents the notation used in ttie two models, while

Tables IV. 2 and IV. 3 give the equations they are conposed of. (More

details may be found in Appendices A and B. ) In the next section, we

shall examine the general form of IS-M models with a govemnent budget

constraint. We then examine the structure of ISLI'41 and ISLI'E in some detail.

Ihe chapter concludes with a brief discussion of the sort of exercises

that can be performed with these systems.

Short-Period liacro Fbdels

Models of this sort consider the econon^y as conposed of thi^e

aggregate markets: the market for goods and services , the market for

money , and the market for public and private securities . (Securities

ISLM2 is thus more general than ISLICL, but it neglects the so-

called wealth effects (or Pigou effects) mentioned in the theoretical litera-

ture. 'Ihat is, it does not allow for the effects of the price level on

households' real wealth and the inpact of changes in real wealth on
ccnsuiter spending. Ecoiometric investigations of such effects have found
tl^em to be uninportant, and we gain simplicity by ignoring them.
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are stocks and bonds.) Ihere are three demanders in the market for goods

and services: households, businesses, and govemirents. The sum of house-

holds' demand for consumption, businesses' demands for investment, and

goverrunents ' demand for goods and services is equal to Gross National

Product. Government demand is taken as a policy parameter. Business

demand depends both on the level of GNP that must be produced and on the

rate of interest in the economic. Household demand depends on after-tax

income, which in turn depends on GI-JP, tax rates, and business saving

behavior. Recall frcm natioial incoire accounting that GNP is equal to

household after-tax inccrre plus net taxes, capital consunption allowances,

business savings, and a few small items.

For given values of tax rates and government spending, the condition

for equilibrium in the final product market may be written as

Y = C(YD) + I(Y,r) + G, where
(^.1)

YD = Y - NTX(Y) - OLK(Y)

Here Y is Gi?oss National Product, C is consunption, I is gross investment,

G is government demand, and r is the interest rate. Ihe functions C(i)

and I(») are to be interpreted as giving desired ccnsunptian and invest-

ment. Ihe variable YD is Disposable Personal Income, and

OLK is other "leakages" between WP and disposable incone. As

mentioned above, OLK is mainly capital consumption allowances and

business savings. Equations (4.1) can be solved for r as a function of Y,

and a graph of this function is usually termed an 13 curve. Under the
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usual assunptlcns, (which generally hold in ISIKL and ISLTC) the derivative

of r with respect to Y is negative alcng this curve. Ihis makes intuitive

sense: lowering the interest rate increases investment at each level of

income and, via the multiplier, increases equilibrium incoire.

The two basic unknowns in these sirrple systems are the rate of

interest and the level of income. Ihe IS curve provides one equaticai

involving these two quantities. In most textbooks, the other equation

is the so-called LM curve that describes equilibrium in the money maricet.

Households can hold their wealth either in the form of money or securities.

If the money market is in equilibrium, and if the govemmsnt does not buy

or sell securities, the market for securities must also be in equilibrium.

Ihe reason is the one outlined in the last chapter: given M-1 demands,

the Mth is identically determined by the budget constraint. So most

texts explicitly consider anl^ the mcney market, assuming the securities

maricet in equilibrium in the background.

The government can determine the level of ni^-powered money,

consisting of currency and deposits with the Federal Reserve. The term

"hi^-powered" is used because this money can be used as bank reserves and

hence permits the banking system to expand deposits and loans. Let M be

the money supply, determined by the ainount of hi^-powered money available,

the public's currency holdings, and the banking multiplier. Money is

used primarily for ti'ansactions purposes and, given the price level, the

amount of transactions made in the eccnon^ will vary directly with the level

of (UP. Doubling prices will double the money value of all transactic»is

,

so we may sensibly relate the real money supply, rVP, to the level of real
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Gi^P, Y. Ihe opportunity cost of holding cash is given by the interest

rate, r. Given the money supply, we can write the condition for

equilibrium in the money market as

(i|.2) rVP -= M(r,Y).

When Y is increased, tho demand for money for transactions purposes will

rise. If the market is to be in equilibrium with fixed prices and the

given money simply, the interest rate must increase. Ihus r varies directly

with Y along the LM cur/e.

For given P, equations (^.1) and (^.2) can be solved for (short-

period) equilibrium r and Y.

We must now consider the gcvemment's budget constraint, which

forces us to explicitly include the securities market in our model.

If government spending is in excess of net tax receipts, the govemmsnt

must finance the deficit. It can do this by printing money to pay its

bills; this adds to the stock of hi^-powered money. Ur, it can borrow

the money from tlie public by selling bonds. Ihis adds to the supply of

securities on the market and vill act to laver the price of securities

and thus raise the interest rate. Yields must be increased if the private

sector is to voluntarily increase its holding of government bonds. Ihus

a conplete model that takes i.nto account the government's budget constraint

must explicitly consider the bond market: see the paper by Christ cited

above. We attenpt to capture- the Inpact of government bond transactions

in a more casual way in I3LML and ISLM2.
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Ihe general IS-M model, r^ep^saited here by ISIJ>2, allcfws the

price level to vary and considers the balance of payments. Hie first

equation in (4.1) must then be modified to read

(4,3) Y = C(YD) + I(y,r) + G + BHUY,?),

where BTR is the balance of trade, equal to e>5Jorts minus inports. Tnis

quantity will depend on the level of Income and the relation of domestic

to foreign prices, where the latter are usu;illy assumed fixed.

Ihe price level, in turn, will be affected by how closely the economy's

aggregate demand approaches its productive capacity. Ihe closer demand is

to capacity, tlie ti^iter v;ill be labor and product markets, and the more

ra{:id will be the rate of increase of wages and prices.

It is worth a fev; lines to examine the differences between the

models just discussed and the other models presented in this text. In

the GE models, relative prices were of nrime importance, while here the

level of income is paramount. Ihis is a feature of trie dynamic models

of the next Part also, and of most of macroeconomics. 'Ihe assumption

is made that relative prices are quite sticky and that income changes are

more important than movements in relative prices. Ihere were explicit

production functions in Chapter III, but not here. 'Ihis is a characteristic

only of sinple short-period models; we shall see productiai functions again

in later cliapters. And even here there is an imnlicit production function

present in loLT'^ from which we determine tlie level of unenployment. Money
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was not really present in the Gii's, but it is important here. Ihe first

three dynaMc rx>dels do not have money, and it is present in a very

superficial way in DYiiEC^. Ihe theory of dynamic economies with money is

not well developed, 'ihe general equilibrium models of Chapter III made

no mention of interest rates, investment, or capital stock. The I3U»1

models are also static, but they do interest rates and investment,

llie capital stock is assumed constant here, while changes in the capital

stock are of central inportance in Chapters VI - IX. 'ihus in several v;ays

the lo-LM models serve as a link between the Gti's and the DYl-JKC's.

Ihe structure of ISli'Il

We siiall examine the equations presented in Table IV. 1. Block

I contains the equations of the IS curve. 'Ilie consunption function

enployed is fairly standard. Gross investment has an autonomous component,

replacement, and a corrponent that responds to the levels of income and of

capital cost, net investment. As an approximation, we have taken the

cost of funds to the typical fimi to be tv;o and a half times the yield

on corporate bonds. Ihis formulation reflects the fact that most funds

are obtained from retained earnings and new stocK issues. Monies obtained

from those sources must be valued at the cost of equity. We have approxi-

mated this cost by examining the dividend yield on coninon stocks and the

rate of gixDwth of ai^^gregate dividend payments, 'ihe cost of equity in

recent years has avera^^d about 3.28 times the average corporate bond





- 62 -

yield. Taking the weigited average of tne costs of debt and equity,

wei^ting by the fractions of total funds raised from the two sources,

we obtian the approximation that the cost of funds is 2.5 times the corporate

bond rate.

We further assume that all capital deteriorates at a rate of 10/S

per year. Then the total opportunity cost of investing a dollar in nev;

plant or equipment is the cost of raising that dollar (2.5R) plus the cost

of the deterioration that will take place in the new caoital each year

(.10). Ihe sensitivity of investment to this cost is measured by the

structural parameter J, equal to minus the elasticity of net investment

(ncn-autcncrDus inventr,cr.t) with respect to ooportunity cost. To make

sense, J. must be positive. 'Ihe constant inside the square brackets

ensures that changing J will not affect tlie eauilibrlum obtained if all

other parameters are maintained at their pre-set values. Changes in

J serve to rotate the IS curve around the initial solution point.

In reality, gross private domestic investment includes invest-

ment in Housing and inventories as well as gross additions to business

capital stock. It should be obvious, however, that changes in income and

interest rates act to alter home-building in the same directions as business

investment. 'While it is not clear that Inventories respond to the level

of interest rates, total sales (which relate to CulP) clearly do matter.

In sum, our investment equation formally treats housing and inventories

exactly like investment in plant and equipment, but there is no reason
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to suppose that this slnpliflcatlon seriously compromises analysis at this

level of aggregation.

'Ihe incoiTB identity assumes we are modeling a closed economy,

one without foreign trade. Ihe fourth equation is sinply the second of

equations (^.1). Both the variables OLK and NTX and the equations that

determine them are relatively straightfon-zard. Ihe final equation in

block I conputes the government deficit. DEF must be financed by some

combination of borrowing from the public and printing money.

Government policy parameters appearing in blocl: I are G, TRF, and

f'lrR; the other parameters depict structural characteristics of the

econoniy modeled.

The fir^t two equations in block II determine the net increases

In hl^-powered money and goverrunent bonds. The policy parameters here

are DMPR and FIB, which represent Federal Reserve open market operations

and government financing policy, respectively. The tliird equation deter-

mines the money supply from the stock of high-powered money and a money

multiplier. 'Ibis multiplier can be considered a nolicy parameter, as it

will be affected by such thin^ as bank reserve requirements and the

rediscount rate.

Equation ^4 in block II is designed to simulate both the inpact of

dianges in the money supply and changes in the stock of government bonds.

(The parameters GDBI and ILPIC are best thou^t of as initial conditions.)

We assume first that the demand for real cash balances is given by an

equation of the form
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ih.^) n^ = a Y R"^,

whex^e a and L are positive constants. The income velocity of money is

an increasing function of the interest rate; the larger is L the more

responsive money demand is to changes in R. Solving for (4.4) we obtain

(4.5) R = (aY/MRS)**(l/L).

To incorporate the bond maricet via the back door, we multiply

equation (4.5) by an expression that rises as the supply of government

bonds is increased. The expression used is

(4.6) (GDbl + DG3)**(l/i:.B).

The constant EB can be thought of as the net interest elasticity of

demand for government baids. If EB is very large, changes in the supply

of government bonds will not affect the interest rate. (IJote that the

government budget constraint does not really matter in this case, as the

amount of bond financing will not affect any real parameters.) On the

other hand, if EB is small^ changes in govemnent debt may cause sizeable

ciianges in interest rates.

As in the investment equation, the ccnstants in the square brackets

in the equation for R ensure that changes in L and EB will not affect the

system's initial equilibrium. Changing these elasticities will merely

rotate tlie UA curve around the initial equilibrium.





- 65 -

In both IS-LM models, the solutions obtained using the pre-set

paraireter values correspond roughly to the magnitudes that diaracterdzed

the U. 3. econorny in the fourth quarter of 1965. Arbitrary constants

have been given difinite values to bring this about. Consequently, the

models are somewhat less general and somewhat more realistic than they

would have been if all constants had been made parameters.

For the ISUH model, parameters are pre-set to the following

values

:

G = 143.3 TKF = 50. DMFR = 0.

J = .60 :-'ffR = .275 1^ = .?.0 MMUI^T = 2.yi

MI = .0^01 MFC = .90 LFli = .1062 FDB = 0.

GDBI = 300. EB = .50 HPM = 59.^^5

'Phe corresponding vsilues of the endogenous variai:)les are

C = ^i^l.H n = .0472

I = 113.2 ULK = 7^.75

y = 703.9 I^I^ = 1^^3.6

DEF = -.27 YD = 485.6

ms = 166.3

DllPM = -.27

DGB = 0.0

Changes is J, EB, or L, will not alter these values.
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Ihe Structure of I^LM2

In I3LM2, the IS and UA curves are determined by the saire basic

functions encountered in ISLI'Il. The demand for money is now a demand for

real cash balances. The nominal money supply (the nuirtjer of dollars) is

still a parameter, but the real money supply falls as the price level

rises. If the price level were to double, for instance, people would

require twice as many dollar bills to enpaf^e in the sane real transactions

as before, {'ihe price level doubles when PD =1.0) Also, the balance of

trade, exports minus imports, is nov/ included in the definition of Cil?.

Hie various constants have been adjusted to take these changes into account.

Since the price level can chanpp, all GiJP conponents should be understood

as being in constant dollars, 'ihat is, they are valued at the price

level prevailing the fourth quarter of I965. We are thus assuming that

all demands are placed in r«al terms.

The balance of trade depends on income and the rate of inflaticn.

Ihe latter is a function of the rate of unenploymsnt , via a sinple Phillips

Curve, 'ihe rate of unenployment is calculated by an equation based on

"Okun's Law" and on the assumption that full enploymsnt involves a

measured unenployirent rate of 3%'

Block III determines the rate of inflation. The unenployment

rate is calculated from income and "Okun's Law". This "Law" states that

when income moves 3% closer to full-enployment income, the unenploymsnt

rate drops by 1^. Given the incane and rate of unenployment prevailing
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in the fourth quarter of I965, and making the assuirption that a J/o rate

of uneirployment corresponds to full eirployment, we coirpute full-enployment

incoms as $73t).3 billion in that quarter. From that figure and the "Law"

that underlies it, we obtain the equation for the unenploymsnt rate.

Ihe second equation in Block 111 is a Phillips Curve, relating the

rate of inflation to the rate of unemployment. The paraireter PDF measures

the severity of tMs problem; the larger is PDF, the greater the changes

in PD caused by any given change in the unerployr.Tent rate, U. The function

is set up so that changes in PDF rotate the Phillips Curve around the

initial equilibrium point where U = .0^12 and PD = .0288.

The last Block in iSLI'2 determines the balance of trade and the

overall balance of payments. The balance of trade depends in a fairly arbi-

trary way on the level of income and the rate of inflation. Net capital

inflows, BCF, depend positively on the level of interest rates. The

constant .20 is a proxy for potential earnings abroad. The sensitivity of

capital flows to interest rate differentials is governed by the elasticity

K. The larger is K, the mor^ inpact a given cliange in R will have on

coital flows. As before, the constant in the bracketed term ensures

that K may be changed without altering the initial equilibrium.

Preset parameter values for I'SIMI are as follows:

G = 1^43. 3 THF = 50 DMFIi = 0. FOB = 0.

J = .60 m\\ = .273 L = .20 M4tJLT = 2.81

MI = .0^01 MPC = .90 PDF = .06 HPMI = 59.71

LFR = .10^189 K = .80 GDBI = 300.00

EB = .50
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As conpared to model ISLM, ISLM2 has two more structural parameters, PDF

and K. . Correspending to the pre-set parameter values is the following

solution:

C = ^i<7.5 R =
. 0^172 PD = .0290 MRS = I6I.6

I = 113.2 U = .0419 BCF = -7.'^ IHPM = -.5^^

BTR = 6.0 OTX = lil3.B BOP = -l.i| DBB = 0.0

Y = 710.0 DEF = -.5^

YD = 491.7 OLK = 74.47

Changing only parameters in the set J, L, PDF, EB, and K will leave these

values unaltered. As before, these quantities correspond rou^ly to the

magrJ-tudes tliat characterized the U. S. economy in the fourth quarter of

1965. The difference between these nurifcers and those in the initial

solution to ISLMl arise because the balance of trade is set to zero in

ISLT^l.

Conputer Analysis and Exercises

Both ISLML and ISLM2 are static models. Solutions on TROLL should

begin with year 2. The solution found for year U + 1 will depend only on

the parameters prevailing in that year, not on the solution in the year H.

If for any quarter R becomes equal to .0001, you should ignore that

solution. Sucl-i a value means that equilibrium could not exist with positive
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H given the parameters you specified. You should try another run, changing

the parameters so as to increase equilibrium R.

TROLL should encounter no difficulty in finding a solution to the

system, provided you have "tuned", as described in Chapter II. If problems

arise, change the parameters, moving them nearer the pre-set values.

It is helpful to analyze these models in terms of targets and

instruments . Government policy in ISLT^Tl v/ould presumably be concerned

with tlie level of income, Y. In ISL^2, there are two obvious target

variables, the unerployment rate and the balance of payments. In both

economies, policy-malcers rrig^t well want to keeo the level of investment

hif^i in order to promote growth. Both models have six policy instruments:

TRF, MTR, G, i-HvIULT, DMFR, and PTB. Changes in tlie structural parameters

of the systems v/ill alter the Inpact of the instruinsnts on the target

variables.

In ISLf^, it is instructive to consider fixed chanp^s in one or

mDre of the policy parameters. It is then possible to vary one or more of

the structural parameters and see how this affects the response of the sys-

tem to the given policy changes. How does L, for instance, affect the

inpact of fiscal policy on Y? The effects should be explained both intui-

tively and in terms of the IS and LT-l curves. Be careful in using the

parameters that diange the initial equilibrium of the system, and remerrber

tliat tiie problem is to relate changes in the structural parameters to

changes in the inpact of policy parameters. All changes should be at least

103t of the pre-set values.
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The same analysis can be carried out in ISLJ'2, but there are more

targets and more structural parameters to be considered. Remember that

changes in the rate of inflation will shift the LI-I curve, and changes in

the balance of trade vd.ll shift the IS curve. ISIi-12 lends itself to analysis

of policy choices: pick values for the target variables and see v/hat

values of the policy parameters will bring them about.

Special interest attaches to the influence of the government

budget constraint. The classical economists and, more recently, T-lltoi

Friedman have argued that debt-financed fiscal policy will have no inpact

en income. Are there Darameter values in ISIi-H or ISLJ'2 for which this is

tme?

Finally, there is an error in ISLI-2, which we have retained to

siirplify the equations. Can you find it? (Kint: Prices are involved.)

It does not affect the qualitative properties of the model.
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Table IV.

1

Notation Used in ISLM Models*

I_. Parameters

MPC Marginal propensity to consume out of disposable income (fraction)

MI Income coefficient in the investment equation (fraction)

J The negative of the capital cost elasticity in the investment
equation (pure number)

G Government expenditures for goods and services

TRF Net autonomous government transfer payments

MTR Marginal rate of taxation (fraction)

LFR Average rate of other leakages between GNP and disposable income
(fraction)

DMFR Net Federal Reserve purchases of government bonds

FDB Fraction of the government deficit to be bond-financed (fraction)

MMULT Ratio of the money supply to high-powered money (pure number)

HPMI High-powered money at the start of the period

'"DBI Government bonds in the hands of the public at the start of the
period

L The negative of the interest elasticity of demand for money
(pure number)

EB The "net" interest elasticity of demand for government bonds
(pure number)

PDF Rate of increase of prices when U = .02 [ISLM2 only] (fraction,
must be greater than .0288)

K Elasticity of capital flows with respect to interest rate
differentials [ISLM2 only] (pure number)

II . Endogenous Variables: Both Models

C Consumption expenditures

I Gross private domestic investment

Y Gross National Product

YD Disposable personal income

NTX Net government tax receipts

OLK Other leakages between GNP and disposable income

DEF Government deficit on national income accounts

DHPM Net increase in high-powered money

DGB Net increase in publicly-held government bonds

MRS Real money supply

R Rate of interest on corporate bonds (fraction)
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(Table IV. 1, Continued)

III . Endogenous Variables: ISLM2 only

U Unemployment rate (fraction)

PD Rate of price increase (fraction)

BTR Balance of trade

BCF Balance on capital account

BOP Balance of payments net surplus

*Unless othertrise indicated, all variables are measured in billions of 1965IV
dollars. Flows are at annual rates.
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Table IV.

2

ISLT/CL: Basic Closed ];S-LM Model

I. IS Curve

1. C = 10.^ + MPC*YD

2. I = 42.8 + MI«Y/(.400934* [ (2.5*H + .I0)/.2l8 ] »*J)

3. Y = C + I + n

4. YD = Y - NTX - OUi

5. IflX = -TIF + MTR^Y

6. OLK = Lra*Y

7. DEF = G - IJTX

II. Ii'1 Curve

1. DilPM = Df^Ti + (1. - FDB)«DEF

2. DGB = -DI4FR + FDB*DEF

3. m^ = M'IULT«(HPMI + DiriFM)

^. R = .0^72* C .23626*Y/I.1RS ] **(1A)* [ (GDBI + DGB)/300. ]

*«(I/EB)
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Table IV. 3

ISLJvg: A Conplete IS-li'4 Model

I, IS Curve

1. C = 5.0 + I^C*YD

2. I = ^2.2 + Mr»Y/(.^01* [ (2.5*R + .10)/.218 ] **J)

3. Y = C + I + G + BTR

H. YD = Y - IJTX - OLK

5. NTX = -THF + r^TR^Y

6. ULK = LFR*Y

7. Dbj' = G - i-rrx

II. LM Curve

1. DliPK = Dr^FR + (1. - KDB)*DEF

2. DGB = -DMFR + RB*DEF

3. r^RS = Mr4ULT*(IIP^^: + dhph)/(i, + pd)

n. R = .0^172* [ .2276*Y/r4RS J **(1/L)* [ (GDBI + DGB)/300. ]

*«(1/EB)

III. Unenployment iind Inflation

1. U = .03 + (1 - Y/736.3)/3

2. PD = .105* (PDF - .0288)/U + (.1008 - 2.5*PDF)
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(Table IV. 3, Continued)

IV. Foi-^ig^ Trade and Investment

1. BTIi = 99. 4^4 - .12^3*Y*(1 + PD)**2

2. BCF = [3.1 - 12.5* [ (.20 - R)/.1528 ]"»K

3. BOP = BTR + BCF





Part III

Dynamic ^todels





CHAPTER V

Economic Dynainics and Distributed Lags

Introduction

Ihis chapter will deal with the analysis of dynamic systems of the sort

often encountered in economics. There is no one precise and concise distinc-

tian between static and dynanlc models that all economists would subscribe

to. Yet we all know Intuitively what the difference is. Dynamic models

are models of changing situations. More than that, they are models in

which the process of ciiange is basic. Analysis of such models is ccncemed

witli the way in which change takes place. Another way of looking at the

dlstincticn is tliat static models are concerned with a particular moment

of time, vriiile dynamic models focus on the relations between variables

at different points in time, or, in the sinplest case, on oie variable

at different points in time.

In much of economics, dynamic systems are represented by means of

difference equations . These are equations relating values of variables at

different periods of time. A general first-order difference equatiai is

(5.1) Y(t) = F[Y(t-l),t].

Tlmt is, the value of Y in period t is determined by the value Y took on

In period t-1 and the period number, t. A special case of equatioi (5.1)

will occvpy us in the next section, the first-order linear difference

equation witn constant coefficient

:

(5.2) Y(t) = a Y(t-l) + f(t).
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where a is a constant. Difference equations of N order involve iJ lagged

values of the variable involved; vfe shall consider the general A order

linear difference equation briefly in the third section of this chapter.

There are two main ways that difference equations arise in economics.

Ihe first is by relating stocks and flows . The flew of net investment

changes tlie value of the capital stock, so that today's capital stock depends

identically on yesterday's capital stock. The cash in n^ pocket this evening

is identically determined by the ainount that was present this morning, m^

income today, and rr^y spending during the day. Ihe second source of difference

equations is lags in economic behavior. The behavior of any economic unit

today is affected by yesterday's events, as v/ell as those farther in the

past. There is a lag between the time that income is earned and the time

that it is received. Increases in sales do not lead firms to immediately

place orders for new plant and equipment. fXirther, it takes time to fill

such orders. Tlie last two sections of this chapter are concerned with the

formal analysis of lags in economic behavior.

[viany real-world relations between past and present values of economic

variables can be expected to be non-linear. General analytical results are

difficult to obtain for non-linear equations, however. We will deal in

this ciiapter with analytical solutions only for linear difference equations

with constant coefficients. Hopefully, this will provide some insist

into the behavior of the non-linear systems dealt with in Chapters VI - IX.

In any case, linear systems appear often enoup^ in economic theory that the

material is useful in its own ri^t. Ihrou^out, our aim is insist, not

rigor.
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The fourth section of this chapter deals explicitly vd.th the

relation between linear and non-linear systems.

Before studying the first-order linear difference equation with

constant coefficient, a final point must be discussed. Much of the theory

of eccnomic dynamics is written in terms of differential equations , rather

than difference equations. While difference equations relate to finite

changes in variables, differential equations are concerned with instaneous

rates of change, with the derivatives of the quantities involved with

respect to time. While difference eqiiations treat time as conposed of

discrete periods, differential equation models treat tiriK as continuous.

Two points should be made. First, difference equations are often used to

approximate differential equations when the latter are to be solved

numerically. Sometimes tiie reverse procedure is enployed: differential

equations are used to approximate difference equations for analytical

sinplicity. The second point is that the theory of linear differential

equations with constant coefficients very closely resembles the theory

we shall discuss in the nest two sections.

The First-Order Linear Difference Equation

Let us consider a very slnple dynamic economy. Consuirption is a

constant fraction, m, of last period's incoms. Income is made up of

we refer tiie reader to William Baumol's excellent text, EconcTO.c Dynamics
(Macmlllan), for the relations between difference and differential equations,
as well as for a clear treatment of both types of dynamic models.
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consunption and government spending. The equations that describe this

econorrj/ are

C(t) = m Y(t-l)

(5.3)
Y(t) = C(t) + G(t)

Suppose we are given initial conditions G(0) = Gq and Y(0) = Yq,

What will be the path of incorre over time in this econony?

Confclne equations (5.3) to yeild

(5.^) Y(t) = m Y(t-l) + G(t)

Assume that G(t) = G„ for all t, for slnplicity. We can then substitute

into ( 5 . '^ ) to find the values taken on by Y

:

Yd) = m Yq + Gg

Y(2) = m[iTiYQ + Gq] + Gq = m^Yg + GQ[l+m]

Y(3) = mCm^YQ + Gq (1+m)] + G^ = m^Q + GQ[l+mfm^]

Continuing this procedure, we obtain the general form of the solution;

(5.5) Y(t) = m^Q + G^(l-m^)/(l-m)

= G^/d-m) + m^CYQ - G^/d-m)],

whei^ we have sunmed the f^eometric series in m.
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We normally assume that m, the marginal propensity to consume, is

positive and less than one. In this case, the second term above vanished

as t becomes very large, and Income converges to Its equilibrium level,

GQ/(l-m). iJote that this is the solution predicted by static theory, but

how rapidly it is attained depends on the initial disequilibrium (the

term in brackets) and the value of m. Goverrunent spending has the same

multiplier effect as in static models, but the inpact of G takes time to be

felt.

Equation (5.^) need not represent an econor^; it is a general

first-order linear difference equation with constant coefficient. Let

us now think of Y and G as arbitrary variables and of m as an arbitrary

constant. Assume that G(t) = G„ for all t, as above. What can we say

about solutions to (5.^)? Write Y = Gg/d-m) for sinplicity. We then

have the general solution to (5.^) as

(5.6) Y(t) = Y^ + m^[YQ - Y^],

from the discussion above and equation (5.5).

If m is between zero and +1, the second term in (5.6) will vanish

as t becomes large, and the system will move steadily closer to Y
,

regardless of the value of Yq. Vte say that the system is stable . If m

is larger than +1, however, the second term in (5.6) will not approach

zero. If Y„ is greater than Y , Y will grow without limit. If initial

Y is less than equilibrium Y, on the other hand, Y will race towards
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minus infinity. The system is unstable ; there is unchecked motion away

from equilibrium. (If m=l, the general solution to (5.^) is Y(t) =

Y^ + tGpj, and the system is unstable unless G„ = 0.)

Under sorre circumstances, the coefficient m could be negative.

Examining (5.6), it is clear that Y(t) vd.ll then oscillate around Y .

If Y(t) is less than Y , Y(t+1) will be greater than Y , and vice versa.

As above, thou^, if the absolute value of m is less than one, the second

term in (5.6) will eventually vanish, and the system will be stable. We

would observe daiiped oscillations . If m is less than minus one, the

oscillations explode; Y(t) moves farther and farther away from Y . Ihe

system is unstable. When m = -1, the oscillations neither die away nor

expand indefinitely. Ihe system is unstable in the sense that there is no

tendency for Y(t) to approach Y .

We can thus characterize the type of solution to (5.^^) as a function

of the constant m:

value of m

mt£ -1

-1 -^ m -^

< m < +1

+1 ^ m

type of solution

unstable, oscillations

stable, oscillations

stable, monotone

unstable, monotone

Ihrou^out this discussion, we have been assuming that G(t) was

constant. Would relaxing this assunption affect the table above? We

shall now show that the answer to this question is no.
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Write (5.^) as follows:

(5.^') Y(t) - mY(t-l) = Git).

We define a homogeneous difference equation as one in which the driving

function, G(t), is Identically zero for all t. A homogeneous equation thus involves

only past and present values of Y. The homogeneous equation corresponding

to (5.4') is sinply Y(t) - m Y(t-l) = 0; we call this the reduced

equatiai . The general solution to this reduced equation is clearly

Y, (t) = Km , where K may be any constant. (Verify this by substitutioi.)

The value of K will be determined so that the solution satisfies whatever

initial condition is specified; that is, so that Y/0) = Y„. Vfe next

search for a particular' solution to (5.^'), a solution to the original

equation with the given function G(t). The general solution to (5.^')

(and to (5.4)) is the sum of the solution to the reduced equation and

the particular solution:

Y(t) = Y, (t) + Y^(t)

(5.7) \ P

= I^*^ + Y (t)
P

The constant K is chosen so that Y(0) = Y . The key fact is that Y, (t)

will vanish if and only if the absolute value of m is less than one. Then

and only then will Y(t) approach Y (t), regardless of the form of Y (t).

We are ncv; in a position to formulate a broader (infornal) definition of

stability: Y(t) is stable if it approaches Y (t). And we can state that

unless the absolute value of m is less than one, the system is unstable.

If m is negative, there will be oscillations around Y (t), while positive
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m inplles that Y(t) - Y (t) will be monotone increasing or decreasing.

Thus stability depends entirely on the form of the solution to the reduced

equation, not on the driving function, G(t).

'IVfo forms of the driving function are of particular interest to us.

We showed above that if G(t) = G^, the particular solution is Y (t)

= GQ/(l-m). Tills can be verified by substitution. The other case of

interest is where G(t) = G,k , with G„ and k constants. V/e will guess

a solution of the fonri Y (t) = lik , with IJ a constant. Substituting

into (5.3'), we have

l^^ - mi^lk^"^ = G^k^, or
(5.8)

°

k^"-'-[ivik-mIJ-GQk] = 0.

If k is not equal to m, equation (5.8) will be satisfied for all t if

and only if il = G„k/(k-m). So the particular solution is Y(t) = G^k /(k-m),

(If k=m) , it ceui be shown tliat a particular solution of the form Y (t) =

Ntk^ exists, with U = G^.)

Given the driving function, we can characterize the behavior of

the first-order linear difference equation v;ith constant coefficient by

the table given above. But now stability must be interpreted in terms of

approaching the particular solution of the equation, and oscillations are

oscillations around the particular solution. In terms of the model which

motivated this section's discussion, we have the following result: If

the marginal propensity to consume is less than one, the level of income

will approach a value that is a functicn only of government spending.
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not of initial cc^ditiais. If government spending is growing according

to G(t) = G„k , Y(t) will approadi the growing equilibrium level

G(t)k/(k-m).

Linear Difference Equations of liip^er Order

'Jiis section is fairly Icng, and it is a bit more formal than the

rest of the ciiapter. We shall summarize the results here, so that the

mathematics may be skirmed on a first reading. The section considers

linear difference equations with two or more lagged values of the endogenous

(dependent) variable, thouf^ we formally analyze onl^ the secoid-order

constant-coefficients case. We find that such equations may be stable or

unstable, and solutions may be monotone or oscillatory, as for the

first-order case. Ihe new feature of higjier-order systems is the pos-

sibility of sinusoidal solutions. When such a solution is graphed against

time, tlie result is a danped, e^q^losive, or ccnstant-anplitude sine

wave. Ttie last case can occur only when parameter values exactly satisfy

certain equations.

Let us begin with an economic exanple. Suppose that consuirption

is, as before, a constant fraction, m, of last period's income. Government

spending is exogenous ly determined. The new element is investment. We

incorporate a sinple accelerator theory of investment by letting invest-

rrent equal a constant, v, times the change in income lagged one period.

i'Hie accelerator is caisidered at more length in the next chapter.) Our
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model in structural form is now

C(t) = m Y(t-l)

I(t) = v[Y(t-l) - Y(y-2)]

(5.9)
Y(t) = C(t) + I(t) + G(t)

(G(t) exogenous)

The reduced form of this system would involve each of the endogenous

variables [C(t), I(t), and Y(t)] as functions only of exogenous and

predetermined quantities. The only equaticn that needs to be altered is

the one giving Y(t), since the other equations are of the correct form.

Substituting, v/e find

(5.9) Y(t) = (mfv) Y(t-l) - v Y(t-2) + G(t),

a linear second-order difference equation vri.th constant coefficients and

driving function G(t). If we can solve (5.9) for the time-path of

Y(t), we can easily substitute back into (5.8) and obtain the behavior of

C(t) and I(t).

In general, any linear dynamic discrete-time system with constant

coefficients, sucli as (5.8), can be reduced to one key difference equation,

such as (5.9), the solution to whicii can be used to characterize the behavior

of all the endogenous variables. The relation between the order of the dif-

ference equations in the structural form of the model and the order of

tne key equation depends on the exact structure of the model. Itie

order of the key equatlai will be at least as great as the greatest order

of any equation in the system. A system conposed of two second-order
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difference equations will solve for a key equation of at least second

order and generally of hi^er orxier.

We shall eirploy the approach used in the last part of the last sec-

tion to analyze the solutions to equations (5.9). Re-write (5.9) to

yield.

(5.9') Y(t) - (mfv) Y(t-l) + V Y(t-2) = G(t).

We first consider particular solutions. Suppose G(t) = G„ for all t.

Ihen we look for a particular solution of the form Y(t) = Y , a constant

for all t. Substituting into (5.9'), we obtain immediately

(5.10) Yg = GQ/(l-m).

Since Y io constant, the corresponding particular solution for investment

must be I(t) = 0. From the consunption equation, C(t) = mG„/(l-m).

Now suppose that government spending is growing according to

G(t) = G„k . As before, we look for a Darticular solution of the form

Y(t) = iJk^. Substituting into (5.9'), we have

IJk^ - (mfv)Nl<^"^ + vJNlk^"'^ = G„k^, or

(5.11) "

N[k^ - (m<-v)k+v] = Ggk^.

We shall return briefly to this point below. The reader is again

referred to Baumol's Economic Dynamics .
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Assuming that the expression in brackets Is non-zero, we have our parti-

cular solution:

(5.12) Y^(t) = k^ [G k^]/[k(k-m)+v(l-k)].

Now we turn to an exajnlnation of stability; we vjant to know if

the system will approach these (or any other) particular solutions. As

before, stability depends on the solution to the reduced equation corres-

ponding to (5.9'). We shall guess that a solution of the form X exists.

Note that if X is a solution to the reduced equation, so is ICX , for

any constant K. Go the critical thing is finding X; K will come from the

initial conditions. Substituting Y(t) = X into the reduced equation

corresponding to equation (5.9'), we obtain

(5.13) X^ - (mfv) X^"^ + vX^"^ = 0, or

Xt-2r.[X^ - (mfv) X + V ] = 0,

If X is non-zero, the expression in brackets must equal zero for Y(t) =

X^ to be a solution to the reduced equation of (5.9'). Setting the expression

in brackets equal to zero and using the well-known formula for the solution

of a quadratic equation, we obtain the two roots as follows:

^1

(5.14)

(mfv) + l)(mfv)^ -
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TwD problems arise Imnedlately. Suppose that X-, = ^« That

is, suppose 4v = (m+v) . Then it can be shown that there is a solution of

the form tX , where X is the solution to (5.1^). We shall verify this

2
below. The other problem arises if ^v is greater than (m+v) . Then the

quantity under the square root sigi is negative. The square root of a

negative number is an imaginary nuirber; what does this mean?

To examine these two problems, it will be easiest to work, with the

general second-order homo^neous difference equation with constant coef-

ficients :

(5.15) Y(t) + a Y(t-l) + b Y(t-2) = 0.

Sub'^itituting Y(t) = X as above, we are led to examine the solutions to the

quadratic equation

(5.16) X^ + a X + b = 0.

The soluticns are given by

-a + ^ a2 -





- «9 -

Since X^ is greater than )L, the condlticns for stability are

X^ / +1, or a+b S -1

(5.18) ^ \ ^

y^ y -1, o^ a-b < +1

We thus have a sufficient condition for stability: if a ^ '^b and

-(b+1) ^ a < (b+1), the system is stable. Note that if a is positive,

Xp will be less than zero, and the solution vri.ll involve oscillations of

the sort encountered in the last section. The other root, X,, may also

be less than zero, of course. If a / '^b, it is easy to show that both

X, and Xp will be positive and no oscillations vjill occur if a is negative

and b is positive.

2
We noted above that if a = ^b, X = X_ = X, and a solution of

the form tX exists. Tills is easy to verif>. Substitute Y(t) = tX

into (5.15). Ihis yields

(5.19) tX^ + a(t-l)X + B(t-2) = 0.

2
If a = '^b, the soluticn to (5.17) is X = -a/2. Ttils condition can

2
be written as b = a /4. Substituting according to tiiese last two

expressions into equation (5.19), we have

taV^ - (t-l)a^/2 + (t-2)a^/^ =

(5.20)
t[aV4 - a'^/2 + a'^/^] + [a'^/2

0, or

[a^/2 - a^/2] = 0,

which is identically satisfied for any a.
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VJliat of stability In this case? If the absolute value of X Is

less than one, tX will go to zero eventually, and if the absolute value of

X is greater than one, this term will grow without limit as t becomes

large. So if a^ = 4b, we must have -1 < X < +1, or -2 < a < +2 for

stability. Vte have another sufficient condition for stability.

We now coiTE to the case where a is less than '^b. Define j as

the square root of minus one. Ihe two soluticns to (5.17) may be written

in the following form:

X = c + Jd c = -a/2

(5.21) ^ with
I

X^ = c - jd d = Jilb - 7/2

These are called couplex nurrbers . TTore precisely, they are conplex con-

jugates because they have the sams real part (c) and the sanE Imaginary

part (Jd), but with different sign. Let R be the angle for which the

2 2~ r2 2
c + d and for which the sine is d/ Jc + d . We can

re^yfrlte X^ and Xp identically as

X^ = vjc^ + d^ [ cos (R) + J sin(R) ]

^^'^^'^
x, = J7T7 1^ ^°^ ^^^ - ^ ^^^^^ ^•

Let D = Jc + d . This quantity is called the modulus of c + jd

and of c - Jd. We now recall Dertoivre's Theorem: if X = a[cos(Q) + j sin(Q)],

for n an integer, x" is equal to a"[cos(nQ) + j sin(nQ)]. Using this, we
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can write the solution to equation (5.15) in the case a^ ^b as follows:

Y(t) = 1^ xj + K^y^

= Fvq D^ cos(Ht) + Kq J D^ sin(Rt) + K^ D^ cos(Rt)

- K^ j D^ sin (Rt), or

(5.22) Y(t) = d''^ [ kg cos(Rt) + k-^ sin(Rt) ], where

kQ = Kq + K^, and k^ = j(Kq - K-^).

Ihe constants k,, and k, are, as usual, chosen to satisfy the initial condi-

tions. We now have a solution exhibiting sinusoidal fluctuations . The

fluctuations will be danped and vanish for large t if D is less than one;

they will explode if D is greater than one. The fluctuations will repeat

forever with no change in airplitude if D is Just equal to one. If the

angle R is expressed in degrees , elementary trigonometry shows that the

cycle will repeat itself every 3f30/R periods.

Let us summarize the foregoing development. If a is less than 4b,

the solution will involve sinusoidal fluctuations and will be of the form of

(5.22). These fluctuations will die away if and only if D is less than one.

From (5.21), D = \[b, so b must be less than one for stable (danped)

fluctuations. If b is exactly one, the fluctuations will neither die away

nor explode. Since, from (5.21), R is the angle whose cosine is -a/2 Jb

and whose sine is y 4b - a / 2y/b, we can find the periodicity of the

fluctuations easily.
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Conblning our analyses of the three possible cases, we have sufficient

conditions for stability:

a+b > -1 -2 < a < +2

a-b < +1 b < +1

It Is easy to show that the condition on a alone will be fulfilled if the

other tliree conditions hold. We can thuj; state that the general second-

order linear difference equation with constant coefficients will be

stable If b is less than +1 and if -(1+b) ^ a < (1+b). Sinusoidal

2
fluctuations will occur if a / '^b. Ho oscillations of any kind will

2
occur if X^ Is real and positive; this requires a > 'tb and a < 0, b^ 0.

In terms of the multiplier - accelerator model with which we began

this section, the stability conditions for equation (5.9) are v less than

one and -(l+2v) < m < +1. Tlie latter condition will generally hold, but

the former will fall in many situations. Whenever v is greater than one,

the system will be unstable. Income will undergo sinusoidal fluctuations

if v(2-v) ^ m . If m is between zero and cne, there are values of v

between one and fr/zo that satisfy this inequality. (In particular, v = 1

satisfies it for m < 1.) Ihus if thei-^ are sinusoidal fluctuations, they

will be unstable unless v is exactly one, in which case they will persist

unchanged forever.

What about linear difference equatiais of order greater than two?

'ihe procedure for solution is just the same as employed above. It is first

necessary to find the particular solution, to see what the system's stationary

or moving equilibrium is. One next finds the solution to the reduced
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equation by assuming a solution of the form X , substituting, and examining

the resulting polynomial equation in X. The roots of that equation will

be the values of X such that X is a solution. The particular solution

and the solutions to the reduced equation are then added to give the general

solution. Arbitrary constants are specified by initial conditions. General

conditions for stability and for the absence of sinusoidal fluctuations can

be formulated, but they will not concern us here.

To find the solution to a linear difference equation involving, say,

six lagged values, a sixth-degree polynomial must be solved. This can be

a rather conplicated process. No general formulae exist, and the solutions

must be found numerically, usually by an iterative method. Once the

solutioas have been found, the behavior of the system is known precisely.

But it may be more instructive to simulate the system for particular

parajTieter values of Interest, to specify the initial conditions and see

how the system actually evolves over time. Simulation vdll be the main

tool used to analyze the difference equation systems presented in the

next four chapters.

So far, v;e have dealt only with linear difference equation systems.

We have discussed stability, the question of whether (and how rapidly) the

system ccnverges to its equilibrium solution. We have spoken of sinusoidal

fluctuations, stable and unstable. Ihese modes of behavior also characterize

non-linear systems, though, as one mi(?ht guess, more can go on in the

non-linear case.
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'Itie Analysis of Non-Linear Systems

In peneral, non-linear systems can generate the four basic types of

behavior observed in the last two sections:

1. danped, no oscillations

2. explosive, no oscillations

3. dairped, oscillations

^. explosive, oscillations

One basic difference is that non-linear difference equation systems may

change the type of behavior over time. Broadly speaking, it may be helpful

to distinguish two sorts of non-linearities: comers and curves . A difference

equation with a curve non-linearity is

(5.23) Y(t) = a[Y(t-l)f + b Y(t-2) + G(t).

With some luck, the solution to this equation can probably be approximated

fairly well over some range by the solution to a linear difference equation.

A difference equation system with a comer is

(5.21) YS(t) = a Y(t-l) + b Y(t-2) + G(t)

Y(t) = IF Y(t) LESS TtlAlNl Y THEI^I Y(t) ELSE Y.

'lliat is, Y(t) cannot rise above Tin model (5.2^^). VJhen Y(t) is below

Y, the system is Just a linear difference equation in Y. But at the

comer, the behavior of the system changes sharply.
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Another basic difference between linear and non-linear systenE is

that the latter are more likely to display sustained regular fluc-

tuations. Suppose there were also a lower bound on income in (5.24).

Ihen it would be possible for the system to bounce back and forth

between the upper and lower bounds forever, for a vade variety of values

of a and b. This is what is called a limit cycle ; you will see one

of these in the next ciiapter. ouch behavior is possible for linear

systems only for certain precise parameter values. Since such razor's

edge situations are unlikely ever to be observed, business cycle theorists

have turned to non-linear models when atterrptlng to explain regular

fluctuations in economic activity.

The distinction between comers and curves is intuitively useful,

but it should not be over-enphasized. Sharp curves are essentially

equivalent to comers. These concepts should help in deciding when a

noi-linear system can be approximated by a linear system. Ihe models

presented in the next four chapters are all non-linear, and they have

two very inportant comers. Away from the comers, they still have

curve-type non-linearities, but these are not really sharp. Away from

the comers, the output from these models can be approximately analyzed

by thinking of it as the output of a hi^-order linear system.

When any variable is approaching an equilibrium level that is

known to be caistant over time, the history of that variable can be

used to describe its evolution in terms of a few basic parameters. These

descriptions are exact for first- and second-order linear systems, and

they will be acceptable approximations for conplex linear systems and for
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non-linear systems In the absence of sharp non-linearities. Ihe key

parameters are the equilibrium level and the rate of approach to equilibrium.

If a solution is explosive, this will be clear after a casual inspectioi.

If not, it is of interest to see how fast the solution approaches equili-

brium. Much of the analysis of the dynamic models will be concerned with

how clianges in structural parameters affect stability.

In case 1 above, if the equilibrium level of the variable is

constant, the solution will be of the form

(5.25) Y(t) = A + B X^

to a first approximation, where A and B are constants. For stability, X

must be less than one. We shall write this solution as

(5.25') Y(t) = EQ + K e"°^ ^, where DR = -logg(X),

and EQ is the equilibrium value of Y. We refer to DR as the danping rate

of the solution; the larger is DR, the more rapidly equilibrium is being

approached. In case 3 above, the peaks and trou^is of the fluctuations

will be connected by a curve of this sort: see equation (5.22). The constant

K may be either positive or negative; it measures the initial disequilibrium.

Still assuming that EQ is a constant, suppose we have three obser-

vations on. Y. These may be either three peaks, three trou^is, or three

points on a non-oscillatory path. Let DT be the (constant) time separating

adjacent observations. Substituting into the equation above, we have
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YA = EQ + K first observation

(5.26) YB = EQ + ?v e" second observation

YC = EQ + X e"^ ^^ ^ third observation

These are three equations in three unknowns: K, EQ, and DR. The latter

two quantities are, of course, of greatest interest.

Equations (5.26 can be easily solved for the danping rate:

(5.27) DR = - (l/DT) log^ [ (YA-YB)/(YB-.YC) ]

If we define g = e~ , the other unknowns in (5.26) can be computed

from

(5.28) K = (YA-YB)/(l-g)

EQ = (YB - gYA)/(l-g)

It must be enphasized that these solutions merely summarize the

history of a variable over a certain range. The model may well behave

quite differently in other time-periods. There is no reason to suppose

that an estiirate of DR from, say, periods 5-10 will be the same as

the estimate from, say, periods 15 - 20. Indeed, the change in DR

may be of considerable interest. Presumably, the best estimates of

EQ will come when the system has almost attained equilibrium, when

convergence has almost occurred.
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Distributed Lags; Intrcxiuctlon

I-lost economic theory is static; time does not enter in an essen-

tial way. Static theory does not supply all the information needed to

model the real world in most cases. Suppose that the static theory says

that some variable, Y, should depend on another variable, X. If the quan-

tity Y represents the outcome of a decision process, as total consunption

and total investment do, it is unlikely that changes in X will be iirms-

diately reflected in Y. It is often quite inportant, especially for

policy decisions, to be able to characterize the lag involved, to deter-

mine how long it taJces Y to respond to changes in X.

Individual decision-makers will probably respond to changes in

X some time after they occur, but not all people will wait the same length

of time to act. If they did, changes in Y would lag changes in X by

some fixed length of tine. If individuals' lags differ, the aggregate

response to clianges in X will be spread over more than one period of time.

Such lags are called distributed lags . These may exist at the individual

level as well as in the aggregate^, if individuals consider more than

one lagged value of X in making decisions. Distributed lags at the

household level are suggested by the Permanent Income theory, for instance.

If Y is determined by X throu^i a distributed lag, this means that

Y depends on more than one value of X. If we assume a linear model, we

can write the general distributed lag relation as

(5.29) Y(t) = a[ WpXCt) + w-i^X(t-l) + W2X(t-2) + •*•
].





- 99 -

The w's add to one, and they are usually all assumed to be positive.

There may or may not be an infinite nurrber of w's. (The difference

between an infinite series that drops off quickly and a finite series is

difficult to detect in practice, and the former is usually sinpler

to work with. ) The constant a represents the eventual inpact of a

maintained unit change in X.

In the finite world we inhabit, there is never enougJ^ data to permit

statistical estimation of an infinite nuirber of w's directly. Some assuirp-

tions about the shape of the sequence of w's must be made; the sequence

nnjst be expressed in terms of a few parameters so the parameters can be

estimated from data. Theoretical work can then proceed in terms of the

parameters of the sequence of w's^

One approach is to assume that the sequence of w's can be adequately

approximated by a polynomial function of the lag involved. If you then

specify the degree of the polynomial, and, if you ivish, place constraints

on its behavior at the end-points (which you must specify), you can

estimate the coefficients of the polynomial. For instance, you mi^t

assume that

(5.30) w^ = a + b i + c i^, for 1=0, 1,..., 8,

and that w.=0 for i greater than or equal to nine. Using a conputaticnal

metiiod proposed by S. Almon, the coefficients a, b, and c may be

estimated statistically.

'Ihis approach has the drawback that you must specify the nurrber of

non-zero w's and the degree of the polynomial. One ends up searcliing at
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some length for the "best" contiination. Also, if seven lagged X's are

assumed to Influence Y, one must begin estimation with the ei^th obser-

vation on Y. With long lags and few available observations, a good deal

of information may be lost this way.

The second and more conmon approach is to assume that there are

an infinite number of ncn-zero w's. For this to make any sense, we need

w. to fall rapidly to zero as i becomes large. The sinplest assuirptiai

of this sort is

(5.31) w^ = (l-k)k^, for 1=0,1,2,...

Here k must be a constant between zero and plus one, in order for the

w. to sum to one. Ihis iirposes the condition that all the w. are positive,

Ihls assuirption on the w's was first proposed and explored by Koyck, and

we speak of this as a first-order or geometric or Koyck distributed lag .

Ihe beauty of this lag structure and more conplicated variants of

it is that equation (5.29) can be re-written so as to involve X(t) and

a few lagged values of Y. In fact, if there are N parameters like k in

(5.31) that detennine the lag structure, (5.29) can be re-written to

involve N lagged values of Y. We shall return to this general point in

the next section. Let us new examine the implications of (5.13) in some

detail.

1

This restriction is reasonable in almost all situations; the matter
is fully discussed elsewhere.
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Substituting (5.31) into (5.29), we obtain

(5.32) Y(t) = a(l-k) \ k^ X(t-i) ^

i=0 =^

= a(l-k)X(t) + a(l-k) ) k^X(t-l).

1=1

Notice that the smaller is k, the more rapidly the influence of past X's

decays. Lagging (5.32) by one period and multiplying by k, we have

(5.33) ky(t-l) = a(l-k)k \ k^X(t-l-i)

i=0

= a(l-k) 'N k^X(t-i).

1=1

Subtracting (5.33) from (5.32), we have

(5.3^) Y(t) = a(l-k) X(t) + K Y(t-l), or

Y(t) - k Y(t-l) = a(l-k) X(t).

This is a first-order linear difference equation with constant coefficient

and driving function a(l-k)X(t). It will be stable if k is less than one.

From the section on first-order equations, it should be clear that the

smaller is k, the more rapidly equilibrium is approached, the more rapidly

Y responds to X. (See equations (5.^) - (5.6).) It is easy to verify that

an increase in X of one unit will raise equilibrium Y by a units.
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We shall now examine parameters used to sumnarlze lag distributions,

and we shall evaluate these quantities for the Koyck lag structure. Clearly

this structure is easily suimarized by the parameter k, but the sunnary

parameters we shall consider and (especially) the way we shall find them

will be useful in the consideration of more conplex lag structures. Also,

these parameters will provide more insist than a statement like "k= .8",

We first consider the median lag . In equation (5.3^^), suppose

that Y(0) = aX(0). That is, assume that the system is in equilibrium in

period zero. Sippose X(l) = X(0) + 1, and that this value of X is main-

tained thereafter. Then Y(l) = a(l-k) [ X(0) +1 ] + kY(0) = Y(0)

+ a(l-k). Substituting further, we find

Y(2) = (1-k) Y(0) + a(l-k) + k[ Y(0) + a(l-k) ]

= Y(0) + a(l-k)(l+k),

Y(3) = (l-k)Y(O) + a(l-k) + k[ Y(0) + a(l-k)(l+k) ]

= Y(0) + a(l-k)(l+k+k^),

and in general, summing the geometric series in k,

(5.35) Y(t) = Y(0) + a(l-k^).

Ihe new equilibrium value of Y will be Y^ = Y(0) + a. The

fraction of the adjustment to this new equilibrium cornpleted after t

periods is sinply

Y(t) - Y(0) = a(l-k^) ^ (i_k^).

Y - Y(0) a
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Ihe median lag, T ,, is sinply that value of t. for which the fraction of

adjustment completed equals one half. Thus we have

T
(5.36) .5 = 1 - k "^, or T^ = log(.5)/log(k).

Note that as k goes to zero, so does the median lag, as one mi^t expect.

In coirplicated lag structures, the median lag may be hard to conpute.

In its place, we use the mean lag , T , to measure the speed of response.

The mean lag is defined by
CO

(5.37) T^ = ^ i w,.

1=0

Before conputing the mean lag for the Koyck case, it will be

useful to introduce two concepts of broad applicaticn. The first is

the lag operator , which we shall write as L. This operator is defined

by the following Identity, where V is any time-series variable:

(5.38) L^ V(t) = V(t-k),

for k a non-negative integer. We can re-write the general distributed lag

equation (5.29) in this notation as

(5.39) Y(t) = [ ^ w^ L^ ] a X(t) = P(L) a X(t).

i=0

T^ie quantity in brackets is called a lag polynomial . It is formally clear

that the msan lag can be found by differentiating the lag polynomial with

respect to L, treating L as an ordinary variable, and setting L=l; conpare

(5.37). This is more useful than it appears, as we shall see.
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From (5.31), equation (5.29) in the Koyck case becomes

(5.^0) Y(t) = [ (1-k) 2. ^^^^ 3 a X(t)

i=0

1-k
1-kL

a X(t).

To obtain the second line, we treated L like an ordinary constant between

zero and one, and we ejqDressed the sum of the geoiiEtric series in closed

form, notice that if we multiply both sides of (5.40) by (1-kL) and

substitute Y(t-l) for L Y(t), we obtain equation (5.3^). Differentiating

the lag polynomial in the second line with respect to L and setting L

equal to one, we obtain

(5. 'a) T^ = P'(i) = 3^.

As with the median lag, when k goes to zero, the mean lag does also.

Occasionally, people speak of the variance of the lag distribution,

V. . lliis quantity is defined by

(5.^2) v^ = ;:: w^ c i - t^ i' = 1. ^ ^ - ^•
i=0 1=0

An examination of (5.39) should make it clear that the fii-^t term is found

by differentiating the lag polynomial twice respect to L, setting L equal

to one, and adding the mean lag. In the Koyck case
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V^ = P"(l) + P'(l) - [ P' (1) f
(5.^3)

2 2= 2k ^ + k k ^ _ k ^

n=kr Tl-kT " Tl^kT " (l-k)--

'I5ie lag polynomial has one other inportant use. Notice that the

Nth derivative of ttie lag polynomial in (5.39) with respect to L is given

1^ ,,,,x d^^P(L) "> i! ,i-N

i=N

since the terms corresponding to i less than N vanish identically.

(Recall that W! = iJ(N-l)(N-2)'
*

'2 1.) Setting L=0, all terms with

i greater than N vanish. Since 0! is identically equal to cne, we have

the result

(5.^5) ^^ = N! wj^

dl.
I

^^*

L=0

We can thus go back uniquely from the lag polynomial to the w's. This

relation is easy to verify in the Koyck case using (5.'^0), and it is

useful in hif^er-order structures.

Before examining such structures, it will be useful to illustrate

the application of the tools we have developed. Suppose we have estimated

a distributed lag relation between Y and X and have obtained

(5. 'lb) Y(t) = .30 X(t) + .80 Y(t-l).

'ihe sliort-run inpact of X upon Y is sinply .30. To obtain more information,

conpare equation (5.^6) to equation (5.3^0. It is clear that k=.80 and
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that a, the long-run inpact of X on Y, is equal to .30/(1 - .80) = 1.50.

Using equation (5.3^) v\fe can conpute the median lag:

T^ = log(.3)/log(.8) = (-.693)/(-.223) = 3.11 periods.

Fran equation (5.^^1), the mean lag is sinply .80/(1.80) = 4 periods.

Similarly, equation (5.^2) could be used to compute the variance of the lag

distribution, and equation (5.31) could be enployed to compute the indivi-

dual lag v;ei^ts.

Nov/ suppose that the estimated relation between Y and X had been

{5.^7) Y(t) = .20 X(t) + 1.10 Y(t-l).

Can we compute similar statistics for tMs equation? No, since the inplied

value of k, 1.10 is not consistent with the Koyck lag scheme. It may be

possible to make sense of equation (5.^7), but it cannot be interpreted

as an estimate of a geometric distributed lag functicn.

Distributed La^: General Analysis

We shall begin this brief discussion of more corrplex lag schemes

witn a second-order exarrple. Suppose that the quantity X in (5.20)

represents an observed data series, but that Y is not observable.

For instance, in an investment study, X mlgjit be sales and Y mi^t be

decisions to purchase new capital goods. No data on Y is available, but

it is desired to explain investment spending, Z. We assume that Z is

observable and that it is related to Y according to
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= [^y(5.48) Z(t) = gjj;|b Y(t),

vjhere L is the lag operator, as before, and m is a constant between zero

and one. Ihe rrean lag of (5.^8) is clearly in/d-m). In the investment

study, this would represent the mean lag betv;een decisions and deliveries.

It is easy to show that v/e can write Z(t) as a function only of the obser^

vable variable X(t) as follows:

(5.'49) Z(t) =[ (l^niniziL' l^b X(t).

[

(l-m)(l-k) 1
(l-nL)(l-kL)J

By differentiating the lag polynomial In brackets (5.^9) v/ith

respect to L and setting L equal to one, it can be shown that the mean lag

in i,5.^0) is equal to [ m/(l-m) ] + [ k/(l-k) ]. Ihe mean lags add.

Ihe variance of the lag can also be conputed, and equation (5.^5) can

be used to corrpute the lag wei^ts, the w's.

Miltiplying (5.^9) throu^i by (l-mL)(l-kL) and re-l^^riting, we

obtain

('^.50) Z(t) = [ (l-m)(l-k)ab ] X(t) + (k+m) X(t-l) - km Z(t-2),

lliis is a second-order linear difference equation with constant coefficients

and driving function [ (l-m)(l-k)ab ]X(t). Call this quantity D(t), and

re-write (5.50) as

(5.50') Z(t) - (k+m) Z(t-l) + km Z(t-2) = D(t).
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The behavior of this system is determined by the solutions to the

reduced equation, with D(t) = 0. V/o can apply the conditions v;e derived

earlier for second-order difference equations. The solutions will not

involve sinusoidal fluctuations if (k+m) ^ ^^km; this conditlai is always

satisfied. Both real roots will be positive, since -(k+m) < and km ^ 0.

Sufficient conditions for stability are km ^ +1 and -(1+km) < -(m+-k) < (1+km).

These conditions are always satisfied for ^ k, m < +1. Thus cl-ianges

in X will result in Z(t) steadily approaching the new equilibrium. This

corresponds precisely to wiiat we mean by a distributed lag.

Suppose we estinate the coefficients in (5.50) from time-series data

cyi Z(t) and X(t). The question naturally arises v/hether the estimated

coefficients make sense as having come from the structure v;e have just

described. One could solve for the estimated values of k and m and see

if they are both positive and less than one. Alternatively, the conditions

for non-oscillatory, stable solutions to the reduced equation could be

applied directly to the estimated coefficients. If these conditions are

not met, the estimated equation does not represent a distributed lag of

the usual form.

In the general case, distributed lag equations may involve more

than two lagged Z's, and there may be lagged X's as well. The restrictions

that estimated coefficients must satisfy in order to be sensible may be

quite corplex; they will not concern us here.

To examine the general case, we define

F(L) = a^ + a,L + a^L" + ... + a l"^
\) X L. m

o
G(L) = 1 - b,L - b„L - ... - b^L

n
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The general rational distributed lag difference equation may then be

written as

(5.51) Z(t) = 1^ X(t).

This is called a rational lag since the lag polynomial P(L) may be written

as the ratio of tv/o polynomials in L. This term and much of the theory

of sudi lags are due to D. Jorgenson. From equation (5.23), it should

be clear that unless G(l) is positive, the equation makes no sense as a

distributed lag. It can be shown that G(l) > is a necessary condition

for the stability of the difference equation. !Jotice that the long-run

inpact of X(t) on Z(t) is given by F(l)/G(l). (Ttiis is the change in

equilibrium Z brought about by a unit change in X.) We can write (5.51)

in the same form as (5.^9):

. ^. . _ r G(l) F(L) 1 F(l) y.^N
(5.52) ^(t) -

^ F(i) o(L) J -gTiT
^^^^•

'Ihe quantity in brackets is now a lag polynomial, as we have been using the

term. It can be differentiated with respect to L to find the mean lag, the

variance of the lag distribution, and the individual lag wei^ts, the w's.

We coiclude this chapter with an illustraticn of the use of the tools

developed here. Consider the following estimated equation:

(5.53) Y(t) = 1.0 X(t) + 2.0 X(t-l) + 1.10 Y(t-l)

- .20 y(t-2).
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It can be easily be shown that the estimated k and m are both between

zero and one, so the w. are all positive. The initial iirpact of X on

Y is sinply 1.0, while the Icng-run effect of a change in X is given by

(1.0 + 2.0)7(1.0 - 1.10 + .20) = 30.

To obtain further results, we re-write (5.53) in the form of (5.52).

Here we have

P(L) = 1.0 + 2.0 L; F(l) = 3.0

G(L) + 1.0 - 1.10 L + .20 L^; G(l) = .10

Hence (5.:) 3) niay be re-written as

(5.5^) Y(t) = (.10)(1 + 2L)

(3)(i - i.iL + TzTr
30. X(t)

Differentiating the lag polynomial in brackets with respect to L and

evaluating the derivative at Ij=1, we obtain the mean lag:

T^ = [ .10/3.0 ] [ (.2 + 2.1)/. 01 ] = 7.7 periods.

We could conpute the variance of the lag distribution similarly, and equation

(5.^5) could be used to obtain the lag weigits.

'iJiere is an easier way to obtain the first few lag wei^ts in

this case, however, and we new illustrate it. Tlie lag polynomial can

be re-written in ttie following form after soire trivial re-arrangement:

(1+2L)

30
[ 1 - (I.IL - .2l2) ]
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The second term is sirtply the sum of a geometric series. Writing the

series out, we obtain

^ 1=0

= (1/30) [1 + 2L ][ 1 + I.IL - .2L^ + 1.21 I?

- .221? + .04L^... ]

= (1/30) [ 1 + 3.1L + 3.21 ]} + ... ]

'Ihus we have Wq = (1/30), w^ = (3.1/30), and w^ = (3.21/30).





CHAPTER W

The Slrmlest Multlpllep-Accelerator Interactim

Introductlcfi

In this chanter, we shall discuss model DYNECl, the first of

four dynamic macroeccnanlc models presented in this text. These models

are nested, in the sense that the model presented in Chanter VII, DYMEC2,

is an elaboration of DYTJECl, Chapter VIII 's model, DYNEC3, is an elaboration

of DYNEC2, and the model in Chanter IX, DYNEC'l , is an elaboration of DYNEC3.

It is thus of some imnortance that the reader understand the material

presented in me chapter before f^oinp; on to the next cne. In all of

these models, the pre-set parameter values and initial ccnditicns bear

a broad resenblance to magnitudes characterizinp; the U.S. eccnomv in the

late 1960's. Each time period is designed to corresnond to a quarter

(three mcnths) of calendar time in a real ecmony.

In contrast \'fith the models nresented in Part II , we no Icnqer deal

only with equilibrium situations. Further, we do not assume that the

capital stock is essentially unchanged as the eccnonTV moves towards

equilibrium. Also, basic ecmomlc variables such as technology and the

labor force may chanre over tine. It is quite possible for the DYNEC

models never to reach an equilibrium nosition; our interest is mainly

in the path they follow towards (or awav from) equilibrium. Unemplcyment

situations and unemnlcyinent equilibria are quite nossible here, since there

are rigidities. In particular, we assune that the reed wage rate is
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determined outside the model.

The demand for investment is not directly assuriEd to be a f\incticn

of income or of the chanpe in incoire. Pother, we bepin with firms' funda-

mental demand for capital floods. Ihe discrepancy between actual and

desired capital stock pjenerates demand for press investment, te in the

IS-LM models, we do not explicitly consider investment in housing.

Inventory investment is added to the model in Chapter VIII.

A nurrber of important sinrolifvinp' assunptions are made in this

model. RLrst, foreipn trade and net foreign investnent are assumed zero.

All the DYNEC's are models of closed eccncmLes. In DYNECl, no lars are

present. This assuimtion of instantaneous perception and reaction en the

pari- of eccnomic appnts is relaxed in DYNEC2. In DYNECl and DYNEC2, no

inventories are present, and production is alv/ays equal to sales. These

assunptions are relaxed in DYNEC3. Finally, the rate of interest is

assumed to be exopenously determined until DYNEC'^, when the martlet for

real cash balances is explicitly introduced.

Ihe structure of DYNECl is spelled out in Tables VI. 1 and VI. 2 and

in more detail in Appendix A. (Remerrber as vou read these that X**A means

X raised to the A power, while X*A means X times A.) The DYNEC models all

use Archive DYNEC, presented in Appendix D,

Even with all the sinpli fyinrr assunptions that have gone into its

ccnstmction, DYNECl is a rather complicated model. Conpare Table VI.

2

to any of the Tables in Chapters III and IV. Instead of proceeding

directly to an equation-by-equation discussion of the model, we shall

present a simplified linearized version of DYNECl in the next section.
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Once the basic outline of the model is clear, we can proceed with a

detailed examinaticn of its structure. The final section describes

the model's behavior and discusses the sort of exneriments that can

be perfomed with it.

The Basic Model

Making all enuations linear and exolalninp- mly the most iirpor-

tant variables, we can write a sinplified version of DYNECl as follcws:

(6.1) a. YDI = k«YP

b. CD = m*YDI

c. ID = ^*[v*YP - (1-RD/A)»K(-1)]

d. K = ID/M + (1-RD/4)*K(-1)

e. YP = CD + ID + GD

Ihe variable K is the eccnorny's capital stock in billions of constant

dollars. Ihe followinp: flow variables are msasured in billions of constant

dollars at annual rates:

YDI = Personal Disnosable Income

CD = Ccnsumotion Demand

ID = InvestiTBnt Demand

GD = Government Demand

YP = Gross National Product

Constants appearins: in equations (6.1) are the follcvdjip:

k = Ratio of YDI to YP
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m = Marrdnal (and Avera^) Propensity to
Ccnsune out of YDI

V = Desired Ftatio of Capital to Output

RD = Annual Fiate of Depreciation of Capital Stock

Ihe notation here is a bit different fron that used in the last chapter.

Basically, we've suppressed the t's. Thus YP here would be YP(t) in

Chapter V, and K(-l) here would be K(t-l) there. This chanpe will sim-

plif;^/ our equations and introduce notation irore consistent with ccmnuter

output; it should cause no ccnfiEion.

All the Inccme variables are quarterly totals expressed at annual

rates, as are all Department of CormBrce Quarterly national incone and

product series. Ihus YP = 800 means that 200 blllicn dollars (neglectlnp;

seasonal ad^lustrrents) of final p;oods and services were produced during the

quarter. Ihis means that when ID = 100, cnly $25 billion in gross invest-

ment actually took place during the quarter. Capital stock, en the other

hand, has no associated time dimension. It thus rsnuires sone care to

correctly relate measured gross investment to changes in the capital stock.

Let us examine equatlois (6.1) one at a time. Equation (6.1, a)

makes disposable personal incare a constant fracticn of gross national

product. As tax rates rise, this fraction falls. Ccnsunpticn spending

is determined in (6.1.b)as a constant fraction of disposable incone. We

can conbine these two equaticns to obtain

(6.1.b') CD = k»m*YP.

Thus km is the marginal (and average) propensity to consume out of (UP.

In equation (6.1.c), v is the desired ratio of capital stock to O^P,
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where GNP is measured at annual rates. Ihus v*YP is the desired canital

stock. If capital stock depreciates at a rate of RD rer year, a fraction

W/^ will effectively vanish each quarter. "Thus (l-RD/'i)*K(-l) is the

amount of caoital en hand if no investment is undertaken. The quantity

in brackets in (6.l.c) is thus the amount by which desired capital exceeds

capital en hand, the amount of gross investnent firms will seek to make.

Since ID/^ is the amount of investment actually made, the bracketed ex-

pression is multiplied by ^ to obtain ID. Equation (6.1.d) is the identity

that gives the capital stock as a function of the oast stock, depreciatioi,

and prposs investment. Note the use of the constant ^ to convert pross

investment at annual rates into actual pross investment and to convert the

annual rate of depreciation into the quarterly rate.

Ihe last equation in (6.1) is slmoly the accountincr identity found

in all macroeccnomic models; GD is assumed exof^nously deteimned. Substi-

tuting equations (6.1. a) - (6.1.c) into (6.1.e) we obtain

where d = (l-W/^) for simplicity. SijDstitutinp; this into (6.1.c) yields

(6.3) ID = ^^
,

GD - M±:]I!i)k(-i).
l_irk-4v l-nk-'^v

Finally, we substitute (6.3) into (6.1.d) to obtain a difference equation

in K:

(b,H) K = -^vd K(-l) +_J1___ GD.

l-rrk-^Jv 1-nic-^v

Ihis is a first-order linear difference equation with constant coefficient and

driving function vGD/( l-rak-4v) . As we saw in the last chapter, the interesting
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properties of soluticns of this type of equatlcn depend cnlv en the

coefficient of the laF^d variable. let us therefore examine the coef-

ficient of K(-l) in soTE detail.

First of all, v is normally found to be v;ell above .25 in emoirical

wori<;. If v takes en such a value, as it does in the ore-set narameters

to DYNECl, the coefficient of K(-l) must be positive, since ni^ is positive.

We thus knav that the solution to the reduced equatim of (6.^) involves

no cscillatlcns. This solution will be stable if and only if the coeffi-

cient of K(-l) is less tlian Plus me. After a little alpjsbra, it can be

shown that this reduces to the ccndition

1 - ni^ < V RD.

At the pre-set parameter valuss, RD is .10, mlc is about .66, and v is

about .60, Ihe inequalitv does not hold, since .06 (=vRD) is a erood deal

less than .3^ ("1-rrk). The basic linear model (6.1) therefore yields a

solution in which K either f^ows or decays without limit, depending en.

initial ccnditicns. Prom (6.2), YT will also steadily di verre from eoul-

Ubrium. (Ccnsider GD constant. I^ K prows, so does K(-l) , and so does YP.)

Similarly, both CD and ID will head for minus or plus infinity, depending en

initial conditions.

Ihis result is patently unrealistic. One basic way in which the

linear model (6.1) violates reality is by tmorinp- two important barriers

present in any real economy. First of all, pross investment cannot be neeia-

tive for the economv as a whole. Second, there is an upper limit to pro-

duction, YP, which depends on available capital, labor, and technology.

To take these two barriers into account, the DYNEC models all have
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two comer-type nonlinearities. We use equation (6.1. c) to calculate

desired investment, IDS, and we add the equation

(6.5) ID = IF IDR GRT 0.0 THEN IDS ELSE 0.0.

The term "GRT" Is shorthand for "p^eater than". Similarly, we use equation

(6.1.e) to coiTDUte ap^^ireprate demand, YD, and we add the equation

(6.6) YP = IP YVE GRT THAN YD THEN YD ELSE YPE,

where YI^, Ajll-ermloyment production, is the inaximum amoint the eccnonx/ can

produce. (In reality, YTE is never a fixed nuirber. We Rain some sinplicity

,

ha^fever, by insertinr this ncn-linearity as a comer rather than as a sham

cur'.'e.) Thus Income is boinded by two values: the level o''^ YD corresncndlnp;

to zero gross investment, and full-enDloyment production.

Alcnp; with these two inequalities, an equation must be added to

determine actual pross investment v^fhen YD is above YP. When this is done,

the modified system is still unstable, but motion awav fron equilibrium will

be checked by the built-in barriers. In fact, the ecmonT^/ described here

will bounce back and forth between these two limitinp; levels, in what we

called a limit cycle in the last clianter.

It is easy to show that it must do this when full-enployment income

is constant over time. In this case, cnce YP arrives at the full-emoloyment

level, it can rise no further. In\^strTBnt demand will continue cnly intil

the desired capital stock corresponding to YPE is attained. Then IDS will

fall, and it will carry inccne down with it. At the new, lofjer level of

income, there is excess capital. IDS will be negative, and ID will be zero.
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Ihere will be zero proes in\estrTEnt until depreclatiai has reduced the

capital stock below the KS correspcndlnp; to the lower bound en income.

When businesses (finally) fi.nd themselves with too low a capital stock,

they will undertake invsstment. This increases income and, since the

system is unstable, eventually sends it all the way to Y^FE,

Before roinfr into the details of DYNECl, we should mention the role

of economic prowth in this system. I^ technolof^ and the labor force rrow,

YFE will prow also. This means that the eccnorny has a higher potential real

(STP. l^Jhether this potential is realized or not depends m the structure of

the econoirir and the policies undertaken by povemrrent. In the sinple model

(6.1), GD must pTxw as rapidly as YFE if successive recessions are not to

involve hipher and hipjier rates of unemnlovnBnt. All the DYNEC models can

be used to simulate prowing; eccnomies; they include both cyclical and p^cwth

elements. But ap;aln, all the P-T^C models (and especially DYI^Cl) are

extreirely simplified portraits o^ a v37^r complex reality.

The Structure of DY^EC1

In this secticn we shall po throu^ the equaticns listed in Table VI.

2

in the order they are presented. See Table VI. 1 for notation.

Blocli I p;ives the relations between Gross Natioial Product and Dispo-

s*le Personal Incane. The quantity ^ is the ratio of the price level in

the current quarter to the price level in the base period, which is taken

as the quarter before the simulation taepins. Thus P*YP is WP in billicns

of current dollars. We assume that Personal Income, YPI, is a constant

fraction, ( 1-LFR) , of Gross National Product. This is a not unreasonable
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annroximaticn to a rather Icnp; list of national income accountiner relations

that are not really imnortant for an understandinp; of business fluctuations.

Ihe seccnd equation in this block subtracts personal incane taxes

from personal income and adds current dollar transfer payments, TRP, to

yield Elsposable Income. Personal taxes are assumed to be pl-ven by the

following equation:

(6.7) Perscnal Taxes = L TRA (YPI/L)'^^.

Since L is the labor force in billions of oerscns, and since we assurtB that

L is a constant fraction o^ the pooulation, YPIA. is proportional to personal

income per capita. At pre-set values, TFB is pr^ater than cne, so that we

are raodeline a progressive tax structure; taxes are an increasing fraction

of personal incoire as personal income ner capita rises. The rate level

parameter, TRA, can be made to grow or decline, as vfe shall discuss shortly.

In the seccnd block, the first and last equations are essentially

the saiTE as their counterparts in model (6.1). Ccnsunption is a constant

fraction of constant dollar disposable income , and aggregate demand is the

sum of consumption, investment, and government demands. The equations de-

temining K, IDS, and ID are also as above. The cnly difference is that

desired capital stock, KS, appears explicitlv, and it is detemined by a

rather forbidding equation of its own instead of being simply v*YP.

To explain the equaticn giving KS, we need to begin with the economy's

Cobb-Douglas aggregate production function:

(6.8) YP = A m'^^ K'"*-^
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where F!i rafters to man-hours worked. The exponents of this function imDly

constant returns to scale; they are consistent with recent eccnometric

wrortc. Since YP is exnrsssed at annual rates, W. must be man-hours at

annual ra:e3. Also, MH must be in billicns, since YP and K are in bil-

lions. We obtain MH bv multiDlyinp- E, errDlqvment in billicns of nersons,

by 2000 , the assumed awrase nuirber of man-hours per man-year.

We obtain KS, the desired capital stock, as follows. Assume that YP

is piven to the firms in the ecancmr. Ihe cost of a man-hour of labor is

the real ware rate, \-l. The cost of a dollar of canital stock held for a

year is (2.5*FH-RD), as in Chanter IV. The equation s^iven for KS, excent for

the parameter CUS, is the solution to the problem of choosing K and I^H so

as to minimize the cost of nroducinp; YP. Notice that the hipher the wapje

rate or the lower the onnortunity cost of capital, the larcer will be the

capital stock desired to nroduce a pi.ven outout. Similarly, the larpier is

A, the lower will be KS. The parameter CUS is nresent in case it is desired

to model a situation in which businesses wish to hold excess capital. If

CUS is .90, for instance, KS will be approximately 10% larpjsr than the

profit-maximizing capital stock. Block II is really the critical sectioi of

this model. It should be well understood before simulaticns are performed.

We next consider the third block. Pull-ermloyment production, YFE, is

detemiined from the production function and from the definition that full

enploymsnt correspmds to a measured inermloyment rate of 2%, The second

equatlcxi in this block is the unner barrier en income, and the third equa-

tion expresses the equality of production and final sales. In DYNEC3 and

DYNEC^, inventories are present, and this equality no Icnper holds.
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In block VI, the price level Is deternined. The rate of inflatlcn is

related to the rate of uneirployment by a Phillips Curve of the following form:

(6.9) PD = a(lAI) + b,

where a and b are constants. These constants are naraireterized, so the user

can snecify the PD corresponding to 2% unenployment , MPD, and the rate of

unenployment corresDoiding to zero inflation, UZ. Since PD is the annual

rate of inflation, it must be divided by four in the identity that gives

the new price level as a function of the old level and the rate of infla-

tion. Remerrber that P is the ratio of the current price level to the nrice

level prevailing in the quarter before the simulation begins.

Block V yields the variables that describe the eccnoinv's utilization

of capital and labor. EirploynEnt in billions of nerscns, E, is comnuted by

solving the production function. The unenployrrBnt rate is then obtained

from an identitv. Ihis rate does not corresnond to the unermloyment rate

measured by the Bureau of T^abor Statistics , since we make the unrealistic

assunption that the labor force is a constant fraction of the populaticn.

In real liffe, the labor force rises relative to the worthing age pcDulation

in prosoerity, and declines in recessicns. Most of this variability in

particination comes in the categories of older workers, teenagers, and

women. Ihese perscns are not always narticipants in the job market, whereas

the fraction of prime-aged males in the labor force is essentially constant.

Our U can be most sensibly interpreted as the rate of uneirployment of the

full-enployirent labor force. It makes sense as a measure of resource

utilization, but its dynamics will not be the saire as those of the rreasursd

uneirployment rate. In particular, it will rise more than the nEasursd rate

for any given fall in YP.
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Ihe third equaticn In this block yields a new measure of the utiU-

zaticn of the eccnomv's canital stock. The canacitv utillzaticn rate, ru,

^is defined as "ontimal capital in use" divided by the existinp: capital stock.

"Optimal capital in use" is in turn defined as the nurrber of man-hours used

(at annual rates) times the cost-minimizinp: ratio of capital to man-hours,

nils ratio is equal to KS, ontimal canital, divided by the ontimal nurrber

of man-hours plven YP. It is a constant equal to .15W/[.85(2.5R<-nD)], as

can be easily demmstrated. Vlhen CU is above CUS, businesses will want to

add to their canital; when CU is below CUS, they will desire less canital

than they have, so CU is sensible in this repard.

Block VI describes what happens v/hen YD is above "^W, (Note that if

YD ib less than YT^E, FED Is equal to one.) We assume that the saite fractim

of all demands are satisfied when this occurs;. This fraction is equal to

YSAD = YTiE/YD = RSD. We multiply CD by RSD to obtain the real demands for

consumer poods and services that are satisfied. Similarly, FGD* CD is

actual provemmsnt purchases of p-oods and services, and RSD*ID is actual

1
satisfied investment demand of firms.

Finally we corns to block ^n.1. Here we detenrdne government demand,

the labor force, the level o^ technolopv, the real viare rate, and the level

of personal tax rates. These are coirnletelv exopenous to the rest of the

Many interestinr questions of .lust how excess demand is actually rationed

among sectors are larpely unanswered.
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model, since they denend mly en initial cmditicns and en naraireters

supplied by the user. Ihe equations nemit both trends and stenwise

chanpjss in these variables for the user's con-yenience. Ccnsider, for

instance, the eauations for A. If it is desired to leave A unchanred

for a oartlcular run, set GA = DA = 0. If A is to ptcv;, leave DA=0 and

make GA positive. If A is to be increased cnce and for all, set GA=0 and

malce DA positive. Finally, by usinp- both OA and DA it is prssible to

investigate stepwise chanpes relative to a basic trend. For instance,

two runs could be made with GA=.001, one with DA=0 and one with DA=5. F\

ccmoariscn of the output would indj.cate the irmact of a different level

of A with the saxre trend. Usinr the equations in block VII, it is pos-

sible to simul&te a v;ide variety of chanpdnp en^/ironments.

It must be enrthasized that the cnly reason for block VII is to penrlt

the user to conveniently vary GD, L, A, W, and TRA from period to period

durlne: a simulation. The ,1ust-naned variables are exop«nous quan-

tities that affect the ecmonTV.

Ccmputer Analysis and Exercises

All the DYNEC models are dynam:l.c. Solutions should bepin with year 3.

Each "year" correspcnds to three mcnths of calendar time. The solution for

year N+1 does depend en the soluticn found ^or year N. To observe the im-

pact of a parameter chaneie, it will usuallv be necessary to simulate at

least thirty "years". Graphical output will almost always aid in under-

standing what is going en. All the UfNEC models use Archive DYNEC, None

of these models present anv difficulties o^ non-convergence en the TROLL
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system. As Icng as paraireter chanpies are not too drastic, no nrobleitB of

this sort should occur.

The pre-set values of the oaraneters are as follrws:

LFR .185 TFB 1.21

TRP 0.0

APC .94 RD .10

R .0'^5 OJS 1.0

MPD .10 UZ .10

GGD 0.0 DGD 0.0

GL 0.0 DL 0.0

OA 0.0 DA 0.0

GW 0.0 W 0.0

GTRA 0.0 ITTRA 0.0

Also, initial ccnditions must be provided for these variables whose lap'ped

values are present in the model. Ihese are as follcws:

K(2) mo. P(2) 1.0

GDrR(2) 220. ATR(2) 4.67

ITR (2) .0756 OTR(2) 4.02

TRAT(2) .021

With these parameter values and initial cmditions, the model's be-

havior is well described bv the basic model nresented above. The economy





- 126 -

rockets from one barrier to the other. It remains a Icng tine en the lower

barrier once it arrtves there, since a nreat deal of canital stock must be

depreciated. One question that mav be investip;ated is whether there are

any reasmable paranEter values that will stabilize the system. Would a

lareuer TFB, for instance, make for a noticeable increase in stability?

Another set of questions have to do with the nattem of g-rowth in

this eccnonr/. The inpact of various factors en the trend rate of grcwth

can be analyzed, along with the response of the ecancm/ to shocks around

trends.

Let p;(X) be the nercenta^ rate of pra-ith of the quantity X, defined by

(6.10) f(X) = ^ i
.

dt X

Since the rate of pro^^^th of man-hours is equal to the rate of growth of

employment, we can differentiate the arFregate productim function and

obtain

(6.11) g(YPE) = .15 g(K) + .85 g(L) + g(A).

In equilibrium, with R and RD constant, it is easy to shew that

(6.12) g(W) + g(L) = g(K).

Siiastituting into the equaticn just above, we have

(6.13) g(YFE) = g(L) + g(A) + .15g(W).

If growth is to be balanced en avera^, it should be the case that

rXC'^) = r(YFE). A set of paraneters that satisfies this and is reasonably

compatible with oost-war U.S. exoerience is the following:
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GA = .00595 (2,3855 ner year)

GL = .00125 {.5% ner vear)

nw = .0071 (2.8iJ% ner year)

GGD = .00825 (3.3^ ner year)

With these parameters and all other naraneters and initial conditions as

above, the eccnoiiTv settles into oscillatory p;rowth with about 10% of the

full-eimloyirent labor force unenployed on avera^. DYNECl still hits the

banrlers, but now the barriers are rraving.

However, this is not a true enuiUbriim. As inccne ner

capita increases, a nropo^ssive tax structure (TRB fn^eater than cne) leads

to an even more ranid rise in taxes per capita. 'Ibis is the nhencnencn

of fiscal drap ; it will eventually sla^ the rate of frrcwth. Assuming LFR,

TFB, and TRP constant, the condition that real personal taxes prow as

rapidly as YP is obtained from equation (6.1^).

(6.li|) g(TRA) = (TFB -l)[g(L) - g(P) - g(YP)J

In terms of the model, this means that real nerscnal disposable incone will

be a constant fraction of (li? if

(6.15) CJTRA = (TFB -l)[nL - PD/'\ - g(Y?) ]

where g(YP) is the ner-quarter rate o<^ growth of YP. If prices are rising,

the tax rate must fall if equilibrium is to be maintained at the given rate

of price increase. Othewise, rising prices will increase taxes more than

inccne and slow growth. It if is desired to obtain balanced growth in a

situation in which the quantity in brackets in (6.15) will not be zero.
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the rate of PTOwth of TRA must be non-zero as well. Unless the rate of

PTOWth of per-canita incoTE or of prices are quite larp^e, this can be

exnected to be a second-order efftect for reascnable values of TFB.

In a prrowth situaticn, what is the iimact of parameter changes on

stability? What efffect do narameter clian^es have en the equilibrium

rate of prcwth?

In exnerimenting with the DYTEC models, one must be very careful to

distinguish between the iriDact of initial conditions and the mode of be-

havior Rgnerated by the model. It is possible for a given narameter chanps

to increase the initial dis-equi Librium and yet to stabilize the system.

'Ihe first ffew fluctuations will tlien be larger than bef'ore the change, but

they will damn out faster. Md it is the rate of danDing that is of

interest, along with the eccnorr^'s equilibrium position.

Fundamentally, DYNECl's behavior is not very rich. For most para-

meter values, it will race from one barrier to the other indefinitely in

a: limit cycle. The basic elements of DYNECl are, havever, the fundaiTBntal

ingredients of most models of cycles based en swinrrs in plant and equinment

spending, thoupji the need for modifications is clear. No real eccnow is

as unstable as DYNECl. Ihe main numose of this chanter has been, to

present the structure of DYNECl, since the more interesting models of the

next three chapters are modifl editions of DYNECl that include additional

elements of realitv.
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Table VI.

1

Notation Used in DYNECl*

I. a. Consumer Income: Parameters

LFR Ratio of "leakages" between GNP and Personal Income to GNP (fraction)

TRB Tax Rate B: degree of progression (pure number)

TRP Government transfer payments to persons (billions, curr.$)

I.b. Consumer Income: Variables

YPI Personal Income (billions, curr.$)

YDI Disposable Personal Income (billions, curr. $)

II. a. Aggregate Demand: Parameters

APC Average and marginal propensity to constime out of YDI (fraction)

R Rate of interest (fraction)

RD Annual rate of depreciation of capital stock (fraction)

CUS Desired Rate of capacity utilization (fraction)

II. b. Aggregate Demand: Variables

CD Consumption demand (billions, cnst.$)

K Capital stock (billions, cnst. $)

KS Desired capital stock (billions, cnst.$)

IDS Desired investment (billions, cnst.$)

ID Investment demand (billions, cnst.$)

YD Aggregate demand (billions, cnst.$)

III. a. Production and Sales: Parameters

none

Ill.b. Production and Sales: Variables

YFE Full-employment GNP (billions, cnst.$)

YS Final sales (billions, cnst.$)

YP Production (billions, cnst.$)
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(Table VI. 1, Continued)

IV. a. Prices: Parameters

MPD Annual rate of inflation at full employment (fraction)

UZ Unemployment rate for which inflation is zero (fraction)

IV. b. Prices: Variables

PD Annual rate of inflation (fraction)

P Price level relative to base period (pure number)

V.a. Resource Utilization: Parameters

none

V.b. Resource Utilization: Variables

E Employment (billions, persons)

U Unemployment rate (fraction)

CTT Rate of capacity utilization (fraction)

VI. b. Rationing: Parameters

none

VI. b. Rationing: Variables

RSD Fraction of demands satisfied (fraction)

C Satisfied consumption demand (billions, cnst.$)

I Satisfied investment demand (billions, cnst.$)

G Satisfied government demand (billions, cnst.$)

VII. a. Exogenous Influences: Parameters

GGD Trend rate of growth of government demand per quarter (fraction)

GL Trend rate of growth of labor force per quarter (fraction)

GA Trend rate of growth of productivity per quarter (fraction)

GW Trend rate of growth of real wage rate per quarter (fraction)
GTRA Trend rate of growth of personal tax rates per quarter (fraction)
DGD Deviation of government demand from trend (billions, cnst.$)

DL Deviation of labor force from trend (billions, persons)

DA Deviation of productivity from trend (pure number)

DW Deviation of real wage rate from trend (cnst.$ per manhour)

DTRA Deviation of personal tax rates from trend (fraction)
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(Table VI. 1, Continued)

VII. b. Exogenous Influences: Variables

GDTR Trend level of government demand (billions, cnst.$)

LTR Trend level of labor force (billions, persons)

ATR Trend level of productivity (pure number)

WTR Trend level of real wage rate (cnst.$ per manhour)
TRAT Trend level of personal tax rates (fraction)
G!D Government demand (billions, cnst.$)

L Labor Force (billions, persons)

A Productivity (pure number)

W Real wage rate (cnst.$ per manhour)

TRA Level of personal tax rates (fraction)

* The organization of this table corresponds to that of Table IV. 2. Parameters
are defined when they first appear; variables are defined when they appear on

the left of an equation. Fractions and pure numbers are unit-free. The
following abreviations are used:

cnst.$ = constant (base period) dollars
curr.$ = current dollars

All flow variables are measured as seasonally-adjusted quarterly totals at

annual rates.
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Table VI.

2

DYNECl: Basic Multiplier-Accelerator Model

I

.

Consumer Income

YPI = (l.-LFR)*YP*P

YDI = YPI - L*TRA*(YPI/L)**TRB + TRP

II. Aggregate Demand

CD = APC*YDI/P

K = 1/4. + (l.-RD/4.)*K(-l)

KS = [[.15*W/(.85*(2.5*R+RD))]**.85]*[YP/(A*CUS)]

IDS = 4.*[KS - (l.-RD/4.)*K(-l)]

ID = IF IDS CRT 0.0 THEN IDS ELSE 0.0

YD = CD + ID + CD

III. Production and Sales

YFE = A* (. 98*1*2000. )**.85*K**. 15

YS = IF YFE CRT YD THEN YD ELSE YFE

YP = YS

IV. Prices

PD = [(MPD*.02*UZ)/(UZ-.02)]*(1./U) - [MPD*.02/(UZ-.02)

]

P = (l.+PD/4.)*P(-l)

V. Resource Utilization

E = (l./2000.)*[(YP/A)**(l./.85)]*[K**(-.15/.85)]

U = 1. - E/L

CU = .15*W*E*2000./(.85*(2.5*R+RD*K)

VI. Ration

i

ng when Demand Exceeds Capacity

RSD = YS/YD

C = RSD*CD

I = RSD* ID

G = RSD*GD
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(Table VI. 2, Continued)

VII. Exogenous Influences

GDTR = (l.+GGD)*GDTR(-l)

CD = GDTR + DG

LTR = (l.+GL)*LTR(-l)

L = LTR + DL

ATR = (l.+GA)*ATR(-l)

A = ATR + DA

WTR = (l.+GW)*WTR(-l)

W = WTR + DW

TRAT = (l.+GTRA)*TRAT(-l)

TRA = TRAT + DTRA





CHAPTER WI

A Model with nistrlhuted Uy^s

Introducticn

Thf model nresented in the last chanter, DYNECl, was quite unstable.

We now discuss a very stable model, P'^EC2. The two sets of equations are

quite similar, excent that VffW.C? considers lacs in economic behavior. At

several key noints, DYNEC2 has distributed lap;s of the sort considered in

Chanter V. Tliese servo to smooth the resnonse of the eccnomic apents belnp-

modeled to chanRSS in their envircnnent, and this in turn stabilizes the

system.

Since DY1>JEC2 is quite similar to DYTnU'XI, we can nroceed at cnce to

a detailed examination of the differences in the structures o^ the two

models. We then d5.scuss experiments with DY^^IEC2. Tables "^/II.l and VII.

2

contain the notation used in DY1^IEC2 and the equations that conpose it.

Elements not nresent in DYTIECl are indicated. See the Annendices for more

details.

.

The Structure of DYNEC2

All elementar\' textbooks snealc of the circular flew of income. Factor

eamlnps result in snendin.rr, v-zhich leads to nrodtiction, which in turn pives

rise to factor inccnes. We can distin/ndsh three sorts of lafs in this

rmoess:

-'- See R.G.D. Allen, ^1acro-EGenomic Theory (Lcndcn: rfecMillan, 1968),
Chapters 2,5, and 9.





1, Ihe Robertscnlan la^ of ae-Rrspate demand behind its determinants.

2, Ihe Lundberfdan la^ o^ a/rereeate production behind afrrepate
demari3^i

3, Ihe Output-Income lap* of income payirents behind aggregate
Dreduction.

In DYNEC2, lars of the fLrst and third tyne are present. To consider

Lundbergian laps , we need to have inventories nresent , and we shall intro-

duce inventory holding in the next chapter. Also, DYTJEC2 allows for laps

in the process of warp and nrice detennination.

The output-income lap: apnears in block I in the Tables. It is an

econaretrlc fact that perscnal income is smoother over time than GNP, There

are at least two reasons for this. The first is that businesses are reluc-

tant to hire and fire wortcers In the face of training and severance costs.

Also, the demand for ncn-nroducticn workers is not responsive to short-term

sales chanres. Wac«e navirents are thus smoother than production. Another

reason for this lag is corporate dividend nolicy. Dividends are not adjusted

as rapidlv as profits change. Rather, dividends are smoothed and retained

earnings (after-tax profits minus dividends) absorti fluctuations in profits.

For these and other reasons, it is reasonable to expect personal incone,

YPI, to ad,1ust gradually to changes in production, YP. (Ftecall that YP is

equal to Gross National Product.)

We use a first-order lag scheme to take the factors smoothing YPI

into account. The equation which in DYNECl detennined YPI now gives YPIE,

equilibrium personal incone. Personal incoire is determined from a first-order

distributed lag equation of the form

(7.1) YPI = k YPIE + (1 - k) YPI(-l).
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In Chanter V, we shewed that the msan Iqp of (7.1) A^;as (l-k),/k nerlods.

Writinp: this mean lar as LYP, we can solve for k and obtain

(7.2) k = 1/(1 + LYP)

SLfcstltutinpr (7.2) into (7.1), we have the equation shown for YPI in block

I. The larper is LYP, the more slowlv rerscnal incone responds to chanpes

in production. Settino; IJ^P = 0, we have the equation used in DYNECl.

In block II, ttiere are two Robertsonian laps: rne in the determina-

tion of ccnsurrer demand, and cne in the detemlnaticn of investment spending".

Both laf^ have theoretical and errpirical supnort. The lap; in cmsumer

snendlnp behind disnosable inccme was first discussed by Friedman as the

Permanent Income llieorv. 'IViis theorv holds that ccnsiuTptinn snendlng is

not determined by ctirrent disposable income, but rather by what consumers

repard as their nermanent or normal disposable Income. Chanpes in disposable

income that are ffelt to be transitor^f alter savings, not consumpticyi snendinr.

In our version of the theonr, we let nermanent incoire be a weighted sum of

past real disposable incones, with the weip^ts declininp; pjeometrically over

time:

(7.3) CD = APr (l-w) \ w%DI(-i)/P(-i).

i=0

In Chapter V, we showed that this leads to the follcwinp equation:

(7.^) CD = k[APC YDIA'] + (1-k) CD(-l)

In block II of DY1EC2, we call the quantity in brackets ODE. We then write

the constant k as a function of the mean lap- in ccnsunBr ctemand, LCD, as before.
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The lap: structure detennlnlnp; investment demand Is a pood deal mere

complicated. Equilibrium desired capital stock, KSE, is given by the same

equaticn that gave KS, desired capital stock, in DYIJECl. Thus, KSE is the

Inst antaneouslv-optimal canital stodc. But businesses do not determine

their desired canital en the basis of current sales, wage rates, and interest

rates alone, Ihe history of these quantities also has an irmact. To allow

for this, v;e smooth KSE via a Kovck lag with rrean lag LID to obtain KS.

Ihiis even if sales toda" are hlph, canital stoclc demand mav or mav not be high,

denendl ng on what nast sales have been. It takes some time before a change

in sales is considered permanent enouph to warrant nlacing orders ^or new

equipment.

Given KS, the quantity

(7.5) KS - (1. - PDA.)*K(-1)

is the discrepancy between desired and carry-ox'or capital stock. We assure

that it takes sane time for orders ^or new capital equinrrent to be filled.

We can express this relation as

(7.6) IDS = W(L) IDBE,

whe-P2 W(L) is a lag polynomial, IDSE is new orders, and IDS is investment

domnntis. We at^surre that businesses dioose IDSE so tiiat the sum of all

infilled orders, including current IDSE, equals the dlscrenancy between

carry-over and desired capital stock.

Current new orders nliB the backlog of unfilled past orders is

equal to
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IDRE + mSE(-l) - lES(-l) + inSE(-2) - inR(-2) + ...

2 ?
= [IDSE - inS(-l)][l+I;fL +L +...]

= [IDSE - IDS(-1)]/[1 - L],

where L is , as usual, the la^r onerator. Settinf?: this equal to four times

the discrenancy between actual and desired canltal stock (as in DYNECl)

and multiplying throur^h bv (1 - L) , we have

(7.7) IC6E - IDP(-l) = ^[KS -KS(-1)J- (1 - RDA)K(-I) + (1-RDA)K(-2)

Using the Identity

K = 1/4 + il-PDA)K{-l)

,

this becomes

(7.8) IDSE = '4[KS-KS(-1) 1 + RD K(-l) + [irR(-l)-I(-l) ],

the equation used in DYIJEC2 to determine new orders for capital goods.

Note that if IDS was negative in the last period, I was zero, and the

third tenn in equation (7.8) is negative. That is, if a desire to Icwer

capital was frustrated by the fact that gross investment must be ncn-nep-ar-

tlve for the eccnonTy as a whole , new orders are laver today than they

otherwise would have been. Sinllarly, if demands exceeded capacity in the

last quarter (YD greater than YFE) , the third term in (7.8) would be nosi-

tive. If rationing resulted in the ^Vustratlnfr of some investment demands,

new onlers are hiptier than they would have been othenvise. ^cst of the

time, the econornv is not en either the upper or laver barrier to income,

and the third term in (7.8) is zero.
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Given IDSE, we use equaticn (7.6) to obtain IDS. We assums that

W(L) penerates a second-order lap- with equal roots, a so-called Pascal

lac, with mean lap- UP. Under this assurmtion, ive can write (7.6) as

(7.9) IDS = I iilili- I laSE.

l.(l-kL)J

The mean lap of (7.7) is equal to 2k/(l-k): see Chanter V, Settinr this

equal to IIP and substituting, we obtain the equaticn for IDS sham in

Table VII. 2.

Ihe final difference between DYIJEC2 and DYInIECI annears in block VI,

where the rate of inflation is determined. There we allcv; for the fact

that prices and waf^s do not respond imrrediatelv to chanpes in the eccno-

mic environment. The Phillips Curve equation used in DYNECl new determines

the equilibrium rate of inn.ation, Pffi. The actual rate of inflation, PD,

is detennined by puttinp PEE throuph a Koyck lap- with mean la^ IPD.

In DYNEC2, we have ased only the simplest lar structures, the Kcyck

and the Pascal. Ihis is not because we ffeel that reality is made up cnly

of these two forms, but rather because of a desire to keep matters simple.

Both structures eimloyed have the advantage that they are camletely deters

mined by cne parameter, the mean lap.

Ccmputer Malysis and Exercises

DY^EC2 is quite clearly a dynamic model; the solution ^or period N+1

does depend on the solution found for period N. As before, simulations

should befdn with year 3, where each "year" corresponds to three mcnths of

calendar time. Archive DYNEC is used with this model.
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Ihe pre-set values of the DararrBters are as follows:

LFR .185 TF?P 0.0

TFB 1.21 LYP 1.8

APC .9^ RD .10

LCD 1.0 CUS 1.0

R .0^5 IID 1.5

UP 1.5

MPD .10 IPD ^,0

UZ .10

OGD 0.0 DGD 0.0

GL 0.0 EL 0.0

OA 0.0 DA 0.0

GIa/ 0.0 DW 0.0

OTRA 0.0 OTRA 0.0

Also, Initial conditions must be provided for those variables whose lastsred

values are present in the model. These are as follows:

YPI(2) 5^0.

K(2)
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With these narameter values and initial cmditions , the eccnorw

is quite stable. It first underpioes a boom because the initial capital

stock is below equillbrluin. It then moves rather quickly to equilibrium

with considerable unemployment . Qie question that may be asked of this

model is which lags are critical for stability. Setting LyP=LCD=K:D=LIP=LPI>0

makes DYNEC2 into DYNECl. Will small reductions in any of the lags

de-stabilize the system?

Another set of experiments involves the dynamics of the eccnony's

response to shocks. A control solution should be corrruted with the pre-set

parameter values. Other time-naths can then be calculated after chanplng

policy and structural parameters , and the differences between these oaths

and the control solution can be analyzed. (IMs is mechanicallv easy

with 360 TFDLL; see Chanter IT.) What are the multipliers? Hew iiroortant

is the interest rate? Which structural parameters are critical in deter-

mining the multipliers? \«/hich determine ha; rapidly the ecfnoniv reacts

to policy changes?

One feature of this eccnorw's behavior deserves mention at this point,

Ihe only true equilibrium involves U=UZ, unless r-PD is set to zero or TF©

is set to unity. Ihis is because of the progressive persmal income tax

structure. If U is above UZ, prices aiB rising, personal income per capita

in current dollars is rising, and taxes are rising more ranidlv than incone.

T^iis tends to Icvter InconE, The same process operates in reverse when U

is below UZ and prices are falling. 'Ihis process takes a Icng time, hew-

ever, and should not be a cause of ccncem except in grcwth situations . It

can be off-set by having TM chanpe over time, as discussed in the last chanter.
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All of the experiments ,1ust described can be performed in prowth

situatlcns. We examined the eccnorrlcs of balanced p;rowth in the DYNEC

models in Oianter VI; the reader should reffer to that discussicn. A

reasonable base set of parameters for a pravth situation are the followine;:

fTTRA = .0

GA = .00595 (2.38% ner year)

GL = .00225 (.5f» ner year)

GW = ,0071 (2.8^% ner year)

GOD = .00825 (3.3f» ner year)

With these paransters and all other naraireters and initial conditions as

above, the eccnonr/ settles into steadv rroirth with about 10% of the

full-enployment labor force unemnlcyed. Since UZ = .10 in the nre-set

parameters, this is (anproximatelv) an equilibrium nath. Using' this

path as a control, a variety of changes can be made in the system and

the results conpared to those of this nath.

With the pre-set parameters and initial conditions, the ecmorTiy spends

some time along the Y?=YTE ceilinp-. Exnansicnarv nolicies cannot have any

real irrpact here. Policy narameters should not be changed until the system

has left the ceilinp in the control solution, unless they are changes de-

signed to pne'vent the ceiling's being reached.

A final note. One must be verv careful to distinguish between

the inpact of initial ccnditions and the mode of behavior generated by

the system. Most parameter changes will afffect the Initial dls-equillbrium.
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SoTTE changes will stabilize the system, others will tend to destabilize it.

The two effects en the eccnon^'s evoluticn must be oare fully distinpioished

for the purposes of analysis.
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Table VII.

1

Notation Used in DYNEC2*

I. a. Consumer Income: Parameters

LFR Equilibrium ratio of "leakages" between GNP and Personal
Income to GNP (fraction)

(N) LYP Mean lag in personal income (pure number)

TRB Tax Pate B: degree of progression (pure number)

TRP Goverment transfer payments to persons (billions, curr.$)

I.b. Consumer Income: Variables
^

(N) YPIE Equilibrium Personal Income (billions, curr. $)

YPI Personal Income (billions, curr.$)

YDI Disposable Personal Income (billions, curr.$)

II. a. Aggregate Demand: Parameters

APC Long-run average and marginal propensity to consume
out of YDI (fraction)

(N) LCD Mean lag in consumer demand (pure number)

R Rate of interest (fraction)

RD Annual rate of depreciation of capital stock (fraction)

CUS Desired Rate of capacity utilization (fraction)

(N) LID Mean lag in investment demand (pure number)

(N) LIP Mean lag in production of investment goods (pure number)

II. b. Aggregate Demand: Variables

(N) CDE Equilibrium consumption demand (billions, cnst.$.$)

CD Consumption demand (billions, cnst.$)

K Capital stock (billions, cnst.$)

(N) KSE Equilibrium desired capital stock (billions, cnst.$)
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(Table VII. 1, Continued)

KS Desired capital stock (billions, cnst.$)

(N) IDSE Equilibrium desired investment, new orders (billions, const. $)

IDS Desired investment (billions, cnst.$)

ID Investment demand (billions, cnst.$)

YD Aggregate demand (billions, cnst.$)

III. a. Production and Sales: Parameters

none

Ill.b. Production and Sales: Variables

YFE Full-employment GNP (billions, cnst.$)

YS Final sales (billions, cnst.$)

YP Production (billions, cnst.$)

IV. a. Prices; Parameters

MPD Equilibrium annual rate of inflation at full employment (fraction)

(N) LPD Mean lag in price changes (pure number)

UZ Unemployment rate for which inflation is zero (fraction)

IV. b. Prices: Variables

(N) PDE Equilibrium annual rate of inflation (fraction)

PD Annual rate of inflation (fraction)

P Price level relative to base period (pure number)

V.a. ResoureC- Utilization: Parameters

none

V.b. Resource Utilization: Variables

E Employment (billions, persons)

U Unemployment rate (fraction)

CU Rate of capacity utilization (fraction)
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(Table VII. 1, Continued)

VI. a. Rationing: Parameters

none

VI. b. Rationing; Variables

RSD Fraction of demands satisfied (fraction)

C Satisfied consumption demand (billions, cnst.$)

I Satisfied investment demand (billions, cnst.$)

G Satisfied government demand (billions, cnst.$)

VII. a. Exogenous Influences: Parameters

GCD Trend rate of growth of government demand per quarter (fraction)

GL Trend rate of growth of labor force per quarter (fraction)

GA Trend rate of growth of productivity per quarter (fraction)

GW Trend rate of growth of real wage rate per quarter (fraction)

GTRA Trend rate of growth of personal tax rates per quarter (fraction)

DGD Deviation of government demand from trend (billions, cnst.$)

DL Deviation of labor force from trend (billions, persons)

DA Deviation of productivity from trend (pure number)

DW Deviation of real wage rate from trend (cnst. $ per manhour)

DTRA Deviation of personal tax rates from trend (pure nvimber)

VII. b. Exogenous Influences: Variables

GDTR Trend level of government demand (billions, cnst.$)

LTR Trend level of labor force (billions, persons)

ATR Trend level of productivity (pure number)

WTR Trend level of real wage rate (cnst. $ per manhour)

TRAT Trend level of personal tax rates (pure number)

GD Government demand (billions, cnst.$)
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(Table VII. 1, Continued)

L Labor force (billions, persons)

A Productivity (pure number)

W Real wage rate (cnst. $ per manhour)

TRA Level of personal tax rates (pure number)

* The organization of this table corresponds to that of Table VII. 2.

Parameters are defined when they first appear: variables are defined
when they appear on the left of an equation. Fractions and pure numbers
are unit-free. The following abreviations are used:

cnst.$ = constant (base period) dollars
curr.$ - current dollars

(N) - A quantity not present in DYNECl

All flow variables are measured as seasonally-adjusted quarterly totals at
annual rates.
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Table VII.

2

DYNEC2: A Model with Distributed Lags

I

.

Consumer Income

(N) YPIE = (1. - LFR) *YP*P

(N) YPI = (l./(l. + LYP))*YPIE + (LYP/(1. + LYP) ) *YPI (-1)

YDI = YPE - L*TRA*(YPI/L)**TRB + TRP

II. Aggregate Demand

(N) CDE = APC*YDI/P

(N) CD = (l./(l. + LCD))*CDE + (LCD/(1. + LCD))*CD(-1)

K = I/A. + (1. - RD/4.)*K(-1)

(N) KSE = [[.15*W/(.85*(2.5*R + RD) ) ]**.85]*[YP/ (A*CUS)

]

(N) KS = (l./(l. + LID))*KSE + (LID/(1. + LID))*KS(-1)

(N)IDSE = 4.*(KS - KS(-l)) + RD*K(-1) + (IDS(-l)- I (-1))

(N) IDS = (l./(l. + LIP>*2)*IDSE + (.2*LIP/(1. + LIP) ) *IDS (-1)

- ((LIP/(1. + LIP))**^IDS(-2)

ID = IF IDS CRT 0.0 THEN IDS ELSE 0.0

YD = CD + ID + CD

III. Production and Sales

YFE = A*(.98*L*2000.)**.85*K**.15

YS = IF YFE CRT YD ELSE YFE

YP = YS

IV. Prices

(N) PDE = [(IIPD*.02*UZ)/(UZ - .02)]*(1./U) - [f!PD*.02/ (UZ - .02)]

(N) PD = (l./(l. + LPD))*PDE + (LPD/(1. + LPD))*PD(-1)

P = (1. + PD/4.)*P(-1)
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(Table VII .2 , Continued)

V. Resource Utilization

E = (l./2000.)*[(YP/A)**(l./.85)]*[K**(-.15/,85)]

U = 1. - E/L

CU = .15*W*E*2000./(.85*(2.5*R+RD*K))

VI. Rationing when Demand Exceeds Capacity

RSD = YS/YD

C = RSD*CD

I = RSD*ID

G = RSD*GD

VII. Exogenous Influences

GDTR = (1. + GGD)*GDTR(-1)

GD = GDTR + DG

LTR = (1. + GL)*LTR(-1)

L = LTR + DL

ATR = (1. + GA)*ATR(-1)

A = ATR + DA

WTR = (1. + GW)*WTR(-1)

W = WTR + DW

TRAT = (1. + GTRA)*TRAT(-1)

TRA = TRAT + DTRA

(N) - An equation not present in DYNECl

.





CHAl^lEK VIII

Sales Expectations and the Production Decision

Introduction

Tills model Is very much like DY1\EC 2, discussed In the last chapter.

DY1JEC3 adds Inventories to DYiKC2, thei^bv conslcierinp; a mechanism that has

been very liiportant in the post-war period. Our development Is based on

Mstzler's pioneering theoretical work on Inventory cycles.

Tlie next section outlines the inventory-sales-productlon relations

in DYNiiC3. We then discuss the parameters and initial conditions errployed,

and we examine the sorts of experiments that can be performed with DYl>ItiC3.

Tables VIII. 1 and VIII. 2 present the notation and equations that make up

this model; see the Appendices for more details.

Ihe Structure of DYlJECB

Tlie meclianlsm built into this model is most appropriate for final

goods inventories. We do not explicitly consider mechanisms relating to

raw materials and goods-in-process inventories, and we ignore completely

the role of new and unfilled orders. The basic motivation for holding finished

gcods Inventories is that they provide a buffer against unexpected changes

See especially L. A. I^tzler, '"ihe Nature and Stability of Inventory
Cycles," Review of Economic Statistics, 23 (August, 19^1), 113 - 129.
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in sales. Such buffers are desired because it is costly to change the

rate of production r^idly. In any particular case, the optimal inventory

stock of a firm or industry will depend in a conplicated way en a number of

parameters. We make the common sinplifying assuirption that there is a

constant target ratio between aggregate final sales and aggregate inven-

tory holdings. Letting H be end-of-perlod inventory holdings, we express

this assunption as

(8.1) H* = HSR YS,

where PISR is the tarp^et ratio.

At the start of a period, when the production decision is made,

fii-iic rarely l<now exactly what their sales will be. (Indeed, in tne

aggregate the production decisions of firms will to some extent determine

their sales.) If vi/e let YSX be expected sales, equaticn (B.l) must be

re-written as

(8.1a) il* = hSR YSX

We now must explain the detemiinaticn of YSX. ffetzler proposed the

following equation:

(8.2) YSX = YS(-l) + MS [ YS(-l) - YS(-2) ].

If MS is equal to zero, firms do not extrapolate past changes. If MS is

equal to one, firms assume that past trends will continue. If IC is equal
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to minus cne, firms assume that the chanpe in sales they most recently

observed was tenporary. Sensible values of MS thus range from minus one

to plus one.

In econometric wori<;, many writers have made the assunption that

sales forecasts are correct on average. This permits using YS in place

of YSX in estimated equations, en the grounds tnat YS is on average equal

to YSX. It is sensible that current sales vrould affect current production

decisions, since it is hard to believe that equation (8,2) adequately

describes business forecasting and that businesses cannot alter production

decisions made at the start of each quarter. To the extent that production

decisions can be re-examined during the quarter, it is YS that will govern

that decision, rather than YSX as defined above.

DYI1EC3 incorporates both the notion that YS shoiild affect current

production and equation (8.2) in its equation for expected sales. Our

approach is somewhat novel, but it permits greater flexibility in

modeling an aspect of behavior about which little is actually known. We

let LS be a fraction whicli indicates the extent to which expectations

about sales can be revised within each quarter. Denoting the forecast

given by (8.2) as YSX , we then write our equation for the expected

sales variable that influences production decisions as

(8.3) YSX = LS*YS + (1-LS)*YSX
m

.
= LS*YS + (1+I^)*YS(-1) - (l-LS)*I^*YS(-2)
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Given the expected sales, we can vrrite dcvm equilibrium producticyi:

(8.i4) YPE = YSX + (iISR*YSX - H(-l)).

Equation (8,^) says tiiat equilibrium production is equal to expected sales

plus the difference between desired inventories and the inventories on

hand at the start of the quarter. Except for the difference betv.'een our

YSX equation and I-fetzler's the mechanism so far is essentially his.

In ritzier' s formulation, actual production v/ould equal YPE. In

DYiJECS, ho-^ever, we ejqDlicitly incorporate the idea that it is generally

costly to change the level of producticn. Thus YPS, desired producticn,

is obtained by putting YPE throu^ a Koyck lag equation with mean lag LPR.

Ihic is broadly consistent with the work on optimal production decision

rules under conditions of quadratic costs. Actual production, YP, is

equal to YPS unless the latter is above the full-errploynent ceiling, in

which case full-employmsnt output is produced.

Sales are equal to aggregate demand unless demand cannot be met.

In this case, sales are equal to ci^acity output plus inventory stocks

on hand. Given sales and production, inventory change, DH, is conputed

from the identity

(8.5) Dii = YP - YS,

whldi of course assumes no deterioration of Inventory stocks. Intended inven-

tory diange, Dtll', is equal to expected sales minus desired production, YPS.

iioth these variables are under firms' control. Unintended inventory change
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can coiTE about because YPS was above YPE or, more usually, because expected

sales did not equal actual sales.

All the equations we have discussed are indicated in Table VIII, 2.

Other than these nev; relations, DYI^1EC2 and DYIJEC3 are identical.

CoiTputer Analysis and Exercises

As usual, we shall first exhibit the pre-set parameter values and

initial conditions for this model. All initial conditions are, as usual,

contained in Archive DYiJEC. Ihe parameter values are as follows:

LFR .183 TK' 0.0

TI-iB 1.21 LYP 1.8

APC .9^ f® .10

LCD 1.0 CUG 1.0

R .0^5 LIiJ 1.5

LIP 1.5

LS .10 HSR .25

r-B .90 LPR .50

MPD .10 LPD ^.0

UZ .10
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GGD 0.0

GL 0.0

GA 0.0

GW 0.0

ffnm 0.0

DGD 0.0

DL 0.0

DA 0.0

DW 0.0

DTRA 0.0

Initial conditicns for those variables whose lagged values are present

in the model are as follov;s:

YPI(2) 5^0.

a(2) 330.

IC6(1) 0.

IuS(2) 26.

H(2) 175.

YS(2) 700.

P(2) 1.0

GDrR(2) 220.

LTR(2) .0756

KS(3) 330.

CD(2) 51^.

1(2) 26.

YS(2) 700.

Y?(2) 700.

PD(2) .02

ATR(2) 4.67

WTR(2) 4.02

TMT(2) .021

^tetzler, in the ai^ticle cited above, has derived analytical results

for a model containing a production-Inventory system mucn like that presented
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here. In fact, with LPR=0 and LS=0, the systems are identical. But

Mstzler's model takes fixed investment as exogenous, and it has a very

rudliDsntary consumption function. It is of some interest to see if Fetzler'j;

conclusions about the parameter values necessary for stability hold in

the more conplex economy of DYi\IEC3.

In a more general vein, all of the experiments that can be performed

on DYIJEC2 can also be done here. Une can examine the inpact of changing

one or more of the structural parameters, either in the production-inventory

system or elsewhere, on the dynamic response of the system to changes in

the exogenous influences. In particular, growth situations are of consi-

derable interest. Do Metzler's conclusions, for Instance, hold when the

econorny is unciergoing balanced growth?

As discussed in the last cliapter, the best approach to these and

otl:ier problems involves computing a control solution, varying st,ructural

and policy parameters, and examining the difference between the two paths.

It should be noted that v/ith the given parameters and initial condi-

tions, DY1JEC3 rises rapidly to full enployment and stays there for some

time. The decline from full enployment is quite rapid. Lhtil the econoiw

leaves tiie full enployment celling, there is no room for any expansicnary

changes to have inpact.
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Table VIII.

1

Notation Used in DYNEC3*

I. a. Consumer Income: Parameters

LFR Equilibrium ratio of "leakages" between GNP and Personal
Income to GNP (fraction)

LYP Mean lag in personal income (pure number)

TRB Tax Rate B: degree of progression (pure number)

TRP Government transfer payments to persons (billions, curr.$)

I.b. Consumer Income: Variables

YPIE Equilibrium Personal Income (billions, curr. $)

YPI Personal Income (billions, curr.$)

YDI Disposable Personal Income (billions, curr. $)

II. a. Aggregate Demand: Parameters

APC Long-run average and marginal propensity to consume
out of YDI (fraction)

LCD Mean lag in consumer demand (pure number)

R Rate of interest (fraction)

RD Annual rate of depreciation of capital stock (fraction)

CUS Desired Rate of capacity utilization (fraction)

LID Mean lag in investment demand (pure number)

LIP Mean lag in production of investment goods (pure number)

II. b. Aggregate Demand: Variables

CDE Equilibrium consumption demand (billions, cnst.$.$)

CD Consumption demand (billions, cnst.$)

K Capital stock (billions, cnst.$)

KSE Equilibrium desired capital stock (billions, cnst. $)
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(Table VIII. 1, Continued)

KS Desired capital stock (billions, cnst.$)

IDSE Equilibrium desired Investment, new orders (billions, const. $)

IDS Desired investment (billions, cn3t.$)

ID Investment demand (billions, cnst.$)

YD Apprepate demand (billions, cnst.$)

III. a. Production and Sales: Parameters

(N) LS Lovell coefficient of sales expectations (fraction)

(N) y.S Metzler coefficient of sales expectations (pure number)

(N) HSR Desired inventory-sales ratio (pure number)

(N) LPR Mean lag in production change (pure number)

Ill.b. Production and Sales: Variables

YFE Full-employment GNP (billions, cnst.$)

YS Final sales (billions, cnst.$)

(N) YSX Expected final sales (billions, cnst.$)

(N) YPE Equilibrium production (billions, cnst.$)

(N) YPS Desired production (billions, cnst.$)

YP Production (billions, cnst.$)

(N) DH Inventory investment (billions, cnst. $)

(N) H End-of-period inventory stock (billions, cnst.$)

(N) DHP Planned inventory investment (billions, cnst.$)

(N) DHU Unplanned inventory investment (billions, cnst.$)

IV . a. Pr ice s Parameters

^rPD Equilibrium annual rate of inflation at full employment (fraction)

LPD Mean lag in price changes (pure number)

UZ Unemployment rate for which inflation is zero (fraction)
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(Table VIII. 1, Continued)

IV. b. Prices: Variables

PDE Equilibrium annual rate of inflation (fraction)

PD Annual rate of inflation (fraction)

P Price level relative to base period (pure number)

V.a. Resource Utilization: Parameters

none

V.b. Resource Utilization: Variables

E Emplojrment (billions, persons) i

U Unemployment rate (fraction)

CU Rate of capacity utilization (fraction)

VI. a. Rationing: Parameters

none

VI. b. Rationing: Variables

RSD Fraction of demands satisfied (fraction)

C Satisfied consumption demand (billions, cnst.$)

I Satisfied investment demand (billions, cnst.$)

G Satisfied government demand (billions, cnst.$)

VII. a. Exogenous Influences: Parameters

GGD Trend rate of growth of government demand per quarter (fraction)

GL Trend rate of growth of ]abor force per quarter (fraction)

GA Trend rate of growth of productivity per quarter (fraction)

GW Trend rate oi growth of real wage rate per quarter (fraction)

GTRA Trend rate of growth of personal tax rates per quarter (fraction)

DGD Deviation of government demand from trend (billions, cnst.$)

DL Deviation of labor force from trend (billions, persons)

DA Deviation of productivity from trend (pure number)

DW Deviation of real wage rate from trend (cnst. $ per manhour)

DTRA Deviation of personal tax rates from trend (pure number)
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(Table VIII. 1, Continued)

VII. b. Exogenous Influences: Variables

GDTR Trend level of government demand (billions, cnst.$)

LTR Trend level of labor force (billions, persons)

ATR Trend level of productivity (pure number)

WTR Trend level of real wage rate (cnst. $ per manhour)

THAT Trend level of personal tax rates (pure number)

GD Government demand (billions, cnst. $)

L Labor force (billions, persons)

A Productivity (pure number)

W Real wage rate (cnst. $ per manhour)

TRA Level of personal tax rates (pure number)

*The organization of this table corresponds to that of Table
VIII. 2. Paramters are defined when they first appear; variables are
defined when they appear on the left of an equation. Fractions
and pure numbers are unit-free. The following abreviations are used:

cnst. $ = constant (base period) dollars
Curr. $ - current dollars
(N) - A quantity not present in DYNEC2.

All flow variables are measured as seasonally-adjusted quarterly totals at

annual rates.
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Table VIII.

2

DYNEC3: A Production-Inventory System Added

I. Consumer Income

YPIE = (1. - LFR) *YP*P

YPI = (l./(l. + LYP))*YPIE + (LYP/(1. + LYP) ) *YPI (-1)

YDI = YPE - L*TPj\*(YPI/L)**TRB + TRP

II. Aggregate Demand

CDE = APC*YDI/P

CD = (l./(l. + LCD))*CDE + (LCD/(1. + LCD))*CD(-1)

K = 1/4. + (1. - RD/4.)*K(-1)

KSE = [[.15*W/(:85*(2.5*R + RD))]**.85]*[YP/(A*CUS)]

KS = (l./(l. + LID))*KSE + (LID/(1. + LID))*KS(-1)

iDSE = 4.*(KS - KS(-l)) + PJD*K(-1) + (IDS(-l)- I (-1))

IDS = (l./(l. + LIP)**2)*IDSE + (.2*LIP/(1. + LIP))*IDS(-1)

- ((LIP/(1. + LIP^)*A2)*IDS(-2)

ID = IF IDS CRT 0.0 THEN IDS ELSE 0.0

YD = CD + ID + CD

III. Production and Sales

YFE = A*(.98*L*2000.)**.85*K**.15

(N) YS = IF (YFE + H(-l)) CRT YD THEN YD ELSE (YFE + H(-l))

(N) YSX = LS*YS + (]. - LS)*(1. + MS)*YS(-1) - (1. - LS)*MS*YS(-2)

(N) YPE = YSX + (HSP.*YSX - H(-l)

(N) YPS = (l./(l. + LPR))*YPE + (LPR/(1. + LPR)>^YP(-1)

(N) YP = IF YFE CRT YPS THEN YPS ELSE YFE

(N) DH = YP - YS

(N) H = DH + H(-l)

(N) DHP = YPS - YSX

(N) mil! = DH - DHP
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(Table VIII. 2, Continued)

IV. Prices

PDE = [(MPD*.02*UZ)/(UZ - .02)]*(1./U) - [fTD*.02/(UZ - .02)

PD = (l./(l. + LPD))*PDE + (LPD/(1. + LPD))*PD(-1)

P = (1. + PD/4.)*P(-1)

V. Resource Utilization

E = (l./2000.)*[(YP/A)**(l./.85)]*[K**(-.15/.85)]

U = 1. - E/L

CU = .15*W*E*2000./(.85*(2.5*R + RD*K))

VI. Rationing when Demand Exceeds Capacity

RSD = YS/YD

r- = RSD*CD

1 = RSD*ID

G = RSD*GD

VII. Exogenous Influences

GDTR = (1. + GCD)*GDTR(-1)

GD = GDTR + DG

LTR = (1. + GL)*LTR(-1)

L = LTR + DL

ATR = (1. + GA)*ATR(-1)

A = ATR + DA

WTR = (1. + GW)*WTR(-1)

W = WTR + DW

TRAT = (1. + GTRA)*TRAT(-1)

TRA = TRAT + DTRA

(N) - An equation not present in DYNEC2





aiAPTER IX

Endogenous Detemlnatlon of the Rate of Interest

Introduction

This chanter presents DVNEC^, the nost comnlex (and last) of' the

DYNEC's. In a sense, we have returned to the IS-Tl'' models of Chanter IV,

since DYI^IEC^ has an endo^nouslv determined interest rate. The n?al sector

is, of course, quite complicated, as it is identical with the DYMEC3 model,

Ihe difference between the two models is that the interest rate is endog-

enous to DYf\EC^*, the nominal money supnly renlacinp- it as an exopgnous

vari ab le

.

We shall first examine the differences between nYl^IECS and DYNEC4.

We then discuss the behavior o^ DVNEC'J and the uses to which it mav be nut.

The Tables at the end of the dianter present the equations that confjose

DYT^IEC^ and define the quantities appearinn; therein.

The Structure of PVNEC^I

Ihe rate of interest, R, was a narameter in DYNECl - DYNEC3. In DYNEC'l,

it is an endopenous variable. The nominal mmev supnlv, W, is noiv exop^nous

to the model. It is determined by the user throurh the follo'/inp- equations:

(9.1) Mm = (l.+OM)«FrR(-l)

M = rWR + DM.

Hiis is the saire structure used to determine OD, A, L, W, and TRA. With these

equations, the user can lnvestip;ate steadv rrot-xth in M (Dr'J=0, OIVO), distur-

bances in M (DFVO, 0^1=0), or deviations of M from steady gra^fth CDIV^ , GIVO).
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'Ihe nominal money supnly, real income, and the ri-rlce level interact

to detennine the interest rate, much as they did in the IS-I,!^" models. The

equilibrium demand ^or real cash balances, MFE, is riven by

-IE
(9.2) MRE = .121»YP*R .

The constant is siimlv a scaling factor, and IE is (minus) the interest

elasticity of the demand for real cash balances. Recall the imoact of

changes in IE en the slnne of the M curve.

Equation (9.2) is quite similar to the demand ^or mcney enuations in

ISLMl and ISL^2. The main difftere-nce is that mmcM does not ta]« into

account the p-ovemmsnt budn^t constr-aint and hence neglects the market for

securities. We have done this for the same reason that most texts neplect

this constraint in static iTiodels: for sirrlicitv. Adcii.ne; a rovemment

budpBt constraint in a sensible way to DVTJEC^I (t!ie trick ased in Chanter IV

would not work sensibly here) 'muld rrpently corrilicate the model.

It is assuTTBd that there is a Krrrcl;; lar mechanism oneratinp- in the

mcney maricet , so that the actual demand for real cash balances is jrf-ven bv

(9.3) M/P = [1./(1.+LIVD)]*WE + [L!VD/(l.+LfCi)]»[K-l)/P(-l)].

ileve IlTi is the mean lap" in the mmey demand equatim. The lonper the laf,

the morp action in WE - .and thus in R - is reouired to make the nub lie

content to hold cash balances of M wfien, f'or instance, Y dianpes. Since M

i^- (totermlned by the user as a nollcy variable, this equation is solved for

MFE in PYNEC'J.

Aside from these ffew equations, FATnEC'J is exactly equivalent to DYNEC3.
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Computer Analysis and Exercises

Ihe pre-set naraireter values in DYNEC4 are the followinr:

LPR .185 TRP 0.0

Tro 1.21 LYP 1.8

APC .9^ RD .10

LCD 1.8 aiS 1.0

LID 1.5 ^IP 1.5

IS .10 RSR .25

IVB ,90 LPP .50

MPD .10 LPD H.O

UZ .10

GOD 0.0 DGD 0.0

OL 0.0 DL 0.0

GA 0.0 DW 0.0

CTTRA 0.0 ETRA 0.0

GM 0.0 m 0.0

Uf) 2.0 IE .20

Initial conditions for those variables whose laFpert values are present in the

model are as follows:

YPI(2) 5^0.

K(2) 330. KS(2) 330.

inB(l) 0. CD(2) 51^.

ins(2) 26. 1(2) 26.
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H(2) 175. YS(2) 700.

ys(2) 700. YP(2) 700.

P(2) 1.0 PD(2) .02

GEfrR(2) 220. ATR(2) ^^.67

LTR(2) .0756 WR(2) 1.02

ivtrp(2) 175. TFAT(2) .021

As before, with this set of paranBters and Initial conditions the economy

rises to full errrlqvmsnt, remains there a v;hile, and falls a/av into a

recession with U anrroxlmately equal to .10,

Tne main thrust of exnerlmentation with DY^IEC'4 should involve exam-

ininp- the iiroact of diffferent mcney market j!)aram5tere en the eccnomv's

stability and beha'/lor. Ho^/ are multipliers altered, hov do sneeds of

response and nattems of resncnse varv when IE and IJ^ID are chanppd?

It should be nossible v;ith this model to investigate the question of

policy desipn, to tr?/ and devise ontimal nolicv rules to stabilize the

eccnorw. '^is may require altering the model to build in various policy

equations

.

M;yiy experirrents will involve rra^rth situations, so the conditions

for full dvnamic equilibrium should be disctesed at this point. If R is

to be held constant, equation (0.2) indicates that the follcwinp enuation

should determine the rate o^ prowth of the nominal money supnly^ p:(M) :

(9.'0 r(M) = PcO'P) + P(P).

Ihe nominal money suppXv must prow as rapidly as current dollar HNP. Unless
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the inenrolQVirent rate Is to be held steady at UZ, this will inply that r(M)

is not equal to p;(YP). In fact, e;(m) will be frreater or less than p-(YP)
,

accordinp; as equilibrium U is less or rreater than UZ. In Chanter VI, we

presented a set of naraireters that frive annroximately equilibrium prcwth

with U=UZ. To these should be added

nM = .00825 (3.35? per vear)

for DYNEC^.
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Table IX .

1

Notation Used in DYNEC4

I. a. Consumer Income: Parameters

LFR Equilibrium ratio of "leakages" between GNP and Personal
Income to GNP (fraction)

LYP Mean lag in personal income (pure number)

TRB Tax Rate B: degree of progression (pure number)

TKP Government transfer payments to persons (billions, curr.$)

JL -b . Consumer Income: Variables

YPIE Equilibrium Personal Income (billions, curr. $)

YPI Personal Income (billions, curr.$)

YDI Disposable Personal Income (billions, curr. $)

II. a. Aggregate Demand: Parameters

APC Long-run average and marginal propensity to consume
out of YDI (fraction)

LCD Mean lag in consumer demand (pure number)

RD Annual rate ot depreciation of capital stock (fraction)

CUS Desired Rate of capacity utilization (fraction)

LTD Mean lag in investment demand (pure number)

LIP Mean lag in production of investment goods (pure number)

I I. b. Aggregate Demand: Variables

CDE Ecjuilibrium consumption demand (billions, cnst.$.$)

CD Consumption demand (billions, cnst.$)

K Capital stock (billions, cnst.$)

KSE Equilibrium desired capital stock (billions, cnst . $)
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(Table IX. 1, Continued)

KS Desired capital stock (billions, cnst.$)

IDSE Equilibrium desired investment, new orders (billions, const. $)

IDS Desired investment (billions, cnst.$)

TD Investment demand (billions, cnst.$)

YD Aggregate demand (billions, cnst.$)

III. a. Production and Sales: Parameters

LS Lovell coefficient of sales expectations (fraction)

MS Metzler coefficient of sales expectations (pure number)

HSR Desired inventory-sales ratio (pure number)

LPR Mean lag in production change (pure number)

Ill.b. Production and Sales: Variables

YFE Full-employment GNP (billions, cnst.$)

YS Final sales (billions, cnst.$)

YSX Expected final sales (billions, cnst.$)

YPE Equilibrium production (billions, cnst.$)

YPS Desired production (billions, cnst.$)

YP Production (billions, cnst.$)

DH Inventory investment (billions, cnst. $)

H End-of-period inventory stock (billions, cnst.$)

DHP Planned inventory investment (billions, cnst.$)

Dim Unplanned inventory investment (billions, cnst.$)

IV. a. P 1 1 ces I'nramc t e rs

MPD Equilibrium annual rate of inflation at full employment (fraction)

LPD Mean lag in price changes (pure number)

HZ Unemployment rate for which inflation is zero (fraction)
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(Table IX. 1, Continued)

IV. b. Prices: Variables

PDE Equilibrium annual rate of inflation (fraction)

PD Annual rate of inflation (fraction)

P Price level relative to base period (pure number)

V.a. Resource Util ization: Parameters

none

V.b. Fve source Uti lization: Variables

E Employment (billions, persons)

U Unemployment rate (fraction)

CU Rate of capacity utilization (fraction)

VI. a. Rat ioning: Parameters

none

VI. b. Rationing: Variables

RSD Fraction of demands satisfied (fraction)

C Satisfied consumption demand (billions, cnst.$)

I Satisfied investment demand (billions, cnst.$)

G Satisfied government demand (billions, cnst.$)

VII. a. Exogenous Influences: Parameters

GCD Trend rate of growth of government demand per quarter (fraction)

GL Trend rate of growth of labor force per quarter (fraction)

GA Trend rate of growth of productivity per quarter (fraction)

GW Trend rate of growth of real wage rate per quarter (fraction)

GTRA Trend rate of growth of personal tax rates per quarter (fraction)

(N) GM Trend rate of growth of money supply per quarter (fraction)

DGD Deviation of government demand from trend (billions, cnst.$)

DL Deviation of labor force from trend (billions, persons)

DA Deviation of productivity from trend (pure number)

DW Deviation of real wage rate from trend (cnst. $ per raanhour)

DTRA Deviation of personal tax rates from trend (pure number)

(N) DM Deviation of money supply from trend (billions, curr.$)
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(Table IX. 1, Continued)

VII. b. Exogenous Influences: Variables

GDTR Trend level of government demand (billions, cnst.$)

LTR Trend level of labor force (billions, persons)

ATR Trend level of productivity (pure number)

WTR Trend level of real wage rate (cnst. $ per manhour)

TRAT Trend level of personal tax rates (pure number)

(N)MTR Trend level of rnoney supply (billions, curr. $)

GD Government demand (billions, cnst. $)

L Laobr force (billions, persons)

A Productivity (pure number)

W Real wage rate (cnst. $ per manhour)

TRA Level of personal tax rates (pure number)

(N) M Money supply (billions, curr.$)

IX. a. Money Market: Parameters

(N)LMD Mean lag in money demand (pure number)

(N) IE Absolute value of interest elasticity of money demand (pure number)

IX. b. Money Market: Variables

(N) MRE Equilibrium money demand (billions, curr. $)

(N) R Rate of interest (fraction)

*The organization of this table corresponds to that of Table IX. 2.

Parameters are defined when they first appear; variables are defined
when they appear on the left of an equation. Fractions and pure
numbers are unit-free. The following abreviations are used:

cnst. $ = constant (base period) dollars
curr. $ = current dollars
(N) = A quantity not present in DYNEC3

All flow variables are measured as seasonally-adjusted quarterly totals at

annual rates.
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Table IX.

2

DYNEC3: A Market for Real Cash Balances Added

I. Consumer Income

YPIE = (1. - LFR) *YP*P

YPI = (l./(l. + LYP))*YPIE + (LYP/(1, + LYP) ) *YPI (-1)

YDI = YPK - L*TPJ^*(YPI/L)**TRB + TRP

II. Aggregate Demand

CDE = APC*YDI/P

CD = (l./(l. + LCD))*CDE + (LCD/(1. + LCD))*CD(-1)

K = 1/4. + (1. - RD/4.)*K(-1)

KSE = [[.15*W/(.85*(2.5*R + RD))]**.85]*[YP/(A*CUS)]

KS = (l./(l. + LID))*KSE + (LID/(1. + LID))*KS(-1)

IDSE = A.*(KS - KS(-l)) + RD*K(-1) + (IDS(-l)- I (-1))

IDS = (l./(l. + LIP)**2)*IDSE + (.2*LIP/(1. + LIP) )*IDS(-1)

- ((LIP/(1. + LIP>)**2)*IDS(-2)

ID = IF IDS CRT 0.0 THEN IDS ELSE 0.0

YD = CD + ID + CD

III . Production and Sales

YFE = A*(.98*L*2000.)**.85*K**.15

YS = IF (YFE + H(-l)) CRT YD THEN YD ELSE (YFE + H(-l))

YSX = LS*YS + (1. - LS)*(1. + MS)*YS(-1) - (1. - LS)*MS*YS(-2)

YPE = YSX + (HSR*YSX - H(-l)

YPS = (l./(l. + LPR))*YPE + (LPR/(1. + LPR)>*YP(-1)

YP = IF YFE GRT YPS THEN YPS ELSE YFE

DH = YP - YS

U = DH + H(-l)

DHP = YPS - YSX

DHL' = DH - DHP
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(Table IX. 2, continued)

IV. Prices
PDE = [(MPD*.02*UZ)/(UZ - .02)]*(1./U) - [MPD*.02/(UZ - .02)]

PD = (l./(l. + LPD))*PDE + (LPD/(1. + LPD))*PD(-1)

P = (1. + PD/4.)*P(-1)

V. Resource Utilization

E = (l./2000.)*[(YP/A)**(l./.85)]*[K**(-.15/.85)]

U = 1. - E/L

CU = .15*W*E*2000./(.85*(2.5*R + RD*K)

)

VI. Rationing when Demand Exceeds Capacity

RSD = YS/YD

C = RSD*CD

I = RSD*ID

G = RSD*GD

VII. Exogenous Influences

GDTR = (1. + GGD)*GDTR(-1)

GD = GDTR + DG

LTR = (1. + GL)*LTR(-1)

L = LTR + DL

ATR = (1. + GA)*ATR(-1)

A = ATR + DA

WTR = (1. + GW)*WTR(-1)

W = WTR + DW

TRAT = (1. + GTRA)*TRAT(-1)

TRA = TRAT + DTRA

(N) MTR = (1. + GM)*tfrR(-l)

(N) M = MTR + DM
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(Table IX. 2, continued)

VIII. Money Market

(N) MRE = (1. + LMD)*(M/P) - LMD*(M(-1) /P(-l)

)

(N) R = (MRE/ (.121*YP) )**(-!. /IE)

(N) - An equation not present in DYNEC3





Appendices





APPENDIX A

The Models In TROLL

Ihe models discussed in the text are listed here as they a^near in

the TROLL system. Ihese llstlnps corresocnd closely to the descrlnticns

pd-ven in the Tables in the text, but there are seme differences. First of

all, the declarations and snecifl cations required by TROLL at the start

of each model are shown here. Ihis is presented for cmvenience.

A basic difference is the nresence of equations not discussed in the

text. These have as dependent variables qucntlties declared "CCNSTRUCT".

These equaticns are used only to he Id the system find a solution. Each is

associated with an IF - 1!IEN exoressicn whidi does not afffect the solution

to the model. In CEl, for instance, LCS is a construct not discussed in

the text. In equilibrium, thouph, LC=LCS, and the equaticn for LC plven

in the text holds,

TTie reason for declarinr: a variable CONSTRUCT is slmnle. When the

user requests all * variables in the simulation outnut nhase, ccnstructs

are not printed. Thus only the "real" endogenous variables are nrinted or

pranhed, unless constructs are specifically requested in a list of variables,

TROLL distinguishes two types of endorenous variables: ENDOCENOUS

and DEFINITION. Prom the noint of view n^ the user, these are equivalent.

Hence \ie did not bninp; up this distinction in the text. The differences

from tlie noint of view of the model-builder are based en the fact that no

data files are associated with definitions, while data for endopenous
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variables nrast be present. We have used both tyrtes o^ variables in the models

that follow; a narticular quantity was declared EEFINITION or ENDOCENOUS

denendinfT en which was more convenient.

Ihe remainder of this apoendix lists the models presented in the text

in the order they are discussed. Each model represents a senarate file in

the time-sharing system. Each model also has an associated narameter file.

Thus, "ppl model" is the file ccntainlnp; the GEl model, and "pel naram" is

the file ccntalninn: the pre-set narameter values mentioned in the text.

Values for all endopenous variables are storsjd in Ardiives; these are dis-

cussed in Appendix B.
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GEl Model

ii »

•w t

TITLE A TWC-GCOD, TWO-FACTOR CLCSFD GEKE,RAL
EQUILIBRIUM MODEL //

TIMEUNIT YEARLY
MODEL
ENDOGENOUS PF, TC, TF, LC, LF, PC, W, R, QC, QF,

WCC, WCF, RCC, RCF, WI , RI
PAHAMI.TER LT, TT, AC, AF, WTC, RTC
CONSTRUCT LCS , TCS , PFV: ( ,

QC = AC*(LC**.71;)*(TC**.15) $,

QF = AF*(LF**.:0)*(TF** .70) $/

LCS $=C. ( .75*PC*QC*LF)/( .30*QF*PF)
LC = IF LCS (jllT o.G'JQ*LT THEN 0.990*LT ELSE

IF LCS LES '^.Cul*LT THEN 0.001*LT ELSE LCS $,

TCS $=$ ( .Z5*PC*QC*TF)/( .7C*QF*PF) $,

TC = IF TCS CRT O.S9Q*TT THEN 0.9D0*TT ELSE
IF TCS LES C.0C1*TT THEN 0.001*TT ELSE TCS $,

W = .75*PC*QC/LC $/

R = .2S*PC*aC/TC $,

LF = LT - LC $/
TF = TT - TC $/

Ul = l.'*LT $/

RI = R*TT $/

PC = (VJTC*WI + RTC*I>J )/QC $,

PFS$=$2 .27u-1.22*PC i,

PF=IF PFS CRT .001 THEtJ PFS ELSE .001 $,

liCC = WTC*U'I/PC $/

WCF = Wi - WTC*WI $/

RCC = RTC*RI/PC $,
= RI - R"IC*RI $/
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GE2 Model

TITLE A TWC-GCCD, TWO-FACTOR Gti^EPiAL EQUILIBRIUM
MOLEL WITH TRADE //

TIMEUNIT YEARLY
MODEL
ENDOGENOUS PC, PF, TC , TF, LC, LF, W, II, QCP, QFP,

QCC, QFC, NXC, i^:F, WCC, WCF, RCC, RCF, WI , RI t,

PARAMETER LT, TT, AC, AF, WTC, RTC, IRPCF t,

CONSTRUCT PFS, LCS, TCS |'

,

QCP = AC*(LC**.73)*(TC**.L5) %,
QFP = AF*(LK**.3U)*(TF**. 70) $,
LCS $=$ (.75*PC*QCP*LF)/(.30*QFP*PF) $,
LC = IF LCS GFU 0.999*LT THEN u.99J*LT ELSE

IF LCS LE5 O.CQl*LT THEN 0.001*LT ELSE LCS $,
TCS $=^ ( .L5*PC*QCP*TF)/(.70*QFP*PF) $,
TC = IF TCS CRT 0.999*TT THEN C.999*TT ELSE

IF TCS LES O.GCl*TT THEN C.0C1*TT ELSE TCS $,
W = .75*PC*i;CP/LC $,
R = .25*PC*QCP/TC $,
LF = LT - LC

TF = TT - TC $,

Wl = l.'*LT $,
RI = R*TT $,

QCC = (Ri*RTC + WI*l.'TC)/rC $,

QFC = (PF*QFP + PC*(QCP-QCC)) / PF

nXC = QCP - QCC $,
NXF = QFP - QFC $,
PFS$=$2.27b-l.z2*PC $,

PF=IF PFS CRT .COl THEN PFS ELSE .001 $,

PC=IRPCF*PF $,

Vice = i;tc*wi/pc $,
ucF = Wl - i;tc*wi $/

RCC = RTC*RI/PC $/
RCF = RI - RTC*RI $,

END
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ISLMl r.odcl

TITLI' TITIf 13 A BASIC CLC,?: D ir.-LM MCDl'X //
Tini'UNIT YEARLY
HODrX
^ MDCGTTNCU.'.; C, I, R, DEF, KTX , CLK, imC , DHPK, DGB $,
paraiif:ter g, mtr, ni, j, l, lfi-:, trf, dmfr, fdb, mmult

rPMI, GDBI, EB $,
dffii:iticn y, ';Tj f,
COKSTPUCT RS, TS I,

YS ;--$ C + I + ^ $,
Y 5=$ IF YS I rn 1.0 T!'F-: 1.0 ELSC YS $,
YT i, =t Y-'.'TX-('l K $,
NTX = -TRF + MT(;*Y ?.,

01K = LFR*Y $,
prr=n-MTx $,

r = 10.14 + f,rT*YP #,
t = Ii2.^: + f'l*Y/(0.l400Ti3*((:'.5*r+.1 )/.218)**J) $,
FT, <;; = $ .r[(72*( .2362G*Y/f R5)**(l/L )*((Cn?.|+DGB)/300. )**(l/rL^) $,

r.rPf;=rrTf +(] .-fp[')*dff ',

r'PS=Mr'ULT*(''f'f'l+DF'PM) i,

p = IF PS LF5 n.vioni Tiipri o.onoi fisf ps .f,
FND
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IS-LM2 Model

V /

TITLE TrllS IS AN OPEN IS-LI! HODFL '.-JITTI UNEMPLOYI^irNT RATE,
HATE OF INFLATION, AND BALANCE OF PAYMENTS ALSO DETERMINED //

TIMFUNIT YEARLY
MODEL
ENDOGENOUS C, I, BTR , DEF, NTY , OLK , ims , DITPM, DGB, R, U,

PD, BCF I,
PARAMETER G, LER , TRF, DMFI^ , FDB, MMITLT, NPMI , GDBI , EB, MTR

,

MPC, MI, J, L, PDF, K i,
DEFINITION Y, 'ID, BOP $,
CONSTRUCT R?, YS $,
YS t:

= ': C +
I + n + [-TR

Y 5 = :- IF YS LFS 1.0 If EN l.f FLSf YS
YP $ = S Y -MX-CI K I,
NTX = -TPF + f:TR*Y $,
nLK = IFR*Y S,,

DFT-r-NTX $,
c = 5.0 + rirc*Yr

$^
I = '12.2 + fl*Y/(0.t+01*((2.5*R+.l)/.21S)**J) <;,

RS S = $ .0U72*( .2276*Y/riRS)**(l/L)*((n[E l+DGB)/300. )**(i/rB) $,

r'EPr=nMFR+(i.-Frr )*DrF $,
CCr. = -DNTR + FDP*PFF S,

MRS = f'f ULT*(HP|v|+DI'Pf-,)/(l. + PD) $,
P = IF PS IPS 0.0001 THFf' 0.0001 FLSF PS $,
E = 0.03 + (1 - Y/736.3)/3
P[ = 0.105*(PDF - 0.0288)/U + (0.1008 - 2.5*PDF)
PTR = 'J9.1.U - 0.12tf3*Y*(i + PD)**2 $,
BPF = 5.1 - l?.r*{( .20-r;)/.i:28)**K $,
"OP S = $ BTR + LTF <

,

SNB

'i.
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DYNL'iCl Model

TITLE MODEL 1. SIMPLE MULTIPLIER-ACCFLERATCR WITH BARRILRS //
T[MF^U"|T YFAHLY
Monri.
nriFiMiTiT! \'n, inn, ys, c"^, m, yf^, r.u, n-r>^ y*^!, yhi -;,

r'lnorrMrjijc; yp^ r^ ,,^ p^ |^ p,^ pn ^ |-.^ ' , ""x
'

rMnOGEIJOun THAT, T",A ''.,

rT''3T"!l!CT Y"^^, KR "^

,

Pi\'^.:r^.TE'^. ^L, i'v, RH, APr, npn, ir, n-', nvi, rrn^ OT^. *, rT'^'> ^^

r>A^'.A':FTE;7 T^.n, TRP, I.^P, DW, nnn, t|., ha, C'l'^ :^,

nn A_^
f^^P(- * Y"^ I /P '1,

''.S $=''. (.1.'^* '..'/( .nr*(2.F*R +Rn)))**."^ *(^P/(A*r!':^)) -*;,

* (i:f^ - (1. - RP/ti. ) *i'(-i)) ?.,

r.

nPT'^, = (1+ nnn) * r'lTP. (-1) t, "

in <:=•; IF inr, r'?T o.o t"fni ns flj'.f ::. . ,,,

YT '^=r' IF YOB I.F5 1.0 T'lpri 1.0 Fl.^r Ynp -^.^

YFF $=$ A*(0.9 3*L*.^'''>:-'. )**0. ;l5*!'.**n.l5 :*:,

YS t='^ IF YFF n-^T Y'^ T"F'I YP F L3 F YFF $,
YP = Y^ r.,

YPI ;.=$ ( 1 -LFR) * YP * P <^,

YPI $ = $ YPI - L * T-^A * (YPI/L) ** TRP. + TR" ",

,

r = (1./2 0G.) * (YP/A)**(1./..15)*K**(-.15/.C?) $,

U = 1 - F/L $,

CU "".=?. .IF * '/ * F * 2000. /(.3F *(2.F * R + R^^} *K) 0,

KB $ = $ l/U. + (1. - RO/Ik) * K(-1) <;,

'C = IF KB LF5 l.n T''F'l 1.0 EI.SF '(R $,

LTR = (1 + nij * !.T^(-1) ^,
L = LTR + ni. ";,

ATR = (1 + HA) * AT'^(-l) '^,

A = ATR + DA $,

Rsn '^='^ Ys/Yn ",

r. = Rsn*cn $,
I

s Rnn*in <!;,

p = (1 + pn/u. )*p(-i) ^,
pn -^s^ ( (flPn*0 . 02*U7)/(IIZ - ^. 0?") )*( l/U) - '' ^'^* 1 . 07/ (!!7 - C.O'^)
';tr = (1 + ovi) * '/TR(-i) ":.,

\i - UT!^ + nw $,

T^.M = (1 + PTRA ) * TRAT (-1) ^^

,

TRA = TRAT + PTRA $,
FNO
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DYNEC2 riodel

TITLF MODEL 2. DISTRIBUTED LAGS IN CONSUMPTICN, INVESTMENT,
PRICE CliANGES, AND PERSONAL INCOME //

TIM''!'"! T YFARI Y
Monn!
PEFIflTIO'' YD, YS, YPF, ri), n^n, Yr^l, |n, KS^ !5,

'^Nnonrrious yp, e, \j, c, \, r,, v., i, p, \

'!, CD, GDTR, ATP., ICG, LT'^ WT"., I
n^, ^, ^

rrj-^Orf-'ious YPI, PD, rr>, TRAT, TH; ':

,

CT!ST?"CT YDB, KH ".,

PAn.'.'irTET PL, R, n^, '-.PC, riP^, VZ, pa, ^',', '"nn^ irn, LIP, i.yn^ Lpn *^

PAP.";'-TE7 IT., T";P, LFP, DU, DP^, PL, nA, C::^, Ll^, DT^A, PT"'^ $,
ciF v=v .^^'t^ * Y^i/p •^,

CP = (l./(l. + LCP)) * CPr + (LPn/(l.+ Lpn)) - pn(-i) *,

".SE '^='^ (.15* 'V( . "r'-(;?..n*p +p^)))**."^ *(YP/( ^-A-pijs)) f',

•<5 = (l./(l. + Lin))*>:::,E + ( L I P/ ( 1 . +L I
r^

) ) -^ K^.C-l) $,
inr,r $=$ ':

. *(r.r>-r.G(-i) ) + pn * ':(-n + (!'^~(-i) - i(-i)) •:;,

10'^ = (l./(l. + I. l")**2.)*insE+C?.*!IP/(l.+Iir))*
IPG(-1)-((LI P/l. + LI P))**;\)*|nn(-2 ) ^,
IP "---I. IF IPS ^RT 0.0 TME'l IPT FL'IE .

n <^

,

PDTP - (1+ i^GP) * rnip (-1) It;,

PD = GPT^"'. + PGP $,

YDB ':=''; Pn + IP + HP %
YP '^=;^ IF YPP LES l.T T'IFM 1.^ FL"'^ Y^^. '',

YFE ^.^', A*(0.'J8*L*.?000. )**O.S?*K**0.i: "^

,

YS •^=$ IF YFE GP.T YP TIIE'I YP ELG^ YFF :^

,

YP = Y'') ^.,

YPI E $=:^ ( 1 -LFP) * YP * P *,

YPI =(1./(1.+LYP))*YPI F + (LYP/(1.+LVP))*YPI (-1) $,
yn

I $ =$ YPI - I. * T"A * (YPI/L) ** ^"'^^ + '^'^ "^ '^,

F = (1./2001.) * (YP/A)**(l./.'^:.)*K**(-.i:/. \'^) $,

L' = 1 - F/L ^,

K?^ •'=*; I/-':.. + (1. - P'^/fi.) * i;(-l) $,

f: = IF i:r les i.o iPEf! i.o elhe !:n :?,

LTn - (1 + GL) * LT^(-l) $,

I. = LIP + PL r.,

•J:\ - (1 + PA) * AT'M-1) ".,

A " AT'5 + PA ">,

PSP :r. =$ YH/YP '^^

r = ISP*(:;) $,

P » (1 + f^'V'K)*P(-l) C,
PPE t'^"' ( ('IP-^* •!.02*UZ)/(UZ - 0.^2))*(1/U) - '1P"»^ ]."2/(l'Z - 0. 2) r,
PP = (l./(l. + LP")) * PPE + (LPP/(1. + l^"^)) v PP(-l) $,
./IP = (1 + Gl'l) * WTU-1) $,

\! = ..'IP + PI/ '^,

IP AT = ( 1 + GTPA) * TPAT (-1) ^,

TPA = TPAT + PTPA '^,

ENP
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DYMEC3 Model

TITLE MCDFL 3. DISTRIBUTED LAGS, PRODUCTION AND TIJVFNTORIFS
AND IMPERFECT REALIZATION CF SALES FORECASTS //

TIMHi'MT YEARLY
MODPL
TEFI'MTIO": Yn, YFF, C'J , RSn, Y" I , I", KSf ^

,

HEFI '!! TIOi' CPF, YPIf^, Pnn, nS"^, OH, n!Mi, niin^ YSX, YPP, Y^''^ $,
FMPOrFJ.'OUS YP, E, V, C, \, G, K, I., P, A,

./, m, r.OTR, AIR, K5, LT-^, WTR, nc, '!, YG $,
ErjnonFfJous ypi, pn, en, tpat, T'^; -^^

nnsT'iiJCT Ynn, kr $,

PARAflFTEH GL, '^^ TO, APC, MPD, UZ, '^"^^ Gl.', nnn, LCn, Ll'^, LV!^, Lr>n ",

PARAMETER TPH, THP, I.FP, 017, DGD, ^L, n\, CL'H^ LIP, DT^.A, CJ^.f $,
PAn\flETEP LPP, MS, LS, !IS7 $,

nnp <;='^ APC * Yni/P <;,

CO = (l./(l. + I.nn)) * COF + (I.C^/(l.+ LCn)) * rM(-i) •^^

'^5F '.=': C.l.'^* lf/( .."r*(2 .5*? +Rn)))**.'^n *( yp/( \*rMS) ) "•,

':S = (l./(l. + Lin))*KSE + (Lin/(l.+! n)) * I'.sC-l) -^^

nsr -t=*. .'J. *(KS-",5(-I)) + RH * ;-(-n + (n-U-T) - l(-l)) $,

ns = (l./(l. + I.I P)**2. )*! nSf^+(2.*! I "^/(l. + l I P) )••

nr>( -i)-( (LI p/(i. + i I p))**2. )*i nr,(-:') %
in -' = ••; IF inn r'^T o.o TMPr! I

n<i fl^^ 0." <,
PPT"; = (1+ rcn) * mip (-i) ",

Pn = GPTP + POP ^,,

ynf? *=$ cp + IP + rn ^
YH $ = $ IF YPR LES l.'^ T'lm l.n FLHE Ynn :^^

vrF $=$ A*(0.08*L*200a. )**0.S!3*f'**0. 1^ -^

,

YS = IF (YFE +"(-1)) "RT YP TMEfJ YP ELSE CYFr + "(-1)) %
YSX -^.=5 LS * YS + (1. - i:. ) * (1. + "S) * YP(-!) -

(l.-LS)*flS*YS(-2) $,

YPE ^=$ YSX + (MSP * YSX - "(-1)) t,

YPS 0=-^ Cl./(1.+ LPP)) * YPE + ( IP'^./ (1. + 'PP )) * YP (-n ^^,

YP = IF VFi: PPT YPS TIlEf! yps c^LSE YE^ ",

,

T| <=*, YP - YS $,

PMP ':.='•, YPS - YSX ",

P!iu $=*> pn - P'lP $,
' = nil + ll(-l) <;^

YPIE :^=?: ( 1 -LFP) * YP * P i'

,

YPI -(l./(l.+LYP))*VP| E + (LYf'/(l.+r.'P))*YPI (-T) ".,

yn
I

'"='5 YPI - I * T''A >^ (YPI/L) ** T'lP + T'^ " •:

,

r - (1./2000.) * (\'P/.\)**(1./ ."n-'K**(- A':'/ .'^n ^.,

1 - 1 - ^/L -^-^

ril "=•-, .i; * >; * r ^- 20no,/(."? *(2." * P + P"") *lO t,
".P *=$

I /'I. + (1. - PP/'f.) * K(-l) %
'; = IE VS LES 1.0 T''Ef! 1.0 ELSf^ !'P •",

LIP = (1 + PL) * LTP(-l) $,

L = LIP + '^L I'.,

MP = (1 + PA) ^ AT'^(-l) S,

"!s^ '"^'--i YS/Y'^ "^-
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(DYNEC3 Model, Continued)

I = ^30* ID %

P = (1 + pn/;I' )*p(-i) :,
pnr: ,^^.^

( (:"^'^*'i. :''?^vi'z )/Cl'Z - . 2))'- ( 1/1)1 - •<[•-'"!* 1,
-- /(M-' - n '"")

P'^ = ( :./(!. + I.PO) * P^f! + (i"'^/(l. + LP^)) * pn(-'^) ^,

i/T'^. = (1 + ^'.n '•• JT-^C-l) $,

TP.-T = ( 1 + ^T^;,) * t;,.^t (-1) \

rM-1
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DYNEC4 Model

TITLE MODIX ^. EIWOGENOUS INTEREST RATE //
Tim'"IT VHA"!LY

TFFIMITIO'! yn, YFF, CU , RSn, Y^l, I'^, ''.'^'-, ?, :ip'- $,
DFri'imO" C'^r, YPIE, PDE, IPSF, n>i, n'lu^ nnp^ YSX, yPF, YPS $,
FNnOGF'.mUS YP, £, U, C, 1,0, K, L, P, A, '/,

nn, nnin, atr, f:s, ltr, utr, ins, "., y^ %,
FNonnFMnus ypi, pd, cd, tpa, trat, '1, 'in '^,

COMST'^UrT YDB, KB $,

PAPAIIETFP GL, RD, "^PC, MPn, UZ, f^A, P'.', PGP, LCn, Ijn^ lyp, LPn ^,

PARA-'IETER TRR, TRP, LFR, DV/, DGn, HL, HA, GUS, LIP, DT^A, GTRA $,
PARAriETER LPR, flS, LS, :!r>P, D'1, 1^, C:\, l":P %,

flRF $=-5 (1. + LMD) * CV") - Llin * M(-l)/ P(-l) $,
R 5=$ (MRr:/(.'^72 * YP))** (-1./!^) $,
CPF $=$ APC * YTI/f' ?^,

Cn = (l./(l. + LCn)) * r-^F + (1^^/(1.+ LG-^)) * CD ( - 1 ) $,
XSE "=$ (.15* !.'/( ."[.••v( 2.!" * R +R^)))**.".r * ( Yf^/

(

A*G''S ) ) %,
KS = (l./(l. + Lin))*KSF + (Lin/d.+LI'^)) * K3(-l) %,

IPSE !^=$ 'K *(K.'3-!'.S(-1)) + RP * :c(-i) + (nG(-l) -
I (-in $,

IB§(^i^i({[}p/tiHClM7aM3^F^i^n''^;^-^"'^^*
n C^*: IF ins GRT <^ .^ TMEri ids rLr, r 0.0 ';,

GPTR = (1+ GGD) * GDTR (-1) C,

GO = GDTR + DGD $,

Ynn r:-<; c^ + in + pn "5,

YD '^=$ IF YT. Lf'S 1.:^ T"EM 1.0 ^l.'^r ynn, •^,

YFf "=•'> A*(n.OP,*L*2mO. )**0. C?*''***^.!.^ ''

,

Y5 = IF (YFE +l'(-n) GDI Y^ TME'i Yn tlsf (\'Ff^ + "(-!)) $,

YSX •":=r. LS * ':'S + (1. - LS) * (1. + MS) * YS(-l) -

(l.-LS)*MS*Y5(-2) :^

YPF ^=S YSX + (MSR • YSX - 'l(-l)) t,

YPS Z=t (l./(l,+ LP'^^) * YPE + ( l.f''^,/ (1. + LPR )) * Y^ (-1) ^,

YP = IF YFE GRT YPS TME'I YPS ELSE Ypr ^-,

,

D'! '^,^% YP - YS :,

YAP $=0 YPS - YSX 3,

~)!iU ^.=% DM - DIIP C,

! = ^1! + '(-!) %
YPIE0=C:(1-LFR)*YP*P0,
YP! =(1./(1.+LYP))*YPI E + (LYP/(1.+LYP))*Y"I (-1) "t,

YHI C=$ YPI - I. * TRA * (YPI/L) ** IRE + T"^,'^ C

,

E = iiJ-'.^A^.) * (YP/A)**(i./.r3)*:;*v^(-.ir./. D $,

U - i - L/L :;,

f-|i •* - " 1'; * '' * I" * 'D'V /( '
'i

•("' ' + '~' + '^n'* *K> *

':r.
'-* I/.'i. + (1. - RH/;., .) * K(-l) '^,

K - IF K'l LES 1.0 T'!EM 1.0 ELSE ''J^ '^

LT'^. - (1 + GL) ^- ITR(-l) ^>,

L = I.T" + DL \

-.Sn '^=r> YS/Y^ -^^
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(DYNTi:c4 Model, Continued)

•D = (1 + ^^/'^. )*P(-1) ''],

^^ = (l./(l. + LP^)) * Pnr + (L^n/d. + !."n)) * pn(-i) '- '

•;T"- = (1 + r'.,') * JTU-i) $,
'.' = '.!!'''. + D',.' 1,

T"..M = ( 1 + nir^") * T^..'.T (-1) ^,
jn; = T"^\T + nTR\ i,

•!T". = (1.+ r.M) * M-i(-l) '-.^

! = M T " + n M -^
• > - • V /





APPENDIX B

The Archives In TFDLL

In order to use the models described in the text and listed in

Appendix A, archives must be present in the system pivinp; values for the

ENDOGENOUS variables. In the static models, these nuntjers serve as the

first guesses in the iterative solutioi process. In the dynamic models,

(the DYNEC's), they nerfbrm this functicn as well as providing initial

conditions for the evolution of the system.

We shall not describe in detail how archives are constructed or

how they "look" in the system. Instead, we shall discuss in turn each of

the three archives necessary to use these simulation models, and we shall

sirmly state v^at values must be entered for what variables for what years.

All files menticned must have "yearly" as their timeinit.

Archive fENEO

Ihe GENEQ archive provides the data necessary for the two models

discussed in Chanter III, GEl and rE2. Ihe follcwinp values have been

entered in year 1 for the following variables:

LC
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The ENDOGENOUS variables and the corresponding values are as follcws:

A



*W-^*3^





NOV 7 "fil

UatB Due

Lib-26-67
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