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Notes on Marketing Experimentation

1.0 Introduction

The successful conduct of marketing operations requires good information

about market behavior. Such information comes from many sources— from his-

torical sales data^ personal experiences^ surveys, and various special studies.

We shall here take up a specialized but valuable method of learning about the

market, namely, experimentation.

Principally, we shall consider experiments involving the active inter-

vention in the market by a company to measure the effect on sales of variables

under the company's control. For example, quantities such as advertising,

price, salesman's calls, packaging, and display might be varied to estimate

their effect on sales. Presumably, once the sales effect is estimated,

appropriate calculations will convert this into an effect on profit or other

relevant measure of effectiveness. Although the discussion will focus on sales

experiments, most of the principles discussed apply to any response variable.

The term, experiment, will be used to imply a controlled comparison of

alternatives. In other words, two or more experimental treatments are applied

in a situation where the experimenter is able to decide which experimental

units receive the treatment. Thus, an experiment might compare promotions

A and B by using them in different sets of cities. The experimenter decides

which city receives which treatment (probably doing this by a random process).

A more passive approach is to analyze historical data in which marketing

variables have varied in the normal course of company operations. Such data can

sometimes be analyzed by econometric methods to estimate the effect of the

Sased on lectures given in 15.85s, Operations Research in Marketing , Sept. 8-12, 1964.
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variables on sales. For example, Telser has used such methods to estimate

the effect of advertising on cigarette sales and price on the demand for

certain branded goods.'- J Historical data may be quite revealing in the

situation that Howard and Roberts have called a try-out.*- A company may

try out a new policy but without benefit of a control or alternative treatment.

If the change is drastic enough, say a price cut or the introduction of a new

product, there are sometimes special opportunities for analysis. An example

of this is Henderson and Brown's study of the effect of a promotional campaign

on the sales of frozen orange juice.

Although the analysis of historical data is often very valuable, experiments

offer several special advantages. If you make an experimental change and observe

an effect, it is frequently more convincing than if a change and an effect occur

together in past data. In the latter case, you are likely to worry that a

deeper mechanism may be causing both the change and the effect, s ince changes

in marketing variables are usually made for some reason. A serious difficulty

in econometric analyses is that the variables of interest may have substantial

correlations with each other and with other explanatory variables. This may

lead to instability in estimates of the important regression coefficients. In

designing an experiment a deliberate effort is made to have small correlation

among experimental variables and between them and other explanatory variables.

Finally, of course, experiments can be directed at questions of immediate

interest and can examine more different alternatives than would normally occur

in regular operations.

Experimentation has some important limitations. These will become

clearer a little later. Principally, however, the accuracies obtainable, the

time required for performance, and in some cases, the cost of the study

clearly limit the number of questions which can be turned over to strict

empiricism of this sort.
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In any case^ sales experiments are best supported by studies of Inter-

mediate variables (eg. consumer attitude and awareness shifts, and reactions

In the distribution system) that may Increase understanding of marketing

processes and may eventually permit good predictions of sales effectiveness

on the basis of Intermediate variables.

An Interesting potential application of sales experiments Is in the role

of a nionltoring device In the continuous control of marketing operations. At

least one company does this in an Informal way now. In certain fields^

notably chemical engineering, such control is well known under the title of

evolutionary operations. Figure 1 traces out the main ideas in marketing

terms. Small experiments are made a part of normal marketing operations.

Information from the experiments is fed back into the budget allocation

process. Although to our knowledge no satisfactory fortttal theory presently

exists for the marketing application, the prospect is sufficiently interesting

that we shall discuss some of the problems Involved later on.

Many books have been written on the statistical design of experiments.

Cox''-' gives a reasonably non-technical exposition of the basic ideas.

Cochrane and Cox'--' is something of a handbook. Kempthorne I- J goes deeper

into the theory.

2.0 Example ; A Two Level Spending Experiment

As a starting example, consider the problem of measuring sales response

to promotional spending in order to find a more profitable spending rate.

2.1 Profit Model

We suppose that, under some given set of conditions, sales rate Increases

with promotional spending, fairly rapidly at low spending levels but with

diminishing returns at high levels. The sales response curve might look some-

thing as follows:
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Figure 1. Block diagram for using continuous experiments in the control of

marketing effort.
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A

sales rate

promotional spending rate

Figure 2

Here s = sales rate, say, in units of dollars per household per year
(dol/hh.yr)

X = promotion rate (dol/hh.yr)

(More obvious units for sales and promotion might be dollars/year but, if

different sized regions are to be compared, some division by a size variable

is desirable. A good divisor is a quantity that is a measure of potential

sales in the region. Although individual products frequently have their own

special potentials, population and number of households are good all-round

measures of size. The latter will be adopted here.)

To calculate the value of x which maximizes profit rate, we construct

a simple model of company profit. Let

p = profit rate (dol/hh.yr.)

m = gross margin, i.e., incremental profit as a fraction of sales
(dimensionless)

Then

sellins_2.rice - variable cost

selling price

c = fixed cost rate, exclusive of the promotional spending (dol/hh.yr)

p=ms-x-c (2.1)

We are presuming that the type of promotion being investigated is a fixed cost

(eg. advertising) not a variable cost (eg. a .price deal). A somewhat different

model is appropriate for the latter case.





Given the sales response function s = s(x), the operating point for

maximum profit can be determined. Thus, by calculus,

—c = m 1
dx dx

or, the best value of x is the one that makes

ds ^ J,

dx m
(2.2)

Suppose that ra = 33-1/3%. Then 1/m = 3. For a curve of the general shape of

Figure 2, the maximum profit value of x can be found by increasing x until

the slope of the curve is 3, i.e., until an additional dollar spent returns

3 dollars in sales.

Much more complicated profit models can be constructed. If budgets are

limited and good alternative uses exist for the money, higher slopes than 1/m

may be required for maximum profitability. Time lags could be introduced and

future profits discounted.

The simple model suffices, however, to motivate an experiment for

estimating sales response curve and to provide a reference point for judging

how accurate the experiment must be in order to be meaningful. An experiment

with a standard error for the slope of, say, 10 when 1/m = 3 would probably

be useless. A requirement that an experiment have a standard error of .01

might lead to unnecessary expense or perhaps an impossibility.

2.2 An Experimental Setup

n. cities

/^

s

sales

(dol/hh.yr.)

Figure 3

Each point is a city

spending (dol/hh.yr)





Suppose we pick one set of cities and apply a low spending rate and

another set and apply a high spending rate. The spending rates are used for

a test period of^ say, a year and the resulting sales are observed.

Let x^ = low spending rate (dol/hh.yr.)

x^ = high spending rate (dol/hh.yr.)

n^ = number of cities in low group

n_ = number of cities in high group

s.. = sales rate in the i— city of low group during the test

period (dol/hh.yr.)

s = — Zs .
= average sales rate in low group (dol/hh.yr.)

1 n^ li

S = sales rate in i— city of high group (dol/hh.yr.)

s- = — Es^ = average sales rate in high group (dol/hh.yr.)
2 n- 2i

Denote the slope by b and its estimate by b. A straightforward

estimate of b is:

. ^2 ^
(2.3)

The particular slope estimated is that of the chord of the sales response

between x and x • (Strictly speaking, the experiment can only tell us which

of the two points x. and x is more profitable. However, if the curve is

smooth between the two values, it will take on the slope of the chord some-

than two spending rates, fit a curve through them and obtain a continuously

varying slope over a considerable range of x.)

2.3 The Statistical Model

A reasonable statistical model to go with the above setup is as follows.

Assume the observed sales rate in a city having promotion rate x is a random





variable^ s :

s = s(x) + £

where s(x) is the sales response curve and £ is a random variable of mean zero

2
and variance a . The variable 6 is assumed independent from city to city

and^ for concreteness^ will be assumed to be normally distributed.

In other words^ we assume that there is an underlying average sales

response curve in the class of cities under study and that the cities in each

test group will be scattered about the curve with a standard deviation of g

at their particular x value.

2.3 The Standard Error of the Estimated Slope

The following notation will be used. Let X and Y be random variables.

E(X) = expected value of X

V(X) = variance of X

SE(X) = [y(X)J 2 = standard error of X

CV(X) = SE(X)/E(X) = coefficient of variation of X

Cov (X,Y) = covariance of X and Y

Let a and b be constants. A useful^ standard formula is:

V(aX + bY) = a^V(X) + b^V(Y) + 2ab Cov(X,Y) (2.5)

The estimate of slope previously given is

This is, in fact, the maximum likelihood estimate under the assumed statistical

model

.

We want SE(b). Using (2.5)

V(b) =
J V(7, - s,) .

^-2-V '
'

Because of the independence of the individual^ 's, Cov is ,'s,) = and so

VG2 - s^) = vd^) + V(7^)
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_ 2 _ 2

V(s- ) = -H-
, v(sJ =-^

1 n ' 2 n„

Putting things together; 1.

2

SB(b) -,-^ - + -T
^V^^L^l "2J

(2.6)

This formula tells the accuracy of the experiment. Suppose for example

= .02 (dol/hh.yr.)
X = .01 (dol/hh.yr.)

n, = 10
^

^
X = .02 (dol/hh.yr.)

n2 = 10

Then

SE(b) = .9

If^ say^ 1/m = 3, we see that we can easily tell the very good from the very

bad, but for b close to 1/m it will be hard to tell whether we are over or

under the best value of x. Of course, if the operation is fairly close to the

optimum, we may be reasonably well satisfied, because most meixima are smooth

near the top and small deviations may not make much difference.

The formula also shows what quantities affect accuracy. Increasing the

sample sizes will decrease the standard error according to the familiar square

root rule. Any decrease that can be made in a decreases the standard error

proportionately. The quantity (x -x^) enters the expression in an extremely

sensitive way. Small values will give very high standard errors. The reason

is simple: in order to detect a sales difference amid the random variations,

one must create a fairly substantial sales difference and this will usually

require fairly well separated promotional rates. On the other hand, although

large values of x„-x^ are desirable, caution is necessary because too large

:omot:

make the slope of the chord between x, and x look small, even though
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An alternative form of (2.6) is sometimes convenient:

1

The values of s and x can be anything since they cancel out. Let us suppose

they are the national averages of the sales rate and the promotion rate

expressed In dol/hh.yr. Then all the terms in parentheses are dimensionless

and have the following interpretations: a/s is the coefficient of

variation of sales for cities of the type used in the experiment, s/x is the

ratio of sales to promotion nationally; and x/(x - x ) is the ratio of the

national promotion rate to the difference between the two test rates.

A
It is important to estimate SE(b) before doing an experiment like the

above. Only then can one decide whether the experiment is worth doing. What

we principally need to know for this purpose is a. In the next section we

shall present the details of a two level spending experiment and its analysis.

In the course of the analysis we shall see one way that o can be estimated

in advance.

2.4 Numerical Example

Next we present and analyze data adapted from a two level advertising

experiment conducted a few years ago by the manufacturer of a grocery Store

product.

The objective of the experiment was to measure the effect of spending

rate on sales. The experimental units were the company's sales territories.

Out of a national total of 21 territories, 18 were given the normal advertising

rate, while 3 were given twice the normal rate. The test ran for a year.

Sales were measured by factory shipments.

To portray the statistical characteristics of the original ;data but- still

conceal the actual numbers and their ratios, we have taken the following steps:

Sales, advertising, and the measure of potential have all been multiplied by
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scale factors to standardize them at national values of approximately 10 million

dollars/year for sales^ .5 million dollars/year for advertising and 50 million

households for potential. The data in this form have been analyzed to

estimate the parameters of the statistical model. Thereafter a set of new

data has been generated by simulating the statistical model. It is the simu-

lated data that is tabulated here.

Table I presents, for each territory, sales during the test year, sales

the previous year, advertising during the test year, and the measure of

potential. Table II puts the sales and advertising data on a per household

basis. The high spending rate territories are clearly 1, 2, and 3.

Two analyses will be given, the second being neater than the first.

The first is presented because it is the basic intuitive analysis. The

second represents a worthwhile embellishment.

Analysis I : The average values of sales and advertising in the high

and low groups are:

7 = .24796 dol/hh.yr. x^ = .01675 dol/hh.yr.

I = .21300 " x^ = .00892

and so an estimate of the slope of the sales response curve is:

Thus, it is estimated that in increasing the spending rate from x to x
,

each dollar of advertising brough back 4.46 dollars of sales during the

experimental period.

A
Next we want SE(b) and for this purpose an estimate of a, the standard

deviation of the dependent variable in the population of experimental units.

Were it not for the presence of the experimental treatment, we could simple find

the standard deviation of the number in the first column of Table II. As it is,

slightly different means should be subtracted from the high and low groups.
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CXPERIMENT U TABLE I





- 13

EXPERIMENT 1* TABLE II

S(T)
TERRIT0RY SALES IN

N0* (O0L/HH,YR*I

XJTI SIT-1»
ADVERTISING IN SALES IN
(O0L/HH«YR*) IO0L/HH«YR«>
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21 - 2 .3
Z (s - s ) = 8.32 X 10

i=4

^ - -3
Z (S2i - ^2^ = 1.21 X 10
i=l

An unbiased estimate of a is:

I

2[95.3
= [19-^ .0224

Therefore, the estimated standard error of the slope is

SE(b) P _ /I , i 1 2 = .0224 fl + ij = 1.78
"

''l L"l "2J .00783 |j8 3J

/S A
To summarize: b = 4.46 , SE(b) =1.78

Analysis II . If further variables can be found that help to explain

the variation in sales from territory to territory, the standard error can

be reduced and greater accuracy obtained. As is well known, sales in an area

tend to be like previous sales in that area. Previous sales almost always

makes a good explanatory variable. Let

3 (t) = sales rate in the i— territory in the test year (dol/hh.yr.)

s^(t-l) = sales rate in the i— territory in the preceding year (dol/hh.yr.)

X (t) = advertising rate in the i— territories in the test year
^ (dol/hh.yr.)

^. = a random error for i— territory (dol/hh.yr.)

A simple regression model for sales is then

s.(t) = a^ + a^x^(t) + a2S^(t-l) +^^ (2.8)

where the ^ are assumed independently and normally distributed with mean

2
zero and variance a .

The model is linear in x even though the sales response curve may not be.

This is because we have only two spending levels and seek the slope of the line
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connecting them. XAlthough x values are not exactly alike within each group,

there is not nearly enough variation to estimate non-linearity.) The

regression coefficient a corresponds to the slope b.

A regression using the data in Table II in the Model (2.8) yields (see

Analysis II in Table III):

A
b = 4.40

SE(b) = 1.25

The standard error of b has dropped about 30% due primarily to a drop in a

from .0224 to .0159 .

Analysis I can also be done as a regression by dropping s.(t-l) as a

variable in (2.8). The results are shown in Table III. Analysis II is

obviously better and is taken as the final set of results.

Discussion . What can we say about these results from a managerial

point of view? Suppose our criterion is 1/m = 2.5. We can say the higher

level looks pretty good, although there is always a chance it is not best.

(b and 2.5 are separated by about 1.5 standard errors.)

On the other hand, suppose 1/m =4.5 .The estimate does not differentiate

between x. and x . Possibly, however, a manager has prior feelings on adver-

tising effectiveness. These can be taken into account intuitively, or if

made explicit as prior probabilities, incorporated in a Bayesian analysis.

The experiment has yielded information but uncertain information. Values

far away from 4.40 are now considered improbable. If, as is frequently the

case, the company had little previous knowledge on sales response, the

increase in information may be considerable.

What was the cost of the experiment? The sales data came from factory

shipments and would have been collected anyway. . The cost of the analysis was

small. The money spent on the increased advertising was an immediate out-of-

pocket cost, which may or may not have been recovered. However, if 1/m < 4.40

the appearances are that the experiment showed a net profit.
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EXPERIMENT 1* TABLE III

MEANS
SIT) X(TI

•21600 .01004
S(T-n
•20372

STANDARD OEVIATI0NS
S(T» XIT) SfT-l»

• 02<>6656 •0027899 ^0279975

C0RRELATI0N MATRIX
S(T) X<T» SIT-l)

S(T) 1.000000
XJTI .498762 1.000000

S(T-l) .627725 .001619 1*000000

ANALYSIS I

MULT* R > .4>967. ST. ERR. 0F EST. «

F(l«19> « 6.2916
>0224

VAR
TABLE 0F RESULTS

B-C0EFF

CONSTANT .1736
X(T) 4.4131

.ERR.B
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The experimetit might be Itnpuoved. Perhaps -a better statistical model and

analysis can be found. More experimental units in the high group would help,

although this would mean more out-of-pocket cost. Possibly a change of experi-

mental unit from sales territory to metropolitan markets would be desirable.

An estimate of Is vital to the sound planning of an experiment.

Analysis II can be adapted to do this by dropping x(t) and running it on

historical data. The value of a is not likely to vary much from year to

year. Even though a is estimated from (2.8) it is the relevant quantity

for (2.6) in a two level spending experiment. We may think of the sales

data in (2.3) as being adjusted for sales in the previous year.

A convenient way to express a is as the coefficient of variationj the

ratio of standard deviation to the mean. From Table III:

CV = .0159 = 7.3%
.2180

A revealing way to look at the standard error of the difference between

treatments ie to express it as a percent of sales. Here

2

^2 - ^1)
_ _!. fi -f n

= .073

= .045

Thus, the advertising increase must produce a percentage increase in sales

which will show up against a 4.37. standard error.





3.0 Designing Experiments

3.1 Choice of dependent variable

By "dependent variable" we mean the numerical quantity that the experi-

mental treatments are supposed to affect. The focus here is on sales^

although a variety of other variables are frequently of interest and many

of the remarks made here apply with little change to other variables. An

important dependent variable closely related to sales is market share.

Market share usually has quite a bit less variance than sales itself

and so permits a more sensitive measurement. Seasonal effects tend to be

removed as do some of the effects of national economic conditions. Hov;/ever^

if a company's marketing treatments increase competitive sales as well as

company sales^ the percent increase in market share will be less than the

percent increase in sales. Whenever possible, competitive sales should be

examined for evidence of experimental effects.

Obtaining satisfactory sales data is sometimes difficult. An organi-

zation working directly with the final customer^ eg. a supermarket or a mail

order house^ can audit its own sales. A manufacturer can use factory ship-

ments, but then must accept delays in the pipeline. This is tolerable if

the experiment lasts a considerable length of time. If the product is

shipped to regional warehouses of retail chains, some difficulty may arise

in allocating the sales to individual market areas, although some workable

system can usually be found.

Store audits are an effective but usually costly way to measure sales.

The Department of Agriculture experiments have usually used store audits..

Consumer surveys are another device. Both surveys and audits offer the

possibility of collecting data on competitive sales. Some products have

specialized opportunites for collecting sales data (eg. warranty cards).





The advantage of collecting data on extra dependent and independent

variables is worth emphasis. The advantages are illustrated in many of the

Department of Agriculture experiments where sales of related products were

recorded^ as were prices^ display space, point-of-sale promotions, and media

advertising. Frequently, the results gave information on these added

variables, including, from time to time, interesting surprises.

3. 2 Choice of experimental unit

The term "experimental unit" is used to refer to the unit that is

assigned a treatment independently of the other units. Thus, if a market

area is given a "high television" treatment, the individuals in the market

may be considered to have received this treatment, but the experimental

unit is the market not the individual. This is because each individual

is not (and in practice could not be) assigned a high, low or other

television treatment independently of the others in the market.

The most desirable experimental unit is probably the individual, or,

as is frequently more appropriate, the household. Depending, of course,

on the situation, sample sizes in the 1000' s or 100,000' s may be possible.

Although coefficients of variation for individuals are greater than for

more aggregated units, the reductions in standard error are likely to be

substantial. Individuals or households can be used as experimental units

in direct mail promotion, magazine split runs and personal selling, provided

that sales can be traced to the individuals. Direct mail sales experimenta-

tion has had a long and successful history in such applications.

An individual store can be an experimental unit for treatments directed

at individual stores. For advertising treatments involving television,

newspapers, or the like, the experimental unit is usually a market area.

In some of the Department of Agriculture experiments fil ["2'] the unit

consisted of a group of stores within the market. Some companies have used

their sales territories as units.
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For sales measurements an experimental unit must contain as part of its

specification some time period of observation. Thus, a market might receive

independently assigned treatments in successive 4-week periods. The unit is

then a "market for 4 weeks".

3.

3

Randomization

The random assignment of treatments to experimental units helps make

the assumptions used in most statistical analyses come true. Detailed

discussions can be found in (_3j , l4j , and [5J .

3 .

4

What is measurable ?

To illustrate the type of marketing variable whose effect on sales

might be measured, we list some variables which have been used in past

experiments:

- total advertising dollars
- advertising dollars in specific media: for example, television,

newspapers, and radio
- salesmen's call rate
- product appearance
- campaign themes
- cooperative advertising
- point of purchase display
- store demonstrations
- dealer contests

The basic question in measurability is whether the experimental treatments

will create enough of an effect to be detected amid the statistical variations.

More important to profitability, however, is whether the accuracy is

sufficient to detect differences that are both economically significant

and likely to occur. This question can be posed as a formal problem in

decision theory, but we shall here approach it descriptively. Our goal is

to find standard errors of appropriate quantities so that the adequacy of

an experiment can be judged in advance.

Three categories of experiment will be examined: (1) spending experi-

ments with fixed cost spending rates, (2) spending experiments with variable





cost spending rates, and (3) the general two treatment comparison.

1. Spending experiments involving sales response to fixed cost spending.

These were introduced in section 2. We would like to answer the

following questions about the sales response curve:

(a) What is the slope near the company's present operating position?

(b) What is the curvative, i.e., where does diminishing returns set in?

(c) How would competitors react to changes in company spending and

what is the effect of their spending on the company's response

curve?

The slope tells whether an increase or a decrease in spending would be

profitable. The curvature tells how far such a move could apparently be

made with profit.

The problem of competitive action is quite serious and we do not pretend

to solve it. It may be that an apparently profitable increase in spending

rate would be turned into a loss by a matching increase from competitors.

Experiments of the type being considered are unlikely to be of value in second

guessing the competition. However, they may sometimes reveal the effect of

one company's spending on another company's sales.

The accuracy of estimating slope has been discussed; we found that in

a two level experiment

— = estimate of slope

SE(b) ^
(2.6)

Curvature will be viewed as a change in slope. Suppose three spending

levels are tested:









As an example^ suppose





promotional treatment affects the incremental profit per unit. Our

objective is the same: to calculate in advance a standard error that will

tell us whether a proposed experiment has meaningful accuracy.

Here^it will help to change our dimensions somewhat. Let

s = sales rate in units /hh.yr

.

m = incremental profit in dol/unit

p = profit rate in dol/hh.yr.

Our statistical model is that the sales in an experimental unit is

s = s(m) +e (3.3)

where £ is normally distributed with mean zero and standard deviation a

units/hh.yr.

Consider a case where the promotional treatments compared have incremental

profits m and m . These might represent a price deal and normal operations.

Suppose n, markets receive m and produce average sales s while n markets

receive m and produce average sales s .

Let 'p„ - ^, = estimated profit difference

SE (P2 -^i> = "^

(3.4)
'2 "1

The profit differences are perhaps more meaningful when expressed as

fractions of sales in dollars. Let

s = national sales rate (units/hh.yr.)

normal national incremental profit (dol/unit)
1

then SE
V m s / s
V n n / n





then

m, = .6m
1 n

/A A

n n

2 . 34%

In other words, using these particular numbers, if the difference in profit

between the two treatments is on the order of 5% of sales, we stand a very

good chance of detecting the better one. If the difference is something

like 17o of sales, we will not obtain a reliable measurement.

3. The general two treatment comparison

Marketing alternatives sometimes have little or no cost difference

between them, as, for example, different copy themes or different media

mixes within the same budget. Sometimes the treatment difference is a

single shift in fixed cost rate, as a retooling for a product modification.

The omnibus calculatiow that can be made the basis for further profitability

comparisons is the computation of the standard error of the difference in

treatment means.

Suppose n experimental units are given treatment 1 and produce an

average sales rate s (say, in dol/hh.yr.) and n units are given treatment

2 and produce an average sales rate s . Let a be the standard deviation

for individual experimental units and s the national average sales rate.

Then

estimated difference in sales between treatments
as a fraction of national sales rate.

1

2

(3.6)

Example : a/s CV = .08

. = 30

2.02%





- 26 -

Thus the treatments must produce sales differences which will show up

against a standard error that is 2.027c of sales in order to be

detectably different.

3.5 Formal Experimental Designs

Special arrangements of treatments on experimental units will often

increase the efficiency of an experiment. Two or more variables of interest

can be examined in the same experiment. Sources of variation that are not

of interest but would otherwise obscure the treatment effects can sometimes

be measured and removed. The subject is a large one and the reader is

referred to the books on the field^ e.g. [_3~\ [U~\ and [_5\ . We shall confine

ourselves with brief descriptions of marketing applications for three standard

designs.

Randomized Blocks

Suppose that we wish to compare promotions A and B by using A in 8

cities and B in 8 cities. Instead of assigning the treatments at random

to some list of cities^ we might break the country up into regions^ say^

East^ South, Midwest, and Far West, and within each region randomly assign

A to two cities and B to two cities. The presumption is that sales per

household would be more homogeneous within a cuographical region than in

the country as a whole. A region is a "block". Because of the balanced

arrangement any additive sales effect attributable to the region can be

estimated and removed.

The statistical model for the experiment is as follows; Sales for a

city located in the i block and receiving the j treatment are given by:

s. . = n + b. + t. +e
ij 1 J

where s.. is sales (say, in dol/hh.yr.), |j, is mean sales, b. is the differen-

tial effect of the i block, t. is the differential effect of the j

treatment, and ^ is a random error. The Qs are presumed normally and
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independently distributed with mean zero and variance o

Without the block arrangement,, random assignment of treatments would

2
have lumped the b. into ^ and^ if b.^ 0^ would have increased o and

decreased accuracy.

Latin Squares

A Latin square is a particularly symmetric design in which several

treatments are simultaneously compared and two sources of uncontrolled

variation are eliminated. A good example appears in the winter pear study

ri4]
of Hind^ Eley, and Twining

Their Latin Square compared 5 experimental treatments in 5 cities

over 5 four-week time periods. The layout was as follows:

Cleveland Baltimore Milwaukee Houston Atlanta

A E D B C

B C E A D

E B C 5 A

D A B C E

C 5 A E B

1st 4 wks

2nd "

3rd "

4th "

5th "

The experimental treatments were:

A. Special point of purchase displays

B. Store demonstrations

C. Dealer contests

D. Media advertising

E. No sponsored promotions by the Pear Bureau

The experimental unit consisted of 15 supermarkets in each city for 4 weeks,

The principal dependent variable was sales of winter pears, but sales data

was collected on other fruits. A variety of extra independent variables

were recorded, including price, display space, and newspaper advertising.

Sales data was collected by store audit.
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A Latin square can be of any size but the number of columns, and the

number of treatments must all be equal. Each treatment appears once and

only once in each row and similarly in each column. The design removes

uncontrolled variation (to the extent of an additive constant) in the rows

and in the columns. In the pear experiment a city effect and a time period

effect were removed.

The statistical model assumes that sales for an experimental unit in

period i and city j under treatment k are given by

where u is the mean sales, r. a row effect,, c. a column effect, t a treat-

ment effect, and C the usual random error.

In the experiment cited, there were strong city effects. Their removal

decreased o and made the experiment more sensitive.

A Latin square does not estimate "interactions". Thus, suppose store

demonstrations are particulary good in some cities and not in others. The

experiment contains no means of detecting any difference, but rather measures

an average effect over all cities.

We note that a modification of the Latin square, known as a cross-over

design, permits estimates of possible carry over effects in which a treatment

in one time period affects response in the next. See flj and Qf] .

Factorial Designs

Factorial designs do estimate interactions. Suppose we wish to compare

two television treatments, high and low, and also two newspaper treatments,

high and low. In such a case we would probably not trust a model without

interactions. In other words, if the difference between high and low TV

treatments with newspapers at their low level were 57o and the difference

between high and low newspapers with TV at its low level were 4%, we might
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doubt that high TV combined with high newspapers would be 9%. We might

expect some diminishing returns. A deviation from the sum of the single

effects would be called an interaction.

The factorial arrangement for this experiment may be depicted as follows:

TV





- 30 -

A good variation on previous period sales as an explanatory variable can

be constructed if a considerable time series of post sales is available for

each experimental unit. A time series analysis of post sales can be made for

each unit separately and an extrapolation of sales into the experimental

period made. The extrapolated sales can be used as an added explanatory

variable in place of prior period sales.

Sometimes information is available to show that certain experimental

units come from populations with higher variance than others For

instance, small cities usually have somewhat higher coefficients of variation

than large cities. In such cases, the efficiency of estimation can be

increased by weighting each observation inversely proportional to its variance.

4. 1 Analysis of Experimental Designs by Regression

Books on experimental design give different computational formulas for

each new design. These are of interest for a variety of reasons, and when

calculations are to be done on a desk calculator these formulas are almost

essential. However, whenever a standard experimental design is viewed as a

fixed constants model it becomes a special case of the general linear hypothesis

and as such can be analyzed on a computer by a multiple regression program.

The analysis of an experiment by a multiple regression program will

give an estimate of each constant in the design and a standard error for

it. In addition most programs will give the covariance between each pair

of estimated constants or else information from which it can be easily

deduced. However, a regression program does not ordinarily produce directly

the information required for a table of analysis of variance.

Analysis by regression makes it possible to use one computer program

for all different classes of designs. Regression will automatically accept

data with missing observations or extra observations and treat designs not

found in standard texts. When, as is usual in marketing, there are important

explanatory variables outside the design proper (e.g. last year's sales),
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their inclusion in the analysis is very simple.

To illustrate the use of regression^ we analyze an experiment consisting

of a pair of 3 x 3 Latin squares. The data are entirely made up. In fact,

the residual error has been made absurdly small in order to show that the

analysis does indeed recover the constants used in making up the data.

A pair of 3 x 3 Latin squares12 3 4 5 6

I

II

III

A B C

B C ACAB
I

II

III

A B C

C A B

B C A

Suppose that there are three experimental treatments to be evaluated,

A, B, C; six markets in which the test is being conducted, 1, 2, 3, k, 5, 6;

and three successive time periods (perhaps months) I, II, III. In each

market in each time period some one of the three treatments is administered

as indicated by the cells in the above squares. The dependent variable

is sales.

The observations are presumed to have been generated by the market

(or, in our example, by us) according to the model

where

. „ + a. + p. + d + gijk 1 J k *-

sales in the i market area in the j time period

(4.1)

ijk
under treatment k.

m = mean sales for all markets

,.
= differential effect on sales of i'' " market area

,th

th

time period

^ = random error

All units would be the same, say, thousands of dollars. The random error

is assumed to be independent from cell to cell and to be normally
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2
distributed with zero mean and some variance a

An experiment is usually oriented toward measuring differences,

e.g. the difference between treatments A and B on sales. This would be

d„ " d . . A constant added to each d would not affect the difference.

By convention, it is presumed that a constant has been added to each d

so that the sum of the d, is zero. The same remark applies to the a.

and the p .
•

We synthesize some hypothetical data.

1





3.i

make it clear that the analysis does recover the original numbers. The

final "observed" sales data are:

1.585^





- y, -

1 if cell refers to market 6

'1 if cell refers to time period I

I 10 othervjise

(1 if cell refers to time period III

III [O otherwise

il if cell refers to treatment A

'a
~

\0 otherwise

1 if cell refers to treatment B

otherwise

e = random error

A regression on these variables will fail. This is because certain

variables can be expressed as linear combinations of other variables and

as a result the matrix to be inverted in solving for the coefficients is

singular. We can, however, get rid of 3 variables by recalling that

Za. = Zp. = ^\ " °

^11 = - ^Pl ^PlI) ^^-3^

^c - (^A +
'^b)

Substituting

a^(u^ - V ^ ••• ^^ ^"5 - "6^

d(v-v )+d('v -v )

^l' I III' '^II^ II III''

+ d^(w^ - w^) + d^(w^ - w^)

Now, letting
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^3 - >

We obtain the regression model

II III

y = m + a X
1 1 VS -^ Pl"6 -^ PlI^ + Vs -^ V9 -^ " ^"^-"^^

where for each observation

y = sales

if cell refers to market 1

6

otherwise

if cell refers to market 5

6

otherwise

if cell refers to period I
" III

otherv/ise

if cell refers to period II
" III

otherwise

if cell refers to treatment A

C
otherv7ise

if cell refers to treatment B

C

otherv/ise

The regression will not estimate a , ? , d directly but they are
6 III C

given by substitution into (4,3)

•
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In this experiment there are 18 observations. The regression input can

be tabulated as follows (blanks are zeros)

:

Obs.
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Analysis of Experimental Design by Regression

C0VARl\NCe MATRIX
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Although standard errors are tabulated by the program for the constants

of the regression, an additional step is required to find the standard error

of a difference between two coefficients. As an example we find

sE(d; - \) W v(^^ - d^)

where SE stands for standard error, V for variance and the carat denotes

the regression estimate. Using the general formula for the variance of a sum

V(I - d) = V(2 ) + V(d^) - 2 CovC'd ,d )

A B A B Ad
Simply squaring the tabulated standard error, we find that

V(d.) = V(d„) = 1.96 X 10"^
A B

The covariance term can be found from an appropriate inverse matrix.

The particular inverse printed out varies somewhat from program to program.

Here the inverse of the sum of cross products matrix is given. Consider

two arbitrary independent variables x. and x. with coefficients b^ and b.

Then

A A 2
Cov(b.,b.) = (i,j element of inverse) (s )

where s = the standard error of estimate of the regression. Thus,

Cov(d.,d„) = -(.0555) (.0044)^ = 1.08 x lO'^
A B

and so SE(d^ - d^) = .0025

If the inverse of the correlation matrix is printed out, the covariance

calculation is slightly different. Let r = the (i,j) element in the inverse,

a be the standard deviation of x , and n the number of observations. Then
i 1

Cov(b,,b.) = r 211 o
no.a.

One task remains. We can find a
, P,..,^ and d from (4.3) but their

standard errors and possibly their covariances are also desired. The problem

is trivial here, since all the standard errors for the a's are the same,

all the pVs the same, etc. In the general case, the regression output can

be manipulated to obtain the numbers^ but an easier way is to run two more
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regressions. A regression with, say, a , P-rr-" ^""^
^t,

^^ '-^^ constants
J II B

A y^ '^

eliminated will produce a,, p , and d and their standard errors. The

data to calculate all covariances except cov(a ,a ), Cov(p ^P ); and

A A
Cov(d ,d ) is also easily available. Data for the latter can be produced

B c

by a regression having a,, p , and d eliminated.

Another variation of the regression can be useful. Suppose we are

specifically interested in the differences

Then, instead of eliminating a, in (4.2) by converting the u's to the x's,

we can resolve the singularity caused by the a's in a more useful way. Let

X be a variable that takes on the value unity for every observation. Then
o

Substitution into (4.2) produces a regression model with a constant term of

m+ a,x and the desired differences as coefficients of u variables.
6 o

In setting up the variables, x is not introducedj the constant term will

automatically include a, . The v and w singularities can be resolved

similarly or by the x method. When the regression is run, the standard

errors of the differences we have set up can be read off directly as standard

errors of the corresponding coefficients.

In summary, multiple regression computer programs provide a general

means of analyzing experiments to estimate parameters and ilicir standard

errors. To use multiple regression in this way it is necessary to knov;;

(1) the basic statistical model being assumed) (2) how to set the model up

in regression form; (3) how to determine covariances of the regression





coefficients from the computer output; (4) how to express variances of sums

of random variables in terms of their variances and covariances.

An excellent use of this type of analysis is in planning an experiment.

Frequently designs are proposed that differ from standard form. Perhaps

some combination of treatments is not operationally possible. What

would happen if that combination were omitted? A dry run of the analysis

will be helpful in deciding whether important accuracy is lost. Such a

dry run could be conct,.!.:ci:t;(: r.s r.bcve^ ci,, betLe/, live historical data

might be used^ perhaps adding in effects of the approximate size anticipated.





5.0 Accuracies Obtained in Practice

Quite a variety of sales experiments have been conducted ,over the past

10 years. As might be expected^ most of them are unpublished, although the

Department of Agriculture Series is a happy exception. The writer has collected

together a certain amount of design and accuracy information from a number of

experiments. The data is displayed in Table 5.1

The purpose of the table is to give an indication of what has been done

in the past and particularly to show the range of standard errors that have

been encountered. The coefficient of variation for an experimental unit is

a fundamental design parameter for picking sample size. The standard error

of the difference in treatment means shows how big a sales effect the treat-

ments must produce in order to be detected.

The types of experimental design that have been used include: randomized

blocks, Latin squares with and without change-over, and factorial designs.

The experimental treatments have included total advertising expenditures,

advertising expenditures in specific media (especially television and

nespapers)
,
product appearance, point of purchase display, and promotional

themes.

Types of sales measurement have included store audits, factory shipments,

and consumer surveys.

Direct mail experiments have been excluded from the table.





Table 5.1

^{•' DesigP Qata from Past Experiment:





6.0 Adaptive Allocation

We return to the question raised by Figure 1 (page 4): How can we

design more effective systems for controlling marketing variables? The

elements of a control system should include a model of sales response^ a means

of allocating market effort on the basis of the model^ and devices for keeping

the model up to date. Such devices may well include the deliberate per-

turbation of marketing variables to facilitate response measurements.

In addition^ data would be collected on such quantities as product avail-

ability^ consumer attitudes, and competititive activities.

Every company obviously has some procedure for controlling marketing

variables, but usually the relationship between the data input and the setting

of the marketing variables is not at all formally specified. Our interest is

in specifying appropriate relationships and appropriate data inputs and in

studying their effect on overall company performance. Our presumption is that

by careful systems design we may be able to achieve better performance than

is achieved now.

Formal systems design in this sense appears to be a good way off. What

we shall do here is set up and solve a simple model embodying some of the

ideas that seem relevant to the larger problem.

The model may be described briefly as follows: company sales (and there-

fore profits) are a function of a marketing variable x, say, a rate of spending

money of promotion. The sales response to x changes with time. The change

takes the form of a changing parameter in the sales response function. The

value of the parameter is estimated in each time period by an experiment.
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The promotion rate for each period is picked by using information about the

parameter as collected in past experiments. Our problem is to determine how

to design the experiments and how to use the resulting information in picking

the promotion rate.

6.1 Profit Model

Let s = sales rate (dol/hh.yr.)

X = promotion rate "

p = profit rate "

c = fixed cost rate "

m = gross margin^ the incremental profit as a fraction of sales

Then

p = ms - X - c (6.1)

We shall suppose that at some fixed point in time there is a sales response

curve of the general shape:

s

sales rate

promotion rate

Presumably^ the curve can be approximated^ at least near the current operating

pointy by a quadratic function of x:

2
s = a + px - rx (6.2)

The parameters a, P^ and f are constants at a fixed point in time but some of

them may vary with time.

The value of x, say x*; that maximizes profit is easily determined;

mrp-2yxj-l =

P - 1/m

d£

dx

2y
(6.3)

i(x*) = maximum profit rate (dol/hh.yr)
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p(x) = profit rate using x (dol/hh.yr.)

,jf(x) = p(x*) - p(x) = loss of profit rate if x is used instead of x^' .

/(x) = m |p(x* - x) -^(x* -X ) - (x* - x) which after manipulation

and use of (6.3) becomes

/(x) = mJ'Cx - x*)^ (6.4)

6. 2 Model for Changes in Sales Response

If a^ P, and ^ were known, we would set x = x* and obtain/^(x*) = .

However, the parameters are presumably fairly difficult to measure and we

ordinarily expect to come up with some non-optimal x and therefore to incur a

relative loss.

If the parameters did not change with time, we would want to put a big

effort into measuring them right away^ because the extra profit from increased

accuracy would extend far into the future. However, it is difficult to believe

that in practice the parameters stay constant. Thus, for example, competitive

activity, product changes, and shifts in economic conditions lead us to expect

shifts in response. Consequently, an expensive effort to learn the parameters

immediately cannot be justified. On the other hand, the parameters may change

fairly slowly with time, in which case some effort is worthwhile. In each

time period new information is collected, combined with the old and used to

set operations in the immediate future.

To set up a fairly simple model of changing sales response, we shall

suppose that a and p change with time but (^ does not. At a fixed period

in time we assume that national sales rate for the product is:

2
s = a + px -J-x (6.5)

and that

a is a random variable with high variance from one time period to the

next
J

P is a random variable that changes with time as specified below,

a and p are independent
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y is a known constant

^s implied by (6.3) and as will be verified, the information available

about a does not directly affect the optimal x. However, information about a

may make it possible to learn more about p in an experiment. The assumption

of high variance tor a, (which may well be fairly realistic), simplifies the

statistical analysis by removing a as a contributor to information about p.)

The parameter p will be assumed to be generated by a random walk. One

possibility is

P(t) = p(t-l) +€(t)

2
where ^(t) = a random variable with mean = and variance = a

P

We shall assume £(t) is normally distributed and independent of previous values

of p and£

The difficulty with the above random walk is that p is likely to wander

unrealistically far from its starting value. Therefore we shall hypothesize

a long run average value and a tendency for p to return to that value.

Specifically, let

o
P = the long run average value of p(t)

k = a constant, < k < 1 .

We assume

ti(t) = kp(t - 1) + (1 - k) p° +eu) (6.6)

Thus, a plot of p(t) vs. t might look as follows:

i(t)

„o :^.̂
n_ru,
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Several properties of the p process are noted:

E(p(t)) = k E (p(t - 1)) + (1 - k) p° (6.7)

This is a difference equation in the expected value of p(t) . The steady

state solution is

E(p(t)j = p° (6.8)

as implied by our verbal definition of p

v(p(t)) = k^v('p(t - 1)^ + a^ (6.9)

The steady state variance is

v(p(t)) = -^ (6.10)

6. 3 An experiment on p(t)

Although national sales rate is given by (6.5)^ individual markets are

assumed to differ from one to another at a fixed t according to

s = s(x) + € (6.11)

where s = sales rate in the market (dol/hh.yr.)

s(x) = sales rate from (6.5) "

^ = a random variable for the market "

We taket as normally distributed^ independent from market to market and as

2
having mean = and variance = a

An experiment to estinate p(t) is presented in the following sketch:

/N n markets '

sf '
'

1 o 2 x(t)

At a given t^ suppose that we have picked a promotion rate, x (t), that

is in some sense best. This is used everwhere except that in n markets a

deliberately low value, x , is used, and, in another n, a high value, x , is
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We choose

X, = X (t) - ^/2
' °

(6.11)

X- = X (t) +A/2 .

2 o

Let s, and s_ be the observed mean sales rates in the markets at x and x12 12
respectively. An estimate of p(t) can be computed from the experimental data.

:t) A~'2-'^2)-(\W)Let p(t, . s - ^^'^' ' ' ' (6-12)

This will be called the "experimental mean." Let

V = V(^(t) )

From (6.11); (6.5) ^ and (6.12) we see that^ given p(t), p(t) is normally distributed

with mean and variance

E(p(t)) = p(t)

(6.13)

2 a^
v = 7

n ^^-^

Notice that v does not depend on p(t) or t.

The experimental result (6.12) does not represent all our information

about p(t) . Even before doing the experiment, we had the information developed

in previous experiments. The information will be summarized in a prior

distribution of p(t) . This distribution will be taken to be normal with

E'^p(t^ = prior mean of p(t)

v' = prior variance of p(t)

At the beginning of period t, when the promotional rate, x(t), is to

be set, we have only the prior distribution of p(t) . At the end of t, the

experimental results are available and we can construct a posterior distribution.

The additional information about p(t), however, is of no help in t although

it will be useful in t+1 .

6,4 Decision Rule for Setting x(t)

We propose a simple decision rule for setting the promotion rate in each

time period.
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Choose a number^ a, such that < a < 1 . At each t compute E'^p(t^ frc

E'(p(tj) = a E'(p(t-1)) + (l-a)'p(t-l)

then compute

X (t)
(p(t)) - 1/m

The decision rule is to set

x(t) = X (t) .

(6.14)

(6.15)

(6.16)

Suppose the process starts at t = 1 . It is necessary to pick a value

E'(p(0)) but, thereafter, x(t) is set mechanically by the rule. /Since (6.14)

is an exponential smoothing process, the effect of E'(p(0)) on E'/p(t5) and

thence x(t) decreases exponentially with t
.

j

Notice that the rule as stated makes no assumptions about the under-

lying process generating a(t) and p(t) and, if we think of ^ as an arbitrary

positive constant, the rule is not tied down to any specific sales response

process. The rule can be applied to any situation in which the experiment of

Section 6.3 is performed, provided that somebody is willing to pick a_ and ^

plus E'{ P(0)) and the experimental design parameters A and n.

The behavior of the decision rule will be clearer if we express it

somewhat differently. Putting (6.12) into (6.14) and the latter into (6.15) gives

X (t)
1/m

+ (1-a)

(t-1) + Iil2l
2^ h

(S2 - Sj^) + (x^ -
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is greater than 1/m, the implication is that x^ is more profitable than x : if

the slope is less^ the reverse is true.

Thus the decision rule says to use in t approximately the same

promotion rate as in t-1 but adjust it upward or downward depending on whether

the experimental evidence from t-1 suggests a slope greater or less than 1/m .

The amount of the adjustment is controlled by the constant (l-a)/2y.

If the constant is large^ the promotion rate will be sensitive to the most

recent experimental results; if the constant is small, insensitive.

Although an appropriate choice of constants is critical for reasonable

operation, the general form of (6.17) provides an adaptive control system

that might be expected to work fairly well for a variety of underlying sales

response mechanisms. One might hope that if the constants are chosen with one

mechanism in mind, they might work satisfactorily with other mechanisms not

too different. Whether or not this is so in a specific case is a question

that can be explored oy means of simulation.

For the sales response model being assumed we now wish to motivate

the decision rule more carefully and then go on to pick values for a, n, and

which are optimal or close to optimal.

6.5 Choosing a

Consider first the problem of finding the posterior distribution of

p(t) given the prior distribution the the experimental results. Let

E'(p(tj) = prior mean

P(t) = experimental mean

E''m(t)) = posterior mean

v' = prior variance

V = experimental variance

v' ' = posterior variance
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A
Since the prior of p(t) is normal and the distribution of p(t) given p(t) is

normal^ the posterior of p(t) is normal and, as can be shown (see l 191 p. 294-5),

has mean and variance

1/v' „, r . .\ 1/v
^'•(P(^>^ - lA i/v ^' (P(^)) ^ i/.l 1/v P(^>

(6.18)

v" V v'

The process generating p(t) has been specified in (6.6):

P(t) = kp(t-l) + (l-k)p° +fep(t) (6.6)

As of the beginning of t, we have

E'(p(t)) = k E"(p(t-1)) +(l-k)p° (6.19)

To simplify notation, let

_ jTv] (6.20)
^ " 1/v + 1/v'

Then, substitution of (6.18) into (6.19) yields as the prior mean

E- Cp(t)) = k a E'(p(t-1))+ k(l-a)'^(t-l) + (l-k)p° (6.21)

If k is near one, a sufficiently good approximation may perhaps be

obtained by setting k = 1 in the above expression. This has the advantage of

o
eliminating k and p as parameters in the decision rule and so we shall do it.

However, there is no fundamental difficulty in carrying along k and p . In

that case (6.14) would be replaced by (6.21).

Under the k = 1 approximation, (6.21) reduces to (6.14), thereby

justifying an expression that was simply postulated in Section 6.4:

E'^P(t)) = a E'(^p(t-1)) + (l-a)'^(t-l), (6.14)

In addition, we now have a value for a, or rather, we will have as soon as we

find an expression for v' in terms of the given parameters of the model.

To do this, take the variance of each side of (6.6). Using ' to denote

prior and " posterior, we obtain
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2 ./ . .A 2
V(p(t))= k V"(p(t-1)) + a

Using the k = 1 approximation^ the above plus (6.18) gives

2

v" V v'

solving, V 4.; [1 + (l + Wa/] U . (6.22)

2
Since _ 1 0_ (6.23)

^ ~ n z\2

we can now set a by (6.20) .

6.6 Choosing x (t)

Profit rate is a random variable because s(t) is:

p(t) = m s(t) - x(t) - c

s(t) = a(t) + p(t)x(t)-^ x^(t)

Since we cannot maximize true profit we choose to maximize expected profit.

Suppressing t for the moment,

E'(p) = m [j;'(a) + E'(p)x-yx^J- x - c .

This is maximized by choosing x(t) to be

X (t) = ^'^P<f) - ""
o 2 IT

This justifies (6.15) of Section 6.

At this point we have justified the decision rules of Section 6 for our

specific sales response model, at least to the extent of the k = 1 approximation.

It remains to pick the parameters n and^a^of the experiment.

6. 7 Designing the Experiment

The experimental parameters will be picked to minimize the sum of two

losses: the loss because we do not know 3(t) exactly and the loss we incur trying
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to learn p(t) better.

With perfect information we would choose; Instead we are choosing-.

x*(t)
i(t) - 1/m

28* x^(t)
E'(p(t))- 1/n

2^r

The loss compared to perfect information is seen from (6.4) to be

jl = m^ |x^(t) - x*(t)]
^

Notice above that

E'(xVc(t)) = x^(t)

;. E'(i6 = mirv'(x*(t))

= ra^

^'0-r.^' (6.24)

This is the expected loss rate relative to perfect information when we use x (t)

In the 2n markets used for the experiment the expected loss rate is higher

because the promotion rate is deliberately set to be different from the

best available value^ x (t) . Suppressing t for the moment^ the experimental

promotion rates are

X, = x -A/2
1 o

x^ = X +A/2
2 o

Consider a market at x . Its loss rate compared to perfect information is

^1 = n[;i --*J
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2
Therefore E'(/) = mj-V(x*) + m2f^/4 .

tn . . 2 ,

,

The same expected loss rate will occur for x,

of the experimental deviation is

I =mffJ/4 (6.25)

The total expected loss rate can now be computed. Let

N = total number of markets in the country

2n = the number of experimental markets

P = the average number of households in a market

L = total expected loss (dol/yr)

L = N P ^ v' -I- 2
P m 5nA (6.26)

The experimental design parameters n and A are to be picked to minimize

L. First we observe from (6.26) and (6.22) that n and A always appear

2 2
in L in the combination nA • We shall find n^ to minimize L. Then we

2
can more or less trade off n against A any way we wish as long as nA is kept

be non-negative and 2n not greater than N^ to cite two extremes) but the

flexibility implied is interesting and desirable.

2
Rather than minimize L with respect to nA ; we minimize with respect

to the dimensionless quantity

2a'

2 2 2
from which n^ can immediately be calculated. Substituting n4 = 2a /v in L,

we obtain
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L = NP-ap ^1+ + ? mg a /v

Setting d L/dv = leads to an expression wiiich optimal v must satisfy:

^_ 2^ri+i-^~|^ (6.27)

Although (6.27) contains v on both sides, it can frequently be solved

iteratively by setting v^ = and recursively calculating

4v
2ifa

" ^^f
1+ 2-

for a few n until v^ converges to v .

6.8 A Numerical Example

To illustrate the behavior of the adaptive control system, we construct

a numerical example of the model assumed, determine the optimal experiment

and simulate the operation of the system under the proposed decision rule.

i

In this particular model the data assumed available to the company are;

y = 100 = curvature of sales response curve (dol/hh.yr.)

0=1= period to period standard deviation of p(t) (dimensionless)

a = .016 = standard deviation of sales rate for an individual
market (dol/hh.yr.)

N = 1000 = number of market areas in the country

m = 1/3 = gross margin (dimensionless)

For perspective we note that national sales are in the neighborhood of

10 million dollars/year or .2 dol/hh.yr. and that national promotion rate is

on the order of 1 million dollars/yr. or .02 dol/hh.yr. Thus a implies a

coefficient of variation for an experimental unit of about 87o.

There is little conceptual difficulty in setting up a model in which more
parameters are measured (e.g. f and o ), but the computations would be more complex.
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To design the experiment, the appropriate data above are substituted

into (6.27) which can be solved to give

V = .111,

or n^ = 2a /v = 48.0 x lO' (dol/hh.yr.) .

If we choose A so that the high and low spending rates are 25% above and

below the national rate when the latter is .02, we obtain

A = .01 dol/hh.yr.

Then

n = 48 markets.

This completes the experimental design: In each time period 48 markets will

be run at a rate .005 dol/hh.yr. above the national rate x (t) and another
o

48 the same amount below. The resulting experimental standard error of p

is .333 ^=v^. This makes the experiment a fairly precise one, especially

when compared to the period to period standard error of p(t) which is a. = !•

P

Since we are predicting future p(t) from past estimates and p is changing

fairly fast (standard error = 1), we will tend to rely on the most recent

experiment (standard error=.333).

In order to operate we need smoothing constant £. First v' is found

from (6.22) to be 1.10. Then (6.20) gives

a = .092

and (l-a)=.908, so that we do indeed put most reliance on the most recent

experiment.

The value of x (t) at each t can be calculated from (6.14) and (6.15) or,

combining them^ from

x^(t) = a x^(t-l) + i^

Specifically,

x (t) = (

|f^(t-l) - 1/ml.

.092) x^(t-l) + .00454|^(t-l) - 3.o]
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We are now set to operate the company: Given a starting value Xq(0) and a

A
sequence of experimental results P(t)^ we can generate the promotional

rate x (t) .

o

The underlying market behavior is simulated from (6.6) using the

specific parameters

k = .9

s„ •
'

•

This is done by generating a sequence of ^(t) having a normal distribution

2
of mean zero and variance a^ = 1 and substituting them into

P

p(t) = .9 p(t-l) + .7 +€(t).

For the a(t) process, we take a(t) = .1 dol/hh.yr. A varying of a(t) might

be more realistic but, since it does not enter into any decisions, we simply

make a(t) constant.

Given P(t), the experimental results of t are simulated by

p(t) = p(t) +€^it) .

Here£'^(t) is a random normal number with mean zero and variance v=.lll.
B

(We could simulate each of the 2n test markets separately to generate P(t)_,

but it is obviously easier to simulate the final experiment result directly.)

The company uses the p(t) to generate x (t) . The final sales outcome can

be calculated from this, p(t), a, and y :

s(t) = .1 + p(t)x (t) - 100
I
X (t)l^ dol/hh.yr.

t°i
The sales, in turn, can be used to calculate profit. Our principal criterion,

however, is the loss relative to profit we could make using perfect information.

A side calculation gives the best promotion rate under perfect information:

Kt)-3
200

The loss rate relative to this is, from (6.4):

X (t) = ^-^^ dol/hh.yr.

J^ = 33.3 x*(t)-x^(t)r dol/hh.yy.
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The further loss resulting from the experimental deviations has not been

simulated, but its expected value can be calculated from (6.25). For

one market

/^ = 8.33 X 10'^ dol/hh.yr.

Although most quantities fluctuate with time, p(t) does have a long-run

average: p =7. If this were always the value of p(t), the optimal x(t)

would be x =.02 and the corresponding s(t) would be s =,20. Theae values

make convenient reference points: Losses can be expressed as a % of s° and

we can also compare performance of the adaptive system with a system that

simply sets x(t)=x .

The simulation results are shown in Figure 6,1. 40 time periods are

o o
shown. (The series was started with x(o) = x and p(o) = p and ran for 10

periods before the present data was taken.) plotted are p(t), which is

driving the system, x (t), by which the company responds, and the resulting

s(t) and jP(t). The latter is expressed as a "L of s ,

We see that the response of the adaptive control system is quite good,

although, by necessity, changes is x(t) lag changes in p(t) by one time

period. The losses are generally small, although occasional peaks occur

where p(t) has changed substantially and x(t) has not yet caught up. The

40 period average is:

average ^(t)

., , o = .^73
as 7o of s

This may be compared with the expected value (under the k=l appoximation)

calculated from (6.24):

i^ = .457%
o

s

The extra loss for experimental deviations in the 2n test markets as a °k

of national sales is





u
1_

tn o

0„W B

d
x(t)(d/h yr)

s ». a J3 S g °

s(t)(d/h yr)

M M 1-4

^(oa of 8°)
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—^ = .040% .

Ns°

The total expected loss is therefore .4971 of the sales s .

By way of contrast, the average loss for a system using a constant

x(t) = x° = ,02 over the 40 periods of Figure 6.1 is .854?, of s°

demonstrating the value of estimating and following p(t) in the particular

case considered.
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