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ABSTRACT

We examine the effects of market making and intermittent trading on

estimates of stock price volatility. When observed price changes are
correctly tied to a stock's true price dynamics, it is found that nontrading
per se causes a loss of efficiency but no bias in traditional volatility

estimates. Nontrading induces substantial inefficiency in the extreme value
estimator of volatility which it biases downward. Market making's effects add

to the nontrading-induced inefficiency in the traditional estimator, while

information trading imparts a downward bias, and liquidity trading a

potentially removable upward bias, In that estimator.

Address proofs and reprint order form to Professor Terry A. Marsh, Sloan

School of Management, MIT/E52-447, 50 Memorial Drive, Cambridge, MA, 02139

Suggested Page litle: Nontrading, market making, and volatility estimates



4 1985

RECEIVED _J



-1-

1 . Introduction

Estimates of the volatility of stock prices or stock returns play an

important role in a number of areas of finance. These include the pricing of

financial claims whose payoffs are contingent on stock prices fe.g., Black and

Scholes (1973)], event studies, and variance-bounds tests of stock market

rationality [e.g., LeRoy and Porter (1981) and Shiller (1981)]. In the most

commonly used geometric Brownian motion model of stock price dynamics,

logarithmic price changes have a constant volatility, and the properties of

both traditional and extreme value estimates of that volatility are well-known

[e.g. Thorpe (1976), Parkinson (1980), Garman and Klass (1980)]. In this

paper, we discuss how these volatility estimates are affected by nontrading

and market making "noise" in observed stock prices. It is shown that, in

general, the efficiency of the estimates is considerably reduced and thus, for

example, significance levels for tests of hypotheses in event studies can be

mis-stated even when those levels appear to have been properly computed from

observed prices .

We investigate the extent of inefficiency and bias in volatility estimates

induced by nontrading and market making. We show that, contrary to Gottlieb

ana Kalay's (1983) conclusion, traditional volatility estimates are not biased

by nontrading per se . More importantly, however, nontrading does cause a loss

of efficiency in the traditional volatility estimator which we show can be

severe for lower price stocks.

Market making has two effects on point estimates of volatility computed

from observed prices. On the one hand, liquidity trading results in a

tendency for observed prices to bounce between a market maker's bid and ask

prices, and it is well known that this induces a potentially-removable upward

bias in traditional volatility estimates [e.g. Working (1954), Roll (1984)].
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Unf ortunately , as we show, removal of the bias will often decrease, not

increase, estimation efficiency. On the other hand, information-motivated

trades with market makers tend to generate prices which will lead to a

downward bias in traditional volatility estimates. In addition to causing

these biases, we show that the Impact of information trading and liquidity

trading on observed prices exacerbates the loss of efficiency in traditional

volatility estimators which is attributable to nontrading per se .

The efficiency of the extreme-value estimator of volatility, which

Parkinson (1980) and Garman and Klass (1980) showed is substantially greater

than that of the traditional estimator under "ideal" conditions, is more

adversely affected by nontrading than Is the traditional estimator. In

addition, unlike the traditional estimator, It is downward biased by

nontrading. As an example of the severity of nontrading's effects, our

computations suggest that, in the best possible case, a stock must have a

price of at least $30. 00 and a volatility of percentage price changes of 50%

or more per annum before nontrading's effect on the efficiency of the extreme

value estimator of volatility becomes insignificant enough for it to regain

parity with the traditional estimator.

An interesting feature of our analysis is the way in which

nontrading-induced noise is assumed to affect observed prices. Many models of

nontrading assume that the stochastic process directing trades is independent

of stock price dynamics [e.g. Clark (1973), Praetz (1972), Blattberg and

Gonedes (1974), and Epps and Epps (1974)]. In our paper, the stochastic

process directing trades is tied down to the true stock price dynamics. This

seems more appropriate if, in the presence of transaction costs, trading

occurs only when stock prices move beyond predetermined stopping boundaries

[e.g. Miller and Orr (1967), Magill and Constantinides (1976)].
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In the following section, we explain how the effects of nontrading result

in a tied-down distribution of observed prices. We then determine the extent

of nontrading-induced inefficiency in traditional estimates of volatility

which are computed from observed prices drawn from this distribution. In

Section 3, we investigate the extent of nontrading-induced inefficiency in

extreme value estimates of volatility. In Section 4, we briefly describe how

market making activity affects the traditional volatility estimator.

2. Ihe Effect of Nontrading on the Traditional Estimator of Volatility

In this section, we investigate how the properties of traditional

estimates of volatility, which are computed from sequences of changes in a

stock's closing prices, are affected by nontrading. We assume that the

minimum price movement required for a trade to occur in a stock Is an eighth

of a dollar, as is the case for exchange traded stocks. Our analysis could be

applied to more general specifications of this minimum required price movement

which are consistent with the reduced form assumption(s) made about

equilibrium stock price dynamics, e.g., specifications which would arise in

rational expectations equilibria which incorporate transactions models like

2
those of Miller and Orr (1967) and Magill and Constantinides (1976).

While the eighths restriction is intended only as an example, there is no

doubt that this restriction could per se induce considerable discontinuity in

3
daily stock price movements, particularly for low priced stocks. For

example, a stock price change from (say) $5.00 to $5-1/8 in one day

corresponds to roughly a 625% annualized return. Alternatively, in terms of

the implied nontrading, simulations using our specification of the

eighths-induced nontrading which is discussed below indicate that a stock with
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an initial price of $5.00, an expected price change of 12% per year, and a

standard deviation of 30% per year, does not trade for at least a day

approximately 20% of the time. Such rough computations, then, might suggest

to some that there is potential for considerable bias in volatility

4
estimates. Gottlieb and Kalay (1985) have recently added support to this

conjecture by reporting that volatility estimates can be biased upward by some

898% for a stock with a price of $1.00.

To see the effect of the roinimum-price-move regulation on observed prices,

assume as in Figure 1 that the true stock price S(t„) at time t„ is

$2.50, and that a random draw of the true price from a lognormal (geometric

Brownian motion) distribution at t
n

+ 6, defined to be S(t_ + 6),

equals $3.07. If we assume that stock prices must move by an eighth to

trigger transactions, then the stock will not trade at t„ + 6 because

the true price is not equal to an eighth multiple. Assuming that the stock

trades at every eighth, the price observed at t„ + <5 will be either

$3.00 or $3-1/8, depending upon which of those two prices the last trade

occurred at. Ihe probability distribution of the price of the last trade is

the probability distribution of the last passage of the price across one of

the two "barriers" $3.00 or $3-1/8, conditional upon the true price being

$2.50 at the beginning of the interval, t„, and $3.07 at the end of the

interval, t« + 6. If the continuous sample path of prices over the

interval 6 happened to be the one labelled A in Figure 1, the stock price

observed at t
Q

+ 6 would be $3.00. If, on the other hand, the stock

price had followed path B, the price observed at t n
+ 6 would be

$3-1 /8. 5

To obtain a distribution for the price of the last trade over a given

interval, we have made a time reversal in the so-called "tied down Brownian
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motion" or "Brownian bridge" process in Figure 1 (not in the unconditional

Brownian motion process), so that the problem of finding a last exit time

distribution is transformed to one of finding a first passage time

distribution in "reverse time." Conditional upon S(tn) and the

end-of-interval true price S(t„ + 6), this first passage probability

distribution for the end-of-interval observed price is obtained by a

relatively straightforward adaptation of Anderson (1960, Theorem 4.2). With

the frequency of trading specified in terms of a first passage time

distribution, the determination of observed prices follows completely from the

stochastic process assumed to describe true stock prices.

Imagine now a sequence of intervals, each of length 6, like the one

depicted in Figure 1. The traditional estimator of stock price volatility is

the average squared change between the closing price generated by the last

transaction in any interval and the closing price in the next consecutive

interval, centered about the mean change if it is non-zero. If a closing

price for any given interval is "stale," in the sense that the stock did not

trade for a long time prior to the end of the interval, then on average the

change from that stale observed closing price to the the next interval's

observed closing price will be larger. Thus, if the sequence of a stock's

closing prices is used to compute volatility, as in the case of the

traditional estimator, it is intuitive that the volatility rate will be

measured without asymptotic bias, even if there is nontrading. We now state

this slightly more formally.

Denote the sequence of consecutive discrete intervals, each like the one

in Figure 1, as tj = t
Q

+ 6, t
2

= t
Q

+ 26,...,t
T

= t
Q

+ T6,

and the corresponding random length of nontrading at the end of each of the

intervals as h , h„,...,h_. Then it can easily be shown [e.g.,
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Scholes and Williams (1977, Appendix)] that the stock price variance computed

from the observed price sequence S(t..), S(t~) , . . . ,S(t ) , which we

2
denote o [the subscript S stands for successive observations],

will be:

2 2 % % 2
o„ = o + var(h .

- h. n )u

2
where u a - 1/2 is the stock's logarithmic mean rate of

return. If the logarithmic mean return u [ not the drift parameter a],

is zero, then there will be no eighths-induced bias in the estimate

of o over a "long run" of observations.

This contention that the traditional estimator of volatility is not biased

by nontrading differs from that of Gottlieb and Kalay (1985). The reason is

that they infer the effects of nontrading on traditional volatility estimates

from a distribution of observed closing prices which is conditioned on a given

beginning-of-day (or equivalently , end-of-previous-day) price. In terms of

Figure 1, their distribution of closing prices would consist of repeated draws

of S(t
Q

+ 6) for a given S(t
Q
).

If the traditional volatility estimate is computed using Gottlieb and

Kalay's approach with observed end-of-day prices generated by the tied-down

fcrownian motion, it will appear to be biased downward . The intuitive

explanation for the apparent downward bias is straightforward. While the

choppiness in price changes, and hence price changes squared, averages out

over repeated draws [ignoring drift for simplicity], trading will, on average,

span less than a day. Since the variance of a geometric Brownian motion

process is proportional to the length of the time interval over which it is

measured, the variance measure based on an average of less than a day's

trading will be biased downward.
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Because the traditional estimate of volatility is not computed in practice

by making repeated draws from a single interval's probability distribution, we

claim that it is simply incorrect to perform such an "experiment" to infer a

nontrading-induced bias in the traditional estimator. As we discuss in

Section 3, the reasoning underlying this incorrect experiment does make sense

for the extreme value estimator of volatility.

Although the correct analysis leads to the conclusion that nontrading does

not bias the traditional estimator of volatility, it does reduce its

efficiency. This is particularly unfortunate for those uses, such as the

pricing of contingent claims, in which efficiency rather than unbiasedness per

se , is important [e.g. Boyle and Ananthanarayanan (1977)]. To determine the

extent of the efficiency loss, we made five hundred draws of a sequence of two

hundred and fifty daily observed price changes from the tied-down geometric

Brownian motion described above, with a zero logarithmic mean and each of four

volatility rates, 10%, 20%, 30%, and 40% per annum. The

mean-squared-error of the traditional estimator o over the five
S3

hundred replications was then expressed as a ratio of the mean-squared-error

of the traditional estimator a with no nontrading. The ratios are reported

in Table 1. The inefficiency in the traditional volatility estimate is

substantial for $1.00 and $2.00 stocks with volatilities below 20% or 30% per

year. The most substantial inefficiency occurs for a $1.00 stock with a

volatility of 10% per year, where the mean-squared-error of 0„ is about

154 times what it would be if there were no nontrading. However, the

nontrading-induced inefficiency tails off for higher priced stocks, becoming

negligible for stocks with prices of $10.00 or more, so Jong as it is assumed

that stocks trade every time (a potentially infinite number of times) that
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their price hits the boundary for minimum price moves—in this case, an eighth

of a dollar.

3. Ihe Effect of Nontradlng on Extreme-Value Estimates of Volatility

Extreme value estimates of volatility are based on the range between

maximum and minimum prices realized over each interval, as opposed to the

changes in successive closing prices. Intuitively, intermittent trading will

tend to result in a lower observed maximum and a higher observed minimum price

in any given interval. Since the range observed in each interval is, in

effect, independent of the nontrading-induced error in the range observed in

the previous (or next) interval, the observations for the range can be thought

of as independent draws from a single interval. The result is that estimators

based on this range will tend to be biased downward.

The effect of nontradlng on the variance and bias of the extreme-value

estimator is reported in Table 2. The first of the two numbers in each cell

of that table is the mean-squared-error of the extreme value estimator in the

presence of nontradlng, expressed as a ratio of what it would be if there were

no nontrading. The second number in each cell, in brackets, is (the absolute

value of) the bias in the extreme value estimator, expressed as a ratio of the

square root of the mean-squared-error of the extreme value estimator in the

absence of nontrading.

It can be seen that, even for stocks with quite high prices and

volatilities, the mean-squared-error of the extreme value estimator increases

sharply when there is nontrading, in part because of the nontrivial bias which

results from the nontrading. The reason Is that observed prices follow the

tied-down Brownian motion process described above when there is nontrading,
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not the geometric Brownian motion process, and extreme-value estimators are

very sensitive to this type of change in the probability distribution of

prices. Given that the mean-squared-error of the extreme-value estimator is

theoretically less than that of the traditional estimator by a factor of five

when there are no errors in price observations, it can be seen from Table 2

that a stock must have a price of at least $30. 00 and a volatility of about

50% before the efficiency of the extreme value estimator "catches up" with the

efficiency of the traditional estimator when there is nontrading of the type

discussed here.

4. Market Makers

Ihe preceding analysis is now briefly extended to incorporate the effects

of market making. A structural specification for liquidity-motivated and

information-motivated trades with the market maker is, inter alia , already

implicit in the reduced form behavior which is assumed to describe true bid

and ask prices, we assume that, in this structural specification, trades with

the market maker tend to be triggered by price movements. As before, we will

examine the polar case in which eighth movements in price are sufficient to

induce transactions.

To the extent that intermittent trades with the market maker are liquidity

motivated, the prices they generate are true prices at the time the trades

occur. If these transactions could be labelled as market maker sales or

purchases, the volatility of ask prices could be estimated from the prices

generated by the sales, and/or the volatility of bid prices from the

purchases. For the reasons discussed in Section 2, these estimates would be

inefficient but unbiased.
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Hovever, transactions with the market maker are not labelled as sales or

purchases in price records. The result is that "the" observed price tends to

jiggle between the market maker bid and ask over time. Working (1954),

Niederhoffer and Osborne (1966), West and Tinic (1971), and Roll (1984) have

all pointed out that the jiggling in observed prices causes an upward bias in

volatilities—here, the volatility of bid or ask prices. However, the

jiggling also induces a negative serial dependence in price changes, and it is

easily shown that, lor a constant one-eighth bid-ask spread, the upward bias

in the volatility estimate can be eliminated by adding twice the (negative)

autocovariance of the price changes to the estimate [e.g. Roll (1984)].

The effects of market maker transactions with information traders are more

insidious. The market maker's ask (bid) will be hit by traders who have inside

information that the true price is higher (lower). It is easy to see that, in

absolute value, the true price change will be above the one registered in the

trade with the market maker, and thus that the volatility of observed price

changes will understate the volatility of true prices to the extent that the

former are generated by market maker transactions with informed traders.

There is no obvious way to adjust for the downward bias.

To investigate the extent of the upward bias induced by liquidity trades,

we assumed, as before, that the minimum price move required to trigger a

transaction is one-eighth. We assumed a constant bid-ask spread of an eighth,

and that once a trade was triggered, there was a fifty-fifty chance that it

occurred at the bid or the ask. To incorporate information trading, we

assumed that ten percent of the time, information traders learn of eighth

movements In prices before the liquidity traders or market makers. As soon as

the information trades occur, market makers revise their bid and ask quotes

fully.
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The results are presented in Table 3. Each cell In that table contains

three numbers In the following order: (1) the mean-squared-error of the

traditional volatility estimator measured from observed prices, expressed as a

ratio of the mean-squared-error of the traditional estimator of volatility of

the geometric Brownian motion process to which the observed prices are

subordinate; (ii) the mean squared-squared-error of the bias-corrected

traditional volatility estimator measured from observed prices, again

expressed as a ratio of the mean-squared-error of the traditional estimator

for the volatility of the geometric Brownian motion to which observed prices

are subordinate; and (iii) the uncorrected point estimate of the volatility

of observed price changes, as a ratio of the volatility of the geometric

Brownian motion to which observed prices are subordinate.

As can be seen from Table 3, the point estimates of volatility computed

from observed prices are close to unbiased for stocks with prices above

$20.00. The inefficiency in the traditional volatility estimator persists for

reasonably high price stocks. For example, for a $10.00 stock with a

volatility of 50% per annum, the contamination in observed prices still causes

the mean-squared-error of the volatility estimator to be almost three times

what it would be in the absence of nontrading and market making.

It can be seen from Table 3 that the market making-induced bias in

volatility estimates is always upward. The upward bias implies that the

effect of liquidity trading on observed prices dominates that of of the

information trading allowed here. As long as traders never have access to

information about true price changes bigger than an eighth, variations in the

frequency of their arrival relative to liquidity trades have little effect.

For example, for the $20.00 stock with a return volatility of 20% per annum,

reduction of the arrival rate from the ten percent assumed in Table 3 to one
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percent increases the bias (i.e. reduces the offset to the positive bias

induced by liquidity trading) from 1.06 to 1.07.

The mean-squared-error of the bias-corrected volatility estimator is below

that of the uncorrected estimator for stocks with prices below $8.00 and for

higher priced stocks with low volatilities. However, for high priced stocks

with high volatilities, the bias-corrected volatility estimator is less

efficient than the uncorrected estimator. Moreover, the behavior of the

bias-corrected estimator's efficiency for high priced stocks is not monotonic

in their volatility rates. For example, as the volatility increases from 10*

to 20% per annum on a $20.00 stock, the corrected estimator's

mean-squared-error first decreases from 4.74 to 2.91 times what it would be in

the absence of nontrading and market making, but then increases again to 3.48

if volatility is increased further to 30%. What happens, of course, is that

for the initial increase in volatility, the autocovariance correction is

better estimated, but for higher volatilities for which the bias itself

becomes less important, the loss in having to estimate two parameters rather

than one is relatively more important.

The results in Table 3 concerning the efficiency of the bias-corrected

volatility estimator do not bode well for attempts to adjust daily stock price

changes for bid-ask bounce, to estimate effective bid-ask spreads or adjust

9
for differences between quoted and effective bid-ask spreads, etc. Better

estimates of the correction factor(s) can be obtained from transaction-

to-transaction prices, though the need for the correction is itself

commensurately higher when this data is used to estimate volatilities. Data

on daily trading volume and cross-sectional stock prices may also be helpful.
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5. Summary and Discussion

We have discussed three potential sources of distortion in estimates of

stock price volatility, and illustrated their minimum effects. The first

potential problem discussed concerns intermittent transactions in a stock.

Ihe concomitant nontrading can result in "stale" end-of-day prices, the

distribution of which we showed to be "tied down" to the stochastic process

for true prices. In our analysis, nontrading is assumed to depend upon the

magnitude of price movements, as it does in transactions models like those of

Miller and Orr (1967) and Magill and Constantinides (1976). We showed that

such nontrading, which is obviously not independent of a stock's price

dynamics, does not bias the traditional estimator of volatility, but reduces

its efficiency, and that it both biases and reduces the efficiency of the

extreme value estimator. Second, we argued that if price observations are

generated by market maker trades with information-motivated investors, then

the traditional estimator of volatility will be biased downward as well.

Ihird, prices generated by market maker trades with liquidity-motivated

individuals tend to impart an upward bias to volatility estimates, but that

element of bias can be eliminated.

Our assessment of the effects of nontrading and market making on

volatility estimates are specific to the geometric Brownian motion model which

we employed, but our methodology holds generally for martingale models of

prices in which variance rates per unit time increase as the length of the

observation interval increases. This robustness is important since our

approach consists of deducing as many implications concerning volatility

estimates as possible from the interaction between the salient features of

market microstructure and stock price dynamics, rather than simply injecting

"noise" to account for these features.
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We have measured the effects of nontrading and market making on estimates

of dally volatilities. The problems we have discussed become more severe as

the observation Interval shrinks. At the transactions level, for example,

eighths-Induced discontinuities and bid-ask bounce In prices are particularly

severe.



Figure 1

Plot of a hypothetical realized path of prices showing how the
distribution of stock prices observed at the end of an interval
can be determined endogenously from the stock price dynamics to
which observed prices are subordinate. For illustrative
purposes, it is assumed that the stock trades each and every
time its price passes through an eighth multiple.
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* We are indebted to Arnie Barnett, Fischer Black, John Cox, Wayne Ferson,

Jim Gammill, Inch! Hu, Chi-fu Huang, Jon Ingersoll , Bill Krasker, Bob

Merton, Merton Miller, Stewart Myers, and the editor, Rene Stulz, for

helpful comments and discussions. The first author is grateful to the

Batterymarch Fellowship program for financial support while part of this

paper was written. The analysis here is that of the authors, and does not

necessarily represent the view of Batterymarch Financial Management or

Salomon Brothers, Inc.

Ihe effects of price data contamination caused by nontrading and various
features of market microstructure will be magnified in typical event study
methodologies in which measures of pre-event daily return volatilities are
used to estimate standard errors in order to test the significance of

cumulative average returns over a multi-day period following the event.

However, the parameters of some expressions for this minimum price
movement would then have to be estimated simultaneously with the

volatility parameter.

We investigate the efficiency of, and bias in, volatility estimates
induced by nontrading. Obviously other problems may be caused by
intermittence in observed prices. For example, the discontinuous sample
path for observed prices could lead to an incorrect conclusion that

transaction-to-transaction prices are generated by jump processes [e.g.,
Oldfield, Rogalski , and Jarrow (1977)] when the "true" process has a

continuous sample path.

Note that the estimation issues discussed here will not be avoided by
computing stock price volatilities implied by option prices as long as
these option prices and/or the prices of the underlying stocks are
generated by (nonsynchronous) intermittent trades.

The analysis here can be followed mutatis mutandis if there is a constant
bid-ask spread, as illustrated in Fig. 1(b), where the spread is
one-eighth. By analogy with Fig. 1(a), the stock's true ask price at the
end of interval 6 is assumed to be $3.1325, so its true bid price is
one-eighth lower at $3.0075. If, as before, the stock trades (at most)
every time its true bid or ask price passes through an eighth multiple of
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a dollar, then the two possible (parallel) paths of bid and ask prices
depicted In Fig. Kb) could lead to the transaction which generates the

price observed at the end of interval 6. If the realized path of bid
and ask prices is that labelled A, the last trade will occur at the market
maker's ask of $3.25 and/or the market maker's bid of $3,125; in the path
labelled B, the last trade will occur at an ask price of $3,125 or a bid
of $3.00. As before, the interval of nontrading will be the time between
the last passage of the bid and ask prices through the eighth multiples
and the end of interval 6. If the analysis in the text is followed
literally, then there will always be a simultaneous sale to, or purchase
from, the market maker at his or her bid and ask prices at the instant of

their last passage through the eighth multiple. Provided that both
simultaneous prices are reported, no problem would arise in distinguishing
bid and ask prices. So long as the bid-ask spread is constant, volatility
could be estimated from either the sequence of bid prices or the sequence
of ask prices, and both sequences would follow a "tied down" stochastic
process such as that described in the text.

Given the typical daily volatilies of stock price changes relative to
their mean, this assumption is of trivial consequence.

Ihroughout this paper, we assume that the mean-squared-errors of
volatility estimates computed from the simulations are "true" values,
i.e., not sample estimates of the mean-squared-error of sample estimates
of volatility. We verified that the five hundred replications did indeed
yield a mean-squared-error for the noise-free geometric Brownian motion
which was equal to its analytic asymptotic value.

If information traders are uncertain about the extent of their monopoly
access to information, they will trade immediately on the information, and
thereby reveal It to the market maker—Gammill (1985) shows that the
market maker has an incentive to structure the market so this occurs. The
market maker can only make an ex post adjustment to take the information
into account, and thus expects to lose to the information traders: in
essence, the liquidity traders pay the market maker, who In turn pays the
information traders to collect the information.

We have assumed a constant bid-ask spread in our analysis. If the bid-ask
spread is itself being estimated, it is hard to see how a model for the

equilibrium behavior of that spread over time can be avoided. Crucial
Ingredients would Involve specifications for Information and liquidity
trading, and the technology for placing limit orders.
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TABLE 1

Efficiency1 of traditional estimates of volatility measured
from observed prices subordinated to a geometric Brownian
motion process through eighths-induced nontrading, relative to
what it would be if there were no nontrading.

Annualized True Volatility

Stock Price 0.1 0.2 0.3 0.5

1
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TABLE 2

Efficiency^ and bias of extreme-value estimates of
volatility measured from observed prices subordinated to a

geometric Brownian motion through eighths-induced nontrading,
relative to what they would be if there were no nontrading.

Annualized True Volatility

Stock Price 0.10 0.20 0.30 0.50

1 611. 574 480.49 413.30 355.69
[14.84] [12.55] [12.20] [11.24]

2 523.04 437.65 353.82 270.60

[13.72] [12.54] [11.26] [9.76]

4 374.42 354.95 211.99 103.63

[11.61] [11.27] [8.69] [5.99]

8 306.60 156.25 88.17 40.07
[10.48] [7.47] [5.59] [3.70]

10 241.49 116.42 64.64 28.94

[9.24] [6.44] [4.78] [3.14]

20 99.80 43.03 22.56 10.56

[5.98] [3.91] [2.81] [1.90]

30 57.30 23.04 12.32 6.20

[4.53] [2.86] [2.08] [1.45]

-'Ihe measure of relative efficiency is defined, as usual, as the ratio
of mean-squared-errors of the estimators.

^Ihe (absolute value of) the bias of the extreme-
value estimator of volatility with nontrading is expressed as the ratio of

the square-root of the mean-squared error of this estimator of volatility
with no nontrading.

The numbers in the table are computed from 500 replications of a 250-day
sequence of observed prices. The maximum and minimum prices observed on each
of the 250 days are obtained by partitioning each of the 250 days into
200 "approximately infinitesimal" subintervals

.

^Ihe first figure in each cell is the relative efficiency. The second
figure, in brackets, is the bias relative to (the square root of) the

mean-squared-error

.
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TABLE 3

Properties of volatility estimates when observed prices are
affected by both nontradlng and market making. -* The three
numbers In each cell of the table are, In order: (a) the

efficiency of traditional estimates of volatility computed from
observed prices relative to what it would be if there were no
nontrading and no market maker; J (b) the efficiency of the
traditional estimator of volatility, corrected for bias
induced by liquidity trading, relative to what it would be if

there were no nontrading and no market maker; and (c) the bias
in the traditional estimator of volatility resulting from market
maker transactions with information motivated and liquidity
motivated traders.

Annualized True Volatility

Stock Price 0.10 0.20 0.30 0.50

2056.46 1103.86
511.87 302.87

2.99 2.34

490.25 240.50
123.27 40.64

2.02 1.66

135.83 38.06
16.41 5.93
1.50 1.26

16.64 5.16

3.93 3.60
1.16 1.08

8.18 2.91

18.38 4.41 4.09 3.48
1.11 1.00

1.58 1.16
4.7. 3.48 3.25

1.03 1.00

1.17 1.03
3.08 3.09

1.01 1.00

6769.89
2658.02

5.91
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TABLE 3 (Continued)

^Ihe results in the table assume that information-motivated traders gain
inside knowledge of eighth movements in price ten percent of the time. In
that (random) ten percent of cases, information traders hit the market
maker's last bid if prices have fallen, and the market maker's last ask if
prices have risen. The information trade is assumed to fully reveal the
inside information. In the ninety percent of trades which are liquidity-
motivated, it is assumed that sales to, or purchases from, the market maker
are equally likely.

^For each level of volatility and initial stock price, ratios are computed
from 500 replications of a 250-day sequence of true stock price changes
drawn from a geometric Brownian motion process, and the implied 250 day
sequence of observed stock price changes drawn from the tied down Brownian
motion process.

-*The measure of relative efficiency is defined, as usual, as the ratio of

mean-squared-errors of the estimators.

^Ihe upward bias in the traditional estimator of the volatility of daily
stock returns, induced by market maker transactions with liquidity-motivated
traders, is corrected here by adding twice the autocovariance of those stock
returns to that estimator.

-"The first number in each cell is the mean-squared-error of the traditional
estimator of volatility, expressed as a ratio of the mean-squared-error of
the volatility in the absence of nontrading and market making; the second
number is the mean-squared-error of the traditional estimator "corrected"
for upward bias, also as a ratio of what it would be in the absence of

nontrading and market making; and the third number is the average volatility
estimate computed from observed prices, as a ratio of the volatility of

prices in the absence of nontrading and market making.
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