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The Linear Decision Rules (LDR) proposed by Holt, Modigliani, Muth and

Simon for the production planning problem determine an optimum plan in terms

of an aggregate production rate and work force level. The criteria of the

LDR assume we wish to make decisions so as to minimize costs over a specified

time horizon, given estimates of future aggregate demand. This paper

extends the LDR to a multi-item formulation (MDR) which solves directly

for the optimum sales, production, and inventory levels for individual

items in future periods.

To remove the restriction of specified demand, revenue curves are

estimated for each item in each time periods The MDR model then seeks a

solution to maximize profit for the firm over the time horizon of interest.

The practical feasibility of the MDR is demonstrated by an application in a

firm producing a line of electric motors. The results of the MDR are

compared to management's proposed plan and some important differences are

detected.

INTRODUCTION

Within recent years a great amount of interest has been shown in the

aggregate planning problem, A considerable portion of this can be traced

to the pioneering work done by Holt, Modigliani, Muth, and Simon (HMMS) in

developing their Linear Decision Rules (LDR) [4], Since this time most of

the research which has dealt with aggregate planning models of this type has
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concentrated upon two areas: methods of improving the estimation of cost

coefficients for the model or alternative computational techniques. Examples

of the former include the work by Van De Panne and Bosje [9] and Kriebel [6]

on cost coefficient estimation and errors. In the second category, Buff

a

and Taubert [2] and Taubert [8] have recently described the use of direct

computer search techniques in solving aggregate planning problems. The

objectives of this paper are considerably different in that it extends the

capabilities of the LDR model in two new directions.

The LDR is designed to make decisions on aggregate production rate and

employment level for the upcoming period. Because of the aggregate nature

of this formulation, it is not possible to solve directly for the optimum

production rates for individual products. Therefore in situations where no

reasonable dimension for aggregation exists, the breakdown of an aggregate

production plan into individual item plans may result in a schedule which

is far from optimum. As an extreme example of this, consider the situation

where a facility's two products are lawn mowers and snow blowers. In this

case specification of an aggregate production plan neglects the most

interesting question; namely, the correct production plan for each

individual item. Another problem arises when we consider, for example,

that one measure of aggregation may be quite adequate for representing

work force related costs while at the same time it is a very poor measure

of inventory associated costs. One of the goals of this paper is to extend

the LDR model to enable determination of the optimum plan for each

individual item to be produced in a facility.
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To calculate aggregate production rates and employment levels for

future periods the LDR requires estimates of expected future demands. Two

decision rules are then employed, one to determine aj?fregate production

rates and one to determine emploj^nent levels. The criteria employed is the

minimization of expected costs due to (1) hiring and layoffs, (2) inventory

and back orders, (3) payroll, and (4) overtime and undertime. From the

viewpoint of the entire firm, of course, we are sub-optimizinp since we have

assumed that demands are fixed. With the demand curves facing many products

this is not likely to be a good assumption, however. Our second goal here

is to remove the LDR restriction that demands or forecasts of demands for

future periods have been specifiedo This will be done by estimating a

revenue curve for each product in each time period. Once revenue curves

have been specified we can maximize profit across a time horizon of interest

by calculating optimal sales quantities from the model. At the same time we

also determine the optimal production rates and inventory levels for this

sales program on a product-by-product basis. The multi-item decision rule

we propose here (which we will refer to as the MDR) , incorporates both

market conditions and production related costs. Therefore, it is likely

to be a much better approximation of the planning problems facing a firm

than a formulation which looks at production and market planning problems

independently.

The MDR Model

Because of the nature of cost and revenue functions, the estimation

of overall optimal sales and production olans for a firm will be performed





- A -

by a quadratic model whose criteria is maximization of expected profits

over a specified time horizon. This is done by expressinj* revenues and

costs as functions of the important variables and then maximizing the total

profit function. Within the structure of this model, four planning variables

will be considered: sales, production, workforce, and inventory. In order to

determine the interrelationships and effects of these variables, the overall

revenue and cost structure of the firm must be considered,

Revenue and Cost Functions

Broadly speaking, the total costs Incurred by a firm can be usefully

subdivided into the following categories:

1, Inventory related costs (IC)

2, Production related costs

a. Fixed costs (FC)

b, Variable costs (VC)

The total revenue a firm receives from sales of all of its products we

shall call R, Consequently, we may express the total profit this firm

earns during a certain period t as:

(1)
^t

"
^t ^^^^t - (vc)^ - (IC)t

with P being the profit earned in period t and T the total number of

periods.
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In this model, fixed costs are assumed to be constant within the time

horizon under consideration and therefore beyond control of the planning

process. As a result they will not be included in the total profit function.

Holt, Modigliani, Muth, and Simon (HMMS) have argued that both (VC)

and (IC) can be described adequately in terms of three primary variables [4];

Production rate in units/period

Number of production workers employed

Inventory level in units

R can be described very satisfactorily in terms of one additional variable:

Sales rate in units/period

Expressions for Revenue and Cost Components

Having outlined the nature of the total profit function, the next

concern is the expression of each of its components in terms of the relevant

variables. In the HMMS model, expressions are developed for the various

portions of (VC) and (IC)o Certain of these expressions will be adopted

without change while others will be modified to various degrees, Since

HMMS offer no expression for R, a suitable one must be derived.

The Total Revenue Term

The classical concept of total revenue described extensively in the

micro-economic literature provides a starting point for derivation of the

desired revenue term. Basically, total revenue for any volume of output is
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the product of that volume and the price at which It can be sold as

determined from the demand curve. The general dependency of total revenue

on sales rate is given In the following figure where E,, E-t and E- are

estimates of points on the total revenue curve.

Figure 1

Total
Revenue

in

Period t

Sales in Period t, (S^)

The form of this revenue curve suggests that within the shaded region

the revenue function can be well represented by a quadratic expression in Sj.,

(2) \ r, + r-S,. + r.S
1 2 t 3 t

where r^, r™, r, are constants.

This expression represents the revenue accruing to the firm from the sales

of a single product « Now consider the case where multiple products are

produced and sold. If the demand for each of n products in the firm's line

can be considered to be independent of the demand for all others, then a
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separate revenue expression of the same form as (2) can be specified for

each product in each period*

(3) Rit -
^iit + ^Zit^it " ^3itSi^

where R, = total revenue from sales of product i in period t

^it
~ sales of product i in period t

i — X ^ ooo| n

'lit I '^2it» '^Sit ^^^ constants.

In situations where interdependencies of demand are shown to exist (3)

could be easily generalized to reflect these conditions by the incorporation

of additional variables.

The expression for total revenue, R , may now be rewritten in terms of

the revenue from each of the individual products:

(4) Rt = Z ('^lit
+ ^2itSit + '^3itSi t)

i=l

The Inventory Carrying Costs Term

Economic lot-size formulas indicate that the optimal reorder quantity

and the optimal safety stock on an item increase roughly as the square root

of its sales rate. This is also approximately true with respect to optimal

net inventory (inventory minus back orders) , since back orders are generally

small in relation to inventory. Therefore, the square root relation between

total inventory and sales rate still dominates the relationship between net

inventory and order rate. Using this knowledge, HMMS show that the expected
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costs of inventory, back orders, and setups can be reasonably described over

a range by a quadratic expression in which cost rises as the square of the

deviation of net inventory from the optimal level [4, p, 57], More

specifically:

(5) (IC)j. = C^ [I^ - (Cg + CgS^)]^ + C^3

in this expressions

(IC)t = expected inventory, back, order, and setup costs during period t

1^ - net inventory at the end of period t (inventory less the

backlog of unfilled orders)

S» aggregate sales rate during period t

Cy, Cg, Cq, Cj^3 are constants

o

There are two assumptions in this formulation and the solution method

offered which deserve reconsideration,, HMMS correctly note in their

derivation of (5) that optimal net inventory is a function of aggregate

sales rate, S^» In their actual solution, however, this influence of sales

rate on the optimal inventory level was neglected in the interest of

simplicity, igeo, Cg was set equal to zero,

A much more fundamental assumption of the LDR model is that production

planning decisions for a multi-product firm may be made in terms of aggregate

production rates and aggregate inventory levels. This necessarily implies

that a common unit is available for adding quantities of different products,

for example, "a unit of weight, volume, work required, or value might serve

as a suitable common denominator" [4, p, 48], A primary objective in
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construction of the MDR model Is the elimination of this necessity of

expressing all production rates in terms of a single common unit. Individual

production rates will instead by explicitly incorporated in the formulation

so they ma/ be solved for on a product-by-product basis. Returning to the

inventory cost expression in this spirit, it follows that any consideration

of multiple products in the model must also include a separate inventory

cost expression for each. This may be done by following the logic developed

for (5). The only essential difference is the necessity of a separate

expression for each of n products. This results in:

(6) (IC)^^ = C^7 Cli, - (C^g + qgSit)]^ + ^13

^17* *"18* ^19' *^il3
^" constants.

The total inventory cost expression, (IC)^, may now be rewritten in

terms of the inventory costs associated with each product:

(7) (IC)^ = f_^ (Ci7 [I^^ - (C^g + qgS^^)]^ + Cii3)

The Hiring and Firing Cost Term

HMMS show that there are labor costs which are associated not with the

size of the work force but with changes in its size. They assume the size

of the work force directly engaged in production is adjusted once each

period (monthly in their model). Costs associated with increases in work
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force result, for example, from the interviewing, testing, and training of

new or prospective workers. Layoffs result in additional personnel and

payroll expenses, reogranization costs, and possibly labor relations

difficulties.

The expression developed by HMMS for these average costs of hiring and

layoffs will be used in this model without further comment,

(8) (WC)^_^^^ = C2(W, - W^_i - C^p2 + Ci3

in which

(WC)f- 1 - ~ hiring or firing cost incurred at the beginning

of period t

W^ = workforce during period t

Wj^_, = workforce during period t-1

^2» ^11* ^13 ^^^ constants.

The Variable Production Cost Term

The most complex term in this model is the one that attempts to express

variable production costs as a function of production rates and workforce

level. The expression for variable production cost offered by HMMS is of

the following form:

(9) (VC)^ = K3 (P^ - K^Wj.)^ + K^Pj. - KgW^ + Ki2PtW^

where J

(VC) = variable production costs during period t

P = aggregate production level during period t
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W = workforce during period t

K^, K,, K_, K,, K. 2 are constants.

As aggregate production, P^, exceeds the optimal level C^W determined by

the size of the work force in period t, variable production cost increases,

One of the expressed objectives of this model is elimination of the

aggregate production rate assumption of the LDR formulation. Therefore,

an expression for (VC) as a function of P , P , ,.,, P^^. and W^ is

desired, where P. is the production rate of product 1 in period t.

Because of differences between items, the standard direct labor time

required to produce individual products may often vary substantially.

Within the relevant ranges the expected standard labor time required to

meet any given production plan is then;

n

(10) L = I k P
^ i=l

it

where J

Lj^ » expected standard labor time in period t

k^ = standard labor time to complete one unit of product i.

The labor time coefficients, k., will be assumed constant from period to

period although the structure of the MDR model does not demand this.

Substitution of (10) into the LDR expression for variable production costs

yields the following;

(11) (VC)^ - C3 (L^ - C^Wj.)^ + €5^ - CgWj. + C^2^\

in which;

^3* ^i^* Cc, Cg, C^2 ^'^ constants

»
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This formulation can be solved directly for the optimum production

quantities of each individual product in each period. As a result, it is

not vulnerable to changes in the assumed underlying product mix as would be

the case with any model formulated in terms of only aggregate production

rates. Other advantages will become more evident after the solutions of the

complete model. Fundamentally, it will be seen later that consideration of

separate products pinpoints significant seasonal differences which can be

exploited to smooth aggregate production and stabilize total inventory

levels,

Inter-Period Dependencies

It is evident that inventory levels at the end of period t are a

function of conditions at the end of period t-1 as well as operations during

t„ In particular:

(^2> ^t = ^it-1 ^ ^t - ^it

X * j-g oo,, n

t " i, 00«f 1

(T X n) of these equations are required for the model.

Optimization of the Total Profit Function

Using the different revenue and cost terms described we now wish to

develop a suitable expression for total profit over some desired multi-

period time horizon. As a starting point, consider the expression for

profit in a single period (1), Since the purpose of this model is to

optimize total profits for the firm and fixed costs, (FC) , are not relevant
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to this decision, this term will not be considered any further. Basically,

the approach required is to first sum the profit expression across all T

periods. To this result must be added any costs associated v;ith changing

the levels of variables from one period to another. The expression for the

costs of hiring and layoffs, (WC)^ . ,, developed in (8) is in this category,
t »t-x

After inclusion of (WC) ,, the total profit (TP) that the firm will

earn over T periods can be expressed as;

T

(13) (TP) =
I (R^ - (VC)^ - (IC)j. - (WC)^ ^_^)
t-1

•

Expressions are now available for all terms in this equation.

Substitution and rearrangement of (4), (7), (8), and (11) into (13) gives:

T n
2

(14) (TP) = I I [r^^^ + r2itSit +
'^Sit^it

(total revenue)

2
- C.y(I. ~ (C „ + C^gS. )) ] (inventory connected costs)

2
- C3(Lj. - C^Wj.) - C^(\)

"*"

^6^^t
~ '^12 ^^^ ^t

(variable production costs)

- C2(W - W ^^ - C.-) (hiring and layoff costs)

This is subject to the restraints of (12):

(15) lit = ^it-i + Pit - ht

1 — Xf OOOf tl

t " X| OOOf i
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Since L has been expressed in terms of the production rates P. , the entire

expression is a function of only the following unknowns:

Sit

P where i = 1, »<>., n
it

"t

The goal of this model is to choose a decision strategy in terms of

these unknowns in order to maximize total profit over a number of periods

in the futureo A number of standard quadratic programming algorithms could

be brought to bear to solve for the optimal decision strategy. Because of

very significant computational advantages which will become evident, a

different solution technique will be employed instead. Since (TP) is

continuous and differentiable in the closed interval expected, maximum

profit can also be found in general by differentiating the total profit

expression with respect to each of the unknown variables and then equating

the resulting expressions to zeroo The existence of such a solution pre-

supposes that the profit function is a negative definite quadratic form

over the relevant range, ioe., it is a strictly concave function over the

closed interval,, In practice this conditions should be met without

difficulty since profits will in general be decreased as any of the

decision variables approach extreme values o As a result there exists a

unique global maximum for the profit function^
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To maximize the total profit expression of (lA) and (15) these

expressions are differentiated with respect to the unknovms: W. , o,,, W ,

P., ooo, P ^, and 1,1, o,o, I T,g The initial workforce at the beginning of
1 nt 11 ni

period 1, W , is assumed known as are the starting inventory levels, lin* "•••
o

I , It is not necessary to take derivatives with respect to sales since
no '

through equation (15) the sales rate is uniquely determined once production

and inventory levels are specifiedo The complete mathematical derivation

of this operation may be found in another paper [1, Ch» 6]. The equations

resulting from these differentiations are a set of simultaneous linear

relations in the unknown work force, inventory, and production.

This system has a total of (2n + 1)T unknowns and (2n + 1)T - (n + 1)

equations. The (n + 1) additional equations that are necessary to obtain

an imambiguous solution can be determined by supplying terminal conditions

for any (n + 1) variables. This can be done most simply by specifying values

of ending inventories for each product, IjT'(i =• 1» .o,, n) , and ending work

force W„o This does not jeopardize the validity of the model since we are

most interested in the values of inventory, sales, production, and workforce

in the near future. It can be shown that the impact of ending conditions

decreases rapidly as the time horizon becomes greater [4, p, 10], As a

result, W , will be highly dependent upon W^. while W^^j^2 ^^ little affected.

One characteristic of this analysis is that no bounds have been placed

on the variables. In particular no formal restrictions have been incorporated

to avoid negative sales, production, or work force. This limitation is not

likely to be of practical importance, however, since the characteristics of
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the cost and revenue curves keep the answers within the relevant range,

except under very unusual conditions. It will be seen later that no

problems of this type were encountered in the actual application of the

model.

To solve a set of simultaneous linear equations for their LDR, H^^MS

have developed a very sophisticated method which reduces the computation

necessary for applications to a minimum level. This approach was developed

to make computation of these decision variables simple enough that they

could be routinely determined using only an ordinary desk calculator [4,

p, 92], With sufficient mathematical ingenuity it may be possible to

reduce the solution process for the model proposed here to a form where it

could be solved on a desk calculator. This does not appear to be a

particularly fruitful approach because of the large number of variables

which must be determined for each solution, HMMS are satisfied to solve

for two variables; aggregate production rate and work force level for the

next period. Our goal is to determine work force for T periods plus sales,

production, and inventory levels for each of n products in T periods.

Because of this huge increase in dimensionality it was felt that a computer

oriented solution approach would be much more practical. At the time of

development of the HMMS model, of course, computers were not readily

available in industrial organizations and therefore computational limitations

provided a severe constraint on any proposed solution techniques. Since the

time of the original development of the HMMS rules significant advances in

computer technology have taken place. As a result, it is now feasible to

solve directly sets of well over 100 linear equations with a reasonable
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2
amount of computer timeo Furthermore, the solution of considerably

larger systems than this is certain to become computationally feasible in

the near future. It is therefore suggested that it is preferable at the

present time to solve models such as the one postulated as a set of linear

equations rather than through utilizing the HMMS solution techniques. Another

advantage of this computer-based approach is its flexibility with respect

to the incorporation of new variables or terms into a modelo In short,

this means that less limitations are necessary in model formulation while

the solutions will still be operationally feasible.

Before applying the total profit model to any firm it is necessary to

consider the feasibility of solving the resulting systems of linear equa-

tions. Since the theoretical aspects of the proposed solution method have

been described in detail elsewhere, we shall not discuss these considerations

here. Therefore, it is only necessary to keep in mind that we are basically

interested in solving a set of linear equations of the forms

^11^1 + »»• + ^in\ " ^1

^21^1 "*"<'""* 32n\ " ^2

Sl^l + »- + %n\ =
''n

Application of the MDR

To illustrate the feasibility of the proposed MDR the model was applied

to a firm producing electric motors o The company studied, which we shall

call Hindustan Electronics (HE), is one of the largest producers of electric
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motors in Indiao This firm is faced with significant seasonal trends in

demand for their six major types of motors,, As there are important physical

differences between these six motor types, it is difficult to find a suitable

dimension for aggregation as demanded by the LDR formulation. In applying

the MDR to this firm a one year time horizon was used with decisions being

made on a quarterly basis o With six products and four quarterly time periods

this results in a problem with 52 unknown variables.

In applying the MDR we first wish to approximate the total revenue

relationship for each of six products with a quadratic function of the form

of equation (3)o There are several methods to fit such quadratic functions

to revenue or cost relationships <, Because of the form of the data, this

particular function will be fitted by selecting certain key points and

passing the quadratic curve through these points o Different methods will

be used for the other relationships to be estimatedo By specifying a number

of points equal to the number of constants in a quadratic expression, it is

possible to uniquely determine the constants. In this case it is desired

to solve for three unknown constants, r, . , r„ . , r-.^ in each of nT
' lit* 2it 3it

expressions so it is necessary to select sets of three points through which

each of the quadratic revenue functions should pass. In fitting functions

of this nature
J

it is usually possible to approximate closely only over a

limited range » This range should be chosen so as to obtain the best possible

approximation in the region where the model will be operating.

Historical sales data for each of the six products being considered

provided estimates of likely operating ranges and revenues. Period-by-

period sales and revenues of each product in each market were determined
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for the three years from April, 1964, through March, 1967, Initial estimates

of the points necessary to uniquely determine each quadratic revenue curve

were made by summing the actual revenues received from all markets for each

of the six products,, Since three years of historical data is available on

each period and product, three separate sales-revenue points can be estimated

in this manner. The coordinates of these points, Ej^, E„ , and E2, may be

plotted as in Figure 1 to show thier relationships. It should always be

kept in mind that these are only estimates of points on the true revenue

curves. Assuming these estimates are reasonable, however, we proceed in the

following fashion. By substituting three coordinates into equation (3) we

obtain a set of three simultaneous equations which can be solved for the

three desired constants r-i^j.!
''^jit* '^"^It"

^® ^ check on the solution, this

quadratic can be plotted as shown in Figure 1 to determine if the fit is

adequate in the range of interest. This technique was employed to estimate

an initial set of 24 revenue curves, one for each of the six products in the

four quarterly time periods from April, 1967, through March, 1968, To

consider the impact of changes in these revenue curves, several other

assumptions will be considered later during the solution phase.

The Hiring and Layoff Cost Expressions

After discussions with management, an estimate was made that the cost

associated with hiring and training would be about Rs 50 for a one-man

increase in the direct work force. The existence of a pool of temporary

workers who could be hired on a short-term basis is the primary reason this

cost remains relatively low. The cost of layoff per worker was estimated
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to be about Rs 300 because of its negative effect on employee morale and

the possibility of labor relations difficulties. This possibility existed

even if only temporary workers were laid off» Examination of historical

trends indicated it was unlikely that changes in the size of the work force

would exceed 15 men in any one quarter,

It was decided to fit the quadratic expression of Equation (8) in the

range between -15 and +15 man changes in work force. To determine the three

constants, C2, Cj^j^, and C-|^3, in this function, sets of three points were

selected through which the quadratic curve should pass.

The Inventory and Backorder Cost Expressions

It is desired to find sets of coefficients C^, C^^g, C^g, and C^-^^ ^""^

Equation (6) to approximate the cost of inventory and back-orders for each

of the six products in the model. Estimates were first made of the costs

of holding Inventory and back orders » As In the LDR, these costs were

assumed to be linearly related to the amount of finished goods inventory in

stock and the quantity of back orders. These costs are also proportional

to the length of time the inventory or back orders are held. The cost of

holding one unit of finished goods in Inventory was estimated to be 24

percent per year of its direct manufacturing cost. The cost of keeping one

unit of any product back ordered for one quarter was estimated at 60 percent

of this product's average contribution to profit and overhead. The Inventory

decision structure developed specifies optimal net inventory for product 1

equal to (C.q + Cj^gS .
j^)

, Investigation of the pattern of demand and inventory
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holding costs suggested that optimal net inventory could be reasonably

estimated as equal to one week's sales demand at any time, For purposes

of this model, it will be assumed that optimal net inventory in any quarter

can be approximated by:

(16) (C^g + qgS^j.) = 1/13 S^j.

where S. is the sales of product i in the quarter, Althouph C^g and C^_

could be approximated more closely, it was felt that the payoffs in terms

of increased model validity did not justify further refinements.

Because the constants, C.,«, in Equation (6) are irrelevant to

inventory decisions, the only constant we need to determine is C^^. ^nj

must be calculated anyway, however, before it is possible to solve for

Cjya Cjio represents total inventory and backorder costs associated with

the optimal net inventory position for product i. It can be approximated

as average inventory times carrying cost plus average back order times the

cost of back ordered units. Optimal net inventory has already been estimated

as average inventory times carrying cost plus average back order times the

cost of back ordered units, Optimal net inventory has already been estimated

as 1/13 S.^ and an estimation of expected back orders may be made by

considering the relative likelihood of stock outs under the assumed inventory

policy Therefore, the estimate of C,.- for any quarter becomes:

(17) C^^3 = Cji (1/13 Sp + C^^B^
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where

S' = average sales per quarter for product i

C^, = inventory carrying cost per quarter for one unit

of product i

Cj^ = back order holding cost per quarter for one unit

of product 1

B. = expected average number of units of 1 back ordered

B- Is the only unknown which must still be estimated. An examination of

historical information revealed that on average about 5 percent of one

quarter's orders were overdue at any time when net inventory was kept at

optimal levels. Therefore, B. was approximated at (.05)S', where S^ is

again the average sales per quarter of product i. Utilizing this estimate

of CjLi3, it is possible to solve directly for C if (IC)^^ is known.

Consider the point where net inventory, I. , is zero. By substituting (16)

into (6) at this point:

(18) (IC)^j. = C^i (0 - 1/13 S^^)2 + C^j^3

For a policy of setting I^^ equal to zero it is straightforward to

estimate (IC).^ since the expressions for inventory holding costs and back-

order holding costs are identical except for constants. An extension of

the classical deterministic lot size model will be used to determine (IC)j^^

for the desired point [A, p„ 187], A lot consisting of Q units will last
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Q/S' periods of time with S' as the average sales rate. VThen it is desired

to set I., equal to zero, this implies an inventory relationship of the form

in Figure 2, where the total cost per period for product i is:

(19) (IC)^^ = Cj^/2 (Q/2)(t'/2) + Cdi/2 (Q/2)(tV2)

in this equation:

t* = Q/S' = the time interval within which a lot is sold. This is

true since the average levels of both positive and negative inventories are

equal to Q/A and the average length of time they are held is t'/2. Dis-

cussions with management suggested the average lead time on an order would

be about two weeks or roughly one-sixth of a quarter. To keep a net inventory

of zero, the firm must then reorder at point R in Figure 2 and receive the

order two weeks later when net inventory has decreased to -Q/2, Therefore,

half a lot, Q/2, is sold during a time t'/2 or:

t'/2 = 1/6 quarter and cycle time t' = 1/3 quarter, therefore we

know:

Q - S/3

Substituting for Q and t' in (19) results in:

(20) (IC)^^ = (Cj^/2)(S*/6)(l/6) + (Cji/2)(S^/6)(l/6)

for any t = 1, „.., T. This is the total inventory and back-order cost with

an inventory policy of keeping net inventory equal to zero.
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Our original purpose In solving for (IC)^^ at a point was to find values

for the constant C^^^ for 1 = 1, ..«, n. Using (18), it Is now possible to

solve for each value of C^y since C is known from Equation (17) and (IC)^^.

is known from Equation (20), This procedure was followed in calculating C^j

for 1=1, . . , 6 in the Hindustan Electronics model.

The Variable Production Cost Expression

We desire to fit the cost function of Equation (11) which Is a general

quadratic expression with variables work force and production rates. The

least-squares estimation technique described in [4, pp, 81-82] will be

employed

The first stage of the fitting process requires determination of the

standard labor time coefficients for Equation (10), This information was

readily available from engineering records for each of the six products.

Historical cost, production, and workforce information was available from

cost accounting records for the two-year period from April, 1965, through

March, 1967 « For each observation total labor cost is the dependent

o 2
variable while W , W^, L W , L , and L are the independent variables,

Therefore, we wish to employ least squares techniques to estimate the K's

in the expression;

2 2
(21) Total labor cost = K^^W^ + K2W2 + ^2^^\ + ^i^\ + ^5^^ + Kg

After scaling of the coefficients and proper adjustments for the

quarterly period used in the model the final labor cost equation becomes:
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(22) Total labor cost = -279, 5W^ + 1.183W^^ - 2.0001^17^ + lllSL^. +

.6124Lj.^ - 345503

After calculation of these coefficients a sensitivity analysis was performed

which determined that this function did in fact result in reasonable labor

cost values over the relevant ranges of W and L , With extreme values of

either W^^ or L^ labor costs computed from Equation (22) become very larpe

as would be expected.

Results of Application of Model to HE

The model described above was applied to Hindustan Electronics for

the one-year period from April, 1967, through March, 1968. Since each

period in the model represents one three-month quarter of the year, this

formulation resulted in a set of 52 equations and unknowns. A total of six

solutions for the MDR model were computed under slightly different assump-

tions of starting conditions and coefficients. In particular, solution one

was made with the most likely estimates of all coefficients as described

above. For solution two the costs of hiring and firing were increased to

RslOO and RsAOO respectively. For solutions three and four all revenue

curves were assumed to be increased 10% over the most likely levels and,

in addition, for solution four the starting and ending inventories were

also increased to a level of two weeks demand. Solution five assumed the

same revenue curves as one but with two week starting and ending inventories.

For the final run all revenue curves were assumed to be 10% less than the

estimates in solution one.
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Let us next consider some specific results of the ^^DR solutions as

3
shown in Figures 3, A, 5, and 6, Analysis of total sales data in Figure 3

indicates that total sales by the model in solution one are approximately

60 percent higher in the second quarter than sales projected by management.

Figure 6 indicates this is primarily due to the MDR model's higher revenue

curve for 1/32 motors^ This revenue curve has been significantly influenced

by the high sales of this motor during the second quarter of 1965, Since

management's projections for 1967-68 are considerably lower than this peak

year, they are clearly not this optimistic on sales possibilities for the

1/32 HP model during the forthcoming second quarter.

It is interesting to note the different seasonal demand patterns of

the six motors shown in Figure 6. For example the 1/32 HP and 3/8 HP

models have peak demands in quarter 2 while the 1/2 HP and 1/8 HP models

have peak demands in quarter four. Explicit consideration of these product

by product seasonality patterns allows the MDR to smooth total production

requirements. This is done by shifting production from one product to

another during the year rather than producing a constant fraction of each

product during each quarter, e.g,, product A may comprise 20% of aggregate

production during quarter two but only 5% during quarter four.

The correspondence between the production plans projected by management

and the plans from the MDR solutions is quite high with the obvious

exception that solutions with higher demand curves such as number three

have higher across-the-board production rates. These relationships are

evident in Figure 4 where it can be seen that production is generally
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highest in the fourth quarter and lowest in the thir<? quarter. Differences

are small but the schedules from the model do result in slightly smoother

production over the course of the year.

Management did not specify work force levels in their projections for

the year 1967-68 but it is possible to directly compare work force levels

for the six MDR solutions in Figure 5. As would be expected from the

quadratic cost structure, deviations in work force levels between the six

solutions should increase from quarter one to quarter four. In quarter four

the optimistic demand curves employed in solutions three and four result in

employment levels 40 to 50 percent higher than the pessimistic demand

curves of solution six» The only difference in the data between solutions

one and two is the higher work force change costs of two, namely Rs 100 to

hire one worker and Rs 400 to fire one worker. Figure 5 shows the solution

is insensitive to this parameter since the greatest difference in work

forces is only three men in quarter four and work force levels are

identical in the first two quarters.

In the first three model solutions, starting and ending inventories

were set equal to the actual existing inventories at the start of the year,

Since this starting inventory was very low (a total of 340 motors) , it was

desirable to investigate the possibilities of increasing sales by beginning

the year with a larger inventory. Therefore, starting inventories equal

to two weeks' estimated demand for each product were incorporated in

solutions four and five. This resulted in total aggregate starting and ending

inventories of 1600 motors. When these higher inventories were added to
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the basic model of solution one, total sales over the year Increased from

41600 to 43730 units (solution five). I-Hien higher starting inventories

were added to solution three, the total impact on sales was much less with

50050 motors being sold rather than 49880 (solution four). Therefore, it

seems reasonable to conclude that small increases in sales would be

possible if inventories had been greater at the beginning of this year.

The six computer runs required for solution of the MDR models were

made on a CDC 3600 and required approximately one minute each.

Conclusions

The development and application of the MDR model suggests that it is

now operationally feasible to remove the requirement of an aggregate

production dimension in planning models. Furthermore, given the avail-

ability of revenue curves for each product in each time period the >fDR

model proposed here can determine optimal production, sales, inventory,

and work force levels so as to maximize profit over a specified time

horizons It should be noted that the MDR solves for decision variables

which are usually considered to be in two separate functional areas:

production and marketing. Therefore it is considerably broader in

conception than planning methods which optimize only in one functional

area.

A number of recent proposals have been made for solving the aggregate

planning problem by heuristic or computer search techniques, [5], [8], [2].

The primary appeal of these approaches lies in their freedom from the
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assumptions of mathematical form required by linear or quadratic models.

Therefore, they can accommodate constraints or complex cost structures

which are difficult to approximate with mathematical optimizing techniques.

It appears likely that the application of heuristic or computer search

techniques to the multi-item planning problem described in this paper would

be an especially fruitful area for further work, A solution of this multi-

item, profit maximization problem without the refinement of linear or

quadratic cost and revenue functions would be an encouraging step towards

greater realism and utility in aggregate planning models.
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FOOTNOTES

1. See [3], pp. 90-93, for a proof of this,

2. See [7], Chapter 3, for a discussion of solution technioues. Vlth his

experience on an IBM 7094 he concludes, "At present systems with ur» to

100-120 equations can be solved conveniently." This liniltatlon Is

primarily a function of the available hiph speed memory on this machine.

3„ For a summary of all computational results with the HDK, see [1],

Chapter 6,
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