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Abstract

The analysis of the performance of nonlinear devices in the presence of signals and

noise is extended to the case where the excitation consists of a pulsed signal and gated

noise. The idealizing assumption is made that the pulses are rectangular. The method

of analysis is an extension of that used by D. Middleton. The general formula is applied

to a balanced diode phase detector circuit.
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RESPONSE OF NONLINEAR DEVICES TO A

PULSED SIGNAL AND GATED NOISE

I. Introduction

The theory of the behavior of signals and noise on passage through nonlinear devices

has been treated by W. R. Bennett (1), S. O. Rice (2), D. Middleton (3,4, 5) and others.

Middleton in particular has developed general expressions from which one may deter-

mine the output signal spectrum and mean noise spectrum from a nonlinear device when

the input excitation is an a-m signal and superimposed Gaussian noise, and the signal

modulation is arbitrary in character. When applying Middleton's formulas to a specific

nonlinear device and for a specified form of modulation envelope, one may encounter

integrals of considerable complexity which are not always susceptible to analytic eval-

uation, even in series form. For example, in the relatively simple case where the

modulation envelope is sinusoidal, Middleton has found it necessary to resort to a

number of approximations in order to obtain a solution (4). It might therefore appear

that in the case of a pulse-modulated signal, analytical methods would become prohib-

itively difficult.

The problem of pulse-modulated signals with a continuous noise background has been

treated in approximate fashion by Van Vleck and Middleton (5). The primary approxi-

mation was the assumption that the output noise consisted solely of products formed by

the intermodulation of the input noise components alone, while the output noise compo-

nents due to the intermodulation of input signal and noise terms were ignored. This

approximation is legitimate when the pulse duty cycle is much less than unity, since the

mean input noise power then greatly exceeds the mean input signal power. However, if

the noise is gated, and the gate duration is comparable to the pulse duration, the pre-

ceding approximation is invalid and a different approach to the problem must be sought.

One approach has been given by R. H. DeLano (6), who has obtained expressions

for the mean signal and noise outputs from both linear and square-law detectors when

the input consists of rectangular signal pulses and gated noise. His method is markedly

different from the one followed in this report; a brief comparison of the two is of

interest. The general procedure underlying DeLano's approach is that introduced by

Bennett (1), which has been called the "direct method." It involves the counting of

cross-modulation products at the output, to obtain the output noise and signal spectra.

The approach used here follows a procedure introduced by Rice (2) and extended by

Middleton (3), namely the evaluation of the autocorrelation function of the output by the

"characteristic function method. " In one respect, DeLano's method enjoys a wider

applicability than that used here, in that it is capable of dealing with pulses of arbi-

trary shape, whereas the solution presented here applies only to rectangular pulses.

On the other hand the method used here is valid for inputs having arbitrary spectral

distributions whereas DeLano's is restricted to narrow-band inputs. Also our method

is more rigorous, and it avoids the necessity for graphical analysis which is required
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by DeLano's method for the evaluation of the output noise spectrum. Both methods have

one feature in common, namely that their development depends explicitly on the corre-

sponding solution for continuous signal and noise inputs, that is, for a c-w carrier and

ungated noise. Fortunately the solutions for many of the common nonlinear devices for

this simple form of input are well known.

Section II of this report analyzes the problem in general terms, while Section III

presents an application of the general results to a balanced diode phase detector circuit.

Before proceeding with the general analysis, it is well to recall a fundamental limitation

which applies to all the existing theoretical treatments in this particular field of non-

linear analysis. The limitation imposed is that the nonlinear circuit must not contain

energy storage elements. In other words, the circuit is at most a combination of non-

linear and linear resistive elements, for which an over-all transfer characteristic can

be specified. The reason for this restriction is that the presence of energy storage

elements gives rise to nonlinear differential circuit equations, in general not solvable,

whereas for circuits containing only resistive elements, the basic circuit equations,

though nonlinear, are not differential in character.

Due to the above limitation, many practical circuits are not embraced by the

existing theory, at least with any degree of rigor. An important example is the peak

detector, which incorporates a parallel resistor-capacitor combination in series with

a diode. It is true that existing methods have found approximate application to the peak

detector problem, by assuming that the capacitors may be effectively replaced by

biasing batteries. Since the balanced diode phase detector which is treated in Section III

usually incorporates peak detectors, the assumption of biasing batteries might have

been employed in the analysis but was not. Instead a somewhat idealized circuit is

treated, in which purely resistive diode loads are postulated; the diodes are therefore

assumed to act as half-wave linear detectors.

II. Theory

The notation which is used in this and the following section is substantially the same

as that employed by Middleton (3). The general method of analysis is to determine the

autocorrelation function of the response of the nonlinear device in question, in terms of

the parameters specifying the applied excitation voltage. Once the output autocorre-

lation is obtained, one may immediately derive from it the magnitude of each line com-

ponent of the output signal spectrum, and also the mean power spectrum of the output

noise. The block diagram of Fig. 1 illustrates the basic circuit under consideration.

The excitation voltage V(t) is the sum of a signal and a noise voltage. The source

resistance is lumped together with all the remaining circuit elements inside the box

indicated by broken lines. The current I(t) may be taken as the response function of

the device, whose transfer characteristic is therefore the functional relation between

I and V. A typical form of characteristic, denoted by I = g(V), is shown in Fig. 2.
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Block schematic of basic A typical transfer characteristic
nonlinear circuit. of a nonlinear device.

The autocorrelation function of the response is defined by

T

R(T) = lim 1 f I(t)I(t+T) dt.

-T

The particular method employed in this report to evaluate R(T) is the "characteristic

function method, " originated by S. O. Rice (2). It is particularly useful in dealing with

transfer characteristics which cannot be specified by a single analytic relation valid

over the complete range of V. The procedure involves the replacement of the transfer

relation by the inverse of the Laplace transform of this relation. This artifice

leads to an expression for the autocorrelation of the response in terms of the

(two-dimensional) characteristic functions of the applied signal and noise voltages

respectively. Specifically the response autocorrelation is

R(T') = - f(iz) dz f f(i)FS(z, ;T)FN(z, ;T) d (1)

c C'

where

(a) f is the Laplace transform of the transfer characteristic

(b) FS and FN are the characteristic functions of the input signal and input noise

voltages respectively

(c) z and are complex variables

(d) c and c' are identical paths in the complex z and planes. Each path consists

of the real axis, except for a downward indentation at the origin to avoid a

singularity.

The most convenient analytic representation for the excitation signal and noise volt-

ages which compose V(t) are

Signal = ES(t') A cos wt (2)

Noise = EN(t') X(t). (3)
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In the former expression, A cos wt is a c-w carrier of amplitude A, and ES(t') is the

signal envelope function. In the latter expression, X(t) represents the ungated, or con-

tinuous, noise voltage, while EN(t') is the gating function. For the problem at hand,

if we let the pulse duration be y and the gate duration be 6, while the interval between

pulses is A, then Es(t') and EN(t') are as shown in Figs. 3a and 3b. Expressed ana-

lytically, the envelope and gating functions are

1,0 < t' < Y
ES(t') =(4)(O,y < t' < 

, 0 t' 6

EN(t' ) = . (5)1 (5)
0,6 < t' < A

Two remarks should be made concerning Eqs. 2-5. First, two separate time vari-

ables, t' and t, are employed, to emphasize that the E functions are generated by a

source which is physically independent from the c-w carrier and noise sources. Hence

t' and t are to be treated as independent variables in a mathematical sense. Actually

the c-w carrier and noise sources are also mutually independent, so that their time

variables should not both be represented by the same symbol t. However a distinction

is unnecessary in this case because no use will be made of the time dependence of the

ungated noise voltage. Second, Eqs. 4 and 5 specify that the leading edges of the

signal pulse and noise gate coincide. This arbitrary arrangement is one of convenience

and does not impose a limitation on the analysis, because the output autocorrelation is

in theory independent of the position of the pulse in the gate provided the pulse is

contained entirely within the gate.

ES (t')

O r 4 ar
(a) 

EN(t ) …I---r

0 8 A A'8

(b)

Fig. 3

Signal envelope and noise gate functions.
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The characteristic functions FS and FN are expressible in terms of the applied

signal and noise voltages as follows

FS(Z,a;T) = Kexp [iz Es(t') A cos wt + i Es(t + T) A cos (t+T)] > > (6)

AVt' AVt

FN(z, ;T) = exp iz EN(t') X(t) + i EN(t' + T) X(t+T)] ) (7)

AVt'

In Eqs. 6 and 7 the angle-brackets indicate time averages while the bar indicates a

statistical average. Equation 7 may be rewritten in a form which indicates explicitly

the manner of performing the statistical average over the random Gaussian variable X.

FN(Z, ;T) =f J exp [iz Es(t') X1 + i EN(t' + ) X2 ]
-00 -00

W 2 (X 1 ,X 2 ;T) dXI dX} (8)

AVt'

where X 1 and X2 represent X(t) and X(t+T) respectively, and W2 is the two-dimensional

Gaussian probability distribution of X. Evaluation of the statistical average results in

FN(z, ~ ;T) = {xp z - EN(t' + T)2
N (z'N EN(t') t'N+t 7

-+b(T) z EN(t') EN(t' + T)]] . (9)

AVt'

Here, +(T) is the autocorrelation function of the ungated noise voltage excitation, while

Po denotes 4(o).

If Eqs. 6 and 9 are now substituted into Eq. 1, it will be seen that the evaluation of

R(T) requires three separate integrations to be performed:

(a) an average with respect to t' over the pulse interval A

(b) an average with respect to t over one cycle of the c-w carrier

(c) the contour integrations over c and c'.

In the present problem it is best to carry out the integrations in the order specified

above. The first integration, which involves both the characteristic functions, may be

written
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A

(Fs FN? = exp lE(t') + a 2 Es(t ' + T)- a3EN(t')

AVt' 0

- a 4 EN(t' + T) -OEN(t')EN(t' + )]dt' (10)

where

a 1 = iz A cos t;, a2 = i A cos (t+T)

a3 Tz; a4 = 2T; a5 = P(T) za.

The integration is simple because of the particular form of the envelope functions E S

and E N. The result is

(FN F S ) =
AVt'

gl(r) exp(a + 2 - 3 - a 4 - a 5 )

+ g2 (.r) exp(al - a3 - a4 - a5)

+ g3 (T) exp(- a3 - a4 - a5) + g4 (T) exp (al - a3)

+ g5 (.r) exp(aL2 - a4) + g6 (.) exp(- a3)

+ g7 (T) exp(- a4) + g8 (r).

The functions gl(T) ........ g8 (T) are specified in Fig. 4, to which the conditions

A 2 ........ 6 2y pertain. For the case where y 6 < 2y, all the g functions except

g2 remain as defined in Fig. 4, while g2 is only slightly modified, as indicated in Fig. 5.

If now we let Fsc(Z,g ;T) and FNc(z,g ;T) represent the characteristic functions of the

c-w carrier A cos t and the ungated noise X(t) respectively, it may be shown that the

exponential functions in Eq. 11 are related to FSc and FNc as follows

exp(a 1 + a 2 - a 3 - a4 - a5) = FNc(Z,;T) FSc(Z, ;T)

exp(a - a3 - a4 - a5) = FNc(Z·,;T) FSc(Z,O;T)

exp(- a3 - a4 - a5) = FNc(Z, ;T)

exp(a 1 - a 3 ) = FNc(Z,O;T) FSc(,O;T)

exp( 2 - a4) = FNc(O't;T) FSc(O,';T)

exp(- a(3) = FNc(z,O;T)

exp(- (a4) = FNc(o,a;T)

(12)
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On substituting the results of Eqs. 11 and 12 into Eq. 1, we obtain

41-(T) f(iz) dz f(it) FNc(Z,;T) FSc(z,;T) dt
4,' 4· r

+ - , I f(iz) FSC (ZO;T) dz 
c c'

f(it) FNc(Z,t;T) dE

+ 4--r) f(iz) dz j f(it) FNc(Z,;T) di

C c

g4(T)
+ 7 (i z)

C

+

FNC(Z,o;T) FSC(Z,O;T)

g5 () f(iz) dz f(it) FNC(O,;T)
c cc

4 2

g6() rr
C

g7(T) 

g8 (T) I

4wr c

dz , f(iz) dE

FSc(O,t;T) dE

f(iz) FNc(z,o;T) dz I f(it) dE

c

f(iz) dz , f(it) FNc(o,,;T) dE

f(iz) dz f(it) d.
! 

(13)

Although not indicated explicitly in the above equation, it should be remembered that a

time average over t has yet to be applied to FSc wherever it appears.

A close examination of the individual terms on the right side of Eq. 13 will show

that a significant simplification can be made in most cases. Specifically, it will be

noted that each of the last five terms contains either the integral S f(iz) dz or the inte-

gral f(i) d, or both. It will become apparent later (Eq. 14) that when the response

current is zero for zero excitation voltage, that is, I = 0 when V = 0, the above two

integrals are zero, so that the last five terms of Eq. 13 vanish. This situation always

holds when the nonlinear elements in the circuit are passive and no.biasing batteries

are present. In the case where a biasing battery is inserted in series with the exci-

tation voltage V, so that I assumes a constant, nonzero value when V = 0, then the last

five terms of Eq. 13 are nonzero. It is of interest to determine their significance in

-8-
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this circumstance. First it will be noted that FNc and FSc appear in these terms as

functions of only one of the complex variables z,t, the other being zero. As a result

neither FNc or FSc is a function of T, even though T is specified as one of the vari-

ables. Consequently the integrals in the last five terms are independent of , so that

this variable appears only in the g(T) functions. Furthermore, it can be shown that the

associated integrals have the following significance.

(a) f(iz) dz = f(it) d = Ip, the constant value of I(t)

c c' during the interval 6 < t' < A

when V(t) = 0 (14)

(b) f f(iz) FNc (Z,O;T ) FSc(Z,O;r) dz = f(it) FNc(,;T) FS(O,t;T) d E

C CI

= Is, the average value of I(t) during the

interval o < t' 6 when both signal and

noise excitation is applied (15)

(c) J f(iz) FNc(Z,O;T) dz = f(it) FNc(,t;T) dt
C C

= INS' the average value of I(t) during

the interval y < t' < 6 when noise

excitation alone is applied. (16)

It is therefore apparent that the last five terms of Eq. 13 reduce to

{ + r] (I p {[ 6 + ( d g7(T (IN-S I)} + 8 (r) (I)} (17)

Finally, it may be shown that the first brace in Eq. 17 represents the two-way cross-

correlation between a rectangle of height I S occupying the interval (o,y) and a rectangle

of height Ip occupying (6, A); the second brace represents a similar crosscorrelation

between rectangles of heights IN-S and Ip occupying intervals (y,6) and (6,A) respec-

tively; while the third brace represents the autocorrelation of the rectangle I occupying

the interval (6,A).

The conclusion to be drawn is that the frequency spectrum corresponding to the

terms composing Eq. 17 is purely a video line spectrum, representing the periodic

transitions of I(t) to the nonzero value Ip during intervals [nA+6, (n+l)A]. As remarked

previously, if Ip = 0 then Eq. 17 reduces to zero.

The first three terms of Eq. 13 all make a contribution to the noise spectrum of the

response, because both the complex variables are present in FNc. A simple physical

interpretation is possible for the first and third terms. The first term represents the

-9-
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response that would be obtained if the excitation which occurs during the interval (o,y)

alone were applied, I(t) being zero at other times. Similarly the third term represents

the response that would be obtained if the excitation occurring in the interval (y,6) only

were applied, I(t) again being zero at other times. The second term does not have a

correspondingly simple interpretation; however, in some sense it represents additional

terms in the response resulting from the simultaneous presence of excitation in the

intervals (o,y) and (y,6). This interpretation is prompted by the fact that g2 (T) is the

two-way crosscorrelation between pulses of unit height occupying intervals (o,y) and

(y,6) respectively.

It is not necessary to pursue the general analysis beyond this point, because the

solutions of the integrals in the first three terms of Eq. 13 have been obtained previ-

ously (1, 2). Those solutions are employed in the following section, where the above

analysis is applied to the balanced diode phase detector.

III. Diode Phase Detector

An idealized form of the balanced diode phase detector, together with its driving

sources, is illustrated schematically in Fig. 6. The sources A and B generate volt-

ages VA and VB, which are then added and subtracted to produce voltages (VA + VB) and

(VA - VB) respectively. The latter are applied to separate diodes, which are assumed

to act as ideal linear half-wave detectors. The output voltage V o, representing the

response of the device, is the difference of the voltages V1 and V 2 , appearing across

the load resistances R. The capacitors C, shown in broken lines, are generally

present in practice, but are omitted in the theoretical model (see Sec. I).

For the purposes of the analysis of this section, the frequency characteristics of

sources A and B are specified to be identical, and to have the general shape shown in

Fig. 7. Furthermore the center frequency of the spectrum is assumed to be much

larger than the spectral width, which in turn is sufficiently wide to permit the genera-

tion of substantially rectangular signal pulses. The former assumption results in the

spectrum having approximately arithmetic symmetry about its center frequency, a fact

which is utilized to simplify the analysis. Specifically, it allows one to replace the

autocorrelation function +(T) of the ungated noise voltage from source A, by the expres-

sion [o0 r(T) coS t], where /21T is the center frequency of the source spectrum and

r(T) is the normalized autocorrelation of the noise envelope. In practice the bandpass

characteristic of Fig. 7 may result from an amplifier filter combination, as for example

an i-f amplifier.

Additional assumptions upon which the analysis is predicated are

(a) The noise components of VA and VB are generated by physically separate

sources, so that they are statistically independent.

(b) The pulsed carrier voltages composing the signal components of VA and VB have

the same frequency, but have a phase difference of radians.

(c) The signal-to-noise ratio associated with VA is equal to that associated with VB.

-10-
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(d) The ratio of rms voltages [(V) rms]/ [(VA) rms] is denoted by a, where

< a < 1. This means that if the mean power of the ungated noise output from

source A is o, then that from source B is a 2P .

(e) The transfer characteristic relating V1 and (VA + VB), also relating V2 and

(VA - VB), is as specified in Fig. 8. The Laplace transform of this character-

istic is f(iz) = (1/iz)2 = -z-2

It is evident from the transfer characteristic of Fig. 8 that the last five terms of

Eq. 13 vanish. The evaluation of the first three terms of Eq. 13, using the formulas of

reference 2, leads to the following expression for the autocorrelation of the rectified

or low-frequency component of the response voltage VO
0

R (T) [4 ] X
mg,() =0 A

x m (I Fl(m + q ;

(q+m)! ((m+1))'

A2M2 2A M 0
m+ ; -1; 

0/

2m + q a; A2M2 '\2
+ M F ; q-m + 1; 

2 T _TkF~~~~__ 

1
X 1Fl(m + q - ; m + 1;

A2M 2

1 (m
0

m+2q m
- (G)q M2M

+ q - ; m + 1; - ]

+g (T) 

q=O

A2 F 1 22 1 ]

X1 F 1( -~ A
2 M M A2M2Fl(q -; 1;-- o) + 1(q - 1; -2o0 0 t}

+ g3 (T)
+ 4

-12 -
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l,m = f
e =

,m 

21
M = 1 + +o cOs 

l+a.

2a

MIll1l+c

The quantity A /2 qo represents the ratio of the mean-square power of the c-w car-

rier A cos wt, to the mean-square power of the ungated noise, at the output of either

source. Therefore this quantity may be replaced by a single symbol Q, and defined as

the signal-to-noise ratio at the input to the balanced phase detector. Frequently one is

interested in evaluating the signal-to-noise ratio for the response, a quantity which we

shall denote by S. Since it is the d-c component of the response which is usually selected

to provide the signal information (i. e. the information concerning the value of the

carrier phase difference, p ), one usually follows the phase detector with a low-pass

filter whose upper half-power point is of the order of a few cycles. The output of the

filter therefore includes low frequency noise in addition to direct current. If WoN(f)

denotes the mean power spectrum of the rectified noise in the phase detector response,

then the mean noise power passed by the low-pass filter is to a good approximation

[WoN()Af], where Af is the effective filter bandwidth. The output signal-to-noise ratio

may therefore be defined as

S= square of d-c response (19)

WoN( f ] (19)

The square of the d-c response is just the constant term of Eq. 18, and is denoted by

Rd-c . It is obtained by selecting the m = q = 0 term of the first series and the q = 0

terms of the second and third series, and performing the average over the g(T) functions.

Since the contribution of the last two series to the constant term is zero, one obtains

Rd-co 2 1 2 g2
Rd gl(T)(V2.) 1F1( - ; ; QM1)- 1F1( --; -QM (20)

The part of Ro(r) which remains after extracting the m = q = 0 and q = 0 terms from the

respective series represents the autocorrelation of the noise response alone. If it is

where
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denoted by RoN(T), then the zero-frequency value of the mean noise power spectrum is

given by

00

WoN(O ) = 4 RoN(T) dT. (21)
0

When Eq. 18 is substituted into Eq. 21, it is seen that the following integrals must

be evaluated

(a) gl(T) r(T)m+2q dT

o0

(b) j g2 (T) r() 2 q dT

0

(c) I g3(T) r(T)2 dT.

0 

(22)

These integrations will be of varying difficulty, depending upon the form of r(T), which

is determined by the spectrum of the source. If the integration cannot be carried out

analytically, recourse must be had to numerical or graphical integration. It is usually

necessary to evaluate only a few of the above integrals, because the series in Eq. 18

converge quite rapidly for a wide range of Q values (i. e. Q << 1 to Q >> 1).

It has been mentioned that the above analysis applies to the circuit of Fig. 6 only

when capacitors C are absent. Empirical measurements show that, for a given Q, the

value of S may be appreciably increased by the addition of these capacitors to the

circuit. The improvement is most marked for values of Q >> unity. The reason for

the improvement is that the insertion of the capacitors causes the diodes to act as peak

detectors. Consequently when Q >> 1, so that the pulse rises well above the noise back-

ground, only that noise which is riding on or near the top of the pulse is effective in

contributing to the output noise; the noise in that part of the gate not occupied by the

pulse does not pass through the diodes because of the bias applied to them by the capac-

itors. The effect just described has in fact been noticed for values of Q as low as 0. 5.
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