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INTRODUCTION

Much of management activity involves monitoring: scanning and

surveying situations for which there is a potential need for corrective

action. The purpose of monitoring is to routinely assess this

potential and thereby to indicate when managerial intervention is

required. If there is never a need for corrective action, then there

is never an economic benefit to monitoring, for payoffs are obtained

only through actions which improve the economic circumstances of the

firm.

Monitoring involves the gathering and assessment of information. It is

what Simon calls the intelligence phase of decision making[1977] and

what Pounds calls the process of problem finding. [ 1969] Monitoring is

differentiated from other managerial information processing activities

by its purpose, to routinely assess the potential need for corrective

action. Routine implies a repetitive and somewhat structured activity.

Corrective action suggests that the situation is being guided toward

some target or goal

.

This paper is an inquiry into the design of information systems to

support managerial monitoring functions. The guiding paradigm in this

effort is provided by information economics theory. As Treacy[1981]

has observed, economics models of information value concentrate upon

only the choice phase of decision making. Yet, we know that decisions

are profoundly affected by information at the *($lfreriligence and design ,,<^'^\

phases of the decision making process, because Without information to \fy
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identify problems, structure alternatives, and estimate consequences,

no choice from among alternatives is ever made. Therefore, this

present effort will also serve to extend information theory into the

first phase of decision making, intelligence.

Our primary concern is with the design of information systems, not

their valuation, yet we can hardly begin to separate good from bad

design without some rudimentary ability to assign relative values.

These values must be relevant in the context in which information

support system design is contemplated. Therefore, any information

system valuation model must be founded upon a realistic description of

the managerial use of information in monitoring, even if that

description is at odds with prescriptive theory.

The next section of this paper outlines a general framework for

describing the monitoring function of management. Monitoring is

characterized as a decision of whether or not to intervene in a

situation. The decision is made by comparing the subjective

probability that the situation is in need of intervention, determined

from the monitored data and personal judgement, with a threshold

probability determined from the relative costs and benefits of

intervening. In subsequent sections, normative cost investigation

models, which prescribe the determination of the subjective probability

and the threshold probability, are reviewed with an aim toward

selecting from them that which is descriptive of managerial monitoring

behavior. Unfortunately, not all of the theory is descriptively valid.

This the researchers readily admit when they bemoan the minimal



acceptance of their work by managers. [Kaplan 1975; Magee 1976]

We shall next move to Pounds work on the process of problem finding,

which provides a description of how managers subjectively evaluate the

probable need for intervention. A mathematical version of this

description is developed to complete a descriptive model of managerial

monitoring behavior. Based upon this description, a model of the value

of an information support system is derived. This model indicates a

need to reconsider the standard concept of an information system as

simply a collection of information signals.

The developments in this paper are limited to a consideration of

managerial monitoring of one situation. We shall not consider the

issues of monitoring multiple data streams or of the distribution of

management attention among several situations and how this affects the

design of information support systems. For one approach to this latter

problem see RockartC 1979].

THE GENERAL FRAMEWORK

Monitoring is performed to assess the need for managerial intervention.

It may conveniently be modelled as a process in which a manager views

data for the purpose of choosing whether or not to intervene into a

situation. This is compatible with Simon's characterization of the

intelligence phase of decision making as finding an occasion for making

a decision before possible courses of action have been

considered. [Simon 1977, p. 40] It is decision making with minimal



structure.

Let us assume that a situation is being monitored using a single stream

of reported data, one datum arriving in each time period and each

denoted by y. Also let us assume that the situation always exists in

one of two states, in control (s ) or out of control (s ). In each

time period, the manager has two possible actions open to him. He can

intervene (a ) or not intervene (a^,)- For each state-action pair there

is associated a payoff u. These payoffs are shown in Figure 1.

in control out of control

a : don't investigate u(s ,a ) u(s ,a )

a : investigate u(s ,a ) u(s ,a )

Figure 1

By definition, we have that:

u(s^,a^) > u(s„,aj (1)
1

and u(s ,a ) < u(s ,a ) (2)

That is, in the out of control state it is better to intervene and in

the in control state it is better not to intervene. The manager will

want to intervene in the situation if the expected payoff of

intervention exceeds the expected benefits of nonintervention. If we

let p(s ) represent the manager's subjective probability that the

situation is out of control, then he should intervene, choose action

a^, if:



[1 - p(s )].u(s ,a ) +p(s ).u(s ,a ) >

[1 - p(s^)].u(sQ,aQ) + p(s^).u(s^,aQ) (3)

=> p(s^) > = p^ (4)

[uCSq.Sq) - u(sQ,a^)] + [u(s^,a^) - uCs^.a^)]

T
p represents a threshold probability. If the subjective probability

of being out of control exceeds this threshold, then the manager will

want to act. Data is observed to determine p(s ), the probability of

the situation being out of control.

Notice that the general framework has made two restrictive assumptions,

that the situation can assume only one of two states and that the

manager monitors only one stream of data. We shall argue that this

first assumption is sufficient for an initial descriptive theory of

managerial monitoring behavior. The simplification is made to reduce

both the complexity and the information requirements of the model as a

parallel to simplifications made by managers to reduce information

processing requirements. The second assumption shall be relaxed in a

subsequent paper. The limit of two actions is not a restriction, but

by definition of the intelligence activity as the earliest phase of

decision making, before the problem has more than minimal structure.

The rest of the notation, including the derivation of the intervention

rule is just that, notation. It provides no restriction upon possible

managerial behavior other than consistency.



DETERMINATION OF THE THRESHOLD PROBABILITY FOR INTERVENTION

T
How does a manager determine p , the threshold probability of the

situation needing intervention? One approach is to directly estimate

T
the four payoffs, u, and to compute p from equation (4). This appears

to be an unlikely description of managerial behavior.

Dyckman[1969], in a paper on the prescriptive theory of cost variance

investigation, suggested that the manager should subjectively determine

two values: C, the cost of investigation and L, the present value of

the gross savings obtained from an investigation when the situation is

out of control. If the cost of investigation is independent of the

state, then these values correspond to payoffs as follows:

C = uCs^.a^) - u(sQ,a^) (5)

L - C = u(s ,a ) - u(s ,a ) (6)

Equation (5) reflects the benefits of choosing the correct action when

the situation is in control. Equation (6) reflects those benefits when

out of control. The threshold probability of intervening now takes on

a simple form:

p'^ = C/L (7)

Dyckman concedes that "the precise determination of the savings for

each future period is not an easy matter." He observes that "where a

corrective action is not forever binding, the calculation of L needs to

be adjusted to reflect the possibility of future out of control

periods" and that "data on the average number of periods before the



process is discovered to be out of control may be helpful ."[Dyckman

1969, p. 218] These are the types of tradeoffs that managers must

implicitly make in their decision to intervene.

Li [ 1970] has criticized the theoretical validity of Dyckman 's approach

T
for setting p because it does not anticipate the benefits of waiting

for another reported datum with which to sharpen the manager's

subjective probability of being out of control, p(s ). He advocates

using Kaplan's dynamic programming approach [1969]f which explicitly

models the sequential nature of the monitoring process and computes

threshold probabilities which converge to a constant value as the

number of periods increases. Dyckman responded that "the difficulties

attendant on solving large and complex real dynamic programming

problems can limit the succesful application of this technique." He is

supported by Magee[1976], whose comparison of the approaches using

simulation concluded that "Li's criticism of Dyckman '3 approach for not

considering future actions, while valid theoretically, may have little

effect on the incremental cost savings." Another comparison by

Jacobs[1978] using an experimental setting, failed to indicate any

significant differences between the results of using Dyckman 's and

Kaplan's approach.

Our interest is in using parts of these prescriptive models of cost

variance investigation decisions which have descriptive validity. A

dynamic programming approach would hardly appear to be a valid

description of managerial behavior. Dyckman 's approach, alternatively,

although theoretically flawed, has a certain face validity which makes



it appealing. We shall incorporate it into our model of managerial

monitoring behavior.

NORMATIVE DETERMINATION OF THE POTENTIAL NEED FOR INTERVENTION

We have assumed, to this point, that the manager uses a single stream

of data to monitor a situation. The data is observed to assess the

probability of need for intervention, p(s ), in any period. Under

these circumstances, there can be only three influences upon the

manager's determination of p(s ): his initial judgement, the stream of

data, and the passage of time.

We shall present the normative approach to the determination of p(s,)

as developed in the cost variance investigation literature. On this

approach, there is little disagreement between Dyckman, Kaplan, and

other theoreticians, although formulations do differ. Details may be

found in Dyckman [ 1969] and Kaplan [ 1975]. Next we shall assess the

descriptive validity of the theoretical treatment and, unfortunately,

be forced to reject the approach as a description of the managerial

determination of the potential need for intervention. A new approach

shall be presented in a subsequent section.

Let us define p'(s ) as the probability that the situation is in need

of intervention at the start of a period, before the new datum or the

passage of one more time period have been considered. p'(s )

summarizes all relevant information since the last intervention; the

manager's judgement of the need for intervention immediately after the



intervention and all prior observations and time since the last

intervention.

The new datum, y, is prescribed to be incorporated into the probability

estimate using Bayesian revision.

f(y|s )p'(s )

P(s !y) = i i (8)

f(ylsQ)p'(sQ) + f(y!s^)p'(s^)

For this calculation, the manager requires knowledge of two

distributions, f(y|s ) and f(yls.). These are the conditional

probabilities of the observed datum under each state.

Incorporation of the time information requires assumptions about the

nature of the process underlying the situation. If the situation moves

from state s to state s with probability g^. and from s to s^ with

probability g, during any period without intervention, then:

p(s^) = p(sQ|y)gQ, + p(s^|y)[1 - g^g] (9)

= [1 - p(s^|y)]gQ^ + p(s^|y)[1 - g^Q] (10)

If it is assumed that the situation never moves from s ^ to Sq without

intervention (g,Q =0), then the process is one of geometric decay. The

longer the situation is left unattended, the greater the probability

that it is in need of intervention. In such a case:

p(s^) = pCs^ly) + [1 - p(s^ly)]gQ^ (11)

>p(s^|y) (12)
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Geometric decay is usually assumed in the cost investigation

literature, probably because much of the theory was borrowed from

quality control theory, where a misad justed machine has no self

correcting ability. The same is not generally true in a management

situation, where one is monitoring the outcomes of others' actions.

Here the effect of time on p(s ) is ambiguous. In the general case,

p(s ) > p(s |y), if and only if:

g-, P(s !y) p(s !y)
_yi > 1 = 1 (13)

g^Q 1 - p(s^|y) pCSply)

Since the ratio on the right varies from period to period, the effect

of time may in one period be to increase p(s |y) and in another to

decrease it. Even this ambiguous result is fundamentally dependent

upon assumptions about the nature of the process underlying the

situation. Different assumptions lead to different theory.

DESCRIPTIVE VALIDITY OF THE NORMATIVE APPROACH

Having described normative theory for the determination of p(s ), we

must assess its relevance to a description of managerial monitoring

behavior. The theory considers three determinants of p(s.): prior

judgement, the stream of data, and the passage of time. We shall

assess these three aspects of the theory against other available

evidence.



11

Normative theory directs that prior judgements should affect the

determination of p(s ) through Bayesian revision. In that fashion:

P(s.|y) f(y|s.) p'(s,)
1— = 1, 1 (14)

p(sQ!y) f(ylsQ) p'Cs^)

In words, managers should form odds of being in s, versus S- equal to

the product of the likelihood ratio of y and the prior odds on s. and

s„. There is significant evidence that in the assessment, prior odds

are largely ignored. Kahneman and Tversky [1972, 19733 have produced

the most compelling evidence of this systematic underutilization of

prior information. Their basic conclusions are supported by Swieringa,

£t a]^[1976], who conclude that the degree to which the prior odds are

ignored are directly related to the strength of association between the

data stream and the situation. [p. 182]

The evidence suggests that Bayesian revision is a poor description of

how managers utilize prior judgements. We posit that there is just as

little support for Bayesian revision as a description of how new data

are utilized. Our claim rests upon the observation that the

conditional probability functions f(y|s„) and f(y|s.) are enormously

difficult to generate, especially in a monitoring context.

Consider, for a moment, weather forecasts and tomorrow's weather

conditions. The forecast is information; it corresponds to y.

Tomorrow's weather condition (rain or sun) is the uncertain state. Now

think of your favorite weather forecaster and estimate the probability

that he will forecast rain given that it will be sunny tomorrow.
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f(y|s). An important difficulty immediately arises. The problem is

backwards to the normal fashion of thinking about information and

states. The probability of sun tomorrow, given a forecast of rain,

p(s|y), is a more natural assessment, because it is chronologically

ordered (first an information signal, then an inference about the

state) and it measures the natural notion of reliability of

information. This example illustrates the inadequacy of Bayesian

revision as a descriptive theory where prior judgements are not

revised, but largely ignored.

Although this paper is in the information economics tradition, we must

reject the Bayesian revision formulation of the manager's intervention

decision, for we wish to base our information value theory upon a valid

description of managerial behavior. The evidence leads us to agree

with Kahneman and Tversky [1972, p. 450] when they conclude that "in

his evaluation of evidence, man is apparently not a conservative

Bayesian: he is not Bayesian as all." We maintain that a non-Bayesian

formulation is better suited to a descriptive theory of probability

assessment in the managerial monitoring context.

Finally there is the matter of the influence of time upon the

assessment of the potential need for intervention. The normative

theory is fundamentally dependent upon assumptions about the nature of

the process underlying the situation. Different assumptions yield

different theory. Any realistic assumptions, though, will yield one

consistent result: the influence of the passage of time will be small

compared to the influence of the data stream. For a demonstration of



13

this, consider equation (11), where the process is assumed to be in

geometric decay. A reasonable assumption about this process is that

g is quite small; the need for intervention is the exception rather

than the rule. Therefore the second term on the right side of the

equation is negligible in its influence upon p(s.), which is

approximately equal to p(s.!y), determined from the influence of y.

In realistic managerial monitoring situations, time has some minimal

influence upon the intervention decision, but only through the

mechanism that distributes a manager's attention among several

competing situations. We will not consider this issue in the present

paper. In the assessment of a particular situation, though, time plays

a negligible role. Therefore, we shall choose not to include this

factor in our initial descriptive model of managerial monitoring

behavior.

A DESCRIPTIVE MODEL OF THE DETERMINATION OF p(s^)

We require a model of the assessment of p(s ) that utilizes prior

judgements in inverse proportion to the association of observed data to

the situation and that does not rely upon knowledge of f(y|s_) or

f(yiS-). For guidance, we turn to Pounds' seminal work which describes

the process of problem finding. [ 1969] Monitoring is an important class

of problem finding activity.
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Pounds defined a problem as a significant difference between the

present condition of a situation and how it ought to be. He observed

that "the manager defines differences by comparing what he perceives to

the output of a model which predicts the same variables. "[p. 5] A model

need not be any formal piece of logic. More often than not it is

simply what a manager judges ought to be. It may be derived from

historical results, from plans, from a comparison of similar

situations, or by mandate.

The logic of this approach is simple and clear. Pounds observed that

the present condition, k, and the model or norm, n, define a

difference, d, and that a manager decides whether he has a problem

(state s ) or not (state s ) on the basis of this difference. Because
1

the norm may be uncertain, the difference may be uncertain. Also,

because the association between the data stream and the situation may

not be exact, any particular difference may not indicate with certainty

either Sq or s.. Thus, a manager's uncertainty as to whether there is

a need for intervention derives from two sources: uncertainty as to

how the data stream ought to be and the inadequacy of the data stream

as an indicator of the present situation.

Differences are defined so that greater differences are always more

indicative of a problem situation. If a larger observed value is more

indicative of an in control situation, then d = n - k. If a smaller

observed value is more indicative, then d = k - n. Finally, if smaller

deviation from a standard in either direction is more indicative, then

d = In - kl. For the rest of this paper, we shall assume that the
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manager is dealing with data of the second type and define d = k - n.

Parallel results for the other two cases are left to the reader so that

we may avoid unnecessary repetition. The second case has been chosen

because we wish to compare our results with those of the cost variance

investigation literature and cost data is of this type.

Let f(d|y) represent the distribution of the manager's subjective

assessment of the difference indicated by datum y and let p(s 'd)

represent the manager's assessment of the probability of being in

control, for a given difference d. Then:

P(3^ly) = |p(s„!d)f(d|y)dd (15)jQiy) = jp(so

We may mathematically represent Pounds' descriptive theory of the

managerial assessment of p(s^) as:

p(s^) = p(s^ly) (16)

= 1 - p(s_!y) (17)

= 1 - rp(sQ|d)f(d!y)dd (18)

We have chosen in equations (17) and (18) to represent p(s.) as the

residual of p(s_!y). This obviates the need to clarify the nature of

s., which may represent an amalgam of out of control possibilities.

The difference, d, equals k - n, the subjectively assessed difference

between the present condition and the norm. The present condition is

represented by the data stream, which is subject to bias and random

error. Only know bias will affect a subjective assessment and we will

define our data stream as already adjusted for known bias. The effect
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of random error in the data stream is to make it less than perfectly

reliable. We may represent the assessment of the present condition

upon receipt of y, as a random variable with distribution f (k|y). We

shall operationalize f (k|y) by assuming that it is normally

distributed with mean y (the most likely condition) and variance v„ (a

measure of the data unreliability).

Similarly, we may represent the manager's norm as a random variable

with distribution f^(n). Since the norm is independent of the datum,

fw(nly) = ffjCn)' We shall operationalize ^mCi) by assuming that it is

normally distributed with mean u^ (the most likely norm) and variance

v^ (a measure of the manager's uncertainty). Uncertainty about the

norm derives from two sources: an incomplete understanding of the

relationship between the data stream and the situation and missing or

unreliable data necessary for the conditional estimation of how the

data stream should behave. Later in this paper, we shall explore the

economic impact of an information system that facilitates a decrease in

the first source of uncertainty, and hence a decrease in v , through

managerial learning.

The difference is the sum of two normally distributed random variables,

k and -n. Thus, it is also normally distributed with mean V-^u a"d

variance v„ + v.,

.

K N

f(d|y) - N(y - u^^.v^^ +v^) (19)
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Notice that all uncertainty as to the difference derives from two

sources: the unreliability of the data stream and the uncertainty

about the norm.

The manager's interpretation of any particular difference, represented

by p(s Id), depends upon not only the size of the difference, but also

upon the association of the difference to the situation. We may

represent the manager's perception of the association by r, the

absolute value of the correlation between the data stream and the

situation, r is a measure of the proportion of the variability in the

situation that is explainable by variation in the data stream.

If there is no association whatsoever, then r = and p(s_|d) = p'(s»),

the prior probability of being in control. If there is perfect

association between the data stream and the situation (r = 1), then the

difference is an exact indicator of the state of the situation. At

some point, d^, the difference is large enough that the manager is

certain of the need for intervention (state s.). Below d_ the

difference is too small for intervention and the manager is certain of

being in control (state Sq) . Then p(sQ|d) is a step function of d.

1 d < d

p(s Id) =r
"^

(20)

° d > d^

For values of r between zero and one, p(s^!d) has values between the

two extremes. This is diagrammed in Figure 2.
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Figure 2

The difference d^ may now be interpreted as the difference for which

the manager would not change his prior judgement: p(s Id ) = p'(s ).

For P'(s ) = p'(s ) = 1/2, we would expect that d^ = 0. If the

distribution of d is symmetric about d , then d is also the expected

difference prior to the receipt of y. Later in this paper, we shall

develop an explicit formulation for d in terms of other primitives.

For intermediate r values, p(s |d) as a function of d is probably not

linear, but it may be approximated by a linear function, through the

point [d , p'(s )], as shown in Figure 3.
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?(s.\i'i

Figure 3

The slope of the intermediate section of the linear approximation

depends upon r and a scale factor. A simple function for this slope,

m' , is:

A r

m' = -m A > (21)

d^ 1-r

A/d» is simply a scale factor. This function for the slope has the

required property that it is monotonically negative in r and equals

zero for r = and negative infinity for r = 1. We have defined m as

-m' so that all primitives in the subsequent equations will be

positive.
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The general function for p(s ,'d), with m, d , and P'(s ) as parameters,

may now be written as:

d < dQ- -.(I-p'(Sq)) (22)

m

pCs^ld) =r p'(sQ)-m.(d-dQ)
1 1

m

dQ- -.(I-p'(Sq)) < d < dQ+ -.P'(Sq)
m

d > dQ+ --P'CSq)
m

Applying equations (19) and (22) to (15) we get;

P(sQ!y) = P'(Sq) *(z + -

\ 17

(1-P'(s

k'^n'"

q))) -*(^
1 M (23)

Z - -.P'(3,
( V +v'

m

•Ik N

- $ Z + -.(i-p'(s^))

^N^.Z. Lfz .^--.(I-pUSq))"] -Jz -
---!--.p.(Sq)J

{EXpf—[Z .p'(s„)]| - EXpf— [Z + (l-p'(s ))3)

where: Z = . and * is the cumulative standard normal dis'n.

'V^N

The last two terms are each approximately zero since for large r, m is

very large and the right hand multiplicand is approximately zero,

whereas for small r, m is small and the left hand multiplicand is

approximately zero. Thus, setting these two terms to zero and applying

equation (17) we arrive at an explicit formulation for a manager's

assessment of the potential need for intervention.
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P(s^)

y-u.,-d^ d„ 1-r
---N,,n—0—

—

(i-p'(s^))

iV*^M JK N

-P'(Sq),

V +v Ar
. K N I

y-^N-^0
1-r

----r-- + -—--- . (1-P'(s,))
Jv,,+v.

K N
\

y-"N-^o
1-r

^N IV^ ^''

p'Cs^)

K N

(24)

The logic of this formulation is hardly transparent, but we can make

two further approximations that will simplify the expression for p(s.)

without damaging its descriptive validity. The first term on the right

side of equation (24) varies monotonically between 1 and

*[(y-Uw-dQ)/4 Vjr+vJI,] and the second term varies monotonically between

-p'(s ) and 0, as r varies from zero to one. If we assume that the

variation is linearly proportional to r, then we have two simplifying

approximations:

(25)

= 9 —t:__r + (i-r)(l - * --^i=-\)
1-r

------ + —-— . (1-p'(s,))
n

] V +v Ar
' K N I^l^\^\ J F^

and

,

«
1-r

Jvj^+vj^ Ar ']

- # r^ t f^ ^

F^u ^^n ^''

P'(s^)

(26)

1-r

When equations (25) and (26) are applied to equation (24), it yields:

p(s ) = r,
.*f-:>-:-2]

r.»

K N

+ (1-r)(1-p'(sQ))

+ (l-r)p'(s^)

(27)

(28)
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To interpret equation (28), note that because there is a prior

probability p'(s ) that the situation is out of control, there is an

expected difference, d , prior to the receipt of the datum. After

receipt of y, the expected difference is y-iJij« the mean of the

conditional distribution of d, which has variance v„+v„. Thus,

(y-u.,-d^)/i v„+v' is a measure of the number of standard deviations ofNO K N

change in the expected difference. Note that since the expected datum

value is u^+d_, the prior expected change is zero. *[(y-u„-d_)/J Vj.+v'

]

is a measure of the significance of the change in expected difference.

It is an assessment of the potential need for intervention solely on

the basis of the datum y. p'(s.) is the manager's prior assessment of

the potential need for intervention and p(s ) is an average of these

two assessments, weighted by the representativeness of the data stream.

From equation (28) and knowledge that d = for P'(s ) = p'(s ) = 1/2,

we may derive an explicit formulation for d , the prior expected

difference. Since we have chosen to ignore the effects of time upon

the determination of p(s ), we should expect a priori that:

probL p(s ) > p'(s ) ] = 1/2 (29)

= > prob[ y > fv +v' *"'(p'(s )) + u + d ] = 1/2 (30)
K N 1 N U

=> 1 - F^Ejir^ *'(p'(sj) + u„ + d.] = 1/2 (31)
I K N 1 NO

=> yM = rv^^*''(P'(s^)) -^ Uj^ * d^ (32)
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where F is the cumulative distribution of y and y is the median datum

value. Applying our knowledge that d- = for p'(s^) = p'(s,) = 1/2 to

equation (32) yields an explicit formulation of d^.

cIq = -Jv^ *"'(p'(s^)) (33)

Note that this formulation does not require any knowledge of the

distribution of y. Applying equation (33) to (28) yields a final

formulation for p(s.)

p(s,) = r.*
y-"N ^-.

L.v^+v^
]+ * (p'(s^))l + (l-r).p'(s^) (34)

This descriptive model of a manager's assessment of p(s.) has been

founded upon Pounds' descriptive theory of the process of problem

finding. It overcomes the two difficulties of the Bayesian model that

led us to reject that approach as descriptively invalid. First, it

does not require that the manager have knowledge of f(y|s_) or f(yls.).

Second, it incorporates the theory of Kahneman and Tver sky [1972, 1973]

and Swieringa, et al^ [1976], that managers tend to ignore prior

probabilities in proportion to the representativeness of the data

stream.

This model has a further important advantage over the Bayesian

approach. It is of the same form as the Brunswik lens model of human

information processing. [Brunswik 1952, 1956] That model has received

extensive attention and empirical validation, both in the laboratory

and the field. [Slovic and Lichtenstein 1971] It is remarkable that our

model has taken the same form, even though the development has not
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relied upon Brunswikian concepts of human information processing.

THE VALUE OF THE INFORMATION SIGNAL FOR MONITORING

From equations (4), (7), and (34), we may derive an explicit decision

rule for when a manager chooses to intervene into the situation. The

rule is, intervene (choose a ) if:
1

-—^7 +*'(p'(s ))jr.I^- a- +* (p'(s,))J + (l-r).p'(s^) > C/L (35)

or.

., (C/L) - (1-1l-r)p'(s.)"] .,

y >rv^Ml* I
--1 -*"[p'(s^)] . u^ . d^ (36)

(37)

The a priori value of the information signal can be measured by

comparing the expected value of outcomes when the signal is used minus

the expected value of outcomes without the signal . [Demski 1972; Treacy

1981] It is assumed that p'(s ) < pT, that without the signal the

manager was not prepared to intervene. We have:

V(y) = p(s and choose a ).u(s ,a ) + p(s and choose a ).u(s ,a ) (38)

+ p(Sq and choose a ).u(s ,a,) + p(s and choose a ).u(s ,a.)

- p'(s^).u(3Q,aQ) - p'(s^).u(s^,aQ)

= p(s and y < y'^).u(3 ,a ) + p(s and y < y'^).u(s ,a ) (39)

+ p(Sq and y > y ).u(sQ,a^) + p(s^ and y > y ).u(s ,a )

- p'(sQ).u(sQ,aQ) - p'(s^).u(s^,aQ)
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Let us define F(y|s ) and F(y|s ) as the cumulative distributions of

f(y|s_) and f(y|s,) respectively. These latter distributions are

precisely those that we earlier argued were difficult to generate and

invalid as primitives in a descriptive theory of managerial judgement.

Nevertheless, they are useful and usable primitives for a prescriptive

theory of information signal value. We may now write:

V(y) = F(yTlsQ).p'(sQ).u(SQ.aQ) + FCy^l
s

^ ) .p • (s^) .u(s^ .a^) (40)

+ [1-F(y^|SQ)].p'(sQ).u(sQ,a^) + [ 1-F(y'^| s^ ) ].p ' (s^) .u(s^ ,a
^

)

- p'(sQ).u(sQ,aQ) - p'(s^).u(s^,aQ)

= [1 - F(y'^ls^)].p'(s^).[u(s^,a^) -uCs^.a^)] (41)

- [1 - F(y^|sQ)].[1 - p'(s^)].[u(sQ.aQ) -u(sQ,a^)]

Using equations (5) and (6) we may substitute for the utilities and

arrive at the simple formulation:

V(y) = (L - C).[1 - F(y'^!s^)].p'(s^) - C.[1 - F(y'''| s^) ].p • (s^) (42)

Unlike the information economics model, this value can be negative. A

signal can lead a manager astray.

THE VALUE OF AN INFORMATION SYSTEM

In economics, the common characterization of an information system is

as a collection of information signals. [Marschak 1971; Demski 1972]

Thus, the value of an information system is exactly equal to the

expected value of its information signals, V(y). In a recent study of

sixteen executive level information systems [Rockart and Treacy 1981]

it was observed that little of the value of an information system
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derives from information signals about the present condition of a

situation. These signals are usually available to a manager through

other channels long before he sits at a computer terminal to monitor

situations of interest. The information systems were valued, instead,

for their assistance in sharpening a manager's norms, his "mental

model" of the organization. As Ackoff[1967] earlier noted, managers

rarely suffer a lack of relevant information, but an overabundance of

irrelevant information. Information systems are valued not because

they provide more signals, but because they allow a manager to derive

more value from existing signals, through a sharpening of his norms.

Sharper norms can be achieved through two means: smaller variance v
N

(more certainty) and more accurate mean u., (more accuracy). We shall
N

examine the effects of decreasing the variance upon V(y), the value of

a signal.

Consider the first derivative of V(y) with respect to v . If this
N

derivative is negative, then the value of a signal increases as the

uncertainty of the norm is decreased. The value of an information

signal that causes this decrease in uncertainty is equal to the gain in

value of the information signal. Mathematically, we have:

^V(y) ^V(y) iyT

[C.f(yT!sQ).p'(SQ) - (L-C).f(yTl3^).p'(s^)]

1

.[

2lv^K N

$
(C/L) - (l-r).p'(s^)

t [p'(s^)]

(43)

(44)
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The second multiplicand of equation (4U) is always positive since

p'(s ) < p^. Therefore, (^V(y)/^ ) < if the first multiplicand is

negative.

C.f(yTlsQ).p'(sQ) - (L-C).f(yT|s^).p'(s^) < (45)

(L-C).f(s^lyT) - C.fCs^lyT) > (46)

Equation (46) is satisfied as long as the threshold datum for action,

T
y , of the descriptive model is greater than the Bayesian, normative

n
threshold datum, y , which is defined such that:

(L-C).f(s^!y^) - C.f(sQ!y^) = (47)

T
From equations (36) and (37), we note that y decreases as Vj^

decreases. Therefore, decreasing a manager's uncertainty about the

norm decreases the threshold datum for action. There is a diseconomy

T B
in decreasing Vj. beyond the point at which y = y • It is an empirical

question as to whether information systems are ever capable of reducing

v„ enough to produce such diseconomies.

CONCLUSIOMS

We have developed a descriptive model of the managerial intervention

decision using a general framework drawn from information economics.

This model provides the basis for an investigation of the value of an

information signal and of an information system in a monitoring

context. We have explored the value of an information system that

provides not unique signals on events, but assistance to a manager in

sharpening his "mental model" of the data stream under observation.
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Results suggest that tehre are at times diseconomies in this role.

The models of managerial behavior and of information value are far from

complete. No attempt has been made to consider the monitoring of a

situation with multiple signals or of a manager's difficulty in

distributing his attention across different, but interrelated,

situations. These matters are still under development.

Nevertheless, this work is an important first step. It provides an

alternative approach to the standard normative Bayesian approach to

information analysis. That approach is in need of augmentation since

developments have slowed considerably under the massive weight of its

overly general conceptualizations of information and decision making.

Hilton[1980] provides an excellent example of the unnecessary

complexity induced by the standard information economics approach. It

results in models and theory which defy operationalization and,

therefore, exist as untestable truisms.

The solution to these difficulties lies in specialization. The models

in this paper apply to monitoring. There are no claims that they apply

outside this context. Through specialization we are able to apply

knowledge about the particular context, such as Pounds' work, to

improve and sharpen our models. When we build upon relevant

non-mathematical works, which, after all, are usually far ahead of our

models, both can only gain.
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