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Abstract

Let Pc„(n) be the distribution of the number N(oo) in the

system at ergodicity for systems with an infinite number of

servers, batch arrivals with general batch size distribution and
general holding times. This distribution is of impotance to a variety

of studies in congestion theory, inventory theory and storage

systems. To obtain this distribution, a more general problem is

addressed . In this problem, each epoch of a Poisson process gives

rise to an independent stochastic function on the lattice of integers,

which may be viewed as a stochastic impulse response. A continuum

analogue to the lattice process is also provided.
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O. Introduction.

The distribution of the number in the system at ergodicity for systems with an

infinite number of servers, batch arrivals with general batch size distribution

and general holding times is of importance to a variety of studies in congestion

theory, inventory theory and storage systems. To obtain this distribution, a more

general problem is addressed. In this problem, each epoch of a Poisson

process gives rise to an independent stochastic response function on the lattice

of integers.

The simplicity and importance of the results suggest that they may be

known, but the authors have not been able to find them in the literature. The

method employed is probabilistic and succinct and may be of independent

interest.

1.1 A more general problem

The work described has been motivated by M/G/oo batch arrival system

needs. The results however relate simply to a more general system context

and may have value elsewhere.

For the M/G/^o batch system, customers arrive at Poisson epochs of rate X

with random batch size and random i.i.d service times to a system having an

infinite number of servers . The p.g.f. at ergodicity of N(t), the number in the

system, is wanted. To find this distribution , we consider the more general

problem where, for each arrival epoch t,^ of of the Poisson stream , there is a

stochastic response function Nk*(t) having integer values with Nk*(t) -^ as t

-4 oo
. The system occupancy level N(t) is then given by

k = + oo

N(t) = X N *(
t - t J

k = -oo

To obtain the p.g.f. of N(t«) for the general problem, one notes that because

of the Poisson character of the arrival process, one may regard the input stream

as a superposition of M independent sub-streams. Each sub-stream has
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Poisson arrivals of rate X/M and has the same stochastic response function

N*(t) and each sub-stream may be thought of as associated with its own

subsystem. The response function N*(t) will be assumed initially to terminate at

the level after a service interval of finite duration D. Because each sub-

stream is thin when M is large, the probability that two or more batches are

present simultaneously in a subsystem is o(}t/M) as M -^ oo. During the service

interval of length D, let the p.g.f. of the number in the subsystem present at time

y after the service inception be

(1) g(u,y)= Xn rnCy) u"

where r^{y) = P[N*(y) = n] . Because the arrival process for each subsystem

is Poisson, the length of the intervals between the termination of service on the

previous batch and the the start of service on the next batch is exponentially

distributed with mean M/?t. If In (y) is the indicator function for being at state n

at time y, the fraction of time spent in level n at ergodicity is given for n >1 by

D D

E[j I„(y) dy ] f
r^(y) dy

"o

X X

It follows that the p.g.f of the number in the system at ergodicity is for fixed D,

D

— + j g(u,y) dy_ M

71 (u , -) = |_
5__

J + 0(1) , M -^ oo

D +

We next permit M to become infinite and then D to become infinite in turn. The

latter limit is appropriate since the duration of the holding times may be infinite.

From the familiar lim
,^ ^^ (1+^)^ = e'^, one has
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D

71 ( u,oo) = lim
^ ^ ^ exp [ - X D { 1 - —

j g{u,y) dy } ]

= lim^^ ^exp[ -X D{1J ( 1 - g(u,y) ) dy } ] .

I.e.

oo

(2) 7i:(u H = exp [-X J{1 - g(u,y)}dy ].

A more formal demonstration of (2) can be obtained from a continuous infinite

product representation of .k{u ,<>=).

Note that for the ordinary M/G/°o system with batch size K =1 and service

time c.d.f A(x) , one has

(3) g(u, y) = A(y) + u A (y)

Hence

1- g(u, y) = A (y) {1-u)

and one obtains from (2) the classical result 7i:(u ,oo) = exp[ - XE[T] (1-u) ] .

(See for example Tijms(1986).) Equation (2) implies at once that:

Theorem. For a process N(t) with batch poisson arrivals of rate X,

independent identical random impulse response g(u,t ) for each batch and

infinite number of servers, the ergodic distribution of the number of items in the

system is a compound Poisson distribution with p.g.f. given by (2) .

The basic result (2) can be extended by an identical argument to the

continuum case for which

(4)

k = + CO ^

X(t) = X X ^( t - T J .

k = -oo
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Here the summands are i.i.d. stochastic functions which go to zero as t goes to

infinity. If (^{s ,c«) = E[ exp{-sX(°o)} ] one has

(t)(s ,00) = exp [ - ?i f {1 - \|/(s,y)} dy ]

where v|/(s,y) = E[exp{-s X,^*(y)}] . In the special case where X^*(y) is

deterministic and exponential this result coincides with J. Keilson & D. Mirman,

(1959). An extensive discussion of the general deterministic case may be found

in S.O.Rice(1945). The result extends to multivariate processes of the form (4).

1.2 The ergodic Mean and Variance

From (2) one has at once

E [ N(oo) ] = ^
J
g^(1,y) dy = ^ ^ n r^{y) dy .

If N*(t) is the decreasing number in the system associated with each Poisson

epoch, then

00

(5) E[NH)] =X jE[N*(y)]dy

In the same way, one finds that

00

Var[NH]= X
J [ g^ud .V) + SuC^ .y) 1 dy

so that

(6) Var[NH] =X j E[N*2(y)] dy

1.3 Mbatch/M/00

Until now no assumptions have been made about N*(t) other than that

batches are served independently. For M'^^^'^'^/M/00 , each customer is served
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independently and lifetimes are exponentially distributed. Let us also suppose

that batch size is exactly K. Then, as for (3)

g(u,y) = [
{1-e-ey) + ue'^V] ^

so that for (2) one must evaluate
oo

^k(") = j [ (1-e-^y) + ue-ey] "^ dy

From the Binomial expansion, one must then evaluate
oo

h(K,r) =
J

(l-e-Qy)'^''" e" '^v dy = [ er ^C, ]-'^

from the integral representation of the Beta function.. It follows that

(7)

e

This may be seen to coincide with the p.g.f. obtained for M^/M/oo by analysis

via a birth-death process for general batch size distribution. . Let a^ = P[K=n]

and Pn(t) = P[N(t) = n] . One then has from the forward Kolmogorov

equations

^Pn(t) = - (^ + n^)Pn(t) + A (Pn(t))*(an) + (n+1)nPn+i(t)

The use of generating functions then gives

3Y7t(u,t) = -?i[1-a(u)] 7i(u,t) + u(1-u) 3^:t(u,t)
,

I.e.

(1-u) ^log^Cu) =-[1-a(u)]
U

One has finally

(8) 7:(u) = exp [ -

u

1-w °^ J

This may be seen to coincide with (7) when a(u) = u- .. K
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1.4 MK/G/oo

For constant batch size and general holding times, one has

g(u,y) = [ A(y) + u A (y)]
^

so that

oo

7i(u ,00) = exp [ X
J
[g(u,y) - g(1,y) ] dy

= exp [ ^ J {[A(y) + u A (y)]"^ - [A{y)+ A (y)]*^ }dy] .

Hence

(9) 7r(u ,00) = exp{ -0[1 - p(u) ] }

where

(10) e = XE [ max (T,,T2, ..,1^)] = X j
[1-Ak(y)] dy

and

(11)

Mu) =

X u'C,
J

A';(y) A^^-^y) dy

j [ 1 - Aj^(y) ] dy

Note that only when K = 1 is the distribution of N(=«) independent of the lifetime

distribution. Note also that for constant batch size K one has from differentiation

(12) E[N(H1 = ^K E[T]

(13) Var[N(oo)] = XK E[T] + ?iK2 J[1-A(y)]2dy
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in agreement with Tijms [ 1986] . The numerical evaluation of the distribution of

N(oo) from (9) can be obtained algorithmically from

exp{-e[1 -p(u)l }= e-9 I ip pn(u)

and n-fold convolution of the lattice distribution for P(u) with itself. It is clear

from the compound Poisson character of (9) that for any holding time

distribution with finite mean, when K is fixed and ^becomes large, the

distribution of N(oo) becomes normal . Normality does not set in with increasing

batch size K alone since 7r(u ,«>) is not the K'th power of a p.g..f. . The

normality will be present when e = XE [ max ( T^, Tg, . . , T^ ) ] is large.
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