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Abstract

We explore t he robustness of aggregation in Sterman's model of the economic long

wave. The original model aggregates all capital producing firms into a single sector

and generates a large amplitude self-sustained oscillation with a period of roughly

50 years. We disaggregate the model into two coupled industries, one representing

production of plant and long-lived infrastructure and the other short-lived equipment

and machinery. While holding the aggregate equilibrium characteristics of the model

constant, we investigate how mode-locking occurs as a function of the difference in

capital lifetimes and the strength of the coupling between the sectors. Disaggrega-

tion allows new modes of behavior to arise: In addition to mode-locking we observe

cascades of period-doubling bifurcations, chaos, intermittency. and quasi-periodic be-

havior. Despite the introduction of these additional modes, the basic behavior of the

model is robust to the aggregation assumption. We consider the likely effects ot finer

disaggregation, the introduction of additional coupling mechanisms such as prices.

and other avenues for the exploration of aggregation in system dynamics models.
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1 Introduction: Aggregation in nonlinear systems

Macroeconomic models normally a2;gre2;ate the mdividual Hrms ot the economy into sectors

with similar products, parameter values and decision functions. Sometimes. onl\' a Musle

sector is considered (e.g. Samuelson 1939. Goodwin 1951). This simplification is justihod

on pragmatic grounds by noting that it is impractical to portray separately all the lirms in

an industry or all I he products on the market, and arguing that the phenomena of interest

are captured in sufficient detail by the aggregate formulation ( Forrester 1961. Simon 19t)9l.

.\evertheless, there are instances where aggregation is not justified. For example. Allen

(1988) shows how suppressing individual variation by using aggregate population means

can prevent a model from properly reproducing the dynamics of the system. Similarly, wdtk

by e.g. Bruckner, et al. (1989) shows how the representation of individuals is necessarv to

describe evolutionary processes.

However, the modelling literature is weak in providing guidelines for appropriate aggreg.i

tion of dynamic systems, particularly when there are significant interactions between tlic

individual entities, as is usually the case in economic systems.

Consider the aggregation of different firms into a single sector. Such aggregate represen

tations are the mainstay of models of business fluctuations. Models of capital investment.

for instance, represent the average lead time and lifetime of the plant equipment used \>\

each firm. In reality there are many types of plant and equipment acquired from maris

vendors operating under diverse conditions and possessing a wide range of lead times. In

response to changes in external conditions, each firm will generate cyclic behaviors whos<'
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frequency, damping, and otlier properties are determined by the parameters charactenzins

the particular mix of" lead time.s and lifetimes it faces. Because these individual tirms are

coupled to one another \ia the input-output structure of the economy, each acts as a source

of perturbations on the others.

How do the different lifetimes and lead times ot plant and equipment affect the trequencv.

phase, amplitude, and coherence of economic cycles? How valid is aggregation of individ-

ual firms into single sectors for the purpose of studying macroeconomic fluctuations.' The

issue of coherence or synchronization is particularly important. The economy as a whole

experiences aggregate business fluctuations of various frequencies from the short-term busi-

ness cycle to the long-term Kondratieff cycle (Sterman and Mosekilde. forthcoming j. \ i^

why should the cycles of the individual firms move in phase so as to produce an aggregate

cycle? Given the distribution of parameters among individual firms, why do we observe

only a few distinct cycles rather than cycles at all frequencies - cycles which might cancel

out at the aggregate level?

.\ common approach to the question of synchronization is to assume that fluctuations in

economic aggregates such as GDP or unemployment arise from external shocks, such as

sudden changes in resource supply conditions or variations in fiscal or monetary policy i =cp

Zarnowitz 1985 for a review). Forrester
(
1977) suggested instead that synchronization could

arise from the endogenous interaction of multiple nonlinear oscillators, i.e.. that the cycles

generated by individual firms become reinforced and entrained to one another. Forrester

also proposed that such entrainment could account for the uniqueness of the economic

cycles. Oscillatory tendencies of similar periodicity in different parts of the economy would
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be drawn together to form a subset of distinct modes, such as busmess eyries. Ions waves,

and economic growth, and each of these modes would be separated from the next 1)\- a

wide enough margin to avoid synchronization. I'ntil recently, however, these suggestions

have not been subjected to rigorous analvsis.

Roughly speaking, synchronization occurs because the nonlinear structure of the interacting

parts of a system creates forces that "nudge" the parts of the system into phase with

one another. For instance, two mechanical clocks, hanging on the same wall, are often

observed to synchronize their pendulum movements (it was Huygens who hrst reported

the entrainment of clocks). Each clock has an escapement mechanism, a highly nonlinear

mechanical device, that transfers power from the weights to the rod of the pendulum. W hen

a pendulum is close to the position where the escapement releases, a small shock, such as i he

faint click from the release of the adjacent clocks escapement, might be enough to trigg'^r

the release. Hence, the weak coupling of the clocks through vibrations in the wall can bring

individual oscillations into phase, as long as the two uncoupled pendulum frequencies arc

not too different. In a similar manner, nonlinear interactions and dissipation working ovrr

millions of years have brought the rotational motion of the moon into synchronization with

its orbital motion with the result the moon has a dark side never visible from earth.

Synchronization is only one manifestation of a more general phenomenon known as mode

locking or entrainment. In nonlinear systems, a periodic behavior usually contains a serie-~

of harmonic frequencies at p times the fundamental frequency, where p is an integer. U hen

two nonlinear oscillators interact, mode-locking will occur whenever a harmonic frequen(\

of one mode is close to a harmonic frequency of the other. \s a result, nonlinear oscillator^
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tend to lock to one another >o thai one subsysteni < ornpletes f)re(iseU- p rvrles each time

the other subsystem completes q cycles, with p and q being integers.

In a series ot papers, we have analyzed how mode-locking and other nonlmear d\namic

phenomena arise in a simple, nonlinear model of the economic long wave i .Mosekilde ci

al. 1992. Sterman and .Mosekilde. forthcoming). The model iSterman 1985) explains

the long wave as a self-sustained oscillation arising from instabilities m the ordering and

production of capital. An increase in the demand for capital leads to further increases

through the investment accelerator or "capital self-ordering," because the aggregate capital

producing sector flepends on its own output to build up its stock of productive capital.

Once a capital expansion gets underwav. self-reinforcing processes sustain it beyond its

long-term equilibrium, until production catches up with orders. .\t this point, however,

the economy has considerable e.xcess capital, forcing capital production to remain below

the level required for replacement until the e.xcess has been fully depreciated, creatmg :or

a new expansion.

The concern of the present paper is the simple model's aggregation of capital into a sinsic

type. The real economy consists of many sectors employing different kinds of capital in

different amounts. Parameters, such as the average productive life of capital and the rela-

tive amounts of different capital components employed, may vary from sector to sector. In

isolation, the buildings- and infrastructure-capital industry may show a temporal variation

significantly different from that of. for instance, the machinery industry.

An early study by Kampmann (1984) took a first step in this direction by disaggregating

the simple long-wave model into a system of two or more capital-producing sectors with
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different characteristics. Kampmann siiowed that the multi-sector system could produce

a range of different behaviors, at times quite different from the original one-sector model.

The present paper further investigates these results, using a two-sector model. One sector

can be construed as producing buildings and infrastructure with very long lifetimes, while

the other could represent the production of machines, transportation equipment, comput-

ers, etc.. with much shorter lifetimes. In isolation, each sector produces a self-sustained

oscillation with a period and amplitude determined by the sectors parameter values. How-

ever, when the two sectors are coupled together through their mutual dependence on each

other's output for their own production, they tend to synchronize or lock together with

a rational ratio between the two periods of oscillation that depends on the differences in

parameters.

2 Mode-Locking in Nonlinear Systems

For linear systems the principle of superposition applies. The behavior of any variable in

the system is a sum of distinct modes, or elementary excitations, where the frequencies

and attenuation rates are determined by the eigenvalues of the .Jacobian matrix. Different

modes can exist and develop independently of one another, and the sensitivity of any mode

to an external disturbance will be the same irrespective of the phase of the others. Thus,

mode-locking cannot occur linear systems, because the individual oscillatory modes do not

affect one another.

In nonlinear systems, on the other hand, different modes will interact, and the behavioral

characteristics of one mode may depend on the phase of another. In particular, components
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of difFcreni periodicities may adjust themselves until the frequencies coincide.

Synchronizations and mode-locking are uni\'ersal phenomena iti runilinear svstems i .Jensen,

et al. 1983. 1984). .Such phenomena are well documented in a variety of physical, biolosical.

and engineering systems (e.g.. Colding-.Jorgensen 1983. Glass, et al. 1986. Toeebv and

Mosekilde 1988), and the same processes are likely to be involved both in the interaction

between individual companies and in the coupling between the various sectors of the overall

economy.

To understand the phenomenon of frequency-locking in more detail, consider hrst the case

where two self-sustained oscillators with different periods operate without interaction. .\s

illustrated in Figure 1. the total trajectory may then be represented as a curve on a torus

For particular parameter values, namely those where the two periods are commensurate,

the trajectory forms a closed orbit, and the total motion is periodic, as in Figure la. In

general, however, the periods will be incommensurate (their ratio is irrational I. and iln-

trajectory will fail to close on itself. In this case, the total motion is said to be (|ua.-i-

periodic. and the trajectory will gradually cover the entire surface of the torus i Figure

Lb). Thus, quasi-periodic motion never repeats itself: each cycle is unique. In contra.-i

to deterministic chaos, however, a quasi-periodic motion is not sensitive to the initiai

conditions, since a small change in these conditions only shifts the entire trajectory h\ <\

constant amount. For the same reason, the largest Lyaponov exponent, which measures

the divergence between nearby trajectories, is zero. In chaotic motion, this exponent will

be positive (Wolf 1986).
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Figure I

A cross-section ot the torus (see Figure L i defines a topological circle (a closed curve which

does not cross itself). By noting the angular position u^ along this curve of each subsequent

passage of the trajectory, one can define a map of the circle onto itself

^n + l=/(^n). 0</^<l.
^

111

where = u/'2:t mod 1 measures the phase of one of the oscillatorv subsystems as obtained

stroboscopically with the period of the other. If. at a certain time this phase is 0„. one

period later it will be &„+[ . With this procedure the steady-state behavior of a complicated,

multidimensional dynamic system can be represented compactly by a one-dimensional map.

as illustrated in Figure 2.

Figure 2

With no interaction between the two oscillators, the phase shift of one oscillator during a

period of the other will always be the same, and the map is linear, i.e..

where the winding number Q measures the ratio between the two periods. In the particular

cases where fi is rational, the motion will be periodic (Figure 2. a). Generally, however. H

is irrational, and the map produces a never-repeating quasi-periodic motion (Figure 2.bl



It one now allows the two oscillators to interact, the phase <hift of one mode ilurins the

period of the other may depend on the initial phase of the first mode, and the circle tnap

becomes nonlinear. .\ simple (wample to illustrate tlie effects of introducing rionlinearit\-

is the sine circle map (.VrnoTd 1065)

e^^i =B„ ^n ~ :^.^in{2-9j mod \. i:])

where K measures the strength of the nonlinear coupling while, as before. H measure? the

average phase shift of one oscillator per period of the other, i A' = corresponds to the

linear map.) The coupling strength !\ is analogous to the coupling parameter q governing

the interaction between the capital producing sectors in the model developed below while

the phase-shift parameter n is analogous to the difference in the uncoupled periods ot

oscillation of the two sectors, determined by the difference in capital lifetimes. Ar.

If n is not too far from 0. the map may cut the diagonal of the {9n+\.9n)-p^^^c and

produce a stable fixed point toward which all trajectories will converge, independent ui

initial conditions (see Figure 2.c). The fi.xed point represents the synchronized solution

where the two oscillators have precisely the same period. .More importantly, however, if

Q changes slightly in either direction, the fixed point will continue to exist (though it wiil

move along the diagonal), and the stable I:I-solution therefore exists over a finite range ut

parameters.

Figure 2.d illustrates a l;3-mode-locking, where one oscillator performs precisely 3 cycles

each time the other performs one cycle. The 1 : 3 mode arises when the thrice iterated

map, /'''(^). has 3 stable fixed points. Note that these fixed points continue to exist o\t"r

a finite range of parameters.
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Thus in coupled nonlinear systems periodic i entrained) motion becomes more common and

quasiperiodic motion becomes less common. In principle, the system can lock frequencies

at all rational ratios of tfie two periods. Plotting the ratio of frequencies as a function ut

the phase-shift parameter H illustrates the locking. In a linear system, the curve is sirnp[\'

a straight line through the origin. In nonlinear systems, however, mode-locking pro(luc(^s

finite intervals for each rational ratio of frequencies, resulting in a so-called Devil's Staircase.

.\t least for small coupling strengths, the staircase is a fractal structure which repeats it'<eil

under magnification, since between two given rational numbers, one can always find another

rational number. .\n example of a DeviTs Staircase arising from the forced one-sector long-

wave model can be found in Mosekilde. Larsen. Sterman. and Thomsen (1992).

.\s the nonlinearity I\ is increased, so does the range of Vt over which a particular mode-

locked solution exists, producing a so-called .ArnoTd tongue diagram. Each tongue define^

the region in which a particular mode-locked solution exists. For A = 0. the toneuc

collapses to a single point, namely the rational number corresponding to the ratio ol frc

quencies. .-\s A' is increased, the tongue flares out. .As long as A' is small enough, the ma[j

is a diffeomorphism, i.e.. smooth and invertible. and periodic and quasi-periodic motion-

are the only types of behavior that can occur. However, as K continues to grow, it reaches

a critical value (A' = I for the sine map) where the map (3) develops an inflection point

at 9ri = 0. and the slope becomes equal to zero. .\t this value, one finds that the .Arnol <i

tongues start to overlap, indicating the simultaneous existence of two or more periodu

solutions. At the same time, quasi-periodic behavior ceases to exist.

Beyond K = 1. the map is no longer invertible. folding occurs, and the motion ma\

10
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become chaotic. Within each Arnold tongue, a variety of bifurcations mav tal<e [jUuc

above the critical line. One classical phenomenon that can occur is a cascade of period-

doubling bifurcations. For instance, a [:3-mode locking may bifurcate into '2:6. 1:12

and ultimately into chaotic motion. (Period-doubling and rhaotic behavior carmot be-

represented on a torus. .\ cross-section of the "torus'" would reveal that it now lias a

folded or diffuse structure.! It is worth emphasizing, however, that period doubling is

only one of several "routes to chaos". Other scenarios include intermittencv and a direct

transition from quasi-periodicity to chaos.

While the basic theory of frequency locking is well established, less is known about the

behavior beyond the critical line. Several different types of behavior have been obser\ed

in various models, and it is likely that the behavior to some extent will be specific to the

individual system. Certain general results have been obtained, however, (see e.g. Knudsen.

et al. 1991) and it is clearly of interest to pursue this type of investigation further.

3 The Model

We have replicated Sterman's original (1985) model to portray two interacting sectors. The

original structure is maintained, except for minimal modifications necessary to I ) extend

the one-sector structure to multiple sectors, and 2) replace the original model's piecewise

linear functions with analytic, infinitely differentiable functions.

The model describes the flows of capital plant and equiment in two capital-producing

sectors.

Each sector uses capital from itself and from the other sector as the only factors of produc-

11
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tion. liach sector receives orders tor capital, both from itself, from the other sector, rtnd

from the consumer H;oods sector. Product is made to order, no inventories are maintamed

and orders reside in a backlog until capital is produced and delivered.

The model consists often ordinary differential equations, corresponding to ten stat(^ vari-

ables, namely the capital stock of each tvpe m each sector (2 x 2). the capital on order i t he

"supply line" of capital) of each type in each sector (2 x 2). and the total order backlog m

each sector (2 x 1). The state variables are indicated by capital letters.

Each sector i ~ 1.2 maintains a stock /\,_, of each capital type 7 = 1.2. The capital stock

is increased by deliveries of new capital and reduced by physical depreciation. The stock

of capital type j depreciates exponentially with an average lifetime of Tj. The differrncr

in lifetime between the two sectors. Ar. is used as a bifurcation parameter to e.xplore the

robustness of the aggregated model.

Output is distributed ""fairly" between customers, i.e. the delivery of capital t\pe /
'd

sector I is the share of total output from sector j. x,. distributed according to how mu( ti

sector I has on order with sector j, S,j. relative to sector j's total order backlog B,. Henrc.

A' = I ^ - ^ ' I

and

where o,_, is sector fs new orders for capital from sector j.

Each sector receives orders from both capital sectors, 0,, and O;,, and from the consumer

goods sector, y,. It accumulates these orders in a backlog 5, which is then depleted b> t h<'

12
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sector's deliveries of capital r.. Hence.

B. = io„ - Oj, - ,7,)
- .r, : 7 * ?.

, (i i

The consumer demands recei\-ed b\- each sector. //,. are exogenous, constant, and c(|iial.

The latter assumption is not without consequence, since the relative size of the two sec-

tors affects the dynamics i Kampmann 1984). Cqual demands is the most parsimonious

assumption.

Production capacity in each sector is determined by a constant-returns-to-scale Cubb-

Douglas function of the individual stocks of the two capital types, with a factor share

a G [0. ll of the other sectors capital t\'pe and a share I — q of the sector's own capital

type. i.e..

c. = Kr'/v,r A-: ;#^ i I
!

where /<, is a constant. The parameter q thus determines the degree of coupling between i lie

two sectors. In the simulation studies q is varied between 0. indicating no interdependenc\-

between the sectors, and 1, indicating the strongest possible coupling where each sector i^

completely dependent on capital from the other sector.

The output from sector i. x,, depends on the sector's capacity c,. compared to the sector '^

desired output x'. If desired output is much lower than capacity, production is cut back,

ultimately to zero if no output is desired. Conversely, if desired output exceeds capacitv.

output can be increased beyond capacity, up to a certain limit. Specially, the sector s

output is formulated as

x,=/(^).c,.

13
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The capacity-utilization function /( I has the form

fir) = ':([ - '^^H- ' > 1. ii))

where ' is a parameter set here to 1.1. Note that

/(O) = 0:/(l) = 1; lim/(r) = -:/(r) > r. r t [0.1].
r— CO

Thus, the parameter - determines the ma.ximum production possible, /(r) is above the !>

degree line for r t [0. 1]. implying that hrms are reluctant to cut back their output when

capacity exceeds demand. Instead, they deplete their backlogs and lower their deli\er\-

delays.

Sector I's desired output x' is assumed to be the value that would allow firms in that -ct tor

to deliver the capital on order B, with the (constant) normal average delivery delay <^. Ii;r

that sector. Hence.

Sector ;s desired orders for new capital of type j. o'^ consists of three components, first,

all other things equal, firms will order to replace depreciation of their existing capital stork.

K,j/tj. Second, if their current capital stock is below (above) its desired level A,-', tirrri'^

will order more (less) capital in order to correct the discrepancy over time. Third, firms

consider the current supply line 5,^ of capital and compare it to its desired level s'^\ if th('

supply line is below (above) desired, firms order more (less) in order to increase (decrease:

the supply line over time. In total,

14
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where the parameters r/"' and r- are the desired adjustment limes tor the (apital ^totk

and the supply line, respectivelv. This decision rule is supported by extensi\-e empirical

(Senge 1980) and e.\'periment;al iSterman 1989a. 1989b) work.

.Actual orders are constrained to be non-zero (cancellation of orders is not permit terli and

the fractional rate of expansion of the capital stock is also assumed to be limited beraust^

of bottlenecks related to labor, market development, and other tactors not represented in

the production function. These constraints are accounted for through the expression

where orders are expressed as a multiple g\-) of depreciation. The function gi-) has the

form

g(rl = ii:5i

1
- /iiexp-'^'t"-" -|i2e.xp-'^'f"-'>

where the parameters have the following values

27 8 2
J = 6; pii = —

; ^2 = -; i^i = -; i^T = 3. ill'
7 7 3"

The parameters are specified so that

^(1) = 1; g\i) = \: 5"(1) = 0.

Furthermore

lim g{r] = 3\ lim g{r) = 0.
r—-OO r — — oo

Note that g{r) has a neutral interval around the steady state point, r = I. where actual

orders equal desired orders.

15
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The desired capital ^tock k'j is proportional to the desired production rate x' with a

constant capital-output ratio. Thus, it is implicitly assumed that the relative prices of the

two types of capital are constant, so there is no variation in desired factor proportions.

Hence.

k'^ = K,j x'

.

I lo)

where k,j is the capital-output ratio of capital type j in sector ;.

In calculating their desired supply line. .^',. firms are assumed to account for the current

delivery delay for each type of capital. The target supply line is taken to be the level at

which the deliveries of capital, given the current delivery delay, would equal the current

depreciation of the capital stock. The current delivery delay of capital from a sector is the

sector's backlog divided by its output. Thus.

''^ ~
r, X

Finally, the orders from consumers to each sector y, are assumed to be exogenous, constant,

and equal for both sectors. The latter assumption is not without consequence, since the

relative size of the consumer demands for the two types of capital can change the dynamics

of the model considerably (see Kampmann 1984).

The capital-output ratios and average capital lifetimes are formulated in such a way that

the aggregate equilibrium values of these parameters for the model economy as a whole

remain constant and equal to the values in Sterman's original model. Specifically, the

average capital lifetimes in the two sectors are

16
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The capital output ratios arc

.\",, = \ i — (WK-

aK— . t ^ J I IS)

The average lifetime of capital. 7. is 20 years and the average capital-output ratio, k. i- :i

vears.

The formulation assures that capacity equals desired output when both capital stocks i^qual

their desired levels and that the equilibrium aggregate lifetime of capital and equilibrium

aggregate capital-output ratio equal the original parameters in the one-sector model. - <ind

K. respectively. Hence in equilibrium we have

K. l')i

Furthermore, parameters in the decision rules were scaled to the average lifetime ot capital

produced by that sector. When there is no coupling between the sectors (a = 0). one sec tor

is thus simply a time-scaled version of the other. We felt that this approach was the clean(>'«i

way to investigate the coupling of two oscillators with different inherent frequencies. 1 liu'-.

the parameters, in years, are

r T T

where

T^' = 1.5:
7^^ = 1.5: 6 = V.o.

'"-'

17
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Figure J

Figure 3 shows a simulation of the hmit cycle of the one-sector model (a = O.Ar = l)i.

Even with the modifications we have introduced, the behavior of our model is virtuaiU'

mdistinguishable from that of the oneinal model i Sterman 1985). With the above parame-

ters, the equilibrium point is unstable, and the system quickly settles into a limit c\Tle with

a period of approximately 47 years. Each new cycle begins with a period of rapid 2:rowth.

where desired output exceeds capacity. The capital sector is thereby induced to order

more capital, which, by further swelling order books, fuels the upturn in a self-reinforcing

process. Eventually, capacity catches up with demand, but at this point it far exceeds

the equilibrium level. The self-ordering process is now reversed, as falling orders from the

capital sector lead to falling demand, which further depresses the capital sector's orders.

Consequently, output quickly collapses to the point where only the exogenous goods sector

places new orders. .\ long period of depression follows, during which the excess capital is

gradually depleted, until capacity finally reaches demand. .-\t this point, however, the sec-

tor raises orders enough to offset discards, increasing orders above capacity, and initiatins

the next cycle.

4 Simulation results

To explore the robustness of the single-sector model to differences in the paramters gov-

erning the individual sectors, we now simulate the model where some parameters differ

between the two sectors. In spite of its simplicity, the model contains a considerable num-

18
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ber of parameters that might differ trom sector to sector. In the present stncl\'. we \-arv

the difference in capital lifetimes Ar for different values of the coupling parameter n. As

described in Section ]. we have scaled all other parameters with the capital-lifetime [)d-

rameters in such a way that, when 0=0 each sector is simply a time-scaled version of the

original one-sector model.

In the simulations that follow, sector 1 is always the sector with the longest lifetime of its

capital output, corresponding to such industries as housing and infrastructure, while sector

2 has the shortest lifetime parameter, corresponding to the equipment sector. Introducins

a coupling between the sectors will, apart from linking the behavior together, also change

the stability properties of the individual sectors, taking the other sector as exogenous.

Thus, a high value of the coupling parameter a implies that the strength of the capital

self-ordering loop in any sector is small. In the e.xtreme case a = 1. each sector will

not order any capital from itself. If the delivery delay of capital from the other sector i-

taken as exogenous and constant, the behavior of the individual sector changes to a hishh'

damped oscillation. Indeed, a linear stability analysis around the steady-state equilibrium

of the individual sector shows that the equilibrium becomes stable for sufficiently high

values of a. As will become evident below, this stability effect of the coupling parameter

has significant effects on the mode-locking behavior of the coupled system.

.As long as the parameters of the two sectors are close enough, we expect synchronization

(or 1 ; I frequency locking) to occur, i.e.. we expect that the different cycles generated b\

the individual sectors will adjust to one another and exhibit a single aggregate economic

long wave with the same period for both sectors. The stronger the coupling, a, the strong'T

19
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the torces of synchronization are expected to be.

Figure 4

As an example of such synchronization. Figure f shows the outconne of a simulation per-

formed with a difference in capital lifetimes between the two sectors of Ar = 6 years and a

coupling parameter q = 0.25. The two sectors, although not quite in phase, have identical

periods of oscillation. The larger excursions in production capacity are found for sector

2 (the "machinery" sector) which is also the sector that leads in phase. The lifetime dif-

ference. Ar = 6 years corresponds to a lifetime for machinery capital of 17 years and a

lifetime of buildings and infrastructure of 23 years. If. with the same coupling parameters,

the difference in capital lifetimes is increased to Ar = 9 years, we observe a doubling ot th(^

period. The two sectors now alternate between high and low maxima for their product iwii

capacities. This type of behavior is referred to as a 2 : 2 mode. It has developed out of thi'

synchronous 1 ; I mode through a period-doubling bifurcation (Feigenbaum 1978). I in'

2 : 2 solutioa is illustrated in Figure 5. .-\gain. both the temporal variations of the two

production capacities and the corresponding phase plot are shown. In the phase plot, the

stationary solution now performs two loops before closing precisely on itself.

Figure 5

,A.s the difference in lifetimes is further mcreased. the model passes through a Feigen

20



D-4375

l)aum cascade of period-doubling bifurcalions i I : 1. 8 : S. etc.) and becomes chaolic

at approximatcl\- A- = 10.4 \'ears. Figure 6 shows the chaotic solution generated when

Ar = 10.7 years. Calculation of the largest Lyaponov e.\ponent i Wolf 19S6i conHrms that

the solution in Figure 6 is chaotic. We conclude that deterministic chaos can arise in a

macroeconomic model which in its aggregated form supports self-sustained oscillations, if

the various sectors, because of differences in parameter values, fail to synchronize.

Figure 6

.\ more detailed illustration of the route to chaos is provided by the bifurcation diagram in

Figure 7. Here, we have plotted the ma.ximum production capacity attained in sector 1 over

each cycle as a function of the lifetime difference Ar. The difference in capital lifetimes

spans the interval < Ar < .'30 years. When Ar = 30. the lifetime of the short-lived

capital stock is just 5 years, while the lifetime of the long-lived capital stock is 35 years.

The coupling parameter is kept constant and equal to 0.2. Inspection of the figure shows

that the 1;1 frequency locking, in which the production capacity of sector 1 reaches the

same maximum in each long-wave upswing, is maintained up to Ar =« 6.4 years, where the

first period-doubling bifurcation occurs. In the interval 6.4 years < Ar < 8.0 years, the

long-wave upswings alternate between a high and a low maximum. Hereafter follows an

interval up to approximately Ar = 8.1 years with 4:4 locking, an interval with 8:8 locking,

etc. Within the interval approximately 8.2 < Ar < 12.4 small windows of periodic motion

are visible between regions of chaos, a commonly observed behavior. In the region around
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12.4 < Ar < 13.0 chaos gives way to the 2 : 3 mode-locked solution and the associated

period doubling cascade 4 : 6. S : 12. etc. .Another region of chaotic behavior follow^ until

about At % 1.5,2 where the system locks into 1 : 2 motion. Similarly the regions of 1 : 3

and 1 : 1 entrainment are clearly \'isible as Ar continues to increase. Note that i he 1 . 1

region bifurcates into 2 : S around Ar 5; 27.6 years but then returns to 1 : 1 motion ,ii

Ar % 28. 3 rather than cascading through further doublings to chaos.

Figure 7

However, in these intervals, other stationary solutions may exist as well, and these solution-

may be reached from different sets of initial conditions. The phase diagram in Figure S gi\(>

an overview of the dominant modes for different combinations of the lifetime difference

Ar and the coupling parameter a. The zones of mode-locked (i.e.. periodic) solution:-

in this diagram are referred to as .ArnoTd tongues (.Arnol'd 1965). Besides the 1 1

tongue, the figure shows a series of 1 : n tongues, i.e.. regions in parameter space wlierc

the buildings industry completes precise 1 long-wave oscillation each time the machmer\

industry completes n oscillations. Between these tongues, regions with other commensurate

wave periods may be observed. An example is the 2 : 3 tongue found in the area around

a = 0.15 and Ar = 12 years.

Figure 8

22



D-4:57-)

Similar to ihe 2 ;
_' period-doubled solution on the right;-hand side of the 1 : 1 ron?u<?. there

is a 2 : 1 period-doubled solution along part of the right-hand edge of the 1 :
'2 tongue.

It is likely thai similar phenomena may be found along the edges of the 1 : A and 1 : 1

tongues, etc.. producing a fractal, self-similar structure. However, at present we have riot

yet investigated this structure in detail.

The phase diagram in Figure S also re\'eals that the synchronous I : 1 solution e.xtends

to the full range ot the lifetime differences Ar for sufficiently high \'alues of the coupling

parameter a. When a is large enough, the equilibrium of the individual sectors becomes

stable, when the delivery delay and demand from the other sector is taken as exogenous.

For reference, two curves have been drawn in Figure 8. defining the regions in which one or

both of these individual equilibria are stable: For a given value of the lifetime difference,

values of q above the curve result in a stable individual sector equilibrium. .\s a increases,

the overall behavior is more and more derived from the coupling between the sectors, and

less and less from the autonomous self-ordering mechanism in each individual sector. Thus.

for high values of q. there is less competition between the two individual, autonomous

oscillations, and stronger synchronization. For large differences in capital lifetimes and

low values of the coupling parameter q. the short-lived sector (sector 2) completes several

cycles for each oscillation of the long-lived sector (sector 1). However, as a is increased,

the short-term cycle is reduced in amplitude, and. for sufficiently high a's. it disappears

altogether, resulting in a synchronous 1 : 1 solution.

The locally stabilizing effect of high values of a creates a complicated distortion ot the

.\rnord tongues in Figure 8. For instance, the figure reveals that both the I : 1 region and
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the 2 : 1 region are folded down above the other regions for high values of q.

Moreover, it appears rhat the phase diagram contains routes to chaos other tlian period-

doubling bifurcations. In particular, the region between the 2 : 2 tongue and the 1 : 2

tongue should be (>xplored. In particular, the areas of high coupling strength will likeh'

contain overlapping solutions: where initial conditions or random shocks determine which

solution is chosen.

5 Conclusions

By employing only a single capital-producing sector, the simple long wave model represents

a simplification of the structure of capital and production. In reality, "capitar" is composed

of diverse components with different characteristics. We have focused on the difference in

the average lifetime of capital, and it is clear from our analysis that a disaggregate system

with diverse capital lifetimes exhibits a much wider variety of fluctuations. For moderate

differences in parameters between the sectors, the coupling between sectors has the elft^n

of merging distinct individual cycles into a more uniform aggregate cycle. The period ut

the cycle remains in the 50-year range, although the amplitude may vary greatly from one

cycle to the next. The behavior of the two-sector model thus retains the essential features

of the simple model and is robust to relaxation of the aggregation of all firms into a single

sector.

Entrainment in the disaggregated model arises only via the coupling introduced by the

input-output structure of capital production. Other sources of coupling were ignored. The

most obvious links are created by the price system. If, for instance, one type of capital i-
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in short supply, one would expect the relative price of that lactor to rise. To the extent

that sectors can substitute one type of capital for another, one would expect demand for

the relatively cheaper capital components to rise. Tims, the price-system will cause local

imbalances between orders and capacity across the sectors to ecjualize thus brinamg the

individual sectors into phase. (We have performed a few preliminary simulations of a

version of the model that mcludes a price system, and these simulations show an increased

tendency for synchronization.) The degree of substitution between capital tvpes m the

production function may well be an important factor: One would expect high elasticities

of substitution to yield stronger synchronization. The next step in our work therefore

involves introducing relative prices and differing degrees of substitution.

In light of the coupling effect of the price system and of other macroeconomic linkages,

(e.g. the Keynesian consumption multiplier.) we expect disaggregate models to show a

coherent long-wave motion for a wide range of parameter values, and the basic validity ui

the simple one-sector model seems intact. Thus, the fact that the simple model lumps all

capital types into a single aggregate factor produced by a single aggregate sector is not ,i

cause for doubts about the theory.

.Another, more immediate extension of our study would involve looking at more than two

sectors. On the one hand, a wider variety of capital producers would introduce more

variability in the behavior and. hence, less uniformity. On the other hand, as the system

is disaggregated further, the strength of the individual self-ordering loops within sectors

is reduced to near zero, and overall cycles will more and more arise from the interact kjii

between sectors. Stronger intersectoral coupling leads to stronger entrainment and more
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uniform behavior.

The results demonstrate the importance of studying non-linear entrainment in the economv.

The intricacies ot such phenomena suggest that there is a vast unexplored domam of

research in the area of economic cycles. We suggest that non-linear entrainment [)lays a

larger role in shaping economic cycles than the e.xternal random shocks on which much of

mainstream business cycle theory relies.
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Appendix:

Equilibrium Conditions for the Two-Sector Model

The equations in the text completely describe the structure of the model. I'he toUow-

ing equations give the equilibrium conditions for the model. In the simulations reporrrd

above the equilibrium is unstable. To perturb the system a small change in the exogenous

consumer demands, y,. are introduced, and the simulations are run long enough for any

transients to die out.

B, = 6r
1.0 - k/t)

A, J = '^i;Xj

y, = yj = 1.0. I ^ J
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Figure 1: Torus representation of periodic and quasi-periodic behavior. Periodic motion

arises whenever there is a rational ratio between the two periodicities. Quasiperiodic

motion arises when the periodicities are incommensurate.

Figure 2: Mode-locking in the sine circle map. Mode-to-mode interaction gives rise to a

nonlinear variation in the map 9^ -^ fidn)- Because of this nonlineanty. fixed points will

exist over finite ranges of the parameter ft.

Figure 3: Simulation of the one-sector model. The steady state behavior is a limit cvclc

with a period of approximately 47 years. The plot shows production capacity, production.

and desired production of capital equipment, respectively. .\11 variables are shown on the

same scale.

Figure 4: Synchronization (1:1 mode-locking) in the coupled two-sector model. The

figure shows the capacity of the two sectors as a function of time in the steady state. The

difference in capital lifetimes Ar is 6 years (i.e.. the lifetime of capital types 1 and 1 is

23 and 17 years, respectively). The coupling parameter a is 0.25 in this and the following

three figures. Due to the nonlinear coupling, the two sectors are locked into a single cycle

i.e., the mode-locking ratio is 1 : 1.

Figure 5: Period doubling (2 : 2 mode-locking) resulting from increased lifetime difference

l\t. As the difference in capital lifetimes Ar is increased to 9 years, the 1 : 1 mode i'-

replaced by an alternating pattern of smaller and larger cycles so that the total period i-

doubled. As in the previous figure, the coupling parameter a is 0.25. The two sectors still

complete an equal number of cycles in any interval of time, i.e., the mode-locking ratio i-

2:2.
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Figure 6: Chaotic behavior. As the difference in capital lifetimes Ar is increased further.

the model exhibits a progression of period doublings, which at some pomt become infinitely-

dense. .Just beyond this point, as in this Hgure where Ar is 10.7 years, the behavior is

chaotic. (The coupling parameter q is still 0.25.) The model shows no regular periodic

behavior, and initial conditions close to each other quickly diverge so that, in practice, the

behavior is unpredictable. Nonetheless, the two sectors remain locked together with a ratio

of unity between their periods.

Figure 7: Bifurcation diagram for increasing lifetime difference Ar and constant coupling

Q. The figure shows the local maxima attained for the capacity of sector 1 (the longer-lived

capital producer) in the steady-state behavior for varying values of the lifetime difference

Ar. The coupling parameter a is held constant at 0.2. For a given Ar. a single value in

the diagram indicates a uniform limit cycle; two- values indicate a period doubling with a

smaller and larger cycle, etc. In chaotic regions, the number of local maxima is infinite

since no individual cvcles are identical.

Figure 8: Parameter phcise diagram. The figure summarizes the steady-state behavior

of the two-sector model for different combinations of the coupling parameter a and the

lifetime difference Ar. A region labeled "p ;
q" indicates the area in parameter space

where the model shows periodic mode-locked behavior of p cycles for sector 1 and q cycles

for sector 2. (However, other solutions may coexist at the same point in the diagram,

depending on the initial conditions of the model.) The question mark indicates that the

details of the diagram are still under exploration. In particular, regions of chaotic behavior

have not yet been outlined in detail. The dashed curves across the diagram indicate the

value of above which each sector in isolation (with the other sector treated as exogenous!

becomes stable. Above these lines the cycles are created solely by the interaction of the

two sectors, implying that, for large a, synchronous behavior becomes more and more

prevalent.
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(a) Pericxiic motion (1:3) (b) Quasiperiodic motion (close to 13)
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