




M.I.T. LIBRARIES - DEWEY





5)-^ iD28
,«-^ .M414

OtvvtY

no. 5(^3/

^3

WORKING PAPER

ALFRED P. SLOAN SCHOOL OF MANAGEMENT

A Methodology for Manufacturing Process

Signature Analysis

Steven D. Eppinger

Christopher D. Huber
Van H. Pham

#3631-93-MSA November 1993

MASSACHUSETTS

INSTITUTE OF TECHNOLOGY
50 MEMORIAL DRIVE

CAMBRIDGE, MASSACHUSETTS 02139





A Methodology for Manufacturing Process

Signature Analysis

Steven D. Eppinger
Christopher D. Huber

Van H. Pham

#3631-93-MSA November 1993



M.I.T. LIBRARIES



A Methodology for Manufacturing Process

Signature Analysis

By
Steven D. Eppinger
Christopher D. Huber

Van H. Pham

Massachusetts Institute of Technology

Abstract

One of the fundamental challenges facing manufacturing engineers today is the

achievement of continuous improvement through the implementation of better process

control systems. We believe that the improvement of control systems entails the

collection of more information about the process and/or more effective use of that

information. We present manufacuiring process signature analysis in order to construct a

relationship between the collected information (process signatures) and the quality of the

process output, which can be used for on-line monitoring and control. The general

procedure applied in this paper consists of three steps: feature extraction, feature

selection, and classification.

We have found that the extracting of large sets of features from signatures is

straightforward and that several classification schemes are available, with nueral

networks being the most general and powerful method that we have tried. Feature

selection, on the other hand, is generally quite difficult for complex data structures. We

present several feature extraction methods and show that neural networks can be quite

useful in choosing different feature sets. Using a data set from an automated solder joint

inspection system, we demonstrate the unique capabilities of neural networks for both

feature selection and classification, using more traditional statistical classification

techniques as a benchmark.
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1 Introduction

1.1 Motivation

Most manufacturing processes are monitored for output quality, either continuously or on

a sampled basis. Process monitoring is used to assess whether or not the process is

performing its function adequately so that appropriate corrective action can be taken if

necessary. Inputs to the process monitor include one or more measured attributes of the

product or process which should reflect the product's ability to perform its intended

function.

As we strive to improve the quality of our manufacturing processes, we seek better

monitoring and control systems. One approach is to utilize more sophisticated

measurements. At every stage of even the simplest manufacturing process, there are

many opportunities for quality measurements; involving process inputs (material

thickness or temperature), process attributes (feed rate, spindle speed or tool vibration),

and measures of the process output (critical dimensions or surface finish). To monitor a

larger process or a series of process steps, we could inspect the finished product or assess

ultimate customer satisfaction through questionnaires or warranty information. The

integration of computers into our manufacturing environment (CIM) can cenainly

facilitate the collection of these different process measurements but the information by

itself is not enough. In fact, without an appropriate procedure for the analysis and

evaluation of this information, the resultant flood of data can confound process

improvement efforts.

Our approach to process monitoring is called manufacturing process signature analysis.

During each cycle, we measure one or more process signals and/or parameters over the

duration of the process. We then analyze these measurements to determine the quality of

the process iteration which just took place. Ideally, this quality classification would then

be fed back through an appropriate controller to close the process control loop.

1.2 Related Signature Analysis Work

Although the focus of our paper is on manufacturing applications, we draw upon research

over a broad range of disciphnes. In the analysis of human electrocardiogram (ECG)

signals, information about the health of a patient is contained in the ECG signature [18].



The ECG is broken down into a series of basic waveform elements called complexes and

segments. These simpler elements are analyzed through syntactic pattern recognition

techniques where grammars or rules of syntax are used to determine the patient's state of

health by classifying the ECG signatures.

Research into computer access security systems employs a signature which consists of

the length of time between keystrokes in the entry of a password [1]. A Bayesian

classifier is used to authenticate a given password by comparing the current entry against

a known signature.

In manufacturing research, success has been achieved using acoustical signals from

machining and forming operations (see [3], [13], and [16]). In work involving punch

stretching and deep drawing of aluminum sheet metal, an acoustical sensor was placed in

direct contact with the sheet metal during the forming process [7]. The energy content,

spectral characteristics, and time series behavior of the resulting signature were then used

to identify critical transitions in the forming process.

From this literature, we recognize and adopt a general principle for process signature

analysis: Parameterize the original signature through the extraction of key features and

determine an appropriate classification for the signature based on these extracted features.

For the ECG signature, the shape parameters of each component complex (features) are

used to determine the patient's health (classification). For password security, keystroke

timing is used to authenticate the user's identity. For forming, the energy, spectral

characteristics, and time series behavior are used to characterize the forming process.

The success of this principle is critically dependent on our ability to locate and extract the

appropriate features of the original signature.

In this paper, we extend the feature-extraction strategy for signature analysis to include

neural-nerwork-based schemes for feature selection and quality classification. The most

important contribution of this paper is our development of a Nueral-Network-based

feature selection scheme which can identify the most useful features for a simplified on-

line monitoring system.

U Paper Organization



To develop our signature analysis approach in the next section, we begin by explaining a

progression of signature classification tools which serve to highlight the specific utility of

neural networks and the important role of feature selection in the process. In the

following section, a data set from an automated solder joint inspection project, which was

the primary vehicle of research, is then described in detail. We then show how the

signature analysis methodology is applied to the solder joint inspection data. We

conclude with a discussion of the strengths and weaknesses of this approach.

2 Signature Analysis Tools

There are many signature analysis utilities available, from simple statistical process

control to artificial neural networks. Selecting the combination of signature analysis tools

which are most effective for a given problem requires an understanding of the

relationship between signature and quality as well as the capabihties and limitations of

the analysis tools which are employed. A progression of classification tools is described

below in order of increasing sophistication. Our discussion presents the capabilities and

limitations of each tool; successive tools overcome some limitations at the cost of

implementation complexity.

2.1 Statistical Process Control

One of the most common process monitoring tools in industry today is statistical process

control (SPC). Traditionally, SPC entails sampling the process output at given intervals

and then measuring some critical attribute of the sampled parts. The average of these

measurements is then plotted on an X-Bar chart while the maximum range of these

measurements is plotted on a Range chart. Control limits for these charts are constructed

based on the mean and deviation of the "normal" process and the determination of

whether or not the process is "in control" is based on whether or not the data points from

successive samples fall within these control limits.

When multiple discrete measurements are required to gain an adequate description of a

process, we say the signature is multi-dimensional. The basic premise of SPC can be

extended to acconimodate multi-dimensional signatures by expanding the one-

dimensional control limits into a multi-dimensional control limit mask. Figure 1

illustrates an example of a multi-dimensional signature in the measurement of bias force

of a computer's hard disk drive assembly.
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With multi-dimensional SPC, each dimension of the signature has a corresponding pair of

control limits determined based on the mean and variance of that dimension, measured

for several good quality drives. The set of control limits then constitutes a control limit

mask. The accept or reject decision is based on whether or not a given signature falls

entirely within the bounds of the control limit mask. A commercial system which utilizes

this basic technique was developed at General Motors and is now pubhcly available

through Assurance Technologies Inc. [2], [15].

While this scheme may be suitable for a variety of process signatures, it is not difficult to

imagine circumstances where the application of control hmits would produce misleading

results. Consider the scenario illustrated in Figure 2, where the desired bias force

signature follows the form of the nominal signature, and depanures from the nominal

form constitute failure. The control limit mask does not capture these failures.
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2.2 Feature Extraction

We can circumvent the above difficulties through feature extraction. The purpose of

feature extraction is to reduce the amount of data we must process without discarding

useful information. Consider the bias force signature shown in Figure 3. In this case,

two features are extracted from the original signature: the slope of the best fit line and

the range of the signature's extreme points. By plotting the slope versus the range for

many samples of hard disk assemblies, we arrive at a feature space scatter plot as shown

in Figure 4. Three signature classes become apparent by the clustering of the data points.

Class 1 in the figure corresponds to good signatures which follow the form of the nominal

curve (both range and slope are low). Class 2 (higher range) corresponds to signatures

with a discontinuity, and Class 3 (higher slope and range) corresponds to signatures

which span the control limit range without a discontinuity.
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In the bias force example, we extracted two features and the resulting feature space plot is

two-dimensional. There are also two one-dimensional feature spaces associated with

each individual feature. These one-dimensional spaces, shown opposite the axes in

Figure 4, are simpler to interpret; however, the clustering of the classes we observed in

the two-dimensional space may not be so apparent. As the number of features grows

larger, the number of feature spaces increases tremendously. For a signature described by

23 features, as in the case of the data set used for this research, there are over 8 million

distinct feature spaces. Before we address the question of which of these 8 million

feature spaces is most effective for the given problem, a formulation for the quality

decision function within the context of feature space must be examined.
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2.3.1 Bayes Classifier

In geometric terms, a linear statistical classifier parameterizes each class of data with its

mean and covariance^ Based on these parameters, an ellipse is constructed about each

class of data, as shown in Figure 5. The common secant between two ellipses (i.e. two

classes of data) then describes the linear decision function.

-
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For a one-dimensional feature vector, the above expression reduces to the following:

P(^K)= FT ^^P
^ ' V27: o,

( ^

V ^. y

i = l ...M

where:

a. = The standard deviation of class i.

The classification decision for a signature characterized by a feature vector involves

calculating the likelihood function for each of the possible classes and then selecting the

class with the largest corresponding likelihood: Classify signature, x, as class (Oi, if

p(x\ci)i) > p{x\ojj) for i ^ ']). It is imponant to note that the application of a linear

statistical classifier is restricted to those problems which conform to its underlying

assumptions:

1. Normality: Each feature in the feature vector is normally distributed about some
mean.

2. Linear Separability: Each class of output is linearly separable firom all other

classes.

In geometric terms, these assumptions can be restated as follows:

1. Normality: In drawing the ellipse around each class, a normal distribution is

assumed.
2. Linear Separability: In drawing the line through the common secant, linear

separability of classes is assumed.

2.3.2 Prediction of Error

We would like to quickly evaluate how much class-disceming information a set of

signatures carries, without constructing and testing a complete linear statistical classifier.

In predicting the success rate of the linear classifier we can also estimate the utility of

each feature in the overall classifier performance. To do this efficiently, we do not

examine every individual signature, rather we evaluate the data set as a whole and predict

the expected contribution of each feature. In general, such prediction sacrifices accuracy

for speed.
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Our prediction of error begins with a measure of feature quality based on a set of features'

ability to separate the classes called the Mahalanobis Distance which is defined as

follows [17]:

where:

FQ^j = Mahalanobis distance between class i and class j

(the feature quality with respect to class i and class j).

m, = The mean vector for class i.

rrij - The mean vector for class j.

Cy = The effective covariance matrix for class i and class j.

C, = The covariance matrix for class i.

C^ = The covariance matrix for class j.

In one dimension (for one feature), the above expressions can be reduced to the

following:

^"
a"

o, = Ug^^o)

where:

cjy = The effective standard deviation for class i and class j.

CT, = The standard deviation of class i.

a- = The standard deviation of class j.

In essence, the Mahalanobis distance is a feature quality score based on the signal to

noise ratio between two classes of data. The "signal" being the distance between the

classes in feature space, and the "noise" being the variation or spread of each class. From

this feattire quality score, a prediction of error can be calculated as follows:

P(e) = \-CTf{4FQ/4)

where:

— V27C

^ 1 .^— y dy
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Note that in addition to the assumptions of a linear statistical classifier (normality and

linear separability), the prediction of error as defined above is subject to a third

assumption: the covariance matrices for each class of data are approximately equal. In

calculating the feature quality score between two classes of data, we use an effective

covariance matrix which is a simple averaging of the covariance matrices for each

individual class. If the covariance matrices are not similar, then the effective covariance

matrix does not accurately describe the spread of the class' respective distributions.

2.4 Neural Network Pattern Classiflcation

All of the classification tools presented thus far have their basis in normal, linear

statistical theory. As such, any application to which these tools can be reliably applied is

restricted to normal and linear domains. However, many process measurements are not

so well behaved. While these ill-behaved signauires may have significant content (class

disceming information), traditional classification tools are not able to extract this content.

We now turn to artificial neural networks as an alternative computational classification

technique. Artificial neural networks make classification decisions by a fundamentally

different mechanism so they are not encumbered by the rules of normal, linear statistics.

There are many sources which can provide a brief introduction to artificial neural

networks, see for example [8] or refer to [14] for more details.

Like the Bayes classifier, a neural network produces a mathematical function whose input

is the process signature (the feature vector x) and whose output is the classification

decision. The manner in which we arrive at the mathematical function is fundamentally

different though. The formulation of a neural network also begins with a training set of

signatures with known classifications. Each signature is applied to the input nodes of a

network of simple processing elements. Numerical values propagate through the network

via nonlinear, weighted connections, and eventually result in a classification decision at

the output nodes. In all likelihood, this decision will be incorrect (the output values will

not correspond to the known classifications) because the weights within the network

structure are initially randomized.

At this point, a learning algorithm steps in and compares the actual network output with

the desired output. Then based on the error, the weights within the network structure are

modified. After many iterations, the network eventually 'learns' to distinguish among

signatures from the various classes. Note that in formulating a decision function with a
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neural network, no assumptions are made regarding the underlying distribution of the

data or linear separability. Instead, the motivating force behind the learning algorithm is

the minimization of error^. As such, a neural network will attempt to create the line or

surface which most effectively separates the classes.

After the network has been trained, each new signature for classification, characterized by

a feature vector x, is simply applied to the input nodes of the network. The output values

determine which class the signature best matches. The classification decision function

therefore is the non-linear mapping determined in the network training stage.

2.4.1 The Perceptron

The fundamental processing element in the neural network classifier used for this study is

the perceptron first introduced by Frank Rosenblatt [12]. A perceptron calculates the

weighted sum of its inputs and passes the result through a non-linear thresholding

function as shown in Figure 6. The thresholding function shown in the figure is a simple

signum function. Some of the other common threshold functions which are used in

neural networks include the hyperbolic tangent and the sigmoid. It is the non-linear

threshold function which allows a neural network to extend the reach of pattern

classification into the domain of generalized non-linear functions.

Feature l~^fXi

Feature 2

Output = / S Vi

Wn
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2.4.2 Multi-Layer Feedforward Neural Networks

The neural network structure used for this study is a multi-layer feedforward neural

network which utilizes the back propagation learning algorithm. A general schematic of

this network is shown in Figure 7. The input layer has one node for each feature

extracted from the raw signature. Succeeding layers of the network consist of one or

more perceptron nodes. The output layer, where the classification decision emerges, also

consists of one or more perceptron nodes. The actual number of output nodes depends on

the number of possible classes in the data set as well as the manner in which we desire to

code the different classes. For instance, only one output node is needed for a two class

problem where an output of positive one corresponds to the first class and an output of

negative one corresponds to the second class. In problems which involve a larger number

of classes, we could assign one output node to each possible class or we could encode

each class as a binary number thereby reducing the number of output nodes needed to

identify each distinct class. The layers in between the input and output layers are referred

to as hidden layers. The lines between the various nodes in the network represent the

weighted connections through which the processing elements communicate.^
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The neural network structure described above, in essence, represents a complex non-

linear function. The learning algorithm adjusts the parameters of the non-linear function

until the classification error is minimized. It is important to note that, given a sufficiently

complex topology, a neural network could eventually learn to correctly classify with zero

errors. In general, this is not a desirable result as the neural network is functioning as a

look up table (memorizing) instead of a generalized classifier. Consider an analogy

where we wish to fit a curve to a set of ten data points. We could fit a tenth order

polynomial so that each of the ten points falls on the curve and then extrapolate the curve

to predict the value of succeeding points. In general, the tenth order polynomial will not

accurately capture the trend in the data. The usual course of action in this case is to fit a

curve to the ten points using a much lower order polynomial in hopes of capturing the

general trend of the data as opposed to an exact representation of the first ten points. The

same principle applies to neural networks, excessive complexity in the network structure

prevents the network from making generalized decisions. Several authors offer

guidelines on the selection of network structure including [14], [6], and [10].

2.4.3 Neural Networks in the Presence of Non-Linearity and Non-Normality

Figure 8 displays a hypothetical situation where a non-linear decision function is

required. The straight line represents the linear decision function of a statistical classifier

and the non-linear separation represents the decision function which a neural network

would attempt to find. A non-normal case is illustrated in Figures 9 and 10. Note that

the outliers in the distributions invalidate the assumption of normality. A statistical

classifier constructs a decision function at the intersection of the normal density function

for each class. In contrast, a neural network avoids these difficulties by ignoring the

assumptions and instead moves the decision function with each iteration of the learning

process until the error is minimized.
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ngure 10 - Non-Normality and Neural Network Classification Decision Regions

2.5 Feature Selection

Given a perfect understanding of a process and its corresponding signatures, we could

theoretically parameterize the signature with a finite set of descriptive features without

discarding signature content. In reality, feature extraction may involve a significant

amount of 'guess work' in proposing features as we must contend with a rudimentary

understanding of the problem. It is often necessary to parameterize the signature with an

abundance of features in the hopes that a handful will yield useful information. The

difficulty associated with this approach is that the remaining features which do not add

useful information add complexity to the classification problem. Clearly, if our goal is

the development of an on-line process control tool, the useless features should be

eliminated.

Feature selection is the process by which we eliminate those features which do not

contribute toward the goal of discriminating among the different classes of output. Four

different heuristic algorithms were investigated during the course of this research:

1

.

One-Dimensional Prediction of Error

2. One-Dimensional Statistical Classification

3. One-Dimensional Neural Network Classification

4. Multi-Dimensional Neural Network First Layer Weights
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A description of each of these selection algorithms follows, along with their respective

advantages and drawbacks.

2.5.1 One-Dimensional Prediction of Error

The one-dimensional prediction of error scheme, unlike the other schemes, is limited to

two-class problems.'* Within the context of a two-class problem, the utility of each

feature is examined individually through normal linear statistics according to the

following algorithm:

1. Calculate the mean and standard deviation for each feature within each class.

2. Calculate the one-dimensional Mahalanobis distance between classes for each

feature.

3. Calculate a prediction of misclassification error for each feature.

4. Rank the features based on the prediction of misclassification error.

The predictions which result from the algorithm above represent the misclassification

error that would be incurred if the given feature was the only information available

(interaction among features is ignored). In the event that the data set conforms to the

three assumptions associated with a prediction of error, normality, linear separability, and

similar covariance among classes, this scheme provides the least costiy (in terms of

computation time) evaluation of the feature set.

2.5.2 One-Dimensional Statistical Classification

With one-dimensional statistical classification, hke one-dimensional prediction of error,

each feature is examined individually but in this case the data are applied to a statistical

classifier. The steps in the one-dimensional statistical classification algorithm are

outiined below:

1. Calculate the mean and standard deviation for each feature within each class.

2. Apply each signature in the data set to the one-dimensional likelihood function

for each class.

3. Classify each signature according to magnitude of the likelihood function for

each class.

4. Determine the misclassification error by comparing the computed classifications

against the known signature classifications.

5. Rank the features based on the misclassification error for each feature.

Recall that prediction of error, as defined earlier, is based on the Mahalanobis distance between two classes of data.
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The one-dimensional statistical classification scheme has several advantages over the

one-dimensional prediction of error scheme, including:

1. Statistical classification is not restricted to two class problems.

2. The assumption of similar covariance among classes is eliminated.

3. The actual data are applied to the classifier which can help to expose deviation

from normal, linear statistics.

The first two advantages are self-explanatory but the third deserves closer examination.

The prediction of error scheme employs the assumptions of normal, linear statistics and

then decides the misclassification error based on what the data would look like if it

conformed to these assumptions. The statistical classifier scheme employs the same

assumptions but instead of relying on those assumptions, they are tested against the actual

data. Deviation from the assumptions of normal, linear statistics can then be exposed in

the form of higher misclassification rates. The prediction of error scheme, though less

costly in terms of time and computing resources, is more easily fooled as it makes only

indirect use of the data in arriving at its conclusion.

2.5J One-Dimensional Neural Network Classification

With the one-dimensional neural network scheme, like the preceding schemes, the utility

of each feature is examined in isolation from the other features. This scheme is similar to

the classification scheme with the exception that a neural network classifier is used in

place of normal, linear statistics. The algorithm is given below:

1. Train a one-input neural network for each feature.

2. Determine the misclassification error of each one-input neural network by
comparing the actual output against the desired output.

3. Rank the features based on the misclassification error for each feature.

The neural network structure which was used for this purpose is defined as follows:

1. Back propagation learning algorithm.

2. Hyperbolic tangent thresholding function.

3. One input node for the feature being evaluated.

4. Four perceptron nodes in the first hidden layer.

5. Two perceptron nodes in the second hidden layer.

6. The number of output nodes depends on the how many classes of output exist.

For a two-class problem, one output node is sufficient.

The primary advantage of a neural network classifier is its independence from normality

and linearity issues. Minimization of error underlies the iterative learning algorithm of
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neural networks, with no assumption of normality. Furthermore, the thresholding

function in each processing element allows the neural network to twist and conton the

decision function in a manner which is not available through traditional statistics.

2.5.4 First Layer Weights in Multi-Dimensional Neural Network Classification

Each selection scheme presented thus far, including one-dimensional neural network

classification, evaluates the utility of each feature in isolation from the other features.

Interactions between features are ignored. In contrast, the first layer weight scheme takes

a global view of the full feature set. The first layer weight algorithm is illustrated below:

1. Train a multi-dimensional neural network using the full feature set as the input

to the network.

2. Determine the sum of the absolute values of the first layer weights associated

with each feature.

3. Rank the features based on the sum of the first layer weights.

The neural network structure which was used for the first layer weight scheme is defined

as follows:

1. Back propagation learning algorithm.

2. Hyperbolic tangent thresholding function.

3. N input nodes (one for each feature).

4. 2N perceptron nodes in the first hidden layer.

5. N perceptron nodes in the second hidden layer.

6. The number of output nodes depends on the how many classes of output exist.

For a two class problem, one output node is sufficient.

The significance of the first layer weights in a multi-dimensional neural network can best

be explained by reexamining the general schematic of a neural network as shown in

Figtire 11. In this schematic, all of the lines representing the weighted connections

between the input layer and the first hidden layer have been removed except for those

associated with the feature of interest. With the first layer weight scheme, the importance

of a given feature is measured by the sum of the absolute values of the first layer weights

shown in bold. In the case that all of these weights are zero, or nearly zero, the feature is

effectively filtered from the classification decision. Conversely, if these weights are

large, the feature will have a greater affect on the classification decision thus the rationale

behind the first layer weight scheme. Like the one-dimensional neural network

classification scheme, the first layer weight scheme is able to recognize non-normality

and non-linearity with the added advantage of recognizing interaction among features.
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Note that the first layer weight scheme does not explicitly address the presence of

redundant features though we would expect the first layer weights associated with

redundant features to be similar. While redundant features will not hinder the accuracy of

the network, elimination of these features would further reduce its computational

complexity. To funher simplify the network, we must examine the weights associated

with each feature and identify any similarities. In order to verify redundancy, we must

then eliminate all but one of the redundant features and retrain the network. If the

misclassification error is unchanged, redundant features have been successfully identified

and removed.

ono".p".
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find the beat features, so an arbitrary cutoff of the best five features for each scheme was

used in our comparison.

2.6 Choosing a Classifier

Once an appropriate subset of features has been selected, the task of constructing a

classifier remains. In the event that a given data set conforms to the assumptions of

normality and linear separability, there is no need to expend additional time and energy

developing a neural network classifier. A neural network and a statistical classifier will

arrive at the same decision function for well behaved data sets. In the event that a given

data set does not conform to the assumptions of normality and linear separability, a

neural network is a highly effective solution. While the amount of time required to

develop a neural network is significantly greater than a statistical classifier, the cycle time

of the actual classifier is not necessarily significantly greater. If there is any question

regarding the integrity of the data with respect to the assumptions of normal, linear

statistics, a neural network is worth investigating.

3 Automated Solder Joint Inspection

The data set which was the primary vehicle of research for this paper came from an

automated solder joint inspection project at Digital Equipment Corporation. The goal of

automation in this case is the replacement of manual visual inspection methods for

surface mount electronic components (SMD technology). With surface mount

technology, printed circuit boards are screened with solder paste and then the components

are placed onto the board using automated equipment. The boards are then heated to re-

flow the solder creating the lead bonds. Although surface mount technology allows the

electronics industry to continue reducing the size of components, new problems have

been introduced. In particular, very high lead density causes manual visual inspection

methods to become less and less effective (as measured by higher misclassification error).

Inefficiency drives the need for redundant inspect and test which, in turn, provides the

impetus for automated inspection methods.

3.1 Modes of Solder Joint Failure

Among common problems associated with the SMD assembly process is the application

of incorrect solder paste volume. Insufficient or excess solder conditions have been
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correlated with premature failure of the solder bond due to thermal cycling of the circuit.

Electronic testing of the circuit boards can detect more severe classes of defects such as

short and open circuits, but cannot guarantee that the board will remain defect free over

the Ufe of the component.

The automated solder joint inspection system at Digital [4] is illustrated in Figure 12. A

laser is directed at a single component lead while two infrared camera sensors monitor the

temperature of the solder joint as it is heated and then cools. These signals are digitized

and stored for off-line analysis. Eventually these data would be utilized on-line with the

results of our signature analysis scheme.

Printed Circuit Boaid Signature

'igure 12 - Automated Solder Joint Inspection

These data represent the time-derivative of the lead temperatures as observed by the two

different cameras. Each camera extracts energy in a different IR wavelength band. The

result is a pair of thermal signatures for the solder joint where each signature consists of a

discrete time series of 500 data points as shown in Figure 13. The physics underlying the

success of this inspection method involves the heat transfer characteristics of the solder

joints. The hypothesis is as follows: If the lead is well bonded, the board will conduct

heat quickly away from the lead. If the connection is insufficient, the heat transfer will be

slower, and the lead will heat excessively. If the solder mass is excessive, the joint will

also retain more heat, and will heat up slower. Accurate physical models of this

phenomenon have not been proven.
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suggests that the area under the temperature derivative curve up to the first zero crossing

(see Figure 13) should be proportional to the total amount of heat absorbed by the solder

joint during the measurement. The remaining features are a mixture of statistical

descriptions and empirical relationships. For this example, feature extraction was

conducted on an intuitive basis though more interesting alternatives are available. Of

particular interest is a method of feature extraction based on wavelet decomposition. For

more information on this alternative see [11].

3.4 Feature Selection

Each of the four feature selection schemes described above was investigated in order to

determine the success of each scheme and to test our understanding of the behavior of

each scheme. The one-dimensional prediction of error scheme was applied to only the

two-class problems associated with distinct class pairs (excess-good, excess-insufficient,

and insufficient-good) whereas the remaining schemes were applied to all four

classification problems. Each feature selection scheme produced a feature ranking for

each applicable classification problem. An evaluation of these rankings was carried out

by selecting the top five features in each ranking and then calculating a prediction of

error, statistical misclassification error, and neural network misclassification error for

each five feature subset.

3.5 Signature Analysis Results

The results of the signature analysis computations discussed in preceding sections of this

paper are presented in Table 2. The four column groups in this table correspond to the

four distinct classification problems while the rows correspond to the misclassification

errors for individual features, feature subsets, and the full feature set. For example, the

results from the excess-insufficient problem are in the first column group: The prediction

of error for the feature Speaki, acting alone, was 32% while the statistical and neural

network classifiers had misclassification errors of 20% and 18% respectively. For the

same problem, the first layer weight scheme produced a subset of five features which

resulted in a prediction of 17% error and a statistical and neural network

misclassification errors of 17% and 14% respectively. The next few sections of this

paper are devoted to an explanation of the characteristics and significance of the results

table.
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3.5.1 Generation of Data Sets for Analysis

In the formulation and training of the various classification tools, random subsets of the

full data set were used. These subsets consisted of 500 excess signatures, 500 insufficient

signatures, and 200 good signatures. For the statistical tools (prediction of error and

statistical classification), one subset was used for training and testing. For neural network

classification, two subsets were drawn from the full data set, one for training and one for

testing. The reason for using two different subsets for training and testing was suggested

earlier: improper selection of the neural network structure can cause the neural network

to act as a look up table instead of a generalized decision function. By training the neural

network with one data set and testing it with another, we can verify the formulation of a

generalized decision function.

3.5.2 Explanation of Anomalies in Results Table

In several instances, neural network classification was unsuccessful as the neural network

was not able to converge on a decision function. The DNC entries in Table 2 denote

instances where the neural network did not converge. Whenever the inputs to a neural

network do not contain sufficient content (class discerning information), a neural network

learns to select whichever class it saw most frequently during training regardless of input.

For the excess-good classification problem, the neural networks were trained with 500

excess signatures and 200 good signatures. In this case, a neural network which did not

converge learned to classify every signature as excess because it was presented with more

excess signatures during training. In actuality, this corresponds to a misclassification

error rate of 29% (200/700), however, we enter DNC in the results table. Note that in

almost every case where the neural network could not converge, such as the feature

Speaki in the excess-good problem, the statistical prediction of error (50%) and

statistical classification error (67%) were even less useful.

The N/A entries in Table 2 denote two situations where misclassification error could not

be calculated. In the first situation, the individual neural net feature selection scheme

failed for the excess-good classification problem because none of the individual neural

networks was able to converge on a decision function. In the second instance, the

prediction of error scheme failed for the excess-insufficient-good classification problem

because prediction of error was not defined for the three class problem. As a result, these

schemes could not offer a ranking of features.
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3.5.3 Feature Content and Signature Content

For the excess-insufficient problem, the Sig Mini feature produced prediction, statistical,

and neural network misclassification errors of 49%, 50%, and DNC, respectively.

Clearly, this feature cannot offer any more than a random guess as to the appropriate

classification. This is only one of many examples where the various classification tools

were not able to perform any better than the toss of a coin. These high misclassification

errors occur due to the lack of signature content. The greatest challenge in the

development of a process monitoring system involves what in this paper we call signature

content, feature quality, or simply observability. In the extreme case, if we choose an

inappropriate sensor measurement which does not contain the information needed to

predict quality, then an entirely different measurement scheme must be chosen. The

techniques presented in this paper cannot remedy this situation as demonstrated by the

excess-good classification problem.

3.5.4 Neural Network Classification vs. Statistical Tools

An interesting scenario arises though when a neural network classifier is able perform

with reasonable accuracy while the statistical tools fail. In these cases, the neural

network has found a better non-linear or non-normal decision function which was

invisible to traditional classification tools. As an example, in the insufficient-good

problem, the first layer weight scheme produced a subset of features which generated a

9% error rate with the neural network and a 26% error rate with the statistical classifier.

Given the same information, the neural network was able to perform significantly better.

Throughout the table of results, the neural network misclassification error is lower than

both the statistical prediction of error and the statistical misclassification error except in a

few instances where the various error rates are similar to within a one or two percent

noise factor*. This is a direct result of the neural networks iterative learning process and

non-linear decision functions. While statistical tools are confounded by ill-behaved data,

neural networks exploit these differences. Conversely, when the assumptions of

normality and linear separability are fairly accurate, the performance of the statistical

tools and neural networks are similar. If the assumptions of normal, linear statistics hold

"Recall that random subsets of data were drawn from the full data set for the development of each tool. The noise

factor is the result of the slight differences in each random subset of data.
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true, neural networks and staristical tools will arrive at the same decision function - there

is no need to implement a neural network classifier.

3.5.5 Full Feature Set Outperforms Feature Subsets

The neural networks which employed the full feature set invariably performed better than

any individual feature and better than any subset of features. This suggests that neural

networks are able to employ interactions among features thereby generating a decision

which is better than the sum of its pans yet is still able to effectively filter those features

which do not add useful information to the problem. As an example, consider the

insufficient-good problem. In this case, the best individual feature (Sig. RMSi) produced

a 13% misclassification error whereas neural network classification with the full feature

set produced a 9% misclassification error. Note that this was accomplished even though

more than half of the features had no signature content at all (DNC). In the event that the

feature extraction process entails a significant amount of guesswork, we can be assured

that a neural network will filter poor guesses. Note that this is not the case with the

statistical tools. In the excess-insufficient problem, the best individual feature (Sig.

RMSi) produced a statistical misclassification error of 16% whereas the full feature set

could do no better than 21%. Those features which lack content, while filtered out of the

neural network decision function, serve to confuse statistical decision functions.

3.5.6 Evaluation of Feature Selection Schemes

In evaluating the various feature selection schemes, we are most interested in those

schemes which selected features with the most content. In all four classification

problems, the first layer weight scheme produced the lowest neural network

misclassification error. In fact, the first layer weight scheme produced a subset of

features which performed nearly as well as the neural network classifiers which employed

the full feature set. Consider the insufficient-good problem, the first layer weight scheme

produced a subset of features with a neural network misclassification error of 9% which

was the same error produced by the full feature set. The remaining tools and schemes

produced misclassification errors which ranged from 12% to 38%. By eliminating the

useless features we gain significant computational advantages without sacrificing

classification accuracy.
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3.5.7 Normality Issues

In order to evaluate the effect of normality on the various classification tools, normality

scores were calculated for each feature in each class. These scores are presented along

with the results from the excess-insufficient classification problem in Table 3. The

normality score calculation consists of the Pearson Product-Moment correlation between

the given variable (a particular feature from a particular class) and the corresponding

normal scores (i.e. standardized z-score).

In the event that a given data set conforms to the assumptions of normal hnear statistics,

we would expect that the prediction of error, statistical misclassification error, and neural

network misclassification error would reflect similar results [5]. The results shown in

Table 3 for the features Mean2, Sig. RMSi, Zero Xing2, and Area Above2 (features

7,10,13, and 15 respectively) tend to support this hypothesis. Conversely, we might

expect that poor normality scores would produce results where the statistical ertors were

significantly higher than neural network errors. In fact, the results do not cortoborate this

hypothesis. Consider the feature Sig. RMS2 (feature 11). In this case, the normality

scores for the excess and insufficient classes are .82 and .68 respectively yet the statistical

and neural network misclassification errors are 19% and 18% respectively. This can be

explained by noting that poor normality implies that the normal probability model does

not accurately represent the data and any subsequent decision function may or may not

separate the data. Low statistical misclassification ertor under these circumstances

cannot be taken as reliable.
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4 Conclusion

4.1 Summary of Contributions

The improvement of process control systems is of critical importance to manufacturing

firms today. In pursuit of rapid improvement, we must make effective use of the wealth

of process information now made available by on-line sensors and computation. The

signamre analysis methodology presented in this paper is offered as a formal approach to

this challenge. The three-step analysis method (feature extraction, feature selection, and

classification) accepts complex process signatures and their corresponding quality

classifications as input and produces a relationship between the signatures and the quality

of the process output.

In applying this method to a data set from an automated solder joint inspection system,

artificial neural networks were found to offer significant performance advantages over

traditional classification tools, yet this performance was achieved at the expense of

significant computational resources. In order to reduce the computational cost of

classification, we must reduce the complexity of the classification problem by employing

only the most useful of the features. We have termed this ihefeature selection problem.

Once again we can turn to the unique abilities of artificial neural networks. In particular,

the first layer weights in the neural network topology were found to be effective in

identifying which components of the input signature contain the most useful information.

Using the first layer weights, we were able to identify a subset of features which offers

classification rates comparable to the full feature set. Note that this result also suggests

that a neural network which employs the full feature set is able to effectively filter those

features which lack content

Although we were able to demonstrate the advantage that neural networks have over

traditional classification tools, the misclassification error remains unacceptably high for

the example data set. This difficulty cannot be resolved due to the lack of quality content

in the particular signatures. Our analysis suggests that either more or different

information is needed to more accurately monitor the quality of the solder joint.
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4.2 Our Vision for Manufacturing Process Signature Analysis

The signature analysis methodology employed in this paper, along with the specific

feature selection and classification tools, represents only one component of a larger

signature monitoring procedure which can be defined as follows:

Step One: Establishment of quality metrics

Step Two: Selection of process measurement sensors

Step Three: Signature analysis (feature extraction, feature selection, and
classification)

Step Four: Implementation of on-line monitoring/control

Steps One and Two represent the inputs to the signature analysis methodology described

in this paper. We must first establish quality metrics so that we can definitively classify

each instance of the process output. Without accurate classifications, we cannot build a

detailed relationship between the process output and the corresponding signatures.

Second, we must decide how to install sensors for process measurements (type, quantity,

and location of sensors). As demonstrated in this paper, signatures which lack content

cannot contribute to an accurate classification decision. In general, effective sensor

selection is dependent on an understanding of the process in question. Given that such

understanding is often limited, we would expect sensor selection to be modified after

signature analysis has begun. The third step of this procedure involves the appHcation of

the signature analysis tools presented in this paper: feature extraction, feature selection,

and classification. If, given the application of these tools, we discover that the signatures

lack content, we must reevaluate sensor selection and configuration. Finally, in step four,

we apply the results of the preceding steps in the form of a signature monitoring system.

We can also make the quality classification data available for on-line control, for operator

intervention, or both.

4.3 Future Research Directions

The first research question we must address in developing a process monitoring system is

simply, how can we definitively quantify the quality of the process output? In order to

answer this question, we must develop the means by which we translate product

specifications into quality metrics so that we can identify the quality of the process output

without ambiguity. In essence, the measurement of quality metrics serve as the

calibration standards by which we tune our classification tools. If the calibration

standards are not accurate, the classification tools will not be accurate. Alternatively, we
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might try to build a relationship between the process signatures and the most significant

process variables. This might entail a design-of-experiments approach where we vary the

jjeninent process variables (i.e. dull tool to sharp tool) under a variety of sensor

configurations so that we can guarantee a complete yet concise view of the process

variables in the data set used for training. Under this scheme, multiple classes of process

output would be defined according to the variables used in the experiment. Note that in

correlating process signatures to process variables, we are assuming a direct relationship

between the process variables and the quality of the process output.

Once the training data are available we must still formulate a relationship between the

process signatures and their corresponding classifications. As demonstrated in this paper,

artificial neural networks offer many advantages over traditional statistical classification

tools in this capacity. Funher research in this area could result in more efficient network

training algorithms, better feature extraction and selection methods, or more accurate

decision functions. In fact, given the tremendous volume of research conducted in the

field of neural networks, the investigation of new technologies with respect to the

manufactxiring signature analysis problem would by itself be a formidable task.

Finally, consideration must be given to the application of these new technologies in the

manufacturing environment. This includes both the development of software tools which

allow manufacturing engineers to exploit the technology as well as the implementation of

neural network hardware which could facilitate real-time control of complex processes.

The long term vision of our research consists of a signature analysis toolbox which

includes a variety of sensors, signature analysis tools, and the ability to export the

"blueprint" of a signature monitoring system. Ideally, a manufacturing engineer would be

able to approach a new process with this toolbox and collect a variety of signatures and

then subject these signatures to a variety of analysis tools. The result of this analysis

would be the blueprint for an on-line process monitoring system.
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