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Abstract

This report gives an expository account of a method due to Wiener (10). His

method is to solve for the voltage across a nonlinear device in terms of the entire

random voltage and then to get statistical averages, on the assumption that the cur-

rent-voltage function of the nonlinear element and the system transfer function are

given. We treat a case in which random voltage passes through a filter before enter-

ing the circuit in question. Explicit formulas depending only on the assumptions above

can be given for the moments of all orders of the voltage across part of the circuit,

and similarly, for its frequency spectrum. The method of computation explicitly re-

quires the use of the Wiener theory of Brownian motion (11, 12), also associated with

the names of Einstein, Smoluchowski, Perrin, and many others (7). Sections I and III

form the main part of the paper; section II is an heuristic exposition of the Wiener

theory of Brownian motion preparatory to section III.
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A METHOD OF WIENER IN A NONLINEAR CIRCUIT

Introduction

The problem of noise is encountered in almost all electronic processes, and the

properties of noise have been studied by many researchers (1 to 5); among them,

Rice (4) and Middleton (5). The term "properties of noise" is used to indicate such

measurable quantities as the average, the mean-square voltage (or current), the cor-

relation function, and the power or energy associated with the noise. It also refers to

the power and correlation function of all or part of the disturbance, when noise, or a

signal and noise, is modified by passage through some nonlinear apparatus. The ana-

lytical descriptions of noise systems have been limited mainly to those cases where

the random noise belongs to a normal random process whose statistical properties are

well known.

In such cases, one avenue of approach is to study the actual random variation in

time of the displacement or voltage appropriate to the problem. This variable is usu-

ally developed in a Fourier series in time the coefficients of which are allowed to vary

in a random fashion. This Fourier method has been applied systematically to a whole

series of problems by Rice and by Middleton. The other approach is the method of

Fokker-Plank or the diffusion equation method (6), in which the distribution function of

the random variables of the system fulfills a partial differential equation of the diffu-

sion type. These two methods may be shown to yield identical results (7).

It should be noted that Kac and Siegert have developed a method for dealing with the

exceptional case of rectified and filtered, originally normal, random noise. Because

of rectification and filtering, the distribution law of noise is no longer gaussian; and

therein lies the difficulty of the nonlinear problem. Their method yields the probability

density of the output of a receiver in terms of eigenvalues and eigenfunctions of a cer-

tain integral equation (8). Recently Weinberg and Kraft have performed experimental

study of nonlinear devices (9).

This report gives an expository account of a method due to Wiener (10). His method

is to solve for the voltage across a nonlinear device in terms of the entire random volt-

age and then to get statistical averages, on the assumption that the current-voltage

function of the nonlinear element and the system transfer function are given. We treat

a case in which random voltage passes through a filter before entering the circuit in

question. Explicit formulas depending only on the assumptions above can be given for

the moments of all orders of the voltage across part of the circuit, and similarly, for

its frequency spectrum. The method of computation explicitly requires the use of the

Wiener theory of Brownian motion (11, 12), also associated with the names of Einstein,

Smoluchowski, Perrin, and many others (7). Sections I and III form the main part of

the paper; section II is an heuristic exposition of the Wiener theory of Brownian motion

preparatory to section III.
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I

The circuit with which we deal is indicated in Fig. 1, in which a nonlinear device D is
connected in series with an admittance H(w), the system transfer function, and a filter

precedes the combination. A random noise voltage v(t) of the Brownian distribution is

impressed across the whole circuit. The voltage across the filter vf(t) is given (13) by

t

Vf(t) = V(T)W(t - T)dT
-00O

(1)

where W(t) is the weighting function of the filter,

sumed throughout this paper.

I 

and W(t) = 0 for t < 0, which is as-

I

Fig. 1

Let us assume that the admittance function 2H(w) is known, and let h(t) be the cur-

rent response of the system to a unit voltage impulse. If vl(t) denotes the voltage across
the nonlinear device D, it is well known that the current through H(w) is given by

00oo

5 h(t - T) (Vf(T) - V(T))dT
-Co

In order to solve this equation we assume that the current-voltage function of the non-

linear element D is known; we take the current equal to vl(t) + (vl(t)) 2 , where is a
constant. Since the same current flows through D and H(w), we have

vl(t) + E (l(t)) 2 = h(t - T) (Vf(T) - vl(T))dT

After substituting Eq. 1 in Eq. 3 we obtain

00 00oo oo

v1(t) + E ((t)) = h(t - r) ( v()W( - -)da dT

-00 -00

00

- h(t - T)Vl(T)dT

-00

(3)

(4)
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We wish to solve Eq. 4 for vl(t) in terms of our random voltage v(t). For this step

we assume that

v(t) Go +| Gl(t - )v(T)dT + G 2 (t T1 t - T)v(Tl)v(r,)dTldT
-00 o00 -_O

00 00 00+ $ $ I G3 (t - T, t - T2 , t - 3 )v(T1)v(T2 )v(T3)dTldTdT3 + (5)

where Go is a constant. In the sequel, we shall take Go = 0 for the sake of simplicity.

The expression for xv(t) is now substituted in Eq. 4 and we shall equate linear part

with linear part, quadratic part with quadratic part, and so on, involving the random

function v(t). Then we get these first-degree terms:

o o oo

i Gl(t - T)v(T)dT + 5 h(t - r)d io- G 1( - T)v(T)dT

h(t - ) ( W(o - T)V(Tr)dT)do- (6)
-- -oo

This expression can be true if we have

oo o

Gi(t - T) + h(t - )do Gl(o - T)= 5 h(t - )W( - T)d0 (7)
-00 -o00

The solution of this equation can be obtained by means of the Fourier transform

method Let G be the Fourier transform of g. Then we have (14)

0o

G(t)= | g(w)eit dw (8)
-oo

00

g() 5 G(t)e-tdt (9)
-oo

and since H(w) is the Fourier transform of h(t), we also have the following relation

00h(t) = H()eit d (10)
-co

-3-
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H(o) = I

-00

h(t)e -itdt

Moreover, we let W(t) be the Fourier transform of w(c). Then

oo

W(t) = w(w)e itd
-00

oo

-00

W(t)e -itdt

If we take the Fourier transform of both sides of Eq. 7, we get

gl(w) + 2rH(w)gl() = 27H(w)w(w)

or

( z) rrH()w()
gl( W ) 1+ 2 r()

If there were no filter in our circuit, then we would get Eq. 14 without

numerator. By use of Eq. 8 we can find Gl(t) from Eq. 14.

larly get the second-degree terms:

From Eq. 4 A

21rw(w) in the

re shall simi-

oo o oo00 00 00

$ G(t - T1, t - T2 ) v(T 1 )v(T 2 )dTldT2 + ( | G(t - T)V(T)dT)

=0

00 oo oo

+ h(t - T)dT | | G2(T -T1, T- T2)V(T1)V(T2)dTldT 2
-00 -'_ -O

Equation 15 will be true if the following expression holds:

G2 (t - T1 t - T2 ) + EGl(t - T)Gl(t - T2 )

-00

h(t - T)G 2 (T - T1, T - T2)dT = 0

Let us assume that G2(- 1 , T2) is the double Fourier transform of g2 ( 1 ,w 2 ), that is

0o oo

G2 (t 1, t2 ) = $ 

00~o

i(wlt + 2 t 2 )

-4-
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(12)

(13)

(14)

(15)

(16)

dld z2 (17)
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0000

g(2('1 ) (z)2 c o

-i( 1 t 1 + A2t 2 )
G2(tl, t2)e dtldt2

Taking the double Fourier transform of both sides of Eq 16, we find, by using Eqs.

9, 11 and 18, that

g2(w1', 2 ) + Egl(wl)gl(w2 ) + 2H(w1 + 2 )gz2(wl', 2 ) = 0

or
Egl(+ l)gl( 2)

gZ2(1 ' 002) = - + ZfHP(01+ 2)

E ( Z2w ) H( 1)H(A 2)w( ( 1l)w(w 2)

[1 + 2rrH()] + Z1H(0) ] [1 + [2wH(~1 + 0Z)
(19)

If there were no filter in the circuit, we would get Eq. 19 without the factor

(2 )2w(w)w(o2) Similar remarks apply to all gn's.

Multiple Fourier transforms of the Gn's are defined as in Eqs. 17 and 18:

00

Gn(tl n tn) 

00

oo

gn( 1 ' - n) (2 )n S
00o

00

-00

00

00
'' C

n
i Z wktk

Gn(tl 1 ... tn)e

l1 ... dwn

n
-i .ktk

1 dt .dt
1 I n

(20)

(21)

Working in the same manner as for gl(0) or g2 ( 1 , Z2 ) we get from the third-degree

terms of Eq. 4

g3 (wl' c2' 3)
2E gl(wl)g2(w 2' 3)

1 + 2H( + + 3)

2 f (2r)H(wl)w(l1)
[1 + 2~H(i )

1

1i + 2wH(o z~· +7 c3)

[1 + 21TH(w( 2)].-V TT-H(---2

1
+ 2rH(w + 2 + 3)

And we obtain from the fourth-degree terms

E gl(l)g3(' 003' °4) + 2E g2(w1', 2)g 2 (w3', 4)

1 + 2TrH(0 1 + 00 + )3 + W4)

From this procedure it is easy to compute any gn's. It will be noticed

-5-

(18)

(22)

(23)

that

(gn (W 1· ... Wn) e

(2-ff)H(w3)W(W3)

. w ~i~H3g~

94(w 1' W21 "3' 4) 



g2 (w1 , W2 ) has ; g3 ( 1,Z' ,w 3 ) has ; and in general, gn(ol , an) will have En 1 as

its perturbation factor. By means of the Fourier transformation Eq. 20 we shall find

Gn ' s , which will be substituted in Eq. 5 to find (t), the voltage across the nonlinear

element D. Our next step is the computation of Eq. 5, involving the random voltage

v(t). For this purpose the next section of the report is devoted to an heuristic exposi-

tion of the Wiener theory of Brownian motion.

II

2.0. Before we give the Wiener theory of Brownian motion (11, 1Z), it is interesting

to recall that in 1828 Robert Brown first observed tiny irregular motions of small par-

ticles suspended in water when viewed under a microscope. Each particle may be con-

sidered as bombarded on all sides by the molecules of the water moving under their

velocities of thermal agitation. On an average the number striking the particle will be

the same in all directions and the average momentum given to the particle in any direc-

tion will be zero. If we consider the interval of time to be sufficiently small for the

individual impacts of the particles on one another to be discernible, there will bean

excess of momentum in one direction or the other, resulting in a random kind of motion

that is observable under a microscope. This motion is known as the Brownian motion.

According to the theory of Einstein (15) and Smoluchowski (16) the initial velocity

over any ordinary interval of time is of negligible importance in comparison with the

impulses received during the same interval of time. The motion observable with this

time scale is so curious that it suggested to Perrin (17) the nondifferentiable continuous

functions of Weierstrass (18). It is thus a matter of interest to the mathematician to

discover the defining conditions and properties of these particle paths.

If we consider the x-coordinate of a Brownian particle, the probability that this

should alter a given amount in a given time is, in the Wiener theory (11), assumed in-

dependent (a) of the entire past history of the particle, (b) of the instant from which the

given interval is measured, and (c) of the direction in which the changes take place.

Since displacements of a particle are independent and random by these assumptions,

they will form a normal or Gaussian distribution by the central limit theorem (19), pro-

vided the time interval becomes sufficiently long. Because of minute motions of the

Brownian particle it is not unreasonable to assume that the normal distribution law

holds very nearly even in a sufficiently short interval of time, though it is still large

when compared with intervals between molecular collisions. From these assumptions

it is to be noted that displacements of each component of the Brownian particle form a

stationary time series (20); and the mean-square motion or displacement in a given

direction over a given time is proportional to the length of that time (21).

2.1. We shall consider the time equation of the path of a particle subject to the

Brownian movement to be of the form

-6-
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x = x(t)
y = y(t)
z = z(t) (24)

where t is time, and x, y, z are the coordinates of the particle. We shall limit our at-

tention to the function x(t). Then the difference between x(tl) and x(t) (t > t) may be
regarded as the sum of the displacements incurred by the particle over a set of inter-

vals consisting of the interval from t to t 1. If the constituent intervals are of equal size,

then the probability distribution of the displacements accrued in the different intervals

will be the same; and the probability that x(tl) - x(t) lies between a and b is very near-

ly of the form

b
1

[Z r (tl - t)] a

2

z (t1 - t)
CIx (t > t)

It is the basic characteristic of the Brownian motion to accrue errors over the inter-

val from t to t (t < tl) such that the error is the sum of the independent errors incurred

over the times from t to t l and from t i to t (t < t i < t l ) . Thus we shall have

1

[2r(t 1 - t)]

2
xl

20(tl - t) 1

2Yr(tl - ti)4(tj -t)]

2 'X - x)2x (Xl-x)2
0I 24-(t - t) 2(t 1 - ti)

e dx

_a

0 2 ( -t. ) + t ti j
= exp [-2(t - I 2 t - i iJ 00 exp Z\ t _dy

20(t iZd~)(t1 -00 d 4(t1 - ti)(t - t)

1 2
x

= ~ t- ti)4(ti t) 2 exp ( 2Z(t1 - 'I7TJ (26)

This cannot be true unless we have

(27)

Hence we must have

(A > 0) (28)

where A is a constant. The probability, then, that x(tl)-x(t) lies between a and b is
approximately of the form

2
xb -

b ZA(tl - t)_ .
- t)] 1/2 J -a

dx (t 1 > t)

-7-
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1

[ZwA(t 1

(29)

I �

r e

c (t t) (ti - t) + (ti - t)

() = A4



Here A is a constant which we shall reduce to 1 by a proper choice of units. If we insert

ti - t = tl, and t - t i = t 2 in Eq. 26, the fundamental identity reads

2
x1

1 2(t 1 + t)

[2rr(t 1 + t)] 

2 ( 1 - x) 2
x (Xl

1 2t2
e

This equation states that the probability that xl should have changed by an amount lying

between x1 and x + dx1 after a time t + t 2 is the probability that the change of x over

time t should be anything at all, and that at the end in an interval t 2 the particle should

then find itself at a position between xl and xl + dx1.

A quantity x whose changes are distributed after the manner just discussed is said

to have them normally distributed. What really is distributed is the function x(t) repre-

senting the successive values of x. Without essential restriction we may suppose

x(O) = 0. Our next problem is to establish a theory of integration which is based on a

method of mapping. This method of mapping consists in making certain sets of functions

x(t), which Wiener calls "quasi-intervals" (11), correspond to certain intervals of the

line 0 a 1. The quasi-intervals will be a set of all functions x(t) defined for 0 t 1

such that

x(0) = 

a1 < x(tl) bl

a2 < x(t2 ) bZ

an < X(tn ) bn

0 = t o t . . tn 1 (31)

By our definition of probability, the probability that x(t)

intervals is

should lie in these quasi-

m(I) = [(Z,)ntl(t2 t) . . (tn - tn - 1)]1/2 a a

I n

r �2(2 - 21)

exp L- 2(t _ t ) -2f-t
We may let ai - and

the smaller of the (bi, bj).

a = - b = the value
T T

* *de dt . .. di

(t -t n _1 ) _ I n
(32)

bi - C. If ti = tj, we may use the larger of the (ai, aj) and

If we add an extra ordinate line at t = T, (t i < T < t i + 1) with

of m(I) will remain the same, as shown below

-8-
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1

21T)n + 1 tl(t2 - tl) .. ' (ti - ti - 1
)

( - ti) (ti + 1 T) ( n - 1)

b b oo b b1 i +l In

a1 a i - a i + 1 a

2 ~(~-12(1 i ) 2 (i+ 12 
t1 (62 - 1) 2 (in - in - 1)

exp [-t -- 2(t 2 - tl) ( - ti) 2(t i + -1 - T 2(tn - tn - 1)

dIdt 2 '" dtidTdk + 1 ' din = m(I) (33)

since we have

00 (n ti) (ti+l-n)

exp 2(t -ti) (t i- ) ) 

( t I - t exp 2(ti - ti) (34)
+ I i 

Hence there is no effect from the addition of extra ordinates, which is, of course, ex-

pected from the definition of the total compound probability; and the total probability of

m(I) is 1.

As the Brownian particle x(t) moves in the quasi-intervals, there is a correspond-

ing set of values of a. If we write x(t, a) for x(t) corresponding to each a, we have as a

measure of the probability of each coincidence, the product given by Eq 32 for the set

of intervals

x(O) = 0

a 1l x(t 1, a) b1

a 2 4 x(t2, a) b2

an X(t, a) b n

0 = to. tl . 4 tn< 1 (35)

In this process we may determine the integral (or average) of other functions of a

determined as functionals of x(t, a). The function x(t, a) is called a random function, in

which t can trace all possible courses traversed by all possible particles, while a is

the argument which singles out the specific Brownian motion from all possible Brownian

motions. The variable a is introduced for the purpose of integration, so that a certain

range of a measures, by its length, the probability of the set of Brownian motion that

9
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it represents; and an integration with respect to this variable yields a probability aver-

age of the quantity integrated. Physically, it is at least reasonable to assume that the

Brownian motion of a particle is continuous. It has been shown to be almost continuous

(18).

2.2. If we wish to determine the average (or expectation) with respect to a of x(t1 , a)

... x(tn, a), we have, for = to 0 tl1 ... . tn,

S x(tl, a)x(t 2 , a) ... (tn, )da
0

n

00 oo 2 ( )2

dl ... dn 1 2 n. exp(-1
- ( 2 - 1)

-00Let us compute a simple case-
Let us compute a simple case

i x(tl, a)x(t 2, a)da
O

01 00 1

= i | tl(t2 -tl) I 1 a2 e
00 00 

2(n - tn - 1)

.(tn tn 1) )
(36)

12 (a2 - 1 )

- 2 2(t 2 - t1)
dId z

(37)

for t1 < t 2. Let

Then we have the Jacobian with respect to 51 a2 :

a(0 1, 2)
J(rll, 12) a(l , ) 2) 

g1 = ll(t) /,' 2 = 12 (t 2 - tl ) / + 1 (tl)/

Then we get

-10-

x = l1/' 2=
t )

az - 1
(t z - tl)1

(38)

and

(t1)1/2(tl) /

0

(t z -tl)/
= t1(tz -tlrl" 

]- 1/2
= (2Tr) 2 1 1(t2 - t) ... (tn - tn -



1

O

x(tl, a)x(t 2, a)da

oo5

=2 5 I [tll e
_ oo _o

oo oo00 _oo
2

1 le

00 C

=2r

1 +q2

[tl(t - t

+ 'n712 Lt l(t2 - tl) 

'12 + 12

- tl )1/ 2 + Tll(tl ) 1/ 2 ] e- 2

2 2
I11 + BZ12

112 e- 2 ]dilldl2

2 2
'i + '12

Zl

dld 2 = tl (t1 < t 2 )

The second term involving 1' 112 drops out, since this term is an odd function with

respect to l1 and 92. The result given above may be written

S x(tl, a)x(t2 , a)da = min(tl, t)

O

where min(tl, t 2 ) denotes the minimum of t and t 2 . In general, we have

1

x(t 1, (a)x(t 2 , a) ... x(t2n, a)da

= 2 min (t, t ) min (t t) ...
(u3, t4

min (t2n - 1' t 2 n)

where the summation is on all of the permutations (vl, ... , v2n) of 1, 2,

1

I x(tl' cL)x(t 2, a) ... x(t 2 n + 1' c)d = 0

(41)

... , 2n. And

(42)

Equation 36 can be also written

1

x(t1 , a)x(t 2 , a) ... x(tn , a)da

O

E , I x(ti, a)x(tj, a)da
O

(n is even)

(43)

where the : is taken over all partitions of tl, ... , tn into distinct pairs, and the I over

-11 -

(39)

(40)
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all the pairs in each partition. This means that the averages of the products of x(tk, a)
by pairs will enable us to get the averages of all polynomials in these quantities, there-

by giving their entire statistical distribution.

At this point we introduce a definition: If p(t) is a function of limited total variation

(22) over (0, 1), we shall write

1 15 p(t)dx(t, a) = p(l)x(l, a) - x(t, a)dp(t)

o o

(44)

If, then, Pl(t) and P2(

p2 (1) = 0, we get, by use

t) are of limited total variation over (0,

of Eqs. 44 and 39,

1), and pl(l) = 0,

1 1

i d a x(tl, ca )dp l(t1 )

o o

1 1

= dpl(tl) 5 dp 2 (t 2 )
o o

1 1

= t ldp l(t l ) dP2 (t2 )
o t 1

1

x(t 2 , a)dp 2 (t 2 )

1

x(tl, Ca)x(t 2 , a)da

o

1

o

1

t 2dP 2 (t 2) dPl(tl)
t 2

1

1

0

t[p2 (t)dPl(t) + Pl(t)dP 2 (t)]

1

td [Pl(t)p(t)] = Pl (t)p 2 (t)dt
o

2.3. Thus far we have

in the finite range 0 < t < 1.

the whole real infinite line

considered the Brownian motion x(t, a), where t is positive

We shall now give a general form valid for t running over

Let us write

(t, a, ) = x(t, a)

(t, a, ) = x(-t, )

(t > 0)

(t < 0)

where a and have independent uniform distributions over (0, 1). Then q(t, a, p) gives a

distribution over (-oo < t < +00). To map a square on a line segment is merely to write

our coordinates in the square in the decimal form

a = ala2 Ian ..

P = P1P2 - Pn . . (47)

-12 -

(45)

o



and to put

= .alPla21 2 P anin ... (48)

This mapping is one-one for almost all points both in the line-segment and the square

(12): whence we get a new definition for the random function

/(t, ) = (t, a, pB) (-co < t < +00) (49)

In order to integrate rp(t, y) with respect to y in a manner similar to that used in Eq.

44 we wish to define that

-00 co

holds if P(t) is assumed to vanish sufficiently rapidly to zero at +o and is a suffi-

ciently smooth function. With this definition we have, formally,

1 X Pot)d(y)

dy I Pl(t)dO(t,y) P2(t)d-(t, )

S dy | P(t)(t,y)dt 5 P(t)(t, )dt
o -o -o

oo oo 1

5 ~ Pl(s)ds 5 P(t)dt 5 4(s, y)(t, y)dy (51)
-to -Co 0

If t and t 2 are of the same sign, and Itl < It2 1 , we obtain by the same process (23)

as that used in Eq. 39

1 1
( t l y)(t 2 , y)dy = I x(Itl , y)x(Itz y)dy =I tl (52)

o o

And if t1 and t 2 are of opposite signs, we get

5 i(t1 , y)4(t 2 , y)dy = 0 (53)

o

Using Eq. 52 in Eq. 51, we get, as in Eq. 45,

1 oo (t

I d¥ | Pl(t)d(t, y) | P2(t)d4(t, )

-13 -
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o0

I Pl(t)PZ(t)dt (54)
-00

It is to be noted that

1 o oo

dy P(t + Tl)do(t, y) P(t + T2)do(t 2 , y)

oo

i P(s)P(s + T1 - T)ds (55)

-00

and when n is even, we have

1 n c g

dy I | P(t+ +k)d(t, y)= 1 j P(s)P( + . - T)ds (56)

o k = 1 o -

where the sum is over all partitions of T1, ... , Tn into pairs, and the product is over

the pairs in each partition.

If we put

P(s)P(t) = P(s, t) = P(t, s) (57)

and define P(s, t) as possessing the similar properties with respect to each variable as

P(t) itself, then we may put

00 0 oo 00

j0 5 P(t 1' t)d(tl, y)dO(t2 y) = (tl, y)/(t2 , y)d P(tl, t 2 ) (58)-CO -00o -o -0

In general, we define a symmetrical function of n variables P(t1 , t 2, ... , tn) such

that it vanishes sufficiently rapidly to zero at + oo for each variable and is a sufficiently

smooth function. We may thus define

00 00

S *- P ( t l ' t 2 ... ' tn)do(tl' y)do(t2' y) "' dO(tn' Y)
-00

00 cO

= I | i(tl, y)(t 2, y) .(t, y)d P(tl, t 2. tn) (59)
-CO -00

Coming back to Eq. 56, we put n = 4, and T = T2 = 3 = T4, and

P(Sl)P(s 2 )P(s3 )P(s 4 ) = P(s, s 2 )P(s 3 , s 4 ) = P(s 2, sl)P(s4, s 3 )

= P(sl, s2, s3, s4) (60)

-14-



Then we get, formally,

00 00 0000

o 0 ll

= (4 - 1) | P(sl, Sl, S, s 2 )dslds 2
-o -0o0

where (4 - 1) is

have, from Eq.

the number of ways of

59,

dividing four terms into pairs: and in general we

00

dy . . .

n times

(n - 1) (n - 3) ... 5 3 1

o00 co

... P(t 1 tt 2 t .. tn )dtl, tl, t..... dtn
-0 -00 2 2

if n is even: and 0 if n is odd.

III

3.1. Using the results of section II, we first compute the average of v(t) across the

nonlinear element D. Since v(t) is a random noise voltage, we now write v(t, y) for v(t),

where y is a usually suppressed parameter of distribution. Writing in full, we have

1

Average of vl(t) = I v l (t, y)dy

0

1 00

= dyI Gl(t- T)dv(T, y) +
O -o

+ | $0 G 3(t 1l t -T2 t

_o _00 o _

o 00

I S Gz(t -l t - )dv(Tl, y)dv(T2 ,y)

- T3 )dv(T1 , y)dv(T2, y)dv(T3 , y) + ..

In view of Eq. 42, the first term is zero: but the second term is, by Eqs. 54 and 58,

00

5 G2 (T, T)dT

-0o

-15- -

(64)

1

O

(61)

00

S P(tl, t 2 ,
-0o

(62)

___l�llnl�ll ___X_·__ _� Y�_ _ �·_·· ^� --C ____ _�_C __ _ Il----�--·------C--·111�·1111111

P(tl' t2' t3' t4)C1(tl' y)dOl(tZ, Y)C'(t3' Y)d4(t4' -y)

.. , t )dqjl(tl, y)dq(t2, y) ... do(tn, y)

(63)



It is now necessary to express an average of Gn (n even) in terms of an average of

gn. For that purpose, let us start with

00K(s) = k(.)e dw (65)

Then by the Fourier transformation, we get

00

k(w) = ? -
-00

K(s)e -iSds

And the theory of convolution gives us

00

K(s)K(s + T)ds = 2rr

-oo0

00

k(w)k( -)e i T dw
-00

(67)

If we place T = 0 in Eq. 67, we get

S K(s)K(s)ds = (68)
2 k(w00 )k(- w)d

-00oo

Putting

K(s)K(s) = RZ(s, s)

k(w)k(-w) = r(0, -) (69)

Eq. 68 reads

00 00

R2 (, s)ds = r 

00 -_00

r2 (co, - )d

In general, we have

... s n, Sn)dSldS 2

2 2

n oo oo00

= (2r) 2
r( l (w -' 2W' - 2'

-o0 -o0

.... n' -n )d0 ldw 2

By using Eq. 70, we can write Eq. 64 as
00 oo

5 G 2(T, T)dT = 21T 5 g2 (w, - )d

-00

-16 -

(66)

00 00

00 -00

(70)

... ds n
2

... dn
n

Z

(71)

(72)

a

R (S Si S' SZ

-00oo



which is, in turn, evaluated by Eq. 19: that is,

00

H(o)H(- )w(o)w(- )
- E (1 + 2TrH(')) (1 + 2H(-wc)) (1 + 2H(O)) (73)

-oo

The next nonvanishing term is

3(2r) 2 I | g4(l -Cl W2 - 2 )dw, d 2 (74)
-00 00

3
which can be computed by Eq. 23 together with Eqs. 14, 19, and 22. This term has as

its factor.

The average of (vl(t))2 can be computed in the same manner, which reads

o0

Z i gl(a)gl(-°))d
-00

-00 -00 -00+ 4 [2 |2 i g2(w1w)2)gZ(-W1' w2)dldci2 + ( 5 g2(w w a,)]
00 00

+ 2Air2 S S g1(°)g 3 (-°l, , -W)dw 

o00 on oo00

8 6 o | | g3(wI'w°Z'w3)g3(-w1'- ' 2' -3)dwldw 2dw3

+ 9 9 i 5 g3(wl'w2 'w2)g93( wl'w3' )dwIdw2d 3]

-o0 -oo -o0

+... (75)

Since we have

average [vl(t) + (vl(t))2 ] = average vl(t) +E average (vl(t)), Eqs. 73, 74, and 75

will give the average current across the nonlinear element, or H(w).

The higher moments of vl(t) can be similarly computed, and also those of

(vf(t) - vl(t)), the voltage across H(w).

3.2. The most useful statistical characteristic of the random function in the Wiener

theory is the correlation function. The autocorrelation function ll(T) of fl(t) is defined

as

-17 -
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00

ll( T ) = T -oo r fl(t)fl(t + T)dt (76)

where

00

lim S f2(t)dt < + (77)
-00

Then the power density spectrum of fl(t) is given by

=11( ) = |-5 all(T) COS WT dT (78)
-00

and its Fourier transform is

00

=11(T) 5 f 11(c) COS T dw (79)
-00o

This relation between the autocorrelation function and the power density spectrum of a

stationary random process was first proved by Wiener (11). Since then, correlation

analysis has been applied to various communication problems by the school, in particu-

lar, of Lee and Wiesner (24-29).

Since time averages and ensemble averages of stationary random processes are

equivalent by the ergodic hypothesis, we can compute the average of vl(t)vl(t + T), the

autocorrelation function of vl(t). Writing vl(t, y) for vl(t), we have

average [vl(t)vl(t + -)] v l(t, Y)vl(t + a-, y)dy

1 _c 00 00

= d dy [ Gl(t - T)dv(T, ) + $ $ G2 (t - T1 t - 2 )dv(T, )dv(T2, y)

00 00 00

+ | 5 G 3 (t - T, t -T2, t - T3 )dv(Tl, y)dv(T, y)dv(T3, y)+

00oo oo00

x Gl(t + a - T)dv(T, y) + G2(t + - T1, t + - - T2 )dv(T, y)dv(T2, y)

- -00 -00 -00

-18-
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00 00 00

+ $CO00 S0 G 3 (t + - T1, t + - T2 , t + - T3 )dv(Tl, y)dv(T2 , y)dv(T3 , y)

(80)

By using Eq 62 and then by using Eq. 71, we obtain as before

o00 00 00

2w T gl(w)gl(- )e d + 4 r2 C l 5 ic 2 g2 (wl -l)g 2 ( 2,-c' 2 )

-oo - -oo

00 00

+8 2 .dg(l Z)gZ (- -cZ)e
-8-r dw 1 dw 2g2('P'2)g2( '1' C2)e

00 00co

+3(21T) d 5 dw2gl(wl)g3(1' J2' -W2)eIr z~e

ol + 2 )

io-w

-00 00

+3(2w)2
00 d' $5 dw2 g(@ 1 )g3 (-@1,o 2 - 2 )e' + 

In the expression given above the second term, independent of

senting a dc component, and the third term can be written as

a, is a constant repre-

8 2 5 eic&d 5 g2(l1' -Wl)gZ(-1j, 1 -w)d l
-00 -00

It means that to the frequency spectrum 2 g l (c)gl(-w) present with no rectification,
there have been added

(83)

oo

82 i 2 g(l -l)g2(-l1' col-o)dl

and similar terms from the fourth and fifth terms in expression 81.

3.3. Let us compute the dc component in expression 81, that is

(84)

oo

42 5
-00

We assume that

-19-
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where T is a constant.
0

1 -tT0

-oW(t) = T- e

= 0

Then we get from Eq. 13

00

W(W) I-
-O

1 1
21nT 1

0 T + iW
0

And if we assume that

h(t) = Ee - at

=0

t O 0

t<0

where E and a are positive constants. Then we have from Eq. 11

o00

H() = 2 h(t)ei tdt

1 E
2-~ a + ia)

Into Eq. 19 we substitute Eqs. 85 and 88, and we have

E gl()gl( -)

g2( '- ) - + 2rrH( - w)

(2T)Z E 1 E 1
2w (a +a ) w (a - i)

1

(2w To)

(1+ 2n a ) (1+ 2 Z1T2 - + i~) (1+ Z-

1
(To

1

+ iW)

al Z E
a - )(1 + 21- 2-d)

It is now easy to evaluate

g2(W, -)dw

by the calculus of residues, since the simple poles in expression 90 are,

of Eq. 89, at + i(a + E) and + i(l/To). Hence the value of expression 90 is

z2r E 2t o 1 

-' -2-- (a E 2 To + E a ro

-20-

t o

t<O (85)

(86)

(87)

(88)

0(T- i)
o (89)

(90)

in view

(91)

._ 
_

---

W(t)e _" dt

co

100



Expression 84 shows that it is a product of two g2 (w, -)'s: thus we get a first approxi-

mation of the dc component of the autocorrelation function of vl(t)

24 T4

iF)(92)
E [1 (a + E) T]2a (92)
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